Motif 455 (n=579)

Position-wise Probabilities

Download
uniprot genes site source protein function
A0MZ66 SHTN1 S512 ochoa Shootin-1 (Shootin1) Involved in the generation of internal asymmetric signals required for neuronal polarization and neurite outgrowth. Mediates netrin-1-induced F-actin-substrate coupling or 'clutch engagement' within the axon growth cone through activation of CDC42, RAC1 and PAK1-dependent signaling pathway, thereby converting the F-actin retrograde flow into traction forces, concomitantly with filopodium extension and axon outgrowth. Plays a role in cytoskeletal organization by regulating the subcellular localization of phosphoinositide 3-kinase (PI3K) activity at the axonal growth cone. Also plays a role in regenerative neurite outgrowth. In the developing cortex, cooperates with KIF20B to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in the accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the growth cone of primary hippocampal neurons. {ECO:0000250|UniProtKB:A0MZ67, ECO:0000250|UniProtKB:Q8K2Q9}.
A3KN83 SBNO1 S833 ochoa Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}.
A3KN83 SBNO1 S837 ochoa Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}.
B5ME19 EIF3CL Y31 ochoa Eukaryotic translation initiation factor 3 subunit C-like protein Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression. {ECO:0000250|UniProtKB:Q99613}.
O00571 DDX3X S90 ochoa ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}.
O00571 DDX3X S92 ochoa ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}.
O00571 DDX3X S102 ochoa|psp ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}.
O15068 MCF2L S981 ochoa Guanine nucleotide exchange factor DBS (DBL's big sister) (MCF2-transforming sequence-like protein) Guanine nucleotide exchange factor that catalyzes guanine nucleotide exchange on RHOA and CDC42, and thereby contributes to the regulation of RHOA and CDC42 signaling pathways (By similarity). Seems to lack activity with RAC1. Becomes activated and highly tumorigenic by truncation of the N-terminus (By similarity). Isoform 5 activates CDC42 (PubMed:15157669). {ECO:0000250|UniProtKB:Q63406, ECO:0000269|PubMed:15157669}.; FUNCTION: [Isoform 3]: Does not catalyze guanine nucleotide exchange on CDC42 (PubMed:15157669). {ECO:0000269|PubMed:15157669}.
O15119 TBX3 S719 psp T-box transcription factor TBX3 (T-box protein 3) Transcriptional repressor involved in developmental processes (PubMed:10468588). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:12000749). Probably plays a role in limb pattern formation (PubMed:10468588). Required for mammary placode induction, and maintenance of the mammary buds during development (By similarity). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX2 (By similarity). Required, together with TBX2, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with, TBX2 in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). {ECO:0000250|UniProtKB:P70324, ECO:0000269|PubMed:10468588, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537}.
O43182 ARHGAP6 S344 ochoa Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}.
O43182 ARHGAP6 S346 ochoa Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}.
O43353 RIPK2 S363 ochoa Receptor-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (CARD-containing interleukin-1 beta-converting enzyme-associated kinase) (CARD-containing IL-1 beta ICE-kinase) (RIP-like-interacting CLARP kinase) (Receptor-interacting protein 2) (RIP-2) (Tyrosine-protein kinase RIPK2) (EC 2.7.10.2) Serine/threonine/tyrosine-protein kinase that plays an essential role in modulation of innate and adaptive immune responses (PubMed:14638696, PubMed:17054981, PubMed:21123652, PubMed:28656966, PubMed:9575181, PubMed:9642260). Acts as a key effector of NOD1 and NOD2 signaling pathways: upon activation by bacterial peptidoglycans, NOD1 and NOD2 oligomerize and recruit RIPK2 via CARD-CARD domains, leading to the formation of RIPK2 filaments (PubMed:17054981, PubMed:17562858, PubMed:21123652, PubMed:22607974, PubMed:28656966, PubMed:29452636, PubMed:30026309). Once recruited, RIPK2 autophosphorylates and undergoes 'Lys-63'-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3, as well as 'Met-1'-linked (linear) polyubiquitination by the LUBAC complex, becoming a scaffolding protein for downstream effectors (PubMed:22607974, PubMed:28545134, PubMed:29452636, PubMed:30026309, PubMed:30279485, PubMed:30478312). 'Met-1'-linked polyubiquitin chains attached to RIPK2 recruit IKBKG/NEMO, which undergoes 'Lys-63'-linked polyubiquitination in a RIPK2-dependent process (PubMed:17562858, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitin chains attached to RIPK2 serve as docking sites for TAB2 and TAB3 and mediate the recruitment of MAP3K7/TAK1 to IKBKG/NEMO, inducing subsequent activation of IKBKB/IKKB (PubMed:18079694). In turn, NF-kappa-B is released from NF-kappa-B inhibitors and translocates into the nucleus where it activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18079694). The protein kinase activity is dispensable for the NOD1 and NOD2 signaling pathways (PubMed:29452636, PubMed:30026309). Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappa-B activation by NOD2 (PubMed:21887730). Also involved in adaptive immunity: plays a role during engagement of the T-cell receptor (TCR) in promoting BCL10 phosphorylation and subsequent NF-kappa-B activation (PubMed:14638696). Plays a role in the inactivation of RHOA in response to NGFR signaling (PubMed:26646181). {ECO:0000269|PubMed:14638696, ECO:0000269|PubMed:17054981, ECO:0000269|PubMed:17562858, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:21123652, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:28545134, ECO:0000269|PubMed:28656966, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:30279485, ECO:0000269|PubMed:30478312, ECO:0000269|PubMed:9575181, ECO:0000269|PubMed:9642260}.
O43399 TPD52L2 S161 ochoa Tumor protein D54 (hD54) (Tumor protein D52-like 2) None
O43474 KLF4 S254 ochoa Krueppel-like factor 4 (Epithelial zinc finger protein EZF) (Gut-enriched krueppel-like factor) Transcription factor; can act both as activator and as repressor. Binds the 5'-CACCC-3' core sequence. Binds to the promoter region of its own gene and can activate its own transcription. Regulates the expression of key transcription factors during embryonic development. Plays an important role in maintaining embryonic stem cells, and in preventing their differentiation. Required for establishing the barrier function of the skin and for postnatal maturation and maintenance of the ocular surface. Involved in the differentiation of epithelial cells and may also function in skeletal and kidney development. Contributes to the down-regulation of p53/TP53 transcription. {ECO:0000269|PubMed:17308127, ECO:0000269|PubMed:20071344}.
O43524 FOXO3 S300 ochoa Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}.
O43719 HTATSF1 S403 ochoa 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}.
O43719 HTATSF1 S407 ochoa 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}.
O60271 SPAG9 S265 ochoa C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}.
O60307 MAST3 S774 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O60814 H2BC12 S57 ochoa Histone H2B type 1-K (H2B K) (HIRA-interacting protein 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
O60885 BRD4 S488 psp Bromodomain-containing protein 4 (Protein HUNK1) Chromatin reader protein that recognizes and binds acetylated histones and plays a key role in transmission of epigenetic memory across cell divisions and transcription regulation (PubMed:20871596, PubMed:23086925, PubMed:23317504, PubMed:29176719, PubMed:29379197). Remains associated with acetylated chromatin throughout the entire cell cycle and provides epigenetic memory for postmitotic G1 gene transcription by preserving acetylated chromatin status and maintaining high-order chromatin structure (PubMed:22334664, PubMed:23317504, PubMed:23589332). During interphase, plays a key role in regulating the transcription of signal-inducible genes by associating with the P-TEFb complex and recruiting it to promoters (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). Also recruits P-TEFb complex to distal enhancers, so called anti-pause enhancers in collaboration with JMJD6 (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). BRD4 and JMJD6 are required to form the transcriptionally active P-TEFb complex by displacing negative regulators such as HEXIM1 and 7SKsnRNA complex from P-TEFb, thereby transforming it into an active form that can then phosphorylate the C-terminal domain (CTD) of RNA polymerase II (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). Regulates differentiation of naive CD4(+) T-cells into T-helper Th17 by promoting recruitment of P-TEFb to promoters (By similarity). Promotes phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II (PubMed:23086925). According to a report, directly acts as an atypical protein kinase and mediates phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II; these data however need additional evidences in vivo (PubMed:22509028). In addition to acetylated histones, also recognizes and binds acetylated RELA, leading to further recruitment of the P-TEFb complex and subsequent activation of NF-kappa-B (PubMed:19103749). Also acts as a regulator of p53/TP53-mediated transcription: following phosphorylation by CK2, recruited to p53/TP53 specific target promoters (PubMed:23317504). {ECO:0000250|UniProtKB:Q9ESU6, ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:19103749, ECO:0000269|PubMed:19596240, ECO:0000269|PubMed:22334664, ECO:0000269|PubMed:22509028, ECO:0000269|PubMed:23086925, ECO:0000269|PubMed:23317504, ECO:0000269|PubMed:23589332, ECO:0000269|PubMed:24360279, ECO:0000269|PubMed:29176719}.; FUNCTION: [Isoform B]: Acts as a chromatin insulator in the DNA damage response pathway. Inhibits DNA damage response signaling by recruiting the condensin-2 complex to acetylated histones, leading to chromatin structure remodeling, insulating the region from DNA damage response by limiting spreading of histone H2AX/H2A.x phosphorylation. {ECO:0000269|PubMed:23728299}.
O75044 SRGAP2 S872 ochoa SLIT-ROBO Rho GTPase-activating protein 2 (srGAP2) (Formin-binding protein 2) (Rho GTPase-activating protein 34) Postsynaptic RAC1 GTPase activating protein (GAP) that plays a key role in neuronal morphogenesis and migration mainly during development of the cerebral cortex (PubMed:20810653, PubMed:27373832, PubMed:28333212). Regulates excitatory and inhibitory synapse maturation and density in cortical pyramidal neurons (PubMed:22559944, PubMed:27373832). SRGAP2/SRGAP2A limits excitatory and inhibitory synapse density through its RAC1-specific GTPase activating activity, while it promotes maturation of both excitatory and inhibitory synapses through its ability to bind to the postsynaptic scaffolding protein HOMER1 at excitatory synapses, and the postsynaptic protein GPHN at inhibitory synapses (By similarity). Mechanistically, acts by binding and deforming membranes, thereby regulating actin dynamics to regulate cell migration and differentiation (PubMed:27373832). Promotes cell repulsion and contact inhibition of locomotion: localizes to protrusions with curved edges and controls the duration of RAC1 activity in contact protrusions (By similarity). In non-neuronal cells, may also play a role in cell migration by regulating the formation of lamellipodia and filopodia (PubMed:20810653, PubMed:21148482). {ECO:0000250|UniProtKB:Q91Z67, ECO:0000269|PubMed:20810653, ECO:0000269|PubMed:21148482, ECO:0000269|PubMed:22559944, ECO:0000269|PubMed:27373832, ECO:0000269|PubMed:28333212}.
O75044 SRGAP2 S876 ochoa SLIT-ROBO Rho GTPase-activating protein 2 (srGAP2) (Formin-binding protein 2) (Rho GTPase-activating protein 34) Postsynaptic RAC1 GTPase activating protein (GAP) that plays a key role in neuronal morphogenesis and migration mainly during development of the cerebral cortex (PubMed:20810653, PubMed:27373832, PubMed:28333212). Regulates excitatory and inhibitory synapse maturation and density in cortical pyramidal neurons (PubMed:22559944, PubMed:27373832). SRGAP2/SRGAP2A limits excitatory and inhibitory synapse density through its RAC1-specific GTPase activating activity, while it promotes maturation of both excitatory and inhibitory synapses through its ability to bind to the postsynaptic scaffolding protein HOMER1 at excitatory synapses, and the postsynaptic protein GPHN at inhibitory synapses (By similarity). Mechanistically, acts by binding and deforming membranes, thereby regulating actin dynamics to regulate cell migration and differentiation (PubMed:27373832). Promotes cell repulsion and contact inhibition of locomotion: localizes to protrusions with curved edges and controls the duration of RAC1 activity in contact protrusions (By similarity). In non-neuronal cells, may also play a role in cell migration by regulating the formation of lamellipodia and filopodia (PubMed:20810653, PubMed:21148482). {ECO:0000250|UniProtKB:Q91Z67, ECO:0000269|PubMed:20810653, ECO:0000269|PubMed:21148482, ECO:0000269|PubMed:22559944, ECO:0000269|PubMed:27373832, ECO:0000269|PubMed:28333212}.
O75044 SRGAP2 S882 ochoa SLIT-ROBO Rho GTPase-activating protein 2 (srGAP2) (Formin-binding protein 2) (Rho GTPase-activating protein 34) Postsynaptic RAC1 GTPase activating protein (GAP) that plays a key role in neuronal morphogenesis and migration mainly during development of the cerebral cortex (PubMed:20810653, PubMed:27373832, PubMed:28333212). Regulates excitatory and inhibitory synapse maturation and density in cortical pyramidal neurons (PubMed:22559944, PubMed:27373832). SRGAP2/SRGAP2A limits excitatory and inhibitory synapse density through its RAC1-specific GTPase activating activity, while it promotes maturation of both excitatory and inhibitory synapses through its ability to bind to the postsynaptic scaffolding protein HOMER1 at excitatory synapses, and the postsynaptic protein GPHN at inhibitory synapses (By similarity). Mechanistically, acts by binding and deforming membranes, thereby regulating actin dynamics to regulate cell migration and differentiation (PubMed:27373832). Promotes cell repulsion and contact inhibition of locomotion: localizes to protrusions with curved edges and controls the duration of RAC1 activity in contact protrusions (By similarity). In non-neuronal cells, may also play a role in cell migration by regulating the formation of lamellipodia and filopodia (PubMed:20810653, PubMed:21148482). {ECO:0000250|UniProtKB:Q91Z67, ECO:0000269|PubMed:20810653, ECO:0000269|PubMed:21148482, ECO:0000269|PubMed:22559944, ECO:0000269|PubMed:27373832, ECO:0000269|PubMed:28333212}.
O75122 CLASP2 S477 ochoa CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}.
O75376 NCOR1 S2102 ochoa Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}.
O75385 ULK1 S423 psp Serine/threonine-protein kinase ULK1 (EC 2.7.11.1) (Autophagy-related protein 1 homolog) (ATG1) (hATG1) (Unc-51-like kinase 1) Serine/threonine-protein kinase involved in autophagy in response to starvation (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:23524951, PubMed:25040165, PubMed:29487085, PubMed:31123703). Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:25040165). Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR (PubMed:21795849). Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity (PubMed:21460634). May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences (PubMed:18936157). Plays a role early in neuronal differentiation and is required for granule cell axon formation (PubMed:11146101). Also phosphorylates SESN2 and SQSTM1 to regulate autophagy (PubMed:25040165, PubMed:37306101). Phosphorylates FLCN, promoting autophagy (PubMed:25126726). Phosphorylates AMBRA1 in response to autophagy induction, releasing AMBRA1 from the cytoskeletal docking site to induce autophagosome nucleation (PubMed:20921139). Phosphorylates ATG4B, leading to inhibit autophagy by decreasing both proteolytic activation and delipidation activities of ATG4B (PubMed:28821708). {ECO:0000269|PubMed:11146101, ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:25040165, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:28821708, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:37306101}.
O75925 PIAS1 S503 ochoa E3 SUMO-protein ligase PIAS1 (EC 2.3.2.-) (DEAD/H box-binding protein 1) (E3 SUMO-protein transferase PIAS1) (Gu-binding protein) (GBP) (Protein inhibitor of activated STAT protein 1) (RNA helicase II-binding protein) Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Catalyzes sumoylation of various proteins, such as CEBPB, MRE11, MTA1, PTK2 and PML (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Plays a crucial role as a transcriptional coregulation in various cellular pathways, including the STAT pathway, the p53 pathway and the steroid hormone signaling pathway (PubMed:11583632, PubMed:11867732). In vitro, binds A/T-rich DNA (PubMed:15133049). The effects of this transcriptional coregulation, transactivation or silencing, may vary depending upon the biological context (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Mediates sumoylation of MRE11, stabilizing MRE11 on chromatin during end resection (PubMed:36050397). Sumoylates PML (at 'Lys-65' and 'Lys-160') and PML-RAR and promotes their ubiquitin-mediated degradation (By similarity). PIAS1-mediated sumoylation of PML promotes its interaction with CSNK2A1/CK2 which in turn promotes PML phosphorylation and degradation (By similarity). Enhances the sumoylation of MTA1 and may participate in its paralog-selective sumoylation (PubMed:21965678). Plays a dynamic role in adipogenesis by promoting the SUMOylation and degradation of CEBPB (By similarity). Mediates the nuclear mobility and localization of MSX1 to the nuclear periphery, whereby MSX1 is brought into the proximity of target myoblast differentiation factor genes (By similarity). Also required for the binding of MSX1 to the core enhancer region in target gene promoter regions, independent of its sumoylation activity (By similarity). Capable of binding to the core enhancer region TAAT box in the MYOD1 gene promoter (By similarity). {ECO:0000250|UniProtKB:O88907, ECO:0000269|PubMed:11583632, ECO:0000269|PubMed:11867732, ECO:0000269|PubMed:14500712, ECO:0000269|PubMed:15133049, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:36050397}.; FUNCTION: (Microbial infection) Restricts Epstein-Barr virus (EBV) lytic replication by acting as an inhibitor for transcription factors involved in lytic gene expression (PubMed:29262325). The virus can use apoptotic caspases to antagonize PIAS1-mediated restriction and express its lytic genes (PubMed:29262325). {ECO:0000269|PubMed:29262325}.
O75962 TRIO S2506 ochoa Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}.
O75962 TRIO S2508 ochoa Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}.
O76080 ZFAND5 S72 ochoa AN1-type zinc finger protein 5 (Zinc finger A20 domain-containing protein 2) (Zinc finger protein 216) Involved in protein degradation via the ubiquitin-proteasome system. May act by anchoring ubiquitinated proteins to the proteasome. Plays a role in ubiquitin-mediated protein degradation during muscle atrophy. Plays a role in the regulation of NF-kappa-B activation and apoptosis. Inhibits NF-kappa-B activation triggered by overexpression of RIPK1 and TRAF6 but not of RELA. Also inhibits tumor necrosis factor (TNF), IL-1 and TLR4-induced NF-kappa-B activation in a dose-dependent manner. Overexpression sensitizes cells to TNF-induced apoptosis. Is a potent inhibitory factor for osteoclast differentiation. {ECO:0000269|PubMed:14754897}.
O94887 FARP2 S426 ochoa FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}.
O94887 FARP2 S428 ochoa FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}.
O94915 FRYL S1939 ochoa Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}.
O94915 FRYL S1957 ochoa Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}.
O94929 ABLIM3 S583 ochoa Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}.
O94967 WDR47 S312 ochoa WD repeat-containing protein 47 (Neuronal enriched MAP-interacting protein) (Nemitin) None
O95197 RTN3 S30 ochoa Reticulon-3 (Homolog of ASY protein) (HAP) (Neuroendocrine-specific protein-like 2) (NSP-like protein 2) (Neuroendocrine-specific protein-like II) (NSP-like protein II) (NSPLII) May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. Induces the formation of endoplasmic reticulum tubules (PubMed:25612671). Also acts as an inflammation-resolving regulator by interacting with both TRIM25 and RIGI, subsequently impairing RIGI 'Lys-63'-linked polyubiquitination leading to IRF3 and NF-kappa-B inhibition. {ECO:0000269|PubMed:15286784, ECO:0000269|PubMed:16054885, ECO:0000269|PubMed:17031492, ECO:0000269|PubMed:17191123, ECO:0000269|PubMed:25612671}.; FUNCTION: (Microbial infection) Plays a positive role in viral replication and pathogenesis of enteroviruses. {ECO:0000269|PubMed:17182608}.
O95251 KAT7 S178 ochoa Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}.
O95544 NADK S64 ochoa|psp NAD kinase (EC 2.7.1.23) (Poly(P)/ATP NAD kinase) None
O95644 NFATC1 S169 ochoa Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}.
O95644 NFATC1 S257 psp Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}.
O95684 CEP43 S172 ochoa Centrosomal protein 43 (FGFR1 oncogene partner) Required for anchoring microtubules to the centrosomes (PubMed:16314388, PubMed:28659385). Required for ciliation (PubMed:28625565, PubMed:28659385). {ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:28625565, ECO:0000269|PubMed:28659385}.
O95810 CAVIN2 S51 ochoa Caveolae-associated protein 2 (Cavin-2) (PS-p68) (Phosphatidylserine-binding protein) (Serum deprivation-response protein) Plays an important role in caveolar biogenesis and morphology. Regulates caveolae morphology by inducing membrane curvature within caveolae (PubMed:19525939). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in the lung and fat endothelia but not in the heart endothelia. Negatively regulates the size or stability of CAVIN complexes in the lung endothelial cells. May play a role in targeting PRKCA to caveolae (By similarity). {ECO:0000250|UniProtKB:Q66H98, ECO:0000269|PubMed:19525939}.
O95810 CAVIN2 S384 ochoa Caveolae-associated protein 2 (Cavin-2) (PS-p68) (Phosphatidylserine-binding protein) (Serum deprivation-response protein) Plays an important role in caveolar biogenesis and morphology. Regulates caveolae morphology by inducing membrane curvature within caveolae (PubMed:19525939). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in the lung and fat endothelia but not in the heart endothelia. Negatively regulates the size or stability of CAVIN complexes in the lung endothelial cells. May play a role in targeting PRKCA to caveolae (By similarity). {ECO:0000250|UniProtKB:Q66H98, ECO:0000269|PubMed:19525939}.
P00533 EGFR S1057 ochoa Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.
P02671 FGA S594 ochoa Fibrinogen alpha chain [Cleaved into: Fibrinopeptide A; Fibrinogen alpha chain] Cleaved by the protease thrombin to yield monomers which, together with fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of the primary components of blood clots. In addition, functions during the early stages of wound repair to stabilize the lesion and guide cell migration during re-epithelialization. Was originally thought to be essential for platelet aggregation, based on in vitro studies using anticoagulated blood. However, subsequent studies have shown that it is not absolutely required for thrombus formation in vivo. Enhances expression of SELP in activated platelets via an ITGB3-dependent pathway. Maternal fibrinogen is essential for successful pregnancy. Fibrin deposition is also associated with infection, where it protects against IFNG-mediated hemorrhage. May also facilitate the immune response via both innate and T-cell mediated pathways. {ECO:0000250|UniProtKB:E9PV24}.
P04049 RAF1 S301 ochoa|psp RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}.
P04049 RAF1 T303 ochoa RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}.
P07900 HSP90AA1 S68 ochoa Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}.
P07947 YES1 S46 ochoa Tyrosine-protein kinase Yes (EC 2.7.10.2) (Proto-oncogene c-Yes) (p61-Yes) Non-receptor protein tyrosine kinase that is involved in the regulation of cell growth and survival, apoptosis, cell-cell adhesion, cytoskeleton remodeling, and differentiation. Stimulation by receptor tyrosine kinases (RTKs) including EGFR, PDGFR, CSF1R and FGFR leads to recruitment of YES1 to the phosphorylated receptor, and activation and phosphorylation of downstream substrates. Upon EGFR activation, promotes the phosphorylation of PARD3 to favor epithelial tight junction assembly. Participates in the phosphorylation of specific junctional components such as CTNND1 by stimulating the FYN and FER tyrosine kinases at cell-cell contacts. Upon T-cell stimulation by CXCL12, phosphorylates collapsin response mediator protein 2/DPYSL2 and induces T-cell migration. Participates in CD95L/FASLG signaling pathway and mediates AKT-mediated cell migration. Plays a role in cell cycle progression by phosphorylating the cyclin-dependent kinase 4/CDK4 thus regulating the G1 phase. Also involved in G2/M progression and cytokinesis. Catalyzes phosphorylation of organic cation transporter OCT2 which induces its transport activity (PubMed:26979622). {ECO:0000269|PubMed:11901164, ECO:0000269|PubMed:18479465, ECO:0000269|PubMed:19276087, ECO:0000269|PubMed:21566460, ECO:0000269|PubMed:21713032, ECO:0000269|PubMed:26979622}.
P08172 CHRM2 T302 psp Muscarinic acetylcholine receptor M2 The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol. {ECO:0000269|PubMed:24256733, ECO:0000269|PubMed:3443095}.
P08238 HSP90AB1 S490 ochoa Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}.
P08670 VIM S25 ochoa Vimentin Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. Plays a role in cell directional movement, orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Protects SCRIB from proteasomal degradation and facilitates its localization to intermediate filaments in a cell contact-mediated manner (By similarity). {ECO:0000250|UniProtKB:A0A8C0N8E3, ECO:0000250|UniProtKB:P31000}.; FUNCTION: Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. {ECO:0000269|PubMed:21746880}.
P08670 VIM S47 ochoa Vimentin Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. Plays a role in cell directional movement, orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Protects SCRIB from proteasomal degradation and facilitates its localization to intermediate filaments in a cell contact-mediated manner (By similarity). {ECO:0000250|UniProtKB:A0A8C0N8E3, ECO:0000250|UniProtKB:P31000}.; FUNCTION: Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. {ECO:0000269|PubMed:21746880}.
P08670 VIM S65 ochoa Vimentin Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. Plays a role in cell directional movement, orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Protects SCRIB from proteasomal degradation and facilitates its localization to intermediate filaments in a cell contact-mediated manner (By similarity). {ECO:0000250|UniProtKB:A0A8C0N8E3, ECO:0000250|UniProtKB:P31000}.; FUNCTION: Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. {ECO:0000269|PubMed:21746880}.
P09651 HNRNPA1 S22 ochoa Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}.
P10070 GLI2 S851 ochoa Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}.
P14921 ETS1 S285 ochoa|psp Protein C-ets-1 (p54) Transcription factor (PubMed:10698492, PubMed:11909962). Directly controls the expression of cytokine and chemokine genes in a wide variety of different cellular contexts (PubMed:20378371). May control the differentiation, survival and proliferation of lymphoid cells (PubMed:20378371). May also regulate angiogenesis through regulation of expression of genes controlling endothelial cell migration and invasion (PubMed:15247905, PubMed:15592518). {ECO:0000269|PubMed:10698492, ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000303|PubMed:20378371}.; FUNCTION: [Isoform Ets-1 p27]: Acts as a dominant-negative for isoform c-ETS-1A. {ECO:0000269|PubMed:19377509}.
P14921 ETS1 S288 ochoa Protein C-ets-1 (p54) Transcription factor (PubMed:10698492, PubMed:11909962). Directly controls the expression of cytokine and chemokine genes in a wide variety of different cellular contexts (PubMed:20378371). May control the differentiation, survival and proliferation of lymphoid cells (PubMed:20378371). May also regulate angiogenesis through regulation of expression of genes controlling endothelial cell migration and invasion (PubMed:15247905, PubMed:15592518). {ECO:0000269|PubMed:10698492, ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000303|PubMed:20378371}.; FUNCTION: [Isoform Ets-1 p27]: Acts as a dominant-negative for isoform c-ETS-1A. {ECO:0000269|PubMed:19377509}.
P15260 IFNGR1 S396 ochoa Interferon gamma receptor 1 (IFN-gamma receptor 1) (IFN-gamma-R1) (CDw119) (Interferon gamma receptor alpha-chain) (IFN-gamma-R-alpha) (CD antigen CD119) Receptor subunit for interferon gamma/INFG that plays crucial roles in antimicrobial, antiviral, and antitumor responses by activating effector immune cells and enhancing antigen presentation (PubMed:20015550). Associates with transmembrane accessory factor IFNGR2 to form a functional receptor (PubMed:10986460, PubMed:2971451, PubMed:7615558, PubMed:7617032, PubMed:7673114). Upon ligand binding, the intracellular domain of IFNGR1 opens out to allow association of downstream signaling components JAK1 and JAK2. In turn, activated JAK1 phosphorylates IFNGR1 to form a docking site for STAT1. Subsequent phosphorylation of STAT1 leads to dimerization, translocation to the nucleus, and stimulation of target gene transcription (PubMed:28883123). STAT3 can also be activated in a similar manner although activation seems weaker. IFNGR1 intracellular domain phosphorylation also provides a docking site for SOCS1 that regulates the JAK-STAT pathway by competing with STAT1 binding to IFNGR1 (By similarity). {ECO:0000250|UniProtKB:P15261, ECO:0000269|PubMed:10986460, ECO:0000269|PubMed:20015550, ECO:0000269|PubMed:28883123, ECO:0000269|PubMed:2971451, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7617032, ECO:0000269|PubMed:7673114}.
P15260 IFNGR1 S399 ochoa Interferon gamma receptor 1 (IFN-gamma receptor 1) (IFN-gamma-R1) (CDw119) (Interferon gamma receptor alpha-chain) (IFN-gamma-R-alpha) (CD antigen CD119) Receptor subunit for interferon gamma/INFG that plays crucial roles in antimicrobial, antiviral, and antitumor responses by activating effector immune cells and enhancing antigen presentation (PubMed:20015550). Associates with transmembrane accessory factor IFNGR2 to form a functional receptor (PubMed:10986460, PubMed:2971451, PubMed:7615558, PubMed:7617032, PubMed:7673114). Upon ligand binding, the intracellular domain of IFNGR1 opens out to allow association of downstream signaling components JAK1 and JAK2. In turn, activated JAK1 phosphorylates IFNGR1 to form a docking site for STAT1. Subsequent phosphorylation of STAT1 leads to dimerization, translocation to the nucleus, and stimulation of target gene transcription (PubMed:28883123). STAT3 can also be activated in a similar manner although activation seems weaker. IFNGR1 intracellular domain phosphorylation also provides a docking site for SOCS1 that regulates the JAK-STAT pathway by competing with STAT1 binding to IFNGR1 (By similarity). {ECO:0000250|UniProtKB:P15261, ECO:0000269|PubMed:10986460, ECO:0000269|PubMed:20015550, ECO:0000269|PubMed:28883123, ECO:0000269|PubMed:2971451, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7617032, ECO:0000269|PubMed:7673114}.
P15923 TCF3 S157 ochoa Transcription factor E2-alpha (Class B basic helix-loop-helix protein 21) (bHLHb21) (Immunoglobulin enhancer-binding factor E12/E47) (Immunoglobulin transcription factor 1) (Kappa-E2-binding factor) (Transcription factor 3) (TCF-3) (Transcription factor ITF-1) Transcriptional regulator involved in the initiation of neuronal differentiation and mesenchymal to epithelial transition (By similarity). Heterodimers between TCF3 and tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation (By similarity). Together with TCF15, required for the mesenchymal to epithelial transition (By similarity). Dimers bind DNA on E-box motifs: 5'-CANNTG-3' (By similarity). Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer (PubMed:2493990). Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (By similarity). {ECO:0000250|UniProtKB:P15806, ECO:0000269|PubMed:2493990}.; FUNCTION: [Isoform E47]: Facilitates ATOH7 binding to DNA at the consensus sequence 5'-CAGGTG-3', and positively regulates transcriptional activity. {ECO:0000269|PubMed:31696227}.
P15924 DSP T2603 ochoa Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}.
P15924 DSP S2845 psp Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}.
P15924 DSP S2849 ochoa|psp Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}.
P15924 DSP T2853 ochoa|psp Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}.
P16144 ITGB4 S1517 ochoa Integrin beta-4 (GP150) (CD antigen CD104) Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}.
P17302 GJA1 S344 ochoa Gap junction alpha-1 protein (Connexin-43) (Cx43) (Gap junction 43 kDa heart protein) Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). May play a role in cell growth inhibition through the regulation of NOV expression and localization. Plays an essential role in gap junction communication in the ventricles (By similarity). {ECO:0000250|UniProtKB:P08050, ECO:0000250|UniProtKB:P23242}.
P17661 DES S60 ochoa|psp Desmin Muscle-specific type III intermediate filament essential for proper muscular structure and function. Plays a crucial role in maintaining the structure of sarcomeres, inter-connecting the Z-disks and forming the myofibrils, linking them not only to the sarcolemmal cytoskeleton, but also to the nucleus and mitochondria, thus providing strength for the muscle fiber during activity (PubMed:25358400). In adult striated muscle they form a fibrous network connecting myofibrils to each other and to the plasma membrane from the periphery of the Z-line structures (PubMed:24200904, PubMed:25394388, PubMed:26724190). May act as a sarcomeric microtubule-anchoring protein: specifically associates with detyrosinated tubulin-alpha chains, leading to buckled microtubules and mechanical resistance to contraction. Required for nuclear membrane integrity, via anchoring at the cell tip and nuclear envelope, resulting in maintenance of microtubule-derived intracellular mechanical forces (By similarity). Contributes to the transcriptional regulation of the NKX2-5 gene in cardiac progenitor cells during a short period of cardiomyogenesis and in cardiac side population stem cells in the adult. Plays a role in maintaining an optimal conformation of nebulette (NEB) on heart muscle sarcomeres to bind and recruit cardiac alpha-actin (By similarity). {ECO:0000250|UniProtKB:P31001, ECO:0000269|PubMed:24200904, ECO:0000269|PubMed:25394388, ECO:0000269|PubMed:26724190, ECO:0000303|PubMed:25358400}.
P18615 NELFE S131 ochoa Negative elongation factor E (NELF-E) (RNA-binding protein RD) Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}.
P23497 SP100 S205 ochoa Nuclear autoantigen Sp-100 (Nuclear dot-associated Sp100 protein) (Speckled 100 kDa) Together with PML, this tumor suppressor is a major constituent of the PML bodies, a subnuclear organelle involved in a large number of physiological processes including cell growth, differentiation and apoptosis. Functions as a transcriptional coactivator of ETS1 and ETS2 according to PubMed:11909962. Under certain conditions, it may also act as a corepressor of ETS1 preventing its binding to DNA according to PubMed:15247905. Through the regulation of ETS1 it may play a role in angiogenesis, controlling endothelial cell motility and invasion. Through interaction with the MRN complex it may be involved in the regulation of telomeres lengthening. May also regulate TP53-mediated transcription and through CASP8AP2, regulate FAS-mediated apoptosis. Also plays a role in infection by viruses, including human cytomegalovirus and Epstein-Barr virus, through mechanisms that may involve chromatin and/or transcriptional regulation. {ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:14647468, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000269|PubMed:15767676, ECO:0000269|PubMed:16177824, ECO:0000269|PubMed:17245429, ECO:0000269|PubMed:21274506, ECO:0000269|PubMed:21880768}.
P27448 MARK3 S601 ochoa MAP/microtubule affinity-regulating kinase 3 (EC 2.7.11.1) (C-TAK1) (cTAK1) (Cdc25C-associated protein kinase 1) (ELKL motif kinase 2) (EMK-2) (Protein kinase STK10) (Ser/Thr protein kinase PAR-1) (Par-1a) (Serine/threonine-protein kinase p78) Serine/threonine-protein kinase (PubMed:16822840, PubMed:16980613, PubMed:23666762). Involved in the specific phosphorylation of microtubule-associated proteins for MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Phosphorylates CDC25C on 'Ser-216' (PubMed:12941695). Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus (PubMed:16980613). Regulates localization and activity of MITF by mediating its phosphorylation, promoting subsequent interaction between MITF and 14-3-3 and retention in the cytosol (PubMed:16822840). Negatively regulates the Hippo signaling pathway and antagonizes the phosphorylation of LATS1. Cooperates with DLG5 to inhibit the kinase activity of STK3/MST2 toward LATS1 (PubMed:28087714). Phosphorylates PKP2 and KSR1 (PubMed:12941695). {ECO:0000269|PubMed:12941695, ECO:0000269|PubMed:16822840, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:28087714}.
P28290 ITPRID2 S1060 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P30304 CDC25A S279 psp M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}.
P35269 GTF2F1 S449 ochoa General transcription factor IIF subunit 1 (General transcription factor IIF 74 kDa subunit) (Transcription initiation factor IIF subunit alpha) (TFIIF-alpha) (Transcription initiation factor RAP74) TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. {ECO:0000269|PubMed:10428810}.
P35568 IRS1 S323 ochoa|psp Insulin receptor substrate 1 (IRS-1) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}.
P35711 SOX5 S125 ochoa Transcription factor SOX-5 Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}.
P38159 RBMX S307 ochoa RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}.
P38159 RBMX S332 ochoa RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}.
P43243 MATR3 S22 ochoa Matrin-3 May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}.
P46100 ATRX S1962 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1996 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46821 MAP1B S1262 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B S1276 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P49023 PXN S336 ochoa Paxillin Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}.
P49815 TSC2 S997 ochoa Tuberin (Tuberous sclerosis 2 protein) Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}.
P50402 EMD S159 ochoa Emerin Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}.
P52799 EFNB2 S278 ochoa Ephrin-B2 (EPH-related receptor tyrosine kinase ligand 5) (LERK-5) (HTK ligand) (HTK-L) Cell surface transmembrane ligand for Eph receptors, a family of receptor tyrosine kinases which are crucial for migration, repulsion and adhesion during neuronal, vascular and epithelial development. Binds promiscuously Eph receptors residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Binds to receptor tyrosine kinase including EPHA4, EPHA3 and EPHB4. Together with EPHB4 plays a central role in heart morphogenesis and angiogenesis through regulation of cell adhesion and cell migration. EPHB4-mediated forward signaling controls cellular repulsion and segregation from EFNB2-expressing cells. May play a role in constraining the orientation of longitudinally projecting axons. {ECO:0000269|PubMed:12734395}.; FUNCTION: (Microbial infection) Acts as a receptor for Hendra virus and Nipah virus. {ECO:0000269|PubMed:15998730, ECO:0000269|PubMed:16007075, ECO:0000269|PubMed:16477309, ECO:0000269|PubMed:17376907}.
P54259 ATN1 S119 ochoa Atrophin-1 (Dentatorubral-pallidoluysian atrophy protein) Transcriptional corepressor. Recruits NR2E1 to repress transcription. Promotes vascular smooth cell (VSMC) migration and orientation (By similarity). Corepressor of MTG8 transcriptional repression. Has some intrinsic repression activity which is independent of the number of poly-Gln (polyQ) repeats. {ECO:0000250|UniProtKB:O35126, ECO:0000269|PubMed:10085113, ECO:0000269|PubMed:10973986}.
P55196 AFDN S1325 ochoa Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}.
P55196 AFDN S1333 ochoa Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}.
P57053 H2BC12L S57 ochoa Histone H2B type F-S (H2B-clustered histone 12 like) (H2B.S histone 1) (Histone H2B.s) (H2B/s) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P57078 RIPK4 S420 ochoa Receptor-interacting serine/threonine-protein kinase 4 (EC 2.7.11.1) (Ankyrin repeat domain-containing protein 3) (PKC-delta-interacting protein kinase) Serine/threonine protein kinase (By similarity). Required for embryonic skin development and correct skin homeostasis in adults, via phosphorylation of PKP1 and subsequent promotion of keratinocyte differentiation and cell adhesion (By similarity). It is a direct transcriptional target of TP63 (PubMed:22197488). Plays a role in NF-kappa-B activation (PubMed:12446564). {ECO:0000250|UniProtKB:Q9ERK0, ECO:0000269|PubMed:12446564, ECO:0000269|PubMed:22197488}.
P58876 H2BC5 S57 ochoa Histone H2B type 1-D (H2B-clustered histone 5) (HIRA-interacting protein 2) (Histone H2B.1 B) (Histone H2B.b) (H2B/b) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P62277 RPS13 S30 ochoa Small ribosomal subunit protein uS15 (40S ribosomal protein S13) Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P62807 H2BC4 S57 ochoa Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P78347 GTF2I S839 ochoa General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}.
P78524 DENND2B S48 ochoa DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}.
P78559 MAP1A S1172 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P78559 MAP1A S1214 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P78559 MAP1A S1221 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P82094 TMF1 S336 ochoa TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}.
Q00653 NFKB2 S727 ochoa Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}.
Q01082 SPTBN1 S2323 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q01082 SPTBN1 S2332 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q01167 FOXK2 S385 ochoa Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}.
Q02952 AKAP12 S757 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q02952 AKAP12 S761 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q02952 AKAP12 S803 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q03164 KMT2A S187 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q04656 ATP7A S1444 ochoa Copper-transporting ATPase 1 (EC 7.2.2.8) (Copper pump 1) (Menkes disease-associated protein) ATP-driven copper (Cu(+)) ion pump that plays an important role in intracellular copper ion homeostasis (PubMed:10419525, PubMed:11092760, PubMed:28389643). Within a catalytic cycle, acquires Cu(+) ion from donor protein on the cytoplasmic side of the membrane and delivers it to acceptor protein on the lumenal side. The transfer of Cu(+) ion across the membrane is coupled to ATP hydrolysis and is associated with a transient phosphorylation that shifts the pump conformation from inward-facing to outward-facing state (PubMed:10419525, PubMed:19453293, PubMed:19917612, PubMed:28389643, PubMed:31283225). Under physiological conditions, at low cytosolic copper concentration, it is localized at the trans-Golgi network (TGN) where it transfers Cu(+) ions to cuproenzymes of the secretory pathway (PubMed:11092760, PubMed:28389643). Upon elevated cytosolic copper concentrations, it relocalizes to the plasma membrane where it is responsible for the export of excess Cu(+) ions (PubMed:10419525, PubMed:28389643). May play a dual role in neuron function and survival by regulating cooper efflux and neuronal transmission at the synapse as well as by supplying Cu(+) ions to enzymes such as PAM, TYR and SOD3 (By similarity) (PubMed:28389643). In the melanosomes of pigmented cells, provides copper cofactor to TYR to form an active TYR holoenzyme for melanin biosynthesis (By similarity). {ECO:0000250|UniProtKB:Q64430, ECO:0000269|PubMed:10419525, ECO:0000269|PubMed:11092760, ECO:0000269|PubMed:19453293, ECO:0000269|PubMed:19917612, ECO:0000269|PubMed:28389643, ECO:0000269|PubMed:31283225}.
Q04726 TLE3 S217 ochoa|psp Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}.
Q04726 TLE3 S221 ochoa Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}.
Q08AD1 CAMSAP2 S434 ochoa Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}.
Q0JRZ9 FCHO2 S533 ochoa F-BAR domain only protein 2 Functions in an early step of clathrin-mediated endocytosis. Has both a membrane binding/bending activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a lipid-binding activity with a preference for membranes enriched in phosphatidylserine and phosphoinositides (Pi(4,5) biphosphate) like the plasma membrane. Its membrane-bending activity might be important for the subsequent action of clathrin and adaptors in the formation of clathrin-coated vesicles. Involved in adaptor protein complex AP-2-dependent endocytosis of the transferrin receptor, it also functions in the AP-2-independent endocytosis of the LDL receptor. {ECO:0000269|PubMed:17540576, ECO:0000269|PubMed:20448150, ECO:0000269|PubMed:21762413, ECO:0000269|PubMed:22323290}.
Q12797 ASPH T36 ochoa Aspartyl/asparaginyl beta-hydroxylase (EC 1.14.11.16) (Aspartate beta-hydroxylase) (ASP beta-hydroxylase) (Peptide-aspartate beta-dioxygenase) [Isoform 1]: Specifically hydroxylates an Asp or Asn residue in certain epidermal growth factor-like (EGF) domains of a number of proteins. {ECO:0000269|PubMed:11773073}.; FUNCTION: [Isoform 8]: Membrane-bound Ca(2+)-sensing protein, which is a structural component of the ER-plasma membrane junctions. Isoform 8 regulates the activity of Ca(+2) released-activated Ca(+2) (CRAC) channels in T-cells. {ECO:0000269|PubMed:22586105}.
Q12802 AKAP13 S1945 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12872 SFSWAP S909 ochoa Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}.
Q12888 TP53BP1 S372 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12968 NFATC3 S181 psp Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}.
Q13131 PRKAA1 S516 ochoa 5'-AMP-activated protein kinase catalytic subunit alpha-1 (AMPK subunit alpha-1) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) (Tau-protein kinase PRKAA1) (EC 2.7.11.26) Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357, PubMed:24563466, PubMed:37821951). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (By similarity). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:18439900, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). In response to nutrient limitation, phosphorylates transcription factor FOXO3 promoting FOXO3 mitochondrial import (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU; however the relevance of such data remains unclear in vivo (By similarity). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Regulates hepatic lipogenesis. Activated via SIRT3, represses sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance. Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:P54645, ECO:0000250|UniProtKB:Q5EG47, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:18439900, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:24563466, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:37821951, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}.
Q13148 TARDBP S395 psp TAR DNA-binding protein 43 (TDP-43) RNA-binding protein that is involved in various steps of RNA biogenesis and processing (PubMed:23519609). Preferentially binds, via its two RNA recognition motifs RRM1 and RRM2, to GU-repeats on RNA molecules predominantly localized within long introns and in the 3'UTR of mRNAs (PubMed:23519609, PubMed:24240615, PubMed:24464995). In turn, regulates the splicing of many non-coding and protein-coding RNAs including proteins involved in neuronal survival, as well as mRNAs that encode proteins relevant for neurodegenerative diseases (PubMed:21358640, PubMed:29438978). Plays a role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts (PubMed:28794432). Also regulates mRNA stability by recruiting CNOT7/CAF1 deadenylase on mRNA 3'UTR leading to poly(A) tail deadenylation and thus shortening (PubMed:30520513). In response to oxidative insult, associates with stalled ribosomes localized to stress granules (SGs) and contributes to cell survival (PubMed:19765185, PubMed:23398327). Also participates in the normal skeletal muscle formation and regeneration, forming cytoplasmic myo-granules and binding mRNAs that encode sarcomeric proteins (PubMed:30464263). Plays a role in the maintenance of the circadian clock periodicity via stabilization of the CRY1 and CRY2 proteins in a FBXL3-dependent manner (PubMed:27123980). Negatively regulates the expression of CDK6 (PubMed:19760257). Regulates the expression of HDAC6, ATG7 and VCP in a PPIA/CYPA-dependent manner (PubMed:25678563). {ECO:0000269|PubMed:11285240, ECO:0000269|PubMed:17481916, ECO:0000269|PubMed:19760257, ECO:0000269|PubMed:19765185, ECO:0000269|PubMed:21358640, ECO:0000269|PubMed:23398327, ECO:0000269|PubMed:23519609, ECO:0000269|PubMed:24240615, ECO:0000269|PubMed:24464995, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28794432, ECO:0000269|PubMed:29438978, ECO:0000269|PubMed:30464263, ECO:0000269|PubMed:30520513}.
Q13263 TRIM28 S612 ochoa Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}.
Q13459 MYO9B S1258 ochoa Unconventional myosin-IXb (Unconventional myosin-9b) Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}.
Q13620 CUL4B T79 ochoa Cullin-4B (CUL-4B) Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14578910, PubMed:16322693, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948, PubMed:30166453, PubMed:33854232, PubMed:33854239). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition subunit (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948). CUL4B may act within the complex as a scaffold protein, contributing to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460). Plays a role as part of the E3 ubiquitin-protein ligase complex in polyubiquitination of CDT1, histone H2A, histone H3 and histone H4 in response to radiation-induced DNA damage (PubMed:14578910, PubMed:16678110, PubMed:18593899). Targeted to UV damaged chromatin by DDB2 and may be important for DNA repair and DNA replication (PubMed:16678110). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). Required for ubiquitination of cyclin E (CCNE1 or CCNE2), and consequently, normal G1 cell cycle progression (PubMed:16322693, PubMed:19801544). Regulates the mammalian target-of-rapamycin (mTOR) pathway involved in control of cell growth, size and metabolism (PubMed:18235224). Specific CUL4B regulation of the mTORC1-mediated pathway is dependent upon 26S proteasome function and requires interaction between CUL4B and MLST8 (PubMed:18235224). With CUL4A, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:16322693, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18235224, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19801544, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}.
Q13620 CUL4B S80 ochoa Cullin-4B (CUL-4B) Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14578910, PubMed:16322693, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948, PubMed:30166453, PubMed:33854232, PubMed:33854239). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition subunit (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948). CUL4B may act within the complex as a scaffold protein, contributing to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460). Plays a role as part of the E3 ubiquitin-protein ligase complex in polyubiquitination of CDT1, histone H2A, histone H3 and histone H4 in response to radiation-induced DNA damage (PubMed:14578910, PubMed:16678110, PubMed:18593899). Targeted to UV damaged chromatin by DDB2 and may be important for DNA repair and DNA replication (PubMed:16678110). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). Required for ubiquitination of cyclin E (CCNE1 or CCNE2), and consequently, normal G1 cell cycle progression (PubMed:16322693, PubMed:19801544). Regulates the mammalian target-of-rapamycin (mTOR) pathway involved in control of cell growth, size and metabolism (PubMed:18235224). Specific CUL4B regulation of the mTORC1-mediated pathway is dependent upon 26S proteasome function and requires interaction between CUL4B and MLST8 (PubMed:18235224). With CUL4A, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:16322693, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18235224, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19801544, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}.
Q13620 CUL4B S81 ochoa Cullin-4B (CUL-4B) Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14578910, PubMed:16322693, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948, PubMed:30166453, PubMed:33854232, PubMed:33854239). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition subunit (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948). CUL4B may act within the complex as a scaffold protein, contributing to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460). Plays a role as part of the E3 ubiquitin-protein ligase complex in polyubiquitination of CDT1, histone H2A, histone H3 and histone H4 in response to radiation-induced DNA damage (PubMed:14578910, PubMed:16678110, PubMed:18593899). Targeted to UV damaged chromatin by DDB2 and may be important for DNA repair and DNA replication (PubMed:16678110). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). Required for ubiquitination of cyclin E (CCNE1 or CCNE2), and consequently, normal G1 cell cycle progression (PubMed:16322693, PubMed:19801544). Regulates the mammalian target-of-rapamycin (mTOR) pathway involved in control of cell growth, size and metabolism (PubMed:18235224). Specific CUL4B regulation of the mTORC1-mediated pathway is dependent upon 26S proteasome function and requires interaction between CUL4B and MLST8 (PubMed:18235224). With CUL4A, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:16322693, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18235224, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19801544, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}.
Q13620 CUL4B S82 ochoa Cullin-4B (CUL-4B) Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14578910, PubMed:16322693, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948, PubMed:30166453, PubMed:33854232, PubMed:33854239). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition subunit (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948). CUL4B may act within the complex as a scaffold protein, contributing to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460). Plays a role as part of the E3 ubiquitin-protein ligase complex in polyubiquitination of CDT1, histone H2A, histone H3 and histone H4 in response to radiation-induced DNA damage (PubMed:14578910, PubMed:16678110, PubMed:18593899). Targeted to UV damaged chromatin by DDB2 and may be important for DNA repair and DNA replication (PubMed:16678110). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). Required for ubiquitination of cyclin E (CCNE1 or CCNE2), and consequently, normal G1 cell cycle progression (PubMed:16322693, PubMed:19801544). Regulates the mammalian target-of-rapamycin (mTOR) pathway involved in control of cell growth, size and metabolism (PubMed:18235224). Specific CUL4B regulation of the mTORC1-mediated pathway is dependent upon 26S proteasome function and requires interaction between CUL4B and MLST8 (PubMed:18235224). With CUL4A, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:16322693, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18235224, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19801544, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}.
Q13620 CUL4B S83 ochoa Cullin-4B (CUL-4B) Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14578910, PubMed:16322693, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948, PubMed:30166453, PubMed:33854232, PubMed:33854239). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition subunit (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948). CUL4B may act within the complex as a scaffold protein, contributing to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460). Plays a role as part of the E3 ubiquitin-protein ligase complex in polyubiquitination of CDT1, histone H2A, histone H3 and histone H4 in response to radiation-induced DNA damage (PubMed:14578910, PubMed:16678110, PubMed:18593899). Targeted to UV damaged chromatin by DDB2 and may be important for DNA repair and DNA replication (PubMed:16678110). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). Required for ubiquitination of cyclin E (CCNE1 or CCNE2), and consequently, normal G1 cell cycle progression (PubMed:16322693, PubMed:19801544). Regulates the mammalian target-of-rapamycin (mTOR) pathway involved in control of cell growth, size and metabolism (PubMed:18235224). Specific CUL4B regulation of the mTORC1-mediated pathway is dependent upon 26S proteasome function and requires interaction between CUL4B and MLST8 (PubMed:18235224). With CUL4A, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:16322693, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18235224, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19801544, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}.
Q13796 SHROOM2 S173 ochoa Protein Shroom2 (Apical-like protein) (Protein APXL) May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}.
Q13796 SHROOM2 S189 ochoa Protein Shroom2 (Apical-like protein) (Protein APXL) May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}.
Q13796 SHROOM2 S193 ochoa Protein Shroom2 (Apical-like protein) (Protein APXL) May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}.
Q13796 SHROOM2 S433 ochoa Protein Shroom2 (Apical-like protein) (Protein APXL) May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}.
Q13905 RAPGEF1 S358 ochoa Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}.
Q13905 RAPGEF1 S365 ochoa Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}.
Q14153 FAM53B S248 ochoa Protein FAM53B (Protein simplet) Acts as a regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) nuclear localization. {ECO:0000269|PubMed:25183871}.
Q14155 ARHGEF7 S161 ochoa Rho guanine nucleotide exchange factor 7 (Beta-Pix) (COOL-1) (PAK-interacting exchange factor beta) (p85) Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions (By similarity). May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons. {ECO:0000250, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750}.
Q14157 UBAP2L S493 ochoa Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}.
Q14161 GIT2 S586 ochoa ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}.
Q14194 CRMP1 S540 ochoa Dihydropyrimidinase-related protein 1 (DRP-1) (Collapsin response mediator protein 1) (CRMP-1) (Inactive dihydropyrimidinase) (Unc-33-like phosphoprotein 3) (ULIP-3) Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton (PubMed:25358863). Plays a role in axon guidance (PubMed:25358863). During the axon guidance process, acts downstream of SEMA3A to promote FLNA dissociation from F-actin which results in the rearrangement of the actin cytoskeleton and the collapse of the growth cone (PubMed:25358863). Involved in invasive growth and cell migration (PubMed:11562390). May participate in cytokinesis (PubMed:19799413). {ECO:0000269|PubMed:11562390, ECO:0000269|PubMed:19799413, ECO:0000269|PubMed:25358863}.
Q14202 ZMYM3 S790 ochoa Zinc finger MYM-type protein 3 (Zinc finger protein 261) Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}.
Q14699 RFTN1 S183 ochoa Raftlin (Cell migration-inducing gene 2 protein) (Raft-linking protein) Involved in protein trafficking via association with clathrin and AP2 complex (PubMed:21266579, PubMed:27022195). Upon bacterial lipopolysaccharide stimulation, mediates internalization of TLR4 to endosomes in dendritic cells and macrophages; and internalization of poly(I:C) to TLR3-positive endosomes in myeloid dendritic cells and epithelial cells; resulting in activation of TICAM1-mediated signaling and subsequent IFNB1 production (PubMed:21266579, PubMed:27022195). Involved in T-cell antigen receptor-mediated signaling by regulating tyrosine kinase LCK localization, T-cell dependent antibody production and cytokine secretion (By similarity). May regulate B-cell antigen receptor-mediated signaling (PubMed:12805216). May play a pivotal role in the formation and/or maintenance of lipid rafts (PubMed:12805216). {ECO:0000250|UniProtKB:Q6A0D4, ECO:0000269|PubMed:12805216, ECO:0000269|PubMed:21266579, ECO:0000269|PubMed:27022195}.
Q14980 NUMA1 S1853 ochoa Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}.
Q14980 NUMA1 S1868 ochoa Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}.
Q14980 NUMA1 S1872 ochoa Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}.
Q15052 ARHGEF6 S140 ochoa Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) Acts as a RAC1 guanine nucleotide exchange factor (GEF).
Q15149 PLEC S4400 ochoa Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}.
Q15149 PLEC S4634 ochoa Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}.
Q15149 PLEC S4638 ochoa Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}.
Q15648 MED1 S1465 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15648 MED1 S1467 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q16778 H2BC21 S57 ochoa Histone H2B type 2-E (H2B-clustered histone 21) (Histone H2B-GL105) (Histone H2B.q) (H2B/q) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
Q2TB10 ZNF800 S478 ochoa Zinc finger protein 800 May be involved in transcriptional regulation.
Q4AC94 C2CD3 S2146 ochoa C2 domain-containing protein 3 Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}.
Q4ADV7 RIC1 S1037 ochoa Guanine nucleotide exchange factor subunit RIC1 (Connexin-43-interacting protein of 150 kDa) (Protein RIC1 homolog) (RAB6A-GEF complex partner protein 1) The RIC1-RGP1 complex acts as a guanine nucleotide exchange factor (GEF), which activates RAB6A by exchanging bound GDP for free GTP, and may thereby be required for efficient fusion of endosome-derived vesicles with the Golgi compartment (PubMed:23091056). The RIC1-RGP1 complex participates in the recycling of mannose-6-phosphate receptors (PubMed:23091056). Required for phosphorylation and localization of GJA1 (PubMed:16112082). Is a regulator of procollagen transport and secretion, and is required for correct cartilage morphogenesis and development of the craniofacial skeleton (PubMed:31932796). {ECO:0000269|PubMed:16112082, ECO:0000269|PubMed:23091056, ECO:0000269|PubMed:31932796}.
Q52LW3 ARHGAP29 S573 ochoa Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}.
Q5FWE3 PRRT3 S924 ochoa Proline-rich transmembrane protein 3 None
Q5JQS6 GCSAML S80 ochoa Germinal center-associated signaling and motility-like protein None
Q5JSZ5 PRRC2B S244 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5M775 SPECC1 S935 ochoa Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) None
Q5QNW6 H2BC18 S57 ochoa Histone H2B type 2-F (H2B-clustered histone 18) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q5SW79 CEP170 S1101 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5T200 ZC3H13 S356 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5VT25 CDC42BPA S1629 ochoa Serine/threonine-protein kinase MRCK alpha (EC 2.7.11.1) (CDC42-binding protein kinase alpha) (DMPK-like alpha) (Myotonic dystrophy kinase-related CDC42-binding kinase alpha) (MRCK alpha) (Myotonic dystrophy protein kinase-like alpha) Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration (PubMed:15723050, PubMed:9092543, PubMed:9418861). Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates: PPP1R12A, LIMK1 and LIMK2 (PubMed:11340065, PubMed:11399775). May play a role in TFRC-mediated iron uptake (PubMed:20188707). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). Triggers the formation of an extrusion apical actin ring required for epithelial extrusion of apoptotic cells (PubMed:29162624). {ECO:0000250|UniProtKB:Q3UU96, ECO:0000269|PubMed:11340065, ECO:0000269|PubMed:11399775, ECO:0000269|PubMed:15723050, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:20188707, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:29162624, ECO:0000269|PubMed:9092543, ECO:0000269|PubMed:9418861}.
Q5VT52 RPRD2 S730 ochoa Regulation of nuclear pre-mRNA domain-containing protein 2 None
Q5VT52 RPRD2 S777 ochoa Regulation of nuclear pre-mRNA domain-containing protein 2 None
Q5VT52 RPRD2 S785 ochoa Regulation of nuclear pre-mRNA domain-containing protein 2 None
Q5VT52 RPRD2 S946 ochoa Regulation of nuclear pre-mRNA domain-containing protein 2 None
Q5VT52 RPRD2 S948 ochoa Regulation of nuclear pre-mRNA domain-containing protein 2 None
Q68CZ2 TNS3 S399 ochoa Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}.
Q68CZ2 TNS3 S959 ochoa Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}.
Q68CZ2 TNS3 S1131 ochoa Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}.
Q6FI81 CIAPIN1 S201 ochoa Anamorsin (Cytokine-induced apoptosis inhibitor 1) (Fe-S cluster assembly protein DRE2 homolog) Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis, facilitating the de novo assembly of a [4Fe-4S] cluster on the scaffold complex NUBP1-NUBP2. Electrons are transferred to CIAPIN1 from NADPH via the FAD- and FMN-containing protein NDOR1 (PubMed:23596212). NDOR1-CIAPIN1 are also required for the assembly of the diferric tyrosyl radical cofactor of ribonucleotide reductase (RNR), probably by providing electrons for reduction during radical cofactor maturation in the catalytic small subunit (By similarity). Has anti-apoptotic effects in the cell. Involved in negative control of cell death upon cytokine withdrawal. Promotes development of hematopoietic cells (By similarity). {ECO:0000250|UniProtKB:P36152, ECO:0000250|UniProtKB:Q8WTY4, ECO:0000255|HAMAP-Rule:MF_03115, ECO:0000269|PubMed:23596212}.
Q6P1L5 FAM117B S426 ochoa Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) None
Q6P4Q7 CNNM4 T678 ochoa Metal transporter CNNM4 (Ancient conserved domain-containing protein 4) (Cyclin-M4) Probable metal transporter. The interaction with the metal ion chaperone COX11 suggests that it may play a role in sensory neuron functions (By similarity). May play a role in biomineralization and retinal function. {ECO:0000250, ECO:0000269|PubMed:19200525, ECO:0000269|PubMed:19200527}.
Q6PIJ6 FBXO38 S733 ochoa F-box only protein 38 Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of PDCD1/PD-1, thereby regulating T-cells-mediated immunity (PubMed:30487606). Required for anti-tumor activity of T-cells by promoting the degradation of PDCD1/PD-1; the PDCD1-mediated inhibitory pathway being exploited by tumors to attenuate anti-tumor immunity and facilitate tumor survival (PubMed:30487606). May indirectly stimulate the activity of transcription factor KLF7, a regulator of neuronal differentiation, without promoting KLF7 ubiquitination (By similarity). {ECO:0000250|UniProtKB:Q8BMI0, ECO:0000269|PubMed:30487606}.
Q6R327 RICTOR S1302 ochoa Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}.
Q6UUV7 CRTC3 S345 ochoa CREB-regulated transcription coactivator 3 (Transducer of regulated cAMP response element-binding protein 3) (TORC-3) (Transducer of CREB protein 3) Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:15466468, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223, ECO:0000269|PubMed:17644518}.
Q6UXY1 BAIAP2L2 S493 ochoa BAR/IMD domain-containing adapter protein 2-like 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 2) (BAI1-associated protein 2-like protein 2) (Planar intestinal- and kidney-specific BAR domain protein) (Pinkbar) Phosphoinositides-binding protein that induces the formation of planar or gently curved membrane structures. Binds to phosphoinositides, including to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) headgroups. There seems to be no clear preference for a specific phosphoinositide (By similarity). {ECO:0000250}.
Q6WKZ4 RAB11FIP1 S357 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6XZF7 DNMBP S1369 ochoa Dynamin-binding protein (Scaffold protein Tuba) Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}.
Q6XZF7 DNMBP S1379 ochoa Dynamin-binding protein (Scaffold protein Tuba) Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}.
Q6XZF7 DNMBP S1381 ochoa Dynamin-binding protein (Scaffold protein Tuba) Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}.
Q7KZI7 MARK2 S551 ochoa Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}.
Q7L2J0 MEPCE S358 ochoa 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}.
Q7Z417 NUFIP2 S230 ochoa FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) Binds RNA. {ECO:0000269|PubMed:12837692}.
Q7Z460 CLASP1 S704 ochoa CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}.
Q7Z6Z7 HUWE1 S3135 ochoa E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}.
Q86U86 PBRM1 S32 ochoa Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q86UE4 MTDH S357 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UU0 BCL9L S106 ochoa B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}.
Q86UU1 PHLDB1 S551 ochoa Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) None
Q86VP3 PACS2 S349 ochoa Phosphofurin acidic cluster sorting protein 2 (PACS-2) (PACS1-like protein) Multifunctional sorting protein that controls the endoplasmic reticulum (ER)-mitochondria communication, including the apposition of mitochondria with the ER and ER homeostasis. In addition, in response to apoptotic inducer, translocates BIB to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated BID, the release of cytochrome c, the activation of caspase-3 thereby causing cell death. May also be involved in ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments. {ECO:0000269|PubMed:15692563, ECO:0000269|PubMed:15692567}.
Q86W92 PPFIBP1 S379 ochoa Liprin-beta-1 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 1) (PTPRF-interacting protein-binding protein 1) (hSGT2) May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}.
Q86X29 LSR S381 ochoa Lipolysis-stimulated lipoprotein receptor (Angulin-1) Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}.
Q86X29 LSR S528 ochoa Lipolysis-stimulated lipoprotein receptor (Angulin-1) Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}.
Q86X29 LSR S530 ochoa Lipolysis-stimulated lipoprotein receptor (Angulin-1) Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}.
Q86X51 EZHIP S468 ochoa EZH inhibitory protein Inhibits PRC2/EED-EZH1 and PRC2/EED-EZH2 complex function by inhibiting EZH1/EZH2 methyltransferase activity, thereby causing down-regulation of histone H3 trimethylation on 'Lys-27' (H3K27me3) (PubMed:29909548, PubMed:30923826, PubMed:31086175, PubMed:31451685). Probably inhibits methyltransferase activity by limiting the stimulatory effect of cofactors such as AEBP2 and JARID2 (PubMed:30923826). Inhibits H3K27me3 deposition during spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B1B0V2, ECO:0000269|PubMed:29909548, ECO:0000269|PubMed:30923826, ECO:0000269|PubMed:31086175, ECO:0000269|PubMed:31451685}.
Q86XL3 ANKLE2 S277 ochoa Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}.
Q8IWS0 PHF6 S199 ochoa PHD finger protein 6 (PHD-like zinc finger protein) Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}.
Q8IY63 AMOTL1 S805 ochoa|psp Angiomotin-like protein 1 Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. {ECO:0000269|PubMed:22362771}.
Q8IYB3 SRRM1 S227 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IYB3 SRRM1 S791 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8N1G2 CMTR1 S49 ochoa Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (EC 2.1.1.57) (Cap methyltransferase 1) (Cap1 2'O-ribose methyltransferase 1) (MTr1) (hMTr1) (FtsJ methyltransferase domain-containing protein 2) (Interferon-stimulated gene 95 kDa protein) (ISG95) S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap1 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the first nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) to produce m(7)GpppRm (cap1). Displays a preference for cap0 transcripts. Cap1 modification is linked to higher levels of translation. May be involved in the interferon response pathway. {ECO:0000269|PubMed:18533109, ECO:0000269|PubMed:20713356, ECO:0000269|PubMed:21310715}.
Q8N257 H2BC26 S57 ochoa Histone H2B type 3-B (H2B type 12) (H2B-clustered histone 26) (H2B.U histone 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q8N3F8 MICALL1 S536 ochoa MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}.
Q8N488 RYBP S199 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8N488 RYBP S201 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8N612 FHIP1B S500 ochoa FHF complex subunit HOOK-interacting protein 1B (FHIP1B) (FTS- and Hook-interacting protein) (FHIP) Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}.
Q8N6H7 ARFGAP2 S337 ochoa ADP-ribosylation factor GTPase-activating protein 2 (ARF GAP 2) (GTPase-activating protein ZNF289) (Zinc finger protein 289) GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:17760859}.
Q8N6T3 ARFGAP1 S361 ochoa ADP-ribosylation factor GTPase-activating protein 1 (ARF GAP 1) (ADP-ribosylation factor 1 GTPase-activating protein) (ARF1 GAP) (ARF1-directed GTPase-activating protein) GTPase-activating protein (GAP) for the ADP ribosylation factor 1 (ARF1). Involved in membrane trafficking and /or vesicle transport. Promotes hydrolysis of the ARF1-bound GTP and thus, is required for the dissociation of coat proteins from Golgi-derived membranes and vesicles, a prerequisite for vesicle's fusion with target compartment. Probably regulates ARF1-mediated transport via its interaction with the KDELR proteins and TMED2. Overexpression induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, as when ARF1 is deactivated. Its activity is stimulated by phosphoinosides and inhibited by phosphatidylcholine (By similarity). {ECO:0000250}.
Q8N8K9 KIAA1958 Y102 ochoa Uncharacterized protein KIAA1958 None
Q8NC51 SERBP1 S219 ochoa SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}.
Q8NEF9 SRFBP1 S367 ochoa Serum response factor-binding protein 1 (SRF-dependent transcription regulation-associated protein) (p49/STRAP) May be involved in regulating transcriptional activation of cardiac genes during the aging process. May play a role in biosynthesis and/or processing of SLC2A4 in adipose cells (By similarity). {ECO:0000250|UniProtKB:Q9CZ91}.
Q8NFH5 NUP35 S135 ochoa Nucleoporin NUP35 (35 kDa nucleoporin) (Mitotic phosphoprotein 44) (MP-44) (Nuclear pore complex protein Nup53) (Nucleoporin NUP53) Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. May play a role in the association of MAD1 with the NPC. {ECO:0000269|PubMed:15703211}.
Q8NFQ8 TOR1AIP2 S136 ochoa Torsin-1A-interacting protein 2 (Lumenal domain-like LAP1) Required for endoplasmic reticulum integrity. Regulates the distribution of TOR1A between the endoplasmic reticulum and the nuclear envelope as well as induces TOR1A, TOR1B and TOR3A ATPase activity. {ECO:0000269|PubMed:19339278, ECO:0000269|PubMed:23569223, ECO:0000269|PubMed:24275647}.
Q8TB45 DEPTOR S283 ochoa|psp DEP domain-containing mTOR-interacting protein (hDEPTOR) (DEP domain-containing protein 6) Negative regulator of the mTORC1 and mTORC2 complexes: inhibits the protein kinase activity of MTOR, thereby inactivating both complexes (PubMed:19446321, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:25936805, PubMed:29382726, PubMed:34519268, PubMed:34519269). DEPTOR inhibits mTORC1 and mTORC2 to induce autophagy (PubMed:22017875, PubMed:22017876, PubMed:22017877). In contrast to AKT1S1/PRAS40, only partially inhibits mTORC1 activity (PubMed:34519268, PubMed:34519269). {ECO:0000269|PubMed:19446321, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:29382726, ECO:0000269|PubMed:34519268, ECO:0000269|PubMed:34519269}.
Q8TEW0 PARD3 S827 ochoa|psp Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}.
Q8WU79 SMAP2 S237 ochoa Stromal membrane-associated protein 2 (Stromal membrane-associated protein 1-like) GTPase activating protein that acts on ARF1. Can also activate ARF6 (in vitro). May play a role in clathrin-dependent retrograde transport from early endosomes to the trans-Golgi network (By similarity). {ECO:0000250}.
Q8WV41 SNX33 S89 ochoa Sorting nexin-33 (SH3 and PX domain-containing protein 3) Plays a role in the reorganization of the cytoskeleton, endocytosis and cellular vesicle trafficking via its interactions with membranes, WASL, DNM1 and DNM2. Acts both during interphase and at the end of mitotic cell divisions. Required for efficient progress through mitosis and cytokinesis. Required for normal formation of the cleavage furrow at the end of mitosis. Modulates endocytosis of cell-surface proteins, such as APP and PRNP; this then modulates the secretion of APP and PRNP peptides. Promotes membrane tubulation (in vitro). May promote the formation of macropinosomes. {ECO:0000269|PubMed:18353773, ECO:0000269|PubMed:18419754, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:20964629, ECO:0000269|PubMed:21048941, ECO:0000269|PubMed:22718350}.
Q8WWQ0 PHIP S692 ochoa PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}.
Q8WYP5 AHCTF1 S1232 ochoa Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}.
Q92609 TBC1D5 S557 ochoa TBC1 domain family member 5 May act as a GTPase-activating protein (GAP) for Rab family protein(s). May act as a GAP for RAB7A. Can displace RAB7A and retromer CSC subcomplex from the endosomal membrane to the cytosol; at least retromer displacement seems to require its catalytic activity (PubMed:19531583, PubMed:20923837). Required for retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN); the function seems to require its catalytic activity. Involved in regulation of autophagy (PubMed:22354992). May act as a molecular switch between endosomal and autophagosomal transport and is involved in reprogramming vesicle trafficking upon autophagy induction. Involved in the trafficking of ATG9A upon activation of autophagy. May regulate the recruitment of ATG9A-AP2-containing vesicles to autophagic membranes (PubMed:24603492). {ECO:0000269|PubMed:19531583, ECO:0000269|PubMed:20923837, ECO:0000269|PubMed:22354992, ECO:0000269|PubMed:24603492, ECO:0000305|PubMed:19531583, ECO:0000305|PubMed:22354992, ECO:0000305|PubMed:24603492}.
Q92625 ANKS1A T640 ochoa Ankyrin repeat and SAM domain-containing protein 1A (Odin) Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}.
Q92625 ANKS1A S661 ochoa Ankyrin repeat and SAM domain-containing protein 1A (Odin) Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}.
Q92625 ANKS1A S663 ochoa Ankyrin repeat and SAM domain-containing protein 1A (Odin) Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}.
Q93079 H2BC9 S57 ochoa Histone H2B type 1-H (H2B-clustered histone 9) (Histone H2B.j) (H2B/j) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q96C24 SYTL4 S217 ochoa Synaptotagmin-like protein 4 (Exophilin-2) (Granuphilin) Modulates exocytosis of dense-core granules and secretion of hormones in the pancreas and the pituitary. Interacts with vesicles containing negatively charged phospholipids in a Ca(2+)-independent manner (By similarity). {ECO:0000250}.
Q96EZ8 MCRS1 S36 ochoa|psp Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}.
Q96JQ2 CLMN S923 ochoa Calmin (Calponin-like transmembrane domain protein) None
Q96JY6 PDLIM2 S137 ochoa PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) Probable adapter protein located at the actin cytoskeleton that promotes cell attachment. Necessary for the migratory capacity of epithelial cells. Overexpression enhances cell adhesion to collagen and fibronectin and suppresses anchorage independent growth. May contribute to tumor cell migratory capacity. {ECO:0000269|PubMed:15659642}.
Q96JY6 PDLIM2 S143 ochoa PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) Probable adapter protein located at the actin cytoskeleton that promotes cell attachment. Necessary for the migratory capacity of epithelial cells. Overexpression enhances cell adhesion to collagen and fibronectin and suppresses anchorage independent growth. May contribute to tumor cell migratory capacity. {ECO:0000269|PubMed:15659642}.
Q96JY6 PDLIM2 S157 ochoa PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) Probable adapter protein located at the actin cytoskeleton that promotes cell attachment. Necessary for the migratory capacity of epithelial cells. Overexpression enhances cell adhesion to collagen and fibronectin and suppresses anchorage independent growth. May contribute to tumor cell migratory capacity. {ECO:0000269|PubMed:15659642}.
Q96N67 DOCK7 S964 ochoa Dedicator of cytokinesis protein 7 Functions as a guanine nucleotide exchange factor (GEF), which activates Rac1 and Rac3 Rho small GTPases by exchanging bound GDP for free GTP. Does not have a GEF activity for CDC42. Required for STMN1 'Ser-15' phosphorylation during axon formation and consequently for neuronal polarization (PubMed:16982419). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). Has a role in pigmentation (By similarity). Involved in the regulation of cortical neurogenesis through the control of radial glial cells (RGCs) proliferation versus differentiation; negatively regulates the basal-to-apical interkinetic nuclear migration of RGCs by antagonizing the microtubule growth-promoting function of TACC3 (By similarity). {ECO:0000250|UniProtKB:Q8R1A4, ECO:0000269|PubMed:16982419, ECO:0000269|PubMed:29467281}.
Q96NE9 FRMD6 S525 ochoa FERM domain-containing protein 6 (Willin) None
Q96PC5 MIA2 S1255 ochoa Melanoma inhibitory activity protein 2 (MIA protein 2) (CTAGE family member 5 ER export factor) (Cutaneous T-cell lymphoma-associated antigen 5) (Meningioma-expressed antigen 6/11) Plays a role in the transport of cargos that are too large to fit into COPII-coated vesicles and require specific mechanisms to be incorporated into membrane-bound carriers and exported from the endoplasmic reticulum (PubMed:21525241, PubMed:25202031, PubMed:27138255, PubMed:27170179). Plays a role in the secretion of lipoproteins, pre-chylomicrons and pre-VLDLs, by participating in their export from the endoplasmic reticulum (PubMed:27138255). Thereby, may play a role in cholesterol and triglyceride homeostasis (By similarity). Required for collagen VII (COL7A1) secretion by loading COL7A1 into transport carriers and recruiting PREB/SEC12 at the endoplasmic reticulum exit sites (PubMed:21525241, PubMed:25202031, PubMed:27170179). {ECO:0000250|UniProtKB:Q91ZV0, ECO:0000269|PubMed:21525241, ECO:0000269|PubMed:25202031, ECO:0000269|PubMed:27138255, ECO:0000269|PubMed:27170179}.
Q96QT4 TRPM7 S1404 ochoa|psp Transient receptor potential cation channel subfamily M member 7 (EC 2.7.11.1) (Channel-kinase 1) (Long transient receptor potential channel 7) (LTrpC-7) (LTrpC7) [Cleaved into: TRPM7 kinase, cleaved form (M7CK); TRPM7 channel, cleaved form] Bifunctional protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. The channel is highly permeable to divalent cations, specifically calcium (Ca2+), magnesium (Mg2+) and zinc (Zn2+) and mediates their influx (PubMed:11385574, PubMed:12887921, PubMed:15485879, PubMed:24316671, PubMed:35561741, PubMed:36027648). Controls a wide range of biological processes such as Ca2(+), Mg(2+) and Zn(2+) homeostasis, vesicular Zn(2+) release channel and intracellular Ca(2+) signaling, embryonic development, immune responses, cell motility, proliferation and differentiation (By similarity). The C-terminal alpha-kinase domain autophosphorylates cytoplasmic residues of TRPM7 (PubMed:18365021). In vivo, TRPM7 phosphorylates SMAD2, suggesting that TRPM7 kinase may play a role in activating SMAD signaling pathways. In vitro, TRPM7 kinase phosphorylates ANXA1 (annexin A1), myosin II isoforms and a variety of proteins with diverse cellular functions (PubMed:15485879, PubMed:18394644). {ECO:0000250|UniProtKB:Q923J1, ECO:0000269|PubMed:11385574, ECO:0000269|PubMed:12887921, ECO:0000269|PubMed:15485879, ECO:0000269|PubMed:18365021, ECO:0000269|PubMed:18394644, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:35561741, ECO:0000269|PubMed:36027648}.; FUNCTION: [TRPM7 channel, cleaved form]: The cleaved channel exhibits substantially higher current and potentiates Fas receptor signaling. {ECO:0000250|UniProtKB:Q923J1}.; FUNCTION: [TRPM7 kinase, cleaved form]: The C-terminal kinase domain can be cleaved from the channel segment in a cell-type-specific fashion. In immune cells, the TRPM7 kinase domain is clipped from the channel domain by caspases in response to Fas-receptor stimulation. The cleaved kinase fragments can translocate to the nucleus, and bind chromatin-remodeling complex proteins in a Zn(2+)-dependent manner to ultimately phosphorylate specific Ser/Thr residues of histones known to be functionally important for cell differentiation and embryonic development. {ECO:0000250|UniProtKB:Q923J1}.
Q96R06 SPAG5 T30 ochoa Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}.
Q96S38 RPS6KC1 S664 ochoa Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}.
Q96SD1 DCLRE1C S534 psp Protein artemis (EC 3.1.-.-) (DNA cross-link repair 1C protein) (Protein A-SCID) (SNM1 homolog C) (hSNM1C) (SNM1-like protein) Nuclease involved in DNA non-homologous end joining (NHEJ); required for double-strand break repair and V(D)J recombination (PubMed:11336668, PubMed:11955432, PubMed:12055248, PubMed:14744996, PubMed:15071507, PubMed:15574326, PubMed:15936993). Required for V(D)J recombination, the process by which exons encoding the antigen-binding domains of immunoglobulins and T-cell receptor proteins are assembled from individual V, (D), and J gene segments (PubMed:11336668, PubMed:11955432, PubMed:14744996). V(D)J recombination is initiated by the lymphoid specific RAG endonuclease complex, which generates site specific DNA double strand breaks (DSBs) (PubMed:11336668, PubMed:11955432, PubMed:14744996). These DSBs present two types of DNA end structures: hairpin sealed coding ends and phosphorylated blunt signal ends (PubMed:11336668, PubMed:11955432, PubMed:14744996). These ends are independently repaired by the non homologous end joining (NHEJ) pathway to form coding and signal joints respectively (PubMed:11336668, PubMed:11955432, PubMed:14744996). This protein exhibits single-strand specific 5'-3' exonuclease activity in isolation and acquires endonucleolytic activity on 5' and 3' hairpins and overhangs when in a complex with PRKDC (PubMed:11955432, PubMed:15071507, PubMed:15574326, PubMed:15936993). The latter activity is required specifically for the resolution of closed hairpins prior to the formation of the coding joint (PubMed:11955432). Also required for the repair of complex DSBs induced by ionizing radiation, which require substantial end-processing prior to religation by NHEJ (PubMed:15456891, PubMed:15468306, PubMed:15574327, PubMed:15811628). {ECO:0000269|PubMed:11336668, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12055248, ECO:0000269|PubMed:14744996, ECO:0000269|PubMed:15071507, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15468306, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:15574327, ECO:0000269|PubMed:15811628, ECO:0000269|PubMed:15936993}.
Q96SK2 TMEM209 S194 ochoa Transmembrane protein 209 Nuclear envelope protein which in association with NUP205, may be involved in nuclear transport of various nuclear proteins in addition to MYC. {ECO:0000269|PubMed:22719065}.
Q96SU4 OSBPL9 T335 ochoa Oxysterol-binding protein-related protein 9 (ORP-9) (OSBP-related protein 9) Interacts with OSBPL11 to function as lipid transfer proteins (PubMed:39106189). Together they form a heterodimer that localizes at the ER-trans-Golgi membrane contact sites, and exchanges phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) for phosphatidylinositol-4-phosphate (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate), PI(4)P) between the two organelles, a step that is critical for sphingomyelin synthesis in the Golgi complex (PubMed:39106189). {ECO:0000269|PubMed:39106189}.
Q96SU4 OSBPL9 S342 ochoa Oxysterol-binding protein-related protein 9 (ORP-9) (OSBP-related protein 9) Interacts with OSBPL11 to function as lipid transfer proteins (PubMed:39106189). Together they form a heterodimer that localizes at the ER-trans-Golgi membrane contact sites, and exchanges phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) for phosphatidylinositol-4-phosphate (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate), PI(4)P) between the two organelles, a step that is critical for sphingomyelin synthesis in the Golgi complex (PubMed:39106189). {ECO:0000269|PubMed:39106189}.
Q96SU4 OSBPL9 S344 ochoa Oxysterol-binding protein-related protein 9 (ORP-9) (OSBP-related protein 9) Interacts with OSBPL11 to function as lipid transfer proteins (PubMed:39106189). Together they form a heterodimer that localizes at the ER-trans-Golgi membrane contact sites, and exchanges phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) for phosphatidylinositol-4-phosphate (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate), PI(4)P) between the two organelles, a step that is critical for sphingomyelin synthesis in the Golgi complex (PubMed:39106189). {ECO:0000269|PubMed:39106189}.
Q96T23 RSF1 S489 ochoa Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}.
Q96T37 RBM15 S119 ochoa RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}.
Q99081 TCF12 S63 ochoa Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}.
Q99081 TCF12 S83 ochoa Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}.
Q99569 PKP4 S243 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99569 PKP4 S247 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99569 PKP4 S353 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99569 PKP4 S1153 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99590 SCAF11 S792 ochoa Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}.
Q99613 EIF3C Y31 ochoa Eukaryotic translation initiation factor 3 subunit C (eIF3c) (Eukaryotic translation initiation factor 3 subunit 8) (eIF3 p110) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03002, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
Q99755 PIP5K1A S476 ochoa Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha (PIP5K1-alpha) (PtdIns(4)P-5-kinase 1 alpha) (EC 2.7.1.68) (68 kDa type I phosphatidylinositol 4-phosphate 5-kinase alpha) (Phosphatidylinositol 4-phosphate 5-kinase type I alpha) (PIP5KIalpha) Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:21477596, PubMed:22942276, PubMed:8955136). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (PubMed:19158393, PubMed:20660631). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Can also use phosphatidylinositol (PtdIns) as substrate in vitro (PubMed:22942276). Together with PIP5K1C, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle ingestion by activating the WAS GTPase-binding protein that induces Arp2/3 dependent actin polymerization at the nascent phagocytic cup (By similarity). Together with PIP5K1B, is required, after stimulation by G-protein coupled receptors, for the synthesis of IP3 that will induce stable platelet adhesion (By similarity). Recruited to the plasma membrane by the E-cadherin/beta-catenin complex where it provides the substrate PtdIns(4,5)P2 for the production of PtdIns(3,4,5)P3, IP3 and DAG, that will mobilize internal calcium and drive keratinocyte differentiation (PubMed:19158393). Positively regulates insulin-induced translocation of SLC2A4 to the cell membrane in adipocytes (By similarity). Together with PIP5K1C has a role during embryogenesis (By similarity). Independently of its catalytic activity, is required for membrane ruffling formation, actin organization and focal adhesion formation during directional cell migration by controlling integrin-induced translocation of the small GTPase RAC1 to the plasma membrane (PubMed:20660631). Also functions in the nucleus where it acts as an activator of TUT1 adenylyltransferase activity in nuclear speckles, thereby regulating mRNA polyadenylation of a select set of mRNAs (PubMed:18288197). {ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:19158393, ECO:0000269|PubMed:20660631, ECO:0000269|PubMed:21477596, ECO:0000269|PubMed:22942276, ECO:0000269|PubMed:8955136}.
Q99759 MAP3K3 S145 ochoa Mitogen-activated protein kinase kinase kinase 3 (EC 2.7.11.25) (MAPK/ERK kinase kinase 3) (MEK kinase 3) (MEKK 3) Component of a protein kinase signal transduction cascade. Mediates activation of the NF-kappa-B, AP1 and DDIT3 transcriptional regulators. {ECO:0000269|PubMed:12912994, ECO:0000269|PubMed:14661019, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:33729480, ECO:0000269|PubMed:33891857, ECO:0000269|PubMed:9006902}.
Q99759 MAP3K3 S147 ochoa Mitogen-activated protein kinase kinase kinase 3 (EC 2.7.11.25) (MAPK/ERK kinase kinase 3) (MEK kinase 3) (MEKK 3) Component of a protein kinase signal transduction cascade. Mediates activation of the NF-kappa-B, AP1 and DDIT3 transcriptional regulators. {ECO:0000269|PubMed:12912994, ECO:0000269|PubMed:14661019, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:33729480, ECO:0000269|PubMed:33891857, ECO:0000269|PubMed:9006902}.
Q99877 H2BC15 S57 ochoa Histone H2B type 1-N (Histone H2B.d) (H2B/d) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99879 H2BC14 S57 ochoa Histone H2B type 1-M (Histone H2B.e) (H2B/e) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99880 H2BC13 S57 ochoa Histone H2B type 1-L (Histone H2B.c) (H2B/c) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99959 PKP2 S169 ochoa Plakophilin-2 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}.
Q9BQ61 TRIR S49 ochoa Telomerase RNA component interacting RNase (EC 3.1.13.-) (Exoribonuclease TRIR) Exoribonuclease that is part of the telomerase RNA 3' end processing complex and which has the ability to cleave all four unpaired RNA nucleotides from the 5' end or 3' end with higher efficiency for purine bases (PubMed:28322335). {ECO:0000269|PubMed:28322335}.
Q9BQE9 BCL7B S134 ochoa B-cell CLL/lymphoma 7 protein family member B (allergen Hom s 3) Positive regulator of apoptosis. Plays a role in the Wnt signaling pathway, negatively regulating the expression of Wnt signaling components CTNNB1 and HMGA1 (PubMed:25569233). Involved in cell cycle progression, maintenance of the nuclear structure and stem cell differentiation (PubMed:25569233). May play a role in lung tumor development or progression (By similarity). {ECO:0000250|UniProtKB:Q921K9, ECO:0000269|PubMed:25569233}.
Q9BR76 CORO1B S431 ochoa Coronin-1B (Coronin-2) Regulates leading edge dynamics and cell motility in fibroblasts. May be involved in cytokinesis and signal transduction (By similarity). {ECO:0000250, ECO:0000269|PubMed:16027158}.
Q9BRK4 LZTS2 S242 ochoa Leucine zipper putative tumor suppressor 2 (hLZTS2) (Protein LAPSER1) Negative regulator of katanin-mediated microtubule severing and release from the centrosome. Required for central spindle formation and the completion of cytokinesis. May negatively regulate axonal outgrowth by preventing the formation of microtubule bundles that are necessary for transport within the elongating axon. Negative regulator of the Wnt signaling pathway. Represses beta-catenin-mediated transcriptional activation by promoting the nuclear exclusion of beta-catenin. {ECO:0000255|HAMAP-Rule:MF_03026, ECO:0000269|PubMed:17000760, ECO:0000269|PubMed:17351128, ECO:0000269|PubMed:17950943, ECO:0000269|PubMed:18490357}.
Q9BTA9 WAC S534 ochoa WW domain-containing adapter protein with coiled-coil Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}.
Q9BW04 SARG S149 ochoa Specifically androgen-regulated gene protein Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}.
Q9BX66 SORBS1 S481 ochoa Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}.
Q9BXF6 RAB11FIP5 S296 ochoa Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}.
Q9C0B5 ZDHHC5 S380 ochoa Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.
Q9C0B5 ZDHHC5 S445 ochoa Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.
Q9C0C2 TNKS1BP1 S762 ochoa 182 kDa tankyrase-1-binding protein None
Q9C0C2 TNKS1BP1 S1047 ochoa 182 kDa tankyrase-1-binding protein None
Q9C0D5 TANC1 S319 ochoa Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) May be a scaffold component in the postsynaptic density. {ECO:0000250}.
Q9C0D5 TANC1 S1684 ochoa Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) May be a scaffold component in the postsynaptic density. {ECO:0000250}.
Q9C0D5 TANC1 S1686 ochoa Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) May be a scaffold component in the postsynaptic density. {ECO:0000250}.
Q9C0H5 ARHGAP39 Y189 ochoa Rho GTPase-activating protein 39 None
Q9H1K0 RBSN S233 ochoa Rabenosyn-5 (110 kDa protein) (FYVE finger-containing Rab5 effector protein rabenosyn-5) (RAB effector RBSN) (Zinc finger FYVE domain-containing protein 20) Rab4/Rab5 effector protein acting in early endocytic membrane fusion and membrane trafficking of recycling endosomes. Required for endosome fusion either homotypically or with clathrin coated vesicles. Plays a role in the lysosomal trafficking of CTSD/cathepsin D from the Golgi to lysosomes. Also promotes the recycling of transferrin directly from early endosomes to the plasma membrane. Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate (PtdInsP3) (PubMed:11062261, PubMed:11788822, PubMed:15020713). Plays a role in the recycling of transferrin receptor to the plasma membrane (PubMed:22308388). {ECO:0000269|PubMed:11062261, ECO:0000269|PubMed:11788822, ECO:0000269|PubMed:15020713, ECO:0000269|PubMed:22308388}.
Q9H1K0 RBSN S235 ochoa Rabenosyn-5 (110 kDa protein) (FYVE finger-containing Rab5 effector protein rabenosyn-5) (RAB effector RBSN) (Zinc finger FYVE domain-containing protein 20) Rab4/Rab5 effector protein acting in early endocytic membrane fusion and membrane trafficking of recycling endosomes. Required for endosome fusion either homotypically or with clathrin coated vesicles. Plays a role in the lysosomal trafficking of CTSD/cathepsin D from the Golgi to lysosomes. Also promotes the recycling of transferrin directly from early endosomes to the plasma membrane. Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate (PtdInsP3) (PubMed:11062261, PubMed:11788822, PubMed:15020713). Plays a role in the recycling of transferrin receptor to the plasma membrane (PubMed:22308388). {ECO:0000269|PubMed:11062261, ECO:0000269|PubMed:11788822, ECO:0000269|PubMed:15020713, ECO:0000269|PubMed:22308388}.
Q9H4X1 RGCC S87 ochoa Regulator of cell cycle RGCC (Response gene to complement 32 protein) (RGC-32) Modulates the activity of cell cycle-specific kinases. Enhances CDK1 activity. May contribute to the regulation of the cell cycle. May inhibit growth of glioma cells by promoting arrest of mitotic progression at the G2/M transition. Fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation. {ECO:0000269|PubMed:11687586, ECO:0000269|PubMed:17146433, ECO:0000269|PubMed:19158077, ECO:0000269|PubMed:22163048}.
Q9H4X1 RGCC S97 ochoa Regulator of cell cycle RGCC (Response gene to complement 32 protein) (RGC-32) Modulates the activity of cell cycle-specific kinases. Enhances CDK1 activity. May contribute to the regulation of the cell cycle. May inhibit growth of glioma cells by promoting arrest of mitotic progression at the G2/M transition. Fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation. {ECO:0000269|PubMed:11687586, ECO:0000269|PubMed:17146433, ECO:0000269|PubMed:19158077, ECO:0000269|PubMed:22163048}.
Q9H4X1 RGCC S107 ochoa Regulator of cell cycle RGCC (Response gene to complement 32 protein) (RGC-32) Modulates the activity of cell cycle-specific kinases. Enhances CDK1 activity. May contribute to the regulation of the cell cycle. May inhibit growth of glioma cells by promoting arrest of mitotic progression at the G2/M transition. Fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation. {ECO:0000269|PubMed:11687586, ECO:0000269|PubMed:17146433, ECO:0000269|PubMed:19158077, ECO:0000269|PubMed:22163048}.
Q9H6K5 PRR36 S1125 ochoa Proline-rich protein 36 None
Q9H6S0 YTHDC2 S1277 ochoa 3'-5' RNA helicase YTHDC2 (EC 3.6.4.13) (YTH domain-containing protein 2) (hYTHDC2) 3'-5' RNA helicase that plays a key role in the male and female germline by promoting transition from mitotic to meiotic divisions in stem cells (PubMed:26318451, PubMed:29033321, PubMed:29970596). Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, a modification present at internal sites of mRNAs and some non-coding RNAs that plays a role in the efficiency of RNA processing and stability (PubMed:26318451, PubMed:29033321). Essential for ensuring a successful progression of the meiotic program in the germline by regulating the level of m6A-containing RNAs (By similarity). Acts by binding and promoting degradation of m6A-containing mRNAs: the 3'-5' RNA helicase activity is required for this process and RNA degradation may be mediated by XRN1 exoribonuclease (PubMed:29033321). Required for both spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B2RR83, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:29033321, ECO:0000269|PubMed:29970596}.
Q9HAU0 PLEKHA5 S373 ochoa Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) None
Q9HB20 PLEKHA3 S236 ochoa Pleckstrin homology domain-containing family A member 3 (PH domain-containing family A member 3) (Phosphatidylinositol-four-phosphate adapter protein 1) (FAPP-1) (Phosphoinositol 4-phosphate adapter protein 1) Plays a role in regulation of vesicular cargo transport from the trans-Golgi network (TGN) to the plasma membrane (PubMed:15107860). Regulates Golgi phosphatidylinositol 4-phosphate (PtdIns(4)P) levels and activates the PtdIns(4)P phosphatase activity of SACM1L when it binds PtdIns(4)P in 'trans' configuration (PubMed:30659099). Binds preferentially to PtdIns(4)P (PubMed:11001876, PubMed:15107860). Negatively regulates APOB secretion from hepatocytes (PubMed:30659099). {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:15107860, ECO:0000269|PubMed:30659099}.
Q9HCD6 TANC2 S1740 ochoa Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}.
Q9NP61 ARFGAP3 Y473 ochoa ADP-ribosylation factor GTPase-activating protein 3 (ARF GAP 3) GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:11172815}.
Q9NQ75 CASS4 S305 ochoa Cas scaffolding protein family member 4 (HEF-like protein) (HEF1-EFS-p130Cas-like protein) (HEPL) Docking protein that plays a role in tyrosine kinase-based signaling related to cell adhesion and cell spreading. Regulates PTK2/FAK1 activity, focal adhesion integrity, and cell spreading. {ECO:0000269|PubMed:18256281}.
Q9NQX3 GPHN S280 ochoa Gephyrin [Includes: Molybdopterin adenylyltransferase (MPT adenylyltransferase) (EC 2.7.7.75) (Domain G); Molybdopterin molybdenumtransferase (MPT Mo-transferase) (EC 2.10.1.1) (Domain E)] Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to anchor the inhibitory glycine receptor (GLYR) to subsynaptic microtubules (By similarity). Acts as a major instructive molecule at inhibitory synapses, where it also clusters GABA type A receptors (PubMed:25025157, PubMed:26613940). {ECO:0000250|UniProtKB:Q03555, ECO:0000269|PubMed:25025157, ECO:0000269|PubMed:26613940}.; FUNCTION: Also has a catalytic activity and catalyzes two steps in the biosynthesis of the molybdenum cofactor. In the first step, molybdopterin is adenylated. Subsequently, molybdate is inserted into adenylated molybdopterin and AMP is released. {ECO:0000269|PubMed:26613940}.
Q9NR48 ASH1L S1703 ochoa Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}.
Q9NR48 ASH1L S1709 ochoa Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}.
Q9NS91 RAD18 S122 ochoa E3 ubiquitin-protein ligase RAD18 (EC 2.3.2.27) (Postreplication repair protein RAD18) (hHR18) (hRAD18) (RING finger protein 73) (RING-type E3 ubiquitin transferase RAD18) E3 ubiquitin-protein ligase involved in postreplication repair of UV-damaged DNA. Postreplication repair functions in gap-filling of a daughter strand on replication of damaged DNA. Associates to the E2 ubiquitin conjugating enzyme UBE2B to form the UBE2B-RAD18 ubiquitin ligase complex involved in mono-ubiquitination of DNA-associated PCNA on 'Lys-164'. Has ssDNA binding activity. {ECO:0000269|PubMed:17108083, ECO:0000269|PubMed:21659603}.
Q9NVD7 PARVA S28 ochoa Alpha-parvin (Actopaxin) (CH-ILKBP) (Calponin-like integrin-linked kinase-binding protein) (Matrix-remodeling-associated protein 2) Plays a role in sarcomere organization and in smooth muscle cell contraction. Required for normal development of the embryonic cardiovascular system, and for normal septation of the heart outflow tract. Plays a role in sprouting angiogenesis and is required for normal adhesion of vascular smooth muscle cells to endothelial cells during blood vessel development (By similarity). Plays a role in the reorganization of the actin cytoskeleton, formation of lamellipodia and ciliogenesis. Plays a role in the establishment of cell polarity, cell adhesion, cell spreading, and directed cell migration. Within the IPP (ILK-PINCH-PARVIN) complex, binds to F-actin, promoting F-actin bundling, a process required to generate force for actin cytoskeleton reorganization and subsequent dynamic cell adhesion events such as cell spreading and migration (PubMed:30367047). {ECO:0000250, ECO:0000269|PubMed:11134073, ECO:0000269|PubMed:11331308, ECO:0000269|PubMed:15284246, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:30367047}.
Q9NYD6 HOXC10 S226 ochoa Homeobox protein Hox-C10 (Homeobox protein Hox-3I) Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis.
Q9NYF8 BCLAF1 S282 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NYF8 BCLAF1 S290 ochoa|psp Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NYF8 BCLAF1 S300 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NYL2 MAP3K20 S649 ochoa Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.
Q9NYV4 CDK12 Y319 ochoa Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}.
Q9NYV4 CDK12 S341 ochoa Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}.
Q9NZ52 GGA3 S388 ochoa ADP-ribosylation factor-binding protein GGA3 (Golgi-localized, gamma ear-containing, ARF-binding protein 3) Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif (PubMed:11301005). Mediates export of the GPCR receptor ADRA2B to the cell surface (PubMed:26811329). nvolved in BACE1 transport and sorting as well as regulation of BACE1 protein levels (PubMed:15615712, PubMed:17553422, PubMed:20484053). Regulates retrograde transport of BACE1 from endosomes to the trans-Golgi network via interaction through the VHS motif and dependent of BACE1 phosphorylation (PubMed:15615712). Modulates BACE1 protein levels independently of the interaction between VHS domain and DXXLL motif through recognition of ubiquitination (PubMed:20484053). Key player in a novel DXXLL-mediated endosomal sorting machinery to the recycling pathway that targets NTRK1 to the plasma membrane (By similarity). {ECO:0000250|UniProtKB:A0A0G2JV04, ECO:0000269|PubMed:11301005, ECO:0000269|PubMed:15615712, ECO:0000269|PubMed:17553422, ECO:0000269|PubMed:20484053, ECO:0000269|PubMed:26811329}.
Q9NZJ0 DTL S462 ochoa Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}.
Q9P0K7 RAI14 S304 ochoa Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}.
Q9P0V3 SH3BP4 S264 ochoa SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}.
Q9P219 CCDC88C S1599 ochoa Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}.
Q9P265 DIP2B S201 ochoa Disco-interacting protein 2 homolog B (DIP2 homolog B) Negatively regulates axonal outgrowth and is essential for normal synaptic transmission. Not required for regulation of axon polarity. Promotes acetylation of alpha-tubulin. {ECO:0000250|UniProtKB:Q3UH60}.
Q9P265 DIP2B S203 ochoa Disco-interacting protein 2 homolog B (DIP2 homolog B) Negatively regulates axonal outgrowth and is essential for normal synaptic transmission. Not required for regulation of axon polarity. Promotes acetylation of alpha-tubulin. {ECO:0000250|UniProtKB:Q3UH60}.
Q9P270 SLAIN2 S265 ochoa SLAIN motif-containing protein 2 Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}.
Q9P275 USP36 S632 ochoa Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}.
Q9P2N6 KANSL3 S550 ochoa KAT8 regulatory NSL complex subunit 3 (NSL complex protein NSL3) (Non-specific lethal 3 homolog) (Serum inhibited-related protein) (Testis development protein PRTD) Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). Within the NSL complex, KANSL3 is required to promote KAT8 association with mitochondrial DNA (PubMed:27768893). Required for transcription of intraciliary transport genes in both ciliated and non-ciliated cells (By similarity). This is necessary for cilium assembly in ciliated cells and for organization of the microtubule cytoskeleton in non-ciliated cells (By similarity). Also required within the NSL complex to maintain nuclear architecture stability by promoting KAT8-mediated acetylation of lamin LMNA (By similarity). Plays an essential role in spindle assembly during mitosis (PubMed:26243146). Acts as a microtubule minus-end binding protein which stabilizes microtubules and promotes their assembly (PubMed:26243146). Indispensable during early embryonic development where it is required for proper lineage specification and maintenance during peri-implantation development and is essential for implantation (By similarity). {ECO:0000250|UniProtKB:A2RSY1, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}.
Q9P2Q2 FRMD4A S669 ochoa FERM domain-containing protein 4A Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}.
Q9UGV2 NDRG3 S349 ochoa Protein NDRG3 (N-myc downstream-regulated gene 3 protein) None
Q9UHB6 LIMA1 S617 ochoa LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}.
Q9UHB7 AFF4 S514 ochoa AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}.
Q9UIG0 BAZ1B S345 ochoa Tyrosine-protein kinase BAZ1B (EC 2.7.10.2) (Bromodomain adjacent to zinc finger domain protein 1B) (Williams syndrome transcription factor) (Williams-Beuren syndrome chromosomal region 10 protein) (Williams-Beuren syndrome chromosomal region 9 protein) (hWALp2) Atypical tyrosine-protein kinase that plays a central role in chromatin remodeling and acts as a transcription regulator (PubMed:19092802). Involved in DNA damage response by phosphorylating 'Tyr-142' of histone H2AX (H2AXY142ph) (PubMed:19092802, PubMed:19234442). H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19092802, PubMed:19234442). Regulatory subunit of the ATP-dependent WICH-1 and WICH-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:11980720, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The WICH-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the WICH-5 ISWI chromatin remodeling complex (PubMed:28801535). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the recruitment of the WICH-5 ISWI chromatin remodeling complex to replication foci during DNA replication (PubMed:15543136). {ECO:0000250|UniProtKB:Q9Z277, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:19092802, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:28801535}.
Q9UKI8 TLK1 S88 ochoa Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}.
Q9UKK3 PARP4 S1507 ochoa Protein mono-ADP-ribosyltransferase PARP4 (EC 2.4.2.-) (193 kDa vault protein) (ADP-ribosyltransferase diphtheria toxin-like 4) (ARTD4) (PARP-related/IalphaI-related H5/proline-rich) (PH5P) (Poly [ADP-ribose] polymerase 4) (PARP-4) (Vault poly(ADP-ribose) polymerase) (VPARP) Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}.
Q9UKV3 ACIN1 S675 ochoa Apoptotic chromatin condensation inducer in the nucleus (Acinus) Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}.
Q9ULC3 RAB23 S202 ochoa Ras-related protein Rab-23 (EC 3.6.5.2) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. Together with SUFU, prevents nuclear import of GLI1, and thereby inhibits GLI1 transcription factor activity. Regulates GLI1 in differentiating chondrocytes. Likewise, regulates GLI3 proteolytic processing and modulates GLI2 and GLI3 transcription factor activity. Plays a role in autophagic vacuole assembly, and mediates defense against pathogens, such as S.aureus, by promoting their capture by autophagosomes that then merge with lysosomes. {ECO:0000269|PubMed:22365972, ECO:0000269|PubMed:22452336}.
Q9ULC3 RAB23 S206 ochoa Ras-related protein Rab-23 (EC 3.6.5.2) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. Together with SUFU, prevents nuclear import of GLI1, and thereby inhibits GLI1 transcription factor activity. Regulates GLI1 in differentiating chondrocytes. Likewise, regulates GLI3 proteolytic processing and modulates GLI2 and GLI3 transcription factor activity. Plays a role in autophagic vacuole assembly, and mediates defense against pathogens, such as S.aureus, by promoting their capture by autophagosomes that then merge with lysosomes. {ECO:0000269|PubMed:22365972, ECO:0000269|PubMed:22452336}.
Q9ULM3 YEATS2 S134 ochoa YEATS domain-containing protein 2 Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}.
Q9ULM3 YEATS2 S138 ochoa YEATS domain-containing protein 2 Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}.
Q9UMD9 COL17A1 S130 ochoa Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies.
Q9UMZ2 SYNRG S935 ochoa Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}.
Q9UN36 NDRG2 S344 ochoa Protein NDRG2 (N-myc downstream-regulated gene 2 protein) (Protein Syld709613) Contributes to the regulation of the Wnt signaling pathway. Down-regulates CTNNB1-mediated transcriptional activation of target genes, such as CCND1, and may thereby act as tumor suppressor. May be involved in dendritic cell and neuron differentiation. {ECO:0000269|PubMed:12845671, ECO:0000269|PubMed:16103061, ECO:0000269|PubMed:21247902}.
Q9UN36 NDRG2 S346 ochoa|psp Protein NDRG2 (N-myc downstream-regulated gene 2 protein) (Protein Syld709613) Contributes to the regulation of the Wnt signaling pathway. Down-regulates CTNNB1-mediated transcriptional activation of target genes, such as CCND1, and may thereby act as tumor suppressor. May be involved in dendritic cell and neuron differentiation. {ECO:0000269|PubMed:12845671, ECO:0000269|PubMed:16103061, ECO:0000269|PubMed:21247902}.
Q9UNY4 TTF2 S251 ochoa Transcription termination factor 2 (EC 3.6.4.-) (Lodestar homolog) (RNA polymerase II termination factor) (Transcription release factor 2) (F2) (HuF2) DsDNA-dependent ATPase which acts as a transcription termination factor by coupling ATP hydrolysis with removal of RNA polymerase II from the DNA template. May contribute to mitotic transcription repression. May also be involved in pre-mRNA splicing. {ECO:0000269|PubMed:10455150, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:15125840, ECO:0000269|PubMed:9748214}.
Q9UPN3 MACF1 S7330 ochoa|psp Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UQ35 SRRM2 S436 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S908 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S910 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S968 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S970 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S988 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S990 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1008 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1010 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1024 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1028 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1032 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1048 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1099 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1101 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1140 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1397 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1398 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1439 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1478 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1517 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1537 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1557 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1577 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1672 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S2706 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9Y250 LZTS1 S188 ochoa Leucine zipper putative tumor suppressor 1 (F37/esophageal cancer-related gene-coding leucine-zipper motif) (Fez1) Involved in the regulation of cell growth. May stabilize the active CDC2-cyclin B1 complex and thereby contribute to the regulation of the cell cycle and the prevention of uncontrolled cell proliferation. May act as a tumor suppressor. {ECO:0000269|PubMed:10097140, ECO:0000269|PubMed:11464283, ECO:0000269|PubMed:11504921}.
Q9Y2H0 DLGAP4 S744 ochoa Disks large-associated protein 4 (DAP-4) (PSD-95/SAP90-binding protein 4) (SAP90/PSD-95-associated protein 4) (SAPAP-4) May play a role in the molecular organization of synapses and neuronal cell signaling. Could be an adapter protein linking ion channel to the subsynaptic cytoskeleton. May induce enrichment of PSD-95/SAP90 at the plasma membrane.
Q9Y2W1 THRAP3 T324 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2W1 THRAP3 S326 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2X7 GIT1 S581 ochoa ARF GTPase-activating protein GIT1 (ARF GAP GIT1) (Cool-associated and tyrosine-phosphorylated protein 1) (CAT-1) (CAT1) (G protein-coupled receptor kinase-interactor 1) (GRK-interacting protein 1) (p95-APP1) GTPase-activating protein for ADP ribosylation factor family members, including ARF1. Multidomain scaffold protein that interacts with numerous proteins and therefore participates in many cellular functions, including receptor internalization, focal adhesion remodeling, and signaling by both G protein-coupled receptors and tyrosine kinase receptors (By similarity). Through PAK1 activation, positively regulates microtubule nucleation during interphase (PubMed:27012601). Plays a role in the regulation of cytokinesis; for this function, may act in a pathway also involving ENTR1 and PTPN13 (PubMed:23108400). May promote cell motility both by regulating focal complex dynamics and by local activation of RAC1 (PubMed:10938112, PubMed:11896197). May act as scaffold for MAPK1/3 signal transduction in focal adhesions. Recruits MAPK1/3/ERK1/2 to focal adhesions after EGF stimulation via a Src-dependent pathway, hence stimulating cell migration (PubMed:15923189). Plays a role in brain development and function. Involved in the regulation of spine density and synaptic plasticity that is required for processes involved in learning (By similarity). Plays an important role in dendritic spine morphogenesis and synapse formation (PubMed:12695502, PubMed:15800193). In hippocampal neurons, recruits guanine nucleotide exchange factors (GEFs), such as ARHGEF7/beta-PIX, to the synaptic membrane. These in turn locally activate RAC1, which is an essential step for spine morphogenesis and synapse formation (PubMed:12695502). May contribute to the organization of presynaptic active zones through oligomerization and formation of a Piccolo/PCLO-based protein network, which includes ARHGEF7/beta-PIX and FAK1 (By similarity). In neurons, through its interaction with liprin-alpha family members, may be required for AMPA receptor (GRIA2/3) proper targeting to the cell membrane (By similarity). In complex with GABA(A) receptors and ARHGEF7, plays a crucial role in regulating GABA(A) receptor synaptic stability, maintaining GPHN/gephyrin scaffolds and hence GABAergic inhibitory synaptic transmission, by locally coordinating RAC1 and PAK1 downstream effector activity, leading to F-actin stabilization (PubMed:25284783). May also be important for RAC1 downstream signaling pathway through PAK3 and regulation of neuronal inhibitory transmission at presynaptic input (By similarity). Required for successful bone regeneration during fracture healing (By similarity). The function in intramembranous ossification may, at least partly, exerted by macrophages in which GIT1 is a key negative regulator of redox homeostasis, IL1B production, and glycolysis, acting through the ERK1/2/NRF2/NFE2L2 axis (By similarity). May play a role in angiogenesis during fracture healing (By similarity). In this process, may regulate activation of the canonical NF-kappa-B signal in bone mesenchymal stem cells by enhancing the interaction between NEMO and 'Lys-63'-ubiquitinated RIPK1/RIP1, eventually leading to enhanced production of VEGFA and others angiogenic factors (PubMed:31502302). Essential for VEGF signaling through the activation of phospholipase C-gamma and ERK1/2, hence may control endothelial cell proliferation and angiogenesis (PubMed:19273721). {ECO:0000250|UniProtKB:Q68FF6, ECO:0000250|UniProtKB:Q9Z272, ECO:0000269|PubMed:10938112, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12695502, ECO:0000269|PubMed:15800193, ECO:0000269|PubMed:15923189, ECO:0000269|PubMed:19273721, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25284783, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:31502302}.
Q9Y446 PKP3 S240 ochoa Plakophilin-3 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:24124604). Required for the localization of DSG2, DSP and PKP2 to mature desmosome junctions (PubMed:20859650). May also play a role in the maintenance of DSG3 protein abundance in keratinocytes (By similarity). Required for the formation of DSP-containing desmosome precursors in the cytoplasm during desmosome assembly (PubMed:25208567). Also regulates the accumulation of CDH1 to mature desmosome junctions, via cAMP-dependent signaling and its interaction with activated RAP1A (PubMed:25208567). Positively regulates the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with FXR1, may also regulate the protein abundance of DSP via the same mechanism (PubMed:25225333). May also regulate the protein abundance of the desmosome component PKP1 (By similarity). Required for the organization of desmosome junctions at intercellular borders between basal keratinocytes of the epidermis, as a result plays a role in maintenance of the dermal barrier and regulation of the dermal inflammatory response (By similarity). Required during epidermal keratinocyte differentiation for cell adherence at tricellular cell-cell contacts, via regulation of the timely formation of adherens junctions and desmosomes in a calcium-dependent manner, and may also play a role in the organization of the intracellular actin fiber belt (By similarity). Acts as a negative regulator of the inflammatory response in hematopoietic cells of the skin and intestine, via modulation of proinflammatory cytokine production (By similarity). Important for epithelial barrier maintenance in the intestine to reduce intestinal permeability, thereby plays a role in protection from intestinal-derived endotoxemia (By similarity). Required for the development of hair follicles, via a role in the regulation of inner root sheaf length, correct alignment and anterior-posterior polarity of hair follicles (By similarity). Promotes proliferation and cell-cycle G1/S phase transition of keratinocytes (By similarity). Promotes E2F1-driven transcription of G1/S phase promoting genes by acting to release E2F1 from its inhibitory interaction with RB1, via sequestering RB1 and CDKN1A to the cytoplasm and thereby increasing CDK4- and CDK6-driven phosphorylation of RB1 (By similarity). May act as a scaffold protein to facilitate MAPK phosphorylation of RPS6KA protein family members and subsequently promote downstream EGFR signaling (By similarity). May play a role in the positive regulation of transcription of Wnt-mediated TCF-responsive target genes (PubMed:34058472). {ECO:0000250|UniProtKB:Q9QY23, ECO:0000269|PubMed:20859650, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:34058472}.
Q9Y446 PKP3 Y303 ochoa Plakophilin-3 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:24124604). Required for the localization of DSG2, DSP and PKP2 to mature desmosome junctions (PubMed:20859650). May also play a role in the maintenance of DSG3 protein abundance in keratinocytes (By similarity). Required for the formation of DSP-containing desmosome precursors in the cytoplasm during desmosome assembly (PubMed:25208567). Also regulates the accumulation of CDH1 to mature desmosome junctions, via cAMP-dependent signaling and its interaction with activated RAP1A (PubMed:25208567). Positively regulates the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with FXR1, may also regulate the protein abundance of DSP via the same mechanism (PubMed:25225333). May also regulate the protein abundance of the desmosome component PKP1 (By similarity). Required for the organization of desmosome junctions at intercellular borders between basal keratinocytes of the epidermis, as a result plays a role in maintenance of the dermal barrier and regulation of the dermal inflammatory response (By similarity). Required during epidermal keratinocyte differentiation for cell adherence at tricellular cell-cell contacts, via regulation of the timely formation of adherens junctions and desmosomes in a calcium-dependent manner, and may also play a role in the organization of the intracellular actin fiber belt (By similarity). Acts as a negative regulator of the inflammatory response in hematopoietic cells of the skin and intestine, via modulation of proinflammatory cytokine production (By similarity). Important for epithelial barrier maintenance in the intestine to reduce intestinal permeability, thereby plays a role in protection from intestinal-derived endotoxemia (By similarity). Required for the development of hair follicles, via a role in the regulation of inner root sheaf length, correct alignment and anterior-posterior polarity of hair follicles (By similarity). Promotes proliferation and cell-cycle G1/S phase transition of keratinocytes (By similarity). Promotes E2F1-driven transcription of G1/S phase promoting genes by acting to release E2F1 from its inhibitory interaction with RB1, via sequestering RB1 and CDKN1A to the cytoplasm and thereby increasing CDK4- and CDK6-driven phosphorylation of RB1 (By similarity). May act as a scaffold protein to facilitate MAPK phosphorylation of RPS6KA protein family members and subsequently promote downstream EGFR signaling (By similarity). May play a role in the positive regulation of transcription of Wnt-mediated TCF-responsive target genes (PubMed:34058472). {ECO:0000250|UniProtKB:Q9QY23, ECO:0000269|PubMed:20859650, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:34058472}.
Q9Y4E8 USP15 S245 ochoa Ubiquitin carboxyl-terminal hydrolase 15 (EC 3.4.19.12) (Deubiquitinating enzyme 15) (Ubiquitin thioesterase 15) (Ubiquitin-specific-processing protease 15) (Unph-2) (Unph4) Hydrolase that removes conjugated ubiquitin from target proteins and regulates various pathways such as the TGF-beta receptor signaling, NF-kappa-B and RNF41/NRDP1-PRKN pathways (PubMed:16005295, PubMed:17318178, PubMed:19576224, PubMed:19826004, PubMed:21947082, PubMed:22344298, PubMed:24852371). Acts as a key regulator of TGF-beta receptor signaling pathway, but the precise mechanism is still unclear: according to a report, acts by promoting deubiquitination of monoubiquitinated R-SMADs (SMAD1, SMAD2 and/or SMAD3), thereby alleviating inhibition of R-SMADs and promoting activation of TGF-beta target genes (PubMed:21947082). According to another reports, regulates the TGF-beta receptor signaling pathway by mediating deubiquitination and stabilization of TGFBR1, leading to an enhanced TGF-beta signal (PubMed:22344298). Able to mediate deubiquitination of monoubiquitinated substrates, 'Lys-27'-, 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:33093067). May also regulate gene expression and/or DNA repair through the deubiquitination of histone H2B (PubMed:24526689). Acts as an inhibitor of mitophagy by counteracting the action of parkin (PRKN): hydrolyzes cleavage of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains attached by parkin on target proteins such as MFN2, thereby reducing parkin's ability to drive mitophagy (PubMed:24852371). Acts as an associated component of COP9 signalosome complex (CSN) and regulates different pathways via this association: regulates NF-kappa-B by mediating deubiquitination of NFKBIA and deubiquitinates substrates bound to VCP (PubMed:16005295, PubMed:17318178, PubMed:19576224, PubMed:19826004). Involved in endosome organization by mediating deubiquitination of SQSTM1: ubiquitinated SQSTM1 forms a molecular bridge that restrains cognate vesicles in the perinuclear region and its deubiquitination releases target vesicles for fast transport into the cell periphery (PubMed:27368102). Acts as a negative regulator of antifungal immunity by mediating 'Lys-27'-linked deubiquitination of CARD9, thereby inactivating CARD9 (PubMed:33093067). {ECO:0000269|PubMed:16005295, ECO:0000269|PubMed:17318178, ECO:0000269|PubMed:19576224, ECO:0000269|PubMed:19826004, ECO:0000269|PubMed:21947082, ECO:0000269|PubMed:22344298, ECO:0000269|PubMed:24526689, ECO:0000269|PubMed:24852371, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:33093067}.; FUNCTION: (Microbial infection) Protects APC and human papillomavirus type 16 protein E6 against degradation via the ubiquitin proteasome pathway. {ECO:0000269|PubMed:19553310}.
Q9Y5P4 CERT1 S141 ochoa Ceramide transfer protein (hCERT) (Collagen type IV alpha-3-binding protein) (Goodpasture antigen-binding protein) (GPBP) (START domain-containing protein 11) (StARD11) (StAR-related lipid transfer protein 11) Shelters ceramides and diacylglycerol lipids inside its START domain and mediates the intracellular trafficking of ceramides and diacylglycerol lipids in a non-vesicular manner. {ECO:0000269|PubMed:14685229, ECO:0000269|PubMed:17591919, ECO:0000269|PubMed:18184806, ECO:0000269|PubMed:20036255}.
Q9Y608 LRRFIP2 S324 ochoa Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}.
Q9Y608 LRRFIP2 S328 ochoa Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}.
Q9Y608 LRRFIP2 S332 ochoa Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}.
Q9Y6Q9 NCOA3 S583 ochoa Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit.
O15119 TBX3 S723 Sugiyama T-box transcription factor TBX3 (T-box protein 3) Transcriptional repressor involved in developmental processes (PubMed:10468588). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:12000749). Probably plays a role in limb pattern formation (PubMed:10468588). Required for mammary placode induction, and maintenance of the mammary buds during development (By similarity). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX2 (By similarity). Required, together with TBX2, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with, TBX2 in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). {ECO:0000250|UniProtKB:P70324, ECO:0000269|PubMed:10468588, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537}.
Q6L8Q7 PDE12 Y235 Sugiyama 2',5'-phosphodiesterase 12 (2'-PDE) (2-PDE) (EC 3.1.4.-) (Mitochondrial deadenylase) (EC 3.1.13.4) Enzyme that cleaves 2',5'-phosphodiester bond linking adenosines of the 5'-triphosphorylated oligoadenylates, triphosphorylated oligoadenylates referred as 2-5A modulates the 2-5A system. Degrades triphosphorylated 2-5A to produce AMP and ATP (PubMed:26055709). Also cleaves 3',5'-phosphodiester bond of oligoadenylates (PubMed:21666256, PubMed:26055709, PubMed:30389976). Plays a role as a negative regulator of the 2-5A system that is one of the major pathways for antiviral and antitumor functions induced by interferons (IFNs). Suppression of this enzyme increases cellular 2-5A levels and decreases viral replication in cultured small-airway epithelial cells and Hela cells (PubMed:26055709). {ECO:0000269|PubMed:15231837, ECO:0000269|PubMed:21245038, ECO:0000269|PubMed:21666256, ECO:0000269|PubMed:22285541, ECO:0000269|PubMed:26055709, ECO:0000269|PubMed:30389976}.
P02671 FGA S576 ELM Fibrinogen alpha chain [Cleaved into: Fibrinopeptide A; Fibrinogen alpha chain] Cleaved by the protease thrombin to yield monomers which, together with fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of the primary components of blood clots. In addition, functions during the early stages of wound repair to stabilize the lesion and guide cell migration during re-epithelialization. Was originally thought to be essential for platelet aggregation, based on in vitro studies using anticoagulated blood. However, subsequent studies have shown that it is not absolutely required for thrombus formation in vivo. Enhances expression of SELP in activated platelets via an ITGB3-dependent pathway. Maternal fibrinogen is essential for successful pregnancy. Fibrin deposition is also associated with infection, where it protects against IFNG-mediated hemorrhage. May also facilitate the immune response via both innate and T-cell mediated pathways. {ECO:0000250|UniProtKB:E9PV24}.
Q92734 TFG S166 Sugiyama Protein TFG (TRK-fused gene protein) Plays a role in the normal dynamic function of the endoplasmic reticulum (ER) and its associated microtubules (PubMed:23479643, PubMed:27813252). Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:21478858). {ECO:0000269|PubMed:21478858, ECO:0000269|PubMed:23479643, ECO:0000269|PubMed:27813252}.
O00512 BCL9 S120 Sugiyama B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}.
Q9Y450 HBS1L S83 Sugiyama HBS1-like protein (EC 3.6.5.-) (ERFS) GTPase component of the Pelota-HBS1L complex, a complex that recognizes stalled ribosomes and triggers the No-Go Decay (NGD) pathway (PubMed:21448132, PubMed:23667253, PubMed:27863242). The Pelota-HBS1L complex recognizes ribosomes stalled at the 3' end of an mRNA and engages stalled ribosomes by destabilizing mRNA in the mRNA channel (PubMed:27863242). Following mRNA extraction from stalled ribosomes by the SKI complex, the Pelota-HBS1L complex promotes recruitment of ABCE1, which drives the disassembly of stalled ribosomes, followed by degradation of damaged mRNAs as part of the NGD pathway (PubMed:21448132, PubMed:32006463). {ECO:0000269|PubMed:21448132, ECO:0000269|PubMed:23667253, ECO:0000269|PubMed:27863242, ECO:0000269|PubMed:32006463}.
Q16513 PKN2 S37 Sugiyama Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}.
Q9UHX1 PUF60 S461 Sugiyama Poly(U)-binding-splicing factor PUF60 (60 kDa poly(U)-binding-splicing factor) (FUSE-binding protein-interacting repressor) (FBP-interacting repressor) (Ro-binding protein 1) (RoBP1) (Siah-binding protein 1) (Siah-BP1) DNA- and RNA-binding protein, involved in several nuclear processes such as pre-mRNA splicing, apoptosis and transcription regulation. In association with FUBP1 regulates MYC transcription at the P2 promoter through the core-TFIIH basal transcription factor. Acts as a transcriptional repressor through the core-TFIIH basal transcription factor. Represses FUBP1-induced transcriptional activation but not basal transcription. Decreases ERCC3 helicase activity. Does not repress TFIIH-mediated transcription in xeroderma pigmentosum complementation group B (XPB) cells. Is also involved in pre-mRNA splicing. Promotes splicing of an intron with weak 3'-splice site and pyrimidine tract in a cooperative manner with U2AF2. Involved in apoptosis induction when overexpressed in HeLa cells. Isoform 6 failed to repress MYC transcription and inhibited FIR-induced apoptosis in colorectal cancer. Isoform 6 may contribute to tumor progression by enabling increased MYC expression and greater resistance to apoptosis in tumors than in normal cells. Modulates alternative splicing of several mRNAs. Binds to relaxed DNA of active promoter regions. Binds to the pyrimidine tract and 3'-splice site regions of pre-mRNA; binding is enhanced in presence of U2AF2. Binds to Y5 RNA in association with RO60. Binds to poly(U) RNA. {ECO:0000269|PubMed:10606266, ECO:0000269|PubMed:10882074, ECO:0000269|PubMed:11239393, ECO:0000269|PubMed:16452196, ECO:0000269|PubMed:16628215, ECO:0000269|PubMed:17579712}.
A0FGR8 ESYT2 S755 ochoa Extended synaptotagmin-2 (E-Syt2) (Chr2Syt) Tethers the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane. Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport. Plays a role in FGF signaling via its role in the rapid internalization of FGFR1 that has been activated by FGF1 binding; this occurs most likely via the AP-2 complex. Promotes the localization of SACM1L at endoplasmic reticulum-plasma membrane contact sites (EPCS) (PubMed:27044890). {ECO:0000269|PubMed:17360437, ECO:0000269|PubMed:20833364, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24847877, ECO:0000269|PubMed:27044890}.
O14646 CHD1 S1689 ochoa Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}.
O14757 CHEK1 S333 ochoa Serine/threonine-protein kinase Chk1 (EC 2.7.11.1) (CHK1 checkpoint homolog) (Cell cycle checkpoint kinase) (Checkpoint kinase-1) Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest and activation of DNA repair in response to the presence of DNA damage or unreplicated DNA (PubMed:11535615, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15650047, PubMed:15665856, PubMed:32357935). May also negatively regulate cell cycle progression during unperturbed cell cycles (PubMed:11535615, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15650047, PubMed:15665856). This regulation is achieved by a number of mechanisms that together help to preserve the integrity of the genome (PubMed:11535615, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15650047, PubMed:15665856). Recognizes the substrate consensus sequence [R-X-X-S/T] (PubMed:11535615, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15650047, PubMed:15665856). Binds to and phosphorylates CDC25A, CDC25B and CDC25C (PubMed:12676583, PubMed:12676925, PubMed:12759351, PubMed:14559997, PubMed:14681206, PubMed:19734889, PubMed:9278511). Phosphorylation of CDC25A at 'Ser-178' and 'Thr-507' and phosphorylation of CDC25C at 'Ser-216' creates binding sites for 14-3-3 proteins which inhibit CDC25A and CDC25C (PubMed:9278511). Phosphorylation of CDC25A at 'Ser-76', 'Ser-124', 'Ser-178', 'Ser-279' and 'Ser-293' promotes proteolysis of CDC25A (PubMed:12676583, PubMed:12676925, PubMed:12759351, PubMed:14681206, PubMed:19734889, PubMed:9278511). Phosphorylation of CDC25A at 'Ser-76' primes the protein for subsequent phosphorylation at 'Ser-79', 'Ser-82' and 'Ser-88' by NEK11, which is required for polyubiquitination and degradation of CDCD25A (PubMed:19734889, PubMed:20090422, PubMed:9278511). Inhibition of CDC25 leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression (PubMed:9278511). Also phosphorylates NEK6 (PubMed:18728393). Binds to and phosphorylates RAD51 at 'Thr-309', which promotes the release of RAD51 from BRCA2 and enhances the association of RAD51 with chromatin, thereby promoting DNA repair by homologous recombination (PubMed:15665856). Phosphorylates multiple sites within the C-terminus of TP53, which promotes activation of TP53 by acetylation and promotes cell cycle arrest and suppression of cellular proliferation (PubMed:10673501, PubMed:15659650, PubMed:16511572). Also promotes repair of DNA cross-links through phosphorylation of FANCE (PubMed:17296736). Binds to and phosphorylates TLK1 at 'Ser-743', which prevents the TLK1-dependent phosphorylation of the chromatin assembly factor ASF1A (PubMed:12660173, PubMed:12955071). This may enhance chromatin assembly both in the presence or absence of DNA damage (PubMed:12660173, PubMed:12955071). May also play a role in replication fork maintenance through regulation of PCNA (PubMed:18451105). May regulate the transcription of genes that regulate cell-cycle progression through the phosphorylation of histones (By similarity). Phosphorylates histone H3.1 (to form H3T11ph), which leads to epigenetic inhibition of a subset of genes (By similarity). May also phosphorylate RB1 to promote its interaction with the E2F family of transcription factors and subsequent cell cycle arrest (PubMed:17380128). Phosphorylates SPRTN, promoting SPRTN recruitment to chromatin (PubMed:31316063). Reduces replication stress and activates the G2/M checkpoint, by phosphorylating and inactivating PABIR1/FAM122A and promoting the serine/threonine-protein phosphatase 2A-mediated dephosphorylation and stabilization of WEE1 levels and activity (PubMed:33108758). {ECO:0000250|UniProtKB:O35280, ECO:0000269|PubMed:10673501, ECO:0000269|PubMed:11535615, ECO:0000269|PubMed:12399544, ECO:0000269|PubMed:12446774, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:12676583, ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:12759351, ECO:0000269|PubMed:12955071, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:14681206, ECO:0000269|PubMed:14988723, ECO:0000269|PubMed:15311285, ECO:0000269|PubMed:15650047, ECO:0000269|PubMed:15659650, ECO:0000269|PubMed:15665856, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:17296736, ECO:0000269|PubMed:17380128, ECO:0000269|PubMed:18451105, ECO:0000269|PubMed:18728393, ECO:0000269|PubMed:19734889, ECO:0000269|PubMed:20090422, ECO:0000269|PubMed:31316063, ECO:0000269|PubMed:32357935, ECO:0000269|PubMed:33108758, ECO:0000269|PubMed:9278511}.; FUNCTION: [Isoform 2]: Endogenous repressor of isoform 1, interacts with, and antagonizes CHK1 to promote the S to G2/M phase transition. {ECO:0000269|PubMed:22184239}.
O15084 ANKRD28 S1007 psp Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit A (PP6-ARS-A) (Serine/threonine-protein phosphatase 6 regulatory subunit ARS-A) (Ankyrin repeat domain-containing protein 28) (Phosphatase interactor targeting protein hnRNP K) (PITK) Regulatory subunit of protein phosphatase 6 (PP6) that may be involved in the recognition of phosphoprotein substrates. Involved in the PP6-mediated dephosphorylation of NFKBIE opposing its degradation in response to TNF-alpha. Selectively inhibits the phosphatase activity of PPP1C. Targets PPP1C to modulate HNRPK phosphorylation. Involved in the PP6-mediated dephosphorylation of MOB1 and induced focal adhesion assembly during cell migration (PubMed:35512830). {ECO:0000269|PubMed:16564677, ECO:0000269|PubMed:18186651, ECO:0000269|PubMed:35512830}.
O15085 ARHGEF11 S271 ochoa Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}.
O43164 PJA2 S325 ochoa E3 ubiquitin-protein ligase Praja-2 (Praja2) (EC 2.3.2.27) (RING finger protein 131) (RING-type E3 ubiquitin transferase Praja-2) Has E2-dependent E3 ubiquitin-protein ligase activity (PubMed:12036302, PubMed:21423175). Responsible for ubiquitination of cAMP-dependent protein kinase type I and type II-alpha/beta regulatory subunits and for targeting them for proteasomal degradation. Essential for PKA-mediated long-term memory processes (PubMed:21423175). Through the ubiquitination of MFHAS1, positively regulates the TLR2 signaling pathway that leads to the activation of the downstream p38 and JNK MAP kinases and promotes the polarization of macrophages toward the pro-inflammatory M1 phenotype (PubMed:28471450). Plays a role in ciliogenesis by ubiquitinating OFD1 (PubMed:33934390). {ECO:0000269|PubMed:12036302, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:28471450, ECO:0000269|PubMed:33934390}.
O43166 SIPA1L1 S1481 ochoa Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}.
O43237 DYNC1LI2 S407 ochoa Cytoplasmic dynein 1 light intermediate chain 2 (Dynein light intermediate chain 2, cytosolic) (LIC-2) (LIC53/55) Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. {ECO:0000305|PubMed:36071160}.
O43598 DNPH1 S28 ochoa 5-hydroxymethyl-dUMP N-hydrolase (EC 3.2.2.-) (2'-deoxynucleoside 5'-phosphate N-hydrolase 1) (c-Myc-responsive protein RCL) Part of a nucleotide salvage pathway that eliminates epigenetically modified 5-hydroxymethyl-dCMP (hmdCMP) in a two-step process entailing deamination to cytotoxic 5-hydroxymethyl-dUMP (hmdUMP), followed by its hydrolysis into 5-hydroxymethyluracil (hmU) and 2-deoxy-D-ribose 5-phosphate (deoxyribosephosphate) (PubMed:33833118). Catalyzes the second step in that pathway, the hydrolysis of the N-glycosidic bond in hmdUMP, degrading this cytotoxic nucleotide to avoid its genomic integration (PubMed:33833118). {ECO:0000269|PubMed:33833118}.
O60307 MAST3 S776 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O75044 SRGAP2 S916 ochoa SLIT-ROBO Rho GTPase-activating protein 2 (srGAP2) (Formin-binding protein 2) (Rho GTPase-activating protein 34) Postsynaptic RAC1 GTPase activating protein (GAP) that plays a key role in neuronal morphogenesis and migration mainly during development of the cerebral cortex (PubMed:20810653, PubMed:27373832, PubMed:28333212). Regulates excitatory and inhibitory synapse maturation and density in cortical pyramidal neurons (PubMed:22559944, PubMed:27373832). SRGAP2/SRGAP2A limits excitatory and inhibitory synapse density through its RAC1-specific GTPase activating activity, while it promotes maturation of both excitatory and inhibitory synapses through its ability to bind to the postsynaptic scaffolding protein HOMER1 at excitatory synapses, and the postsynaptic protein GPHN at inhibitory synapses (By similarity). Mechanistically, acts by binding and deforming membranes, thereby regulating actin dynamics to regulate cell migration and differentiation (PubMed:27373832). Promotes cell repulsion and contact inhibition of locomotion: localizes to protrusions with curved edges and controls the duration of RAC1 activity in contact protrusions (By similarity). In non-neuronal cells, may also play a role in cell migration by regulating the formation of lamellipodia and filopodia (PubMed:20810653, PubMed:21148482). {ECO:0000250|UniProtKB:Q91Z67, ECO:0000269|PubMed:20810653, ECO:0000269|PubMed:21148482, ECO:0000269|PubMed:22559944, ECO:0000269|PubMed:27373832, ECO:0000269|PubMed:28333212}.
O75122 CLASP2 S523 ochoa CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}.
O94874 UFL1 S429 ochoa E3 UFM1-protein ligase 1 (EC 2.3.2.-) (E3 UFM1-protein transferase 1) (Multiple alpha-helix protein located at ER) (Novel LZAP-binding protein) (Regulator of C53/LZAP and DDRGK1) E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:20018847, PubMed:20164180, PubMed:20228063, PubMed:25219498, PubMed:27351204, PubMed:30626644, PubMed:30783677, PubMed:32160526, PubMed:32807901, PubMed:35394863, PubMed:36121123, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37311461, PubMed:37595036, PubMed:37795761, PubMed:38377992, PubMed:38383785, PubMed:38383789). Catalyzes ufmylation of many protein, such as CD274/PD-L1, CDK5RAP3, CYB5R3, DDRGK1, EIF6, histone H4, MRE11, P4HB, PDCD1/PD-1, TRIP4, RPN1, RPS20/uS10, RPL10/uL16, RPL26/uL24, SYVN1/HRD1 and TP53/p53 (PubMed:20018847, PubMed:20531390, PubMed:25219498, PubMed:30783677, PubMed:30886146, PubMed:32160526, PubMed:35753586, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37595036, PubMed:37795761, PubMed:38383785, PubMed:38383789). As part of the UREL complex, plays a key role in ribosome recycling by catalyzing mono-ufmylation of RPL26/uL24 subunit of the 60S ribosome (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 occurs on free 60S ribosomes following ribosome dissociation: it weakens the junction between post-termination 60S subunits and SEC61 translocons, promoting release and recycling of the large ribosomal subunit from the endoplasmic reticulum membrane (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 and subsequent 60S ribosome recycling either take place after normal termination of translation or after ribosome stalling during cotranslational translocation at the endoplasmic reticulum (PubMed:37036982, PubMed:37595036, PubMed:38383785, PubMed:38383789). Involved in reticulophagy in response to endoplasmic reticulum stress by mediating ufmylation of proteins such as CYB5R3 and RPN1, thereby promoting lysosomal degradation of ufmylated proteins (PubMed:23152784, PubMed:32160526, PubMed:36543799). Ufmylation in response to endoplasmic reticulum stress is essential for processes such as hematopoiesis, blood vessel morphogenesis or inflammatory response (PubMed:32050156). Mediates ufmylation of DDRGK1 and CDK5RAP3; the role of these modifications is however unclear: as both DDRGK1 and CDK5RAP3 act as substrate adapters for ufmylation, it is uncertain whether ufmylation of these proteins is, a collateral effect or is required for ufmylation (PubMed:20018847, PubMed:20531390). Acts as a negative regulator of T-cell activation by mediating ufmylation and stabilization of PDCD1/PD-1 (PubMed:38377992). Also involved in the response to DNA damage: recruited to double-strand break sites following DNA damage and mediates monoufmylation of histone H4 and ufmylation of MRE11 (PubMed:30783677, PubMed:30886146). Mediates ufmylation of TP53/p53, promoting its stability (PubMed:32807901). Catalyzes ufmylation of TRIP4, thereby playing a role in nuclear receptor-mediated transcription (PubMed:25219498). Required for hematopoietic stem cell function and hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CCJ3, ECO:0000269|PubMed:20018847, ECO:0000269|PubMed:20164180, ECO:0000269|PubMed:20228063, ECO:0000269|PubMed:20531390, ECO:0000269|PubMed:23152784, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:27351204, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:30783677, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:32050156, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:32807901, ECO:0000269|PubMed:35394863, ECO:0000269|PubMed:35753586, ECO:0000269|PubMed:36121123, ECO:0000269|PubMed:36543799, ECO:0000269|PubMed:36893266, ECO:0000269|PubMed:37036982, ECO:0000269|PubMed:37311461, ECO:0000269|PubMed:37595036, ECO:0000269|PubMed:37795761, ECO:0000269|PubMed:38377992, ECO:0000269|PubMed:38383785, ECO:0000269|PubMed:38383789}.
O94972 TRIM37 S817 ochoa E3 ubiquitin-protein ligase TRIM37 (EC 2.3.2.27) (Mulibrey nanism protein) (RING-type E3 ubiquitin transferase TRIM37) (Tripartite motif-containing protein 37) E3 ubiquitin-protein ligase required to prevent centriole reduplication (PubMed:15885686, PubMed:23769972). Probably acts by ubiquitinating positive regulators of centriole reduplication (PubMed:23769972). Mediates monoubiquitination of 'Lys-119' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression: associates with some Polycomb group (PcG) multiprotein PRC2-like complex and mediates repression of target genes (PubMed:25470042). Also acts as a positive regulator of peroxisome import by mediating monoubiquitination of PEX5 at 'Lys-472': monoubiquitination promotes PEX5 stabilitation by preventing its polyubiquitination and degradation by the proteasome (PubMed:28724525). Has anti-HIV activity (PubMed:24317724). {ECO:0000269|PubMed:15885686, ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24317724, ECO:0000269|PubMed:25470042, ECO:0000269|PubMed:28724525}.
O95251 KAT7 S73 ochoa Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}.
P02545 LMNA S423 ochoa Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}.
P02545 LMNA S632 ochoa|psp Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}.
P08670 VIM S26 ochoa|psp Vimentin Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. Plays a role in cell directional movement, orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Protects SCRIB from proteasomal degradation and facilitates its localization to intermediate filaments in a cell contact-mediated manner (By similarity). {ECO:0000250|UniProtKB:A0A8C0N8E3, ECO:0000250|UniProtKB:P31000}.; FUNCTION: Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. {ECO:0000269|PubMed:21746880}.
P08670 VIM S27 ochoa Vimentin Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. Plays a role in cell directional movement, orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Protects SCRIB from proteasomal degradation and facilitates its localization to intermediate filaments in a cell contact-mediated manner (By similarity). {ECO:0000250|UniProtKB:A0A8C0N8E3, ECO:0000250|UniProtKB:P31000}.; FUNCTION: Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. {ECO:0000269|PubMed:21746880}.
P08727 KRT19 S72 ochoa Keratin, type I cytoskeletal 19 (Cytokeratin-19) (CK-19) (Keratin-19) (K19) Involved in the organization of myofibers. Together with KRT8, helps to link the contractile apparatus to dystrophin at the costameres of striated muscle. {ECO:0000269|PubMed:16000376}.
P15056 BRAF S446 ochoa|psp Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}.
P15056 BRAF S447 ochoa Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}.
P17661 DES S48 ochoa Desmin Muscle-specific type III intermediate filament essential for proper muscular structure and function. Plays a crucial role in maintaining the structure of sarcomeres, inter-connecting the Z-disks and forming the myofibrils, linking them not only to the sarcolemmal cytoskeleton, but also to the nucleus and mitochondria, thus providing strength for the muscle fiber during activity (PubMed:25358400). In adult striated muscle they form a fibrous network connecting myofibrils to each other and to the plasma membrane from the periphery of the Z-line structures (PubMed:24200904, PubMed:25394388, PubMed:26724190). May act as a sarcomeric microtubule-anchoring protein: specifically associates with detyrosinated tubulin-alpha chains, leading to buckled microtubules and mechanical resistance to contraction. Required for nuclear membrane integrity, via anchoring at the cell tip and nuclear envelope, resulting in maintenance of microtubule-derived intracellular mechanical forces (By similarity). Contributes to the transcriptional regulation of the NKX2-5 gene in cardiac progenitor cells during a short period of cardiomyogenesis and in cardiac side population stem cells in the adult. Plays a role in maintaining an optimal conformation of nebulette (NEB) on heart muscle sarcomeres to bind and recruit cardiac alpha-actin (By similarity). {ECO:0000250|UniProtKB:P31001, ECO:0000269|PubMed:24200904, ECO:0000269|PubMed:25394388, ECO:0000269|PubMed:26724190, ECO:0000303|PubMed:25358400}.
P18206 VCL S117 ochoa Vinculin (Metavinculin) (MV) Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}.
P19838 NFKB1 S923 ochoa|psp Nuclear factor NF-kappa-B p105 subunit (DNA-binding factor KBF1) (EBP-1) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1) [Cleaved into: Nuclear factor NF-kappa-B p50 subunit] NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105. {ECO:0000269|PubMed:15485931, ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:2203531, ECO:0000269|PubMed:2234062, ECO:0000269|PubMed:7830764}.; FUNCTION: [Nuclear factor NF-kappa-B p105 subunit]: P105 is the precursor of the active p50 subunit (Nuclear factor NF-kappa-B p50 subunit) of the nuclear factor NF-kappa-B (PubMed:1423592). Acts as a cytoplasmic retention of attached NF-kappa-B proteins by p105 (PubMed:1423592). {ECO:0000269|PubMed:1423592}.; FUNCTION: [Nuclear factor NF-kappa-B p50 subunit]: Constitutes the active form, which associates with RELA/p65 to form the NF-kappa-B p65-p50 complex to form a transcription factor (PubMed:1740106, PubMed:7830764). Together with RELA/p65, binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions (PubMed:1740106, PubMed:7830764). {ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:7830764}.
P22681 CBL S668 ochoa E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}.
P23588 EIF4B S442 ochoa Eukaryotic translation initiation factor 4B (eIF-4B) Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F.
P25054 APC S127 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P25054 APC S1235 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P25054 APC S1360 ochoa|psp Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P27448 MARK3 S563 ochoa MAP/microtubule affinity-regulating kinase 3 (EC 2.7.11.1) (C-TAK1) (cTAK1) (Cdc25C-associated protein kinase 1) (ELKL motif kinase 2) (EMK-2) (Protein kinase STK10) (Ser/Thr protein kinase PAR-1) (Par-1a) (Serine/threonine-protein kinase p78) Serine/threonine-protein kinase (PubMed:16822840, PubMed:16980613, PubMed:23666762). Involved in the specific phosphorylation of microtubule-associated proteins for MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Phosphorylates CDC25C on 'Ser-216' (PubMed:12941695). Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus (PubMed:16980613). Regulates localization and activity of MITF by mediating its phosphorylation, promoting subsequent interaction between MITF and 14-3-3 and retention in the cytosol (PubMed:16822840). Negatively regulates the Hippo signaling pathway and antagonizes the phosphorylation of LATS1. Cooperates with DLG5 to inhibit the kinase activity of STK3/MST2 toward LATS1 (PubMed:28087714). Phosphorylates PKP2 and KSR1 (PubMed:12941695). {ECO:0000269|PubMed:12941695, ECO:0000269|PubMed:16822840, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:28087714}.
P28290 ITPRID2 S668 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P39880 CUX1 S1337 ochoa Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}.
P40222 TXLNA S35 ochoa Alpha-taxilin May be involved in intracellular vesicle traffic and potentially in calcium-dependent exocytosis in neuroendocrine cells.
P42166 TMPO S310 ochoa Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide.
P42166 TMPO S312 ochoa Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide.
P46100 ATRX S50 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46821 MAP1B S1835 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P49023 PXN S260 ochoa Paxillin Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}.
P49585 PCYT1A S339 ochoa Choline-phosphate cytidylyltransferase A (EC 2.7.7.15) (CCT-alpha) (CTP:phosphocholine cytidylyltransferase A) (CCT A) (CT A) (Phosphorylcholine transferase A) Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912, ECO:0000269|PubMed:30559292, ECO:0000269|PubMed:7918629}.
P49815 TSC2 S999 ochoa Tuberin (Tuberous sclerosis 2 protein) Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}.
P50548 ERF S185 ochoa ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}.
P50548 ERF S187 ochoa ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}.
P51787 KCNQ1 S484 ochoa|psp Potassium voltage-gated channel subfamily KQT member 1 (IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1) (KQT-like 1) (Voltage-gated potassium channel subunit Kv7.1) Pore-forming subunit of the voltage-gated potassium (Kv) channel involved in the regulation of cardiomyocyte excitability and important in normal development and functions of myocardium, inner ear, stomach and colon (PubMed:10646604, PubMed:25441029). Associates with KCNE beta subunits that modulates current kinetics (PubMed:10646604, PubMed:11101505, PubMed:19687231, PubMed:8900283, PubMed:9108097, PubMed:9312006). Induces a voltage-dependent current by rapidly activating and slowly deactivating potassium-selective outward current (PubMed:10646604, PubMed:11101505, PubMed:25441029, PubMed:8900283, PubMed:9108097, PubMed:9312006). Also promotes a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta-adrenergic receptor stimulation, participates in cardiac repolarization by associating with KCNE1 to form the I(Ks) cardiac potassium current that increases the amplitude and slows down the activation kinetics of outward potassium current I(Ks) (By similarity) (PubMed:10646604, PubMed:11101505, PubMed:8900283, PubMed:9108097, PubMed:9312006). Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current (PubMed:10713961). When associated with KCNE3, forms the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions (PubMed:10646604). This interaction with KCNE3 is reduced by 17beta-estradiol, resulting in the reduction of currents (By similarity). During conditions of increased substrate load, maintains the driving force for proximal tubular and intestinal sodium ions absorption, gastric acid secretion, and cAMP-induced jejunal chloride ions secretion (By similarity). Allows the provision of potassium ions to the luminal membrane of the secretory canaliculus in the resting state as well as during stimulated acid secretion (By similarity). When associated with KCNE2, forms a heterooligomer complex leading to currents with an apparently instantaneous activation, a rapid deactivation process and a linear current-voltage relationship and decreases the amplitude of the outward current (PubMed:11101505). When associated with KCNE4, inhibits voltage-gated potassium channel activity (PubMed:19687231). When associated with KCNE5, this complex only conducts current upon strong and continued depolarization (PubMed:12324418). Also forms a heterotetramer with KCNQ5; has a voltage-gated potassium channel activity (PubMed:24855057). Binds with phosphatidylinositol 4,5-bisphosphate (PubMed:25037568). KCNQ1-KCNE2 channel associates with Na(+)-coupled myo-inositol symporter in the apical membrane of choroid plexus epithelium and regulates the myo-inositol gradient between blood and cerebrospinal fluid with an impact on neuron excitability (By similarity). {ECO:0000250|UniProtKB:P97414, ECO:0000250|UniProtKB:Q9Z0N7, ECO:0000269|PubMed:10646604, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:11101505, ECO:0000269|PubMed:12324418, ECO:0000269|PubMed:19687231, ECO:0000269|PubMed:24595108, ECO:0000269|PubMed:24855057, ECO:0000269|PubMed:25037568, ECO:0000269|PubMed:8900283, ECO:0000269|PubMed:9108097, ECO:0000269|PubMed:9312006}.; FUNCTION: [Isoform 2]: Non-functional alone but modulatory when coexpressed with the full-length isoform 1. {ECO:0000269|PubMed:9305853}.
P54646 PRKAA2 S500 ochoa 5'-AMP-activated protein kinase catalytic subunit alpha-2 (AMPK subunit alpha-2) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (PubMed:7959015). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). Involved in insulin receptor/INSR internalization (PubMed:25687571). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Plays an important role in the differential regulation of pro-autophagy (composed of PIK3C3, BECN1, PIK3R4 and UVRAG or ATG14) and non-autophagy (composed of PIK3C3, BECN1 and PIK3R4) complexes, in response to glucose starvation (By similarity). Can inhibit the non-autophagy complex by phosphorylating PIK3C3 and can activate the pro-autophagy complex by phosphorylating BECN1 (By similarity). Upon glucose starvation, promotes ARF6 activation in a kinase-independent manner leading to cell migration (PubMed:36017701). Upon glucose deprivation mediates the phosphorylation of ACSS2 at 'Ser-659', which exposes the nuclear localization signal of ACSS2, required for its interaction with KPNA1 and nuclear translocation (PubMed:28552616). Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:Q09137, ECO:0000250|UniProtKB:Q8BRK8, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36017701, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:7959015, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}.
P54646 PRKAA2 S501 ochoa 5'-AMP-activated protein kinase catalytic subunit alpha-2 (AMPK subunit alpha-2) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (PubMed:7959015). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). Involved in insulin receptor/INSR internalization (PubMed:25687571). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Plays an important role in the differential regulation of pro-autophagy (composed of PIK3C3, BECN1, PIK3R4 and UVRAG or ATG14) and non-autophagy (composed of PIK3C3, BECN1 and PIK3R4) complexes, in response to glucose starvation (By similarity). Can inhibit the non-autophagy complex by phosphorylating PIK3C3 and can activate the pro-autophagy complex by phosphorylating BECN1 (By similarity). Upon glucose starvation, promotes ARF6 activation in a kinase-independent manner leading to cell migration (PubMed:36017701). Upon glucose deprivation mediates the phosphorylation of ACSS2 at 'Ser-659', which exposes the nuclear localization signal of ACSS2, required for its interaction with KPNA1 and nuclear translocation (PubMed:28552616). Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:Q09137, ECO:0000250|UniProtKB:Q8BRK8, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36017701, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:7959015, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}.
P78559 MAP1A S2124 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
Q01082 SPTBN1 S2324 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q04726 TLE3 S311 ochoa Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}.
Q08999 RBL2 S982 ochoa|psp Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor.
Q08AD1 CAMSAP2 S433 ochoa Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}.
Q09666 AHNAK S232 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q10570 CPSF1 S753 ochoa Cleavage and polyadenylation specificity factor subunit 1 (Cleavage and polyadenylation specificity factor 160 kDa subunit) (CPSF 160 kDa subunit) Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (PubMed:14749727). May play a role in eye morphogenesis and the development of retinal ganglion cell projections to the midbrain (By similarity). {ECO:0000250|UniProtKB:A0A0R4IC37, ECO:0000269|PubMed:14749727}.
Q12802 AKAP13 S1635 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12888 TP53BP1 S500 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12888 TP53BP1 S1660 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q13163 MAP2K5 S149 ochoa|psp Dual specificity mitogen-activated protein kinase kinase 5 (MAP kinase kinase 5) (MAPKK 5) (EC 2.7.12.2) (MAPK/ERK kinase 5) (MEK 5) Acts as a scaffold for the formation of a ternary MAP3K2/MAP3K3-MAP3K5-MAPK7 signaling complex. Activation of this pathway appears to play a critical role in protecting cells from stress-induced apoptosis, neuronal survival and cardiac development and angiogenesis. As part of the MAPK/ERK signaling pathway, acts as a negative regulator of apoptosis in cardiomyocytes via promotion of STUB1/CHIP-mediated ubiquitination and degradation of ICER-type isoforms of CREM (By similarity). {ECO:0000250|UniProtKB:Q62862, ECO:0000269|PubMed:7759517, ECO:0000269|PubMed:9384584}.
Q13283 G3BP1 S250 ochoa Ras GTPase-activating protein-binding protein 1 (G3BP-1) (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent DNA helicase VIII) (hDH VIII) (GAP SH3 domain-binding protein 1) Protein involved in various processes, such as stress granule formation and innate immunity (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:30510222, PubMed:30804210). Plays an essential role in stress granule formation (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:35977029, PubMed:36183834, PubMed:36279435, PubMed:36692217, PubMed:37379838). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:36279435, PubMed:37379838). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:36279435, PubMed:36692217). Also acts as an ATP- and magnesium-dependent helicase: unwinds DNA/DNA, RNA/DNA, and RNA/RNA substrates with comparable efficiency (PubMed:9889278). Acts unidirectionally by moving in the 5' to 3' direction along the bound single-stranded DNA (PubMed:9889278). Unwinds preferentially partial DNA and RNA duplexes having a 17 bp annealed portion and either a hanging 3' tail or hanging tails at both 5'- and 3'-ends (PubMed:9889278). Plays an essential role in innate immunity by promoting CGAS and RIGI activity (PubMed:30510222, PubMed:30804210). Participates in the DNA-triggered cGAS/STING pathway by promoting the DNA binding and activation of CGAS (PubMed:30510222). Triggers the condensation of cGAS, a process probably linked to the formation of membrane-less organelles (PubMed:34779554). Also enhances RIGI-induced type I interferon production probably by helping RIGI at sensing pathogenic RNA (PubMed:30804210). May also act as a phosphorylation-dependent sequence-specific endoribonuclease in vitro: Cleaves exclusively between cytosine and adenine and cleaves MYC mRNA preferentially at the 3'-UTR (PubMed:11604510). {ECO:0000269|PubMed:11604510, ECO:0000269|PubMed:12642610, ECO:0000269|PubMed:20180778, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:30510222, ECO:0000269|PubMed:30804210, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:34779554, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:36183834, ECO:0000269|PubMed:36279435, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:37379838, ECO:0000269|PubMed:9889278}.
Q13435 SF3B2 S362 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13620 CUL4B S161 ochoa Cullin-4B (CUL-4B) Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14578910, PubMed:16322693, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948, PubMed:30166453, PubMed:33854232, PubMed:33854239). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition subunit (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948). CUL4B may act within the complex as a scaffold protein, contributing to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460). Plays a role as part of the E3 ubiquitin-protein ligase complex in polyubiquitination of CDT1, histone H2A, histone H3 and histone H4 in response to radiation-induced DNA damage (PubMed:14578910, PubMed:16678110, PubMed:18593899). Targeted to UV damaged chromatin by DDB2 and may be important for DNA repair and DNA replication (PubMed:16678110). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). Required for ubiquitination of cyclin E (CCNE1 or CCNE2), and consequently, normal G1 cell cycle progression (PubMed:16322693, PubMed:19801544). Regulates the mammalian target-of-rapamycin (mTOR) pathway involved in control of cell growth, size and metabolism (PubMed:18235224). Specific CUL4B regulation of the mTORC1-mediated pathway is dependent upon 26S proteasome function and requires interaction between CUL4B and MLST8 (PubMed:18235224). With CUL4A, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:16322693, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18235224, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19801544, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}.
Q14123 PDE1C S488 ochoa Dual specificity calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1C (Cam-PDE 1C) (EC 3.1.4.17) (Hcam3) Calmodulin-dependent cyclic nucleotide phosphodiesterase with a dual specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:29860631, PubMed:8557689). Has a high affinity for both cAMP and cGMP (PubMed:8557689). Modulates the amplitude and duration of the cAMP signal in sensory cilia in response to odorant stimulation, hence contributing to the generation of action potentials. Regulates smooth muscle cell proliferation. Regulates the stability of growth factor receptors, including PDGFRB (Probable). {ECO:0000269|PubMed:29860631, ECO:0000269|PubMed:8557689, ECO:0000305|PubMed:29860631}.
Q14149 MORC3 S566 ochoa MORC family CW-type zinc finger protein 3 (Nuclear matrix protein 2) (Zinc finger CW-type coiled-coil domain protein 3) Nuclear matrix protein which forms MORC3-NBs (nuclear bodies) via an ATP-dependent mechanism and plays a role in innate immunity by restricting different viruses through modulation of the IFN response (PubMed:27440897, PubMed:34759314). Mechanistically, possesses a primary antiviral function through a MORC3-regulated element that activates IFNB1, and this function is guarded by a secondary IFN-repressing function (PubMed:34759314). Sumoylated MORC3-NBs associates with PML-NBs and recruits TP53 and SP100, thus regulating TP53 activity (PubMed:17332504, PubMed:20501696). Binds RNA in vitro (PubMed:11927593). Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:11927593, ECO:0000269|PubMed:17332504, ECO:0000269|PubMed:20501696, ECO:0000269|PubMed:26933034, ECO:0000269|PubMed:27440897, ECO:0000269|PubMed:34759314}.; FUNCTION: (Microbial infection) May be required for influenza A transcription during viral infection (PubMed:26202233). {ECO:0000269|PubMed:26202233}.
Q14153 FAM53B S167 ochoa Protein FAM53B (Protein simplet) Acts as a regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) nuclear localization. {ECO:0000269|PubMed:25183871}.
Q14676 MDC1 S1173 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14676 MDC1 S1214 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14676 MDC1 S1337 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14676 MDC1 S1419 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14676 MDC1 S1460 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14676 MDC1 S1501 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14676 MDC1 S1624 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14694 USP10 S97 ochoa Ubiquitin carboxyl-terminal hydrolase 10 (EC 3.4.19.12) (Deubiquitinating enzyme 10) (Ubiquitin thioesterase 10) (Ubiquitin-specific-processing protease 10) Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiquitination of 40S ribosome subunits (PubMed:27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid-liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiquitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed:31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed:19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiquitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGI-mediated MAVS activation. Mechanistically, removes the unanchored 'Lys-63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed:37582970). {ECO:0000269|PubMed:11439350, ECO:0000269|PubMed:18632802, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:20096447, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:24845384, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:31981475, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731, ECO:0000269|PubMed:37582970}.
Q15032 R3HDM1 S381 ochoa R3H domain-containing protein 1 None
Q15149 PLEC S4408 ochoa Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}.
Q15772 SPEG S435 ochoa Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells.
Q15942 ZYX S170 ochoa Zyxin (Zyxin-2) Adhesion plaque protein. Binds alpha-actinin and the CRP protein. Important for targeting TES and ENA/VASP family members to focal adhesions and for the formation of actin-rich structures. May be a component of a signal transduction pathway that mediates adhesion-stimulated changes in gene expression (By similarity). {ECO:0000250}.
Q2KHR3 QSER1 S1247 ochoa Glutamine and serine-rich protein 1 Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}.
Q32P44 EML3 S176 ochoa Echinoderm microtubule-associated protein-like 3 (EMAP-3) Regulates mitotic spindle assembly, microtubule (MT)-kinetochore attachment and chromosome separation via recruitment of HAUS augmin-like complex and TUBG1 to the existing MTs and promoting MT-based MT nucleation (PubMed:30723163). Required for proper alignnment of chromosomes during metaphase (PubMed:18445686). {ECO:0000269|PubMed:18445686, ECO:0000269|PubMed:30723163}.
Q32P44 EML3 S177 ochoa Echinoderm microtubule-associated protein-like 3 (EMAP-3) Regulates mitotic spindle assembly, microtubule (MT)-kinetochore attachment and chromosome separation via recruitment of HAUS augmin-like complex and TUBG1 to the existing MTs and promoting MT-based MT nucleation (PubMed:30723163). Required for proper alignnment of chromosomes during metaphase (PubMed:18445686). {ECO:0000269|PubMed:18445686, ECO:0000269|PubMed:30723163}.
Q3V6T2 CCDC88A S1718 ochoa Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}.
Q4AC94 C2CD3 S2148 ochoa C2 domain-containing protein 3 Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}.
Q4V328 GRIPAP1 S671 ochoa GRIP1-associated protein 1 (GRASP-1) [Cleaved into: GRASP-1 C-terminal chain (30kDa C-terminus form)] Regulates the endosomal recycling back to the neuronal plasma membrane, possibly by connecting early and late recycling endosomal domains and promoting segregation of recycling endosomes from early endosomal membranes. Involved in the localization of recycling endosomes to dendritic spines, thereby playing a role in the maintenance of dendritic spine morphology. Required for the activity-induced AMPA receptor recycling to dendrite membranes and for long-term potentiation and synaptic plasticity (By similarity). {ECO:0000250|UniProtKB:Q9JHZ4}.; FUNCTION: [GRASP-1 C-terminal chain]: Functions as a scaffold protein to facilitate MAP3K1/MEKK1-mediated activation of the JNK1 kinase by phosphorylation, possibly by bringing MAP3K1/MEKK1 and JNK1 in close proximity. {ECO:0000269|PubMed:17761173}.
Q52LW3 ARHGAP29 T575 ochoa Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}.
Q5M775 SPECC1 S54 ochoa Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) None
Q5M775 SPECC1 S151 ochoa Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) None
Q5SNT2 TMEM201 S460 ochoa Transmembrane protein 201 (Spindle-associated membrane protein 1) Critical regulator of angiogenesis and endothelial cell (EC) migration (PubMed:35311970). Promotes the migration of endothelial cells, which is essential for angiogenesis (PubMed:35311970). Interacts with the linker of nucleoskeleton and cytoskeleton (LINC) complex, which plays a vital role in connecting the cell's cytoskeleton to the nuclear envelope (PubMed:35311970). This interaction is essential for maintaining cellular structure and facilitating the movement of endothelial cells, which is critical for proper vascular development (PubMed:35311970). Involved in nuclear movement during fibroblast polarization and migration (By similarity). Overexpression can recruit Ran GTPase to the nuclear periphery (PubMed:27541860). {ECO:0000250|UniProtKB:A2A8U2, ECO:0000269|PubMed:35311970, ECO:0000305|PubMed:27541860}.; FUNCTION: [Isoform 2]: May define a distinct membrane domain in the vicinity of the mitotic spindle (PubMed:19494128). Involved in the organization of the nuclear envelope implicating EMD, SUN1 and A-type lamina (PubMed:21610090). {ECO:0000269|PubMed:19494128, ECO:0000269|PubMed:21610090}.
Q5SW79 CEP170 S466 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5SW79 CEP170 S881 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5T0W9 FAM83B S558 ochoa Protein FAM83B Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}.
Q5T1M5 FKBP15 S346 ochoa FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}.
Q5T8I3 EEIG2 S244 ochoa EEIG family member 2 (EEIG2) None
Q5TBA9 FRY T1956 ochoa Protein furry homolog Plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting PLK1 activity at the spindle poles in early mitosis. May function as a scaffold promoting the interaction between AURKA and PLK1, thereby enhancing AURKA-mediated PLK1 phosphorylation. {ECO:0000269|PubMed:22753416}.
Q5THJ4 VPS13D S2454 ochoa Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}.
Q5VT52 RPRD2 S925 ochoa Regulation of nuclear pre-mRNA domain-containing protein 2 None
Q63HR2 TNS2 S1112 ochoa Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}.
Q68DQ2 CRYBG3 S2120 ochoa Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}.
Q6AWC2 WWC2 S1022 ochoa Protein WWC2 (BH-3-only member B) (WW domain-containing protein 2) Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway. Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway. {ECO:0000269|PubMed:24682284}.
Q6KC79 NIPBL S152 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6P3S1 DENND1B S596 ochoa DENN domain-containing protein 1B (Connecdenn 2) (Protein FAM31B) Guanine nucleotide exchange factor (GEF) for RAB35 that acts as a regulator of T-cell receptor (TCR) internalization in TH2 cells (PubMed:20154091, PubMed:20937701, PubMed:24520163, PubMed:26774822). Acts by promoting the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form (PubMed:20154091, PubMed:20937701). Plays a role in clathrin-mediated endocytosis (PubMed:20154091). Controls cytokine production in TH2 lymphocytes by controlling the rate of TCR internalization and routing to endosomes: acts by mediating clathrin-mediated endocytosis of TCR via its interaction with the adapter protein complex 2 (AP-2) and GEF activity (PubMed:26774822). Dysregulation leads to impaired TCR down-modulation and recycling, affecting cytokine production in TH2 cells (PubMed:26774822). {ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:24520163, ECO:0000269|PubMed:26774822}.
Q7KZI7 MARK2 S593 ochoa Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}.
Q7Z417 NUFIP2 S588 ochoa FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) Binds RNA. {ECO:0000269|PubMed:12837692}.
Q7Z460 CLASP1 S576 ochoa CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}.
Q7Z5J4 RAI1 S1266 ochoa Retinoic acid-induced protein 1 Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}.
Q86UK7 ZNF598 S528 ochoa E3 ubiquitin-protein ligase ZNF598 (EC 2.3.2.27) (Zinc finger protein 598) E3 ubiquitin-protein ligase that plays a key role in the ribosome quality control (RQC), a pathway that takes place when a ribosome has stalled during translation, leading to degradation of nascent peptide chains (PubMed:28065601, PubMed:28132843, PubMed:28685749, PubMed:32099016, PubMed:32579943, PubMed:33581075). ZNF598 is activated when ribosomes are stalled within an mRNA following translation of prematurely polyadenylated mRNAs (PubMed:28065601, PubMed:28132843, PubMed:28685749). Acts as a ribosome collision sensor: specifically recognizes and binds collided di-ribosome, which arises when a trailing ribosome encounters a slower leading ribosome, leading to terminally arrest translation (PubMed:28065601, PubMed:28132843, PubMed:28685749, PubMed:30293783). Following binding to colliding ribosomes, mediates monoubiquitination of 40S ribosomal proteins RPS10/eS10 and RPS3/uS3, and 'Lys-63'-linked polyubiquitination of RPS20/uS10 (PubMed:28065601, PubMed:28132843, PubMed:28685749). Polyubiquitination of RPS20/uS10 promotes recruitment of the RQT (ribosome quality control trigger) complex, which drives the disassembly of stalled ribosomes, followed by degradation of nascent peptides (PubMed:32099016, PubMed:32579943, PubMed:36302773). E3 ubiquitin-protein ligase activity is dependent on the E2 ubiquitin-conjugating enzyme UBE2D3 (PubMed:28685749). Also acts as an adapter that recruits the 4EHP-GYF2 complex to mRNAs (PubMed:22751931, PubMed:32726578). Independently of its role in RQC, may also act as a negative regulator of interferon-stimulated gene (ISG) expression (PubMed:29719242). {ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:28065601, ECO:0000269|PubMed:28132843, ECO:0000269|PubMed:28685749, ECO:0000269|PubMed:29719242, ECO:0000269|PubMed:30293783, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33581075, ECO:0000269|PubMed:36302773}.; FUNCTION: (Microbial infection) Required for poxvirus protein synthesis by mediating ubiquitination of RPS10/eS10 and RPS20/uS10 (PubMed:29719242). Poxvirus encoding mRNAs contain unusual 5' poly(A) leaders and ZNF598 is required for their translational efficiency, possibly via its ability to suppress readthrough or sliding on shorter poly(A) tracts (PubMed:29719242). {ECO:0000269|PubMed:29719242}.
Q86UU1 PHLDB1 S1004 ochoa Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) None
Q86V48 LUZP1 T821 ochoa Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}.
Q86X29 LSR S382 ochoa Lipolysis-stimulated lipoprotein receptor (Angulin-1) Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}.
Q86X29 LSR S401 ochoa Lipolysis-stimulated lipoprotein receptor (Angulin-1) Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}.
Q86YS7 C2CD5 S321 ochoa C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}.
Q86YS7 C2CD5 S323 ochoa C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}.
Q8IUD2 ERC1 S37 ochoa ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}.
Q8IX03 WWC1 S947 ochoa|psp Protein KIBRA (HBeAg-binding protein 3) (Kidney and brain protein) (KIBRA) (WW domain-containing protein 1) Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway (PubMed:24682284). Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway (PubMed:24682284). Along with NF2 can synergistically induce the phosphorylation of LATS1 and LATS2 and function in the regulation of Hippo signaling pathway (PubMed:20159598). Acts as a transcriptional coactivator of ESR1 which plays an essential role in DYNLL1-mediated ESR1 transactivation (PubMed:16684779). Regulates collagen-stimulated activation of the ERK/MAPK cascade (PubMed:18190796). Modulates directional migration of podocytes (PubMed:18596123). Plays a role in cognition and memory performance (PubMed:18672031). Plays an important role in regulating AMPA-selective glutamate receptors (AMPARs) trafficking underlying synaptic plasticity and learning (By similarity). {ECO:0000250|UniProtKB:Q5SXA9, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:18190796, ECO:0000269|PubMed:18596123, ECO:0000269|PubMed:18672031, ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:24682284}.
Q8IY92 SLX4 S1469 ochoa Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}.
Q8IZD2 KMT2E S861 psp Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}.
Q8N1W1 ARHGEF28 S736 ochoa Rho guanine nucleotide exchange factor 28 (190 kDa guanine nucleotide exchange factor) (p190-RhoGEF) (p190RhoGEF) (Rho guanine nucleotide exchange factor) Functions as a RHOA-specific guanine nucleotide exchange factor regulating signaling pathways downstream of integrins and growth factor receptors. Functions in axonal branching, synapse formation and dendritic morphogenesis. Also functions in focal adhesion formation, cell motility and B-lymphocytes activation. May regulate NEFL expression and aggregation and play a role in apoptosis (By similarity). {ECO:0000250}.
Q8N3F8 MICALL1 S578 ochoa MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}.
Q8N3V7 SYNPO S718 ochoa Synaptopodin Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}.
Q8N488 RYBP S200 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8NC51 SERBP1 S221 ochoa SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}.
Q8NF91 SYNE1 S8270 ochoa Nesprin-1 (Enaptin) (KASH domain-containing protein 1) (KASH1) (Myocyte nuclear envelope protein 1) (Myne-1) (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope protein 1) (Syne-1) Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. May be involved in nucleus-centrosome attachment and nuclear migration in neural progenitors implicating LINC complex association with SUN1/2 and probably association with cytoplasmic dynein-dynactin motor complexes; SYNE1 and SYNE2 may act redundantly. Required for centrosome migration to the apical cell surface during early ciliogenesis. May be involved in nuclear remodeling during sperm head formation in spermatogenesis; a probable SUN3:SYNE1/KASH1 LINC complex may tether spermatid nuclei to posterior cytoskeletal structures such as the manchette. {ECO:0000250|UniProtKB:Q6ZWR6, ECO:0000269|PubMed:11792814, ECO:0000269|PubMed:18396275}.
Q8NHV4 NEDD1 S566 psp Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}.
Q8TB45 DEPTOR S299 ochoa|psp DEP domain-containing mTOR-interacting protein (hDEPTOR) (DEP domain-containing protein 6) Negative regulator of the mTORC1 and mTORC2 complexes: inhibits the protein kinase activity of MTOR, thereby inactivating both complexes (PubMed:19446321, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:25936805, PubMed:29382726, PubMed:34519268, PubMed:34519269). DEPTOR inhibits mTORC1 and mTORC2 to induce autophagy (PubMed:22017875, PubMed:22017876, PubMed:22017877). In contrast to AKT1S1/PRAS40, only partially inhibits mTORC1 activity (PubMed:34519268, PubMed:34519269). {ECO:0000269|PubMed:19446321, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:29382726, ECO:0000269|PubMed:34519268, ECO:0000269|PubMed:34519269}.
Q8TDM6 DLG5 S1252 ochoa Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}.
Q8TEV9 SMCR8 S487 ochoa Guanine nucleotide exchange protein SMCR8 (Smith-Magenis syndrome chromosomal region candidate gene 8 protein) Component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy (PubMed:20562859, PubMed:27103069, PubMed:27193190, PubMed:27559131, PubMed:27617292, PubMed:28195531, PubMed:32303654). In the complex, C9orf72 and SMCR8 probably constitute the catalytic subunits that promote the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation (PubMed:20562859, PubMed:27103069, PubMed:27617292, PubMed:28195531). The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ULK1/ATG1 kinase complex and inhibiting its protein kinase activity (PubMed:27617292, PubMed:28195531). As part of the C9orf72-SMCR8 complex, stimulates RAB8A and RAB11A GTPase activity in vitro (PubMed:32303654). Acts as a regulator of mTORC1 signaling by promoting phosphorylation of mTORC1 substrates (PubMed:27559131, PubMed:28195531). In addition to its activity in the cytoplasm within the C9orf72-SMCR8 complex, SMCR8 also localizes in the nucleus, where it associates with chromatin and negatively regulates expression of suppresses ULK1 and WIPI2 genes (PubMed:28195531). {ECO:0000269|PubMed:20562859, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27193190, ECO:0000269|PubMed:27559131, ECO:0000269|PubMed:27617292, ECO:0000269|PubMed:28195531, ECO:0000269|PubMed:32303654}.
Q8TEW0 PARD3 S174 ochoa Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}.
Q8WWI1 LMO7 S988 ochoa LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) None
Q8WWQ0 PHIP S1473 ochoa PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}.
Q92576 PHF3 S1630 ochoa PHD finger protein 3 None
Q96C12 ARMC5 S118 ochoa Armadillo repeat-containing protein 5 Substrate-recognition component of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:39504960, PubMed:39667934). The BCR(ARMC5) complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the BCR(ARMC5) complex acts by mediating ubiquitination of Pol II subunit POLR2A phosphorylated at 'Ser-5' of the C-terminal domain (CTD), leading to POLR2A degradation (PubMed:35687106, PubMed:38225631, PubMed:39504960, PubMed:39667934). The BCR(ARMC5) complex acts in parallel of the integrator complex and is specific for RNA Pol II originating from the promoter-proximal zone: it does not ubiquitinate elongation-stalled RNA Pol II (PubMed:39667934). The BCR(ARMC5) complex also acts as a regulator of fatty acid desaturation by mediating ubiquitination and degradation of SCAP-free SREBF1 and SREBF2 (PubMed:35862218). Involved in fetal development, T-cell function and adrenal gland growth homeostasis (PubMed:24283224, PubMed:28676429). Plays a role in steroidogenesis, modulates steroidogenic enzymes expression and cortisol production (PubMed:24283224, PubMed:28676429). {ECO:0000269|PubMed:24283224, ECO:0000269|PubMed:28676429, ECO:0000269|PubMed:35687106, ECO:0000269|PubMed:35862218, ECO:0000269|PubMed:38225631, ECO:0000269|PubMed:39504960, ECO:0000269|PubMed:39667934}.
Q96EV8 DTNBP1 S316 ochoa Dysbindin (Biogenesis of lysosome-related organelles complex 1 subunit 8) (BLOC-1 subunit 8) (Dysbindin-1) (Dystrobrevin-binding protein 1) (Hermansky-Pudlak syndrome 7 protein) (HPS7 protein) Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes. In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Associates with the BLOC-2 complex to facilitate the transport of TYRP1 independent of AP-3 function. Plays a role in synaptic vesicle trafficking and in neurotransmitter release. Plays a role in the regulation of cell surface exposure of DRD2. May play a role in actin cytoskeleton reorganization and neurite outgrowth. May modulate MAPK8 phosphorylation. Appears to promote neuronal transmission and viability through regulating the expression of SNAP25 and SYN1, modulating PI3-kinase-Akt signaling and influencing glutamatergic release. Regulates the expression of SYN1 through binding to its promoter. Modulates prefrontal cortical activity via the dopamine/D2 pathway. {ECO:0000269|PubMed:15345706, ECO:0000269|PubMed:16837549, ECO:0000269|PubMed:17182842, ECO:0000269|PubMed:17989303, ECO:0000269|PubMed:19094965, ECO:0000269|PubMed:20180862, ECO:0000269|PubMed:20921223}.
Q96JK2 DCAF5 S648 ochoa DDB1- and CUL4-associated factor 5 (Breakpoint cluster region protein 2) (BCRP2) (WD repeat-containing protein 22) Is a substrate receptor for the CUL4-DDB1 E3 ubiquitin-protein ligase complex (CRL4) (PubMed:29691401, PubMed:30442713). The complex CRL4-DCAF5 is involved in the ubiquitination of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1 (PubMed:29691401, PubMed:30442713). {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}.
Q96JM3 CHAMP1 S452 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96JY6 PDLIM2 S161 ochoa PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) Probable adapter protein located at the actin cytoskeleton that promotes cell attachment. Necessary for the migratory capacity of epithelial cells. Overexpression enhances cell adhesion to collagen and fibronectin and suppresses anchorage independent growth. May contribute to tumor cell migratory capacity. {ECO:0000269|PubMed:15659642}.
Q96RU2 USP28 S520 ochoa Ubiquitin carboxyl-terminal hydrolase 28 (EC 3.4.19.12) (Deubiquitinating enzyme 28) (Ubiquitin thioesterase 28) (Ubiquitin-specific-processing protease 28) Deubiquitinase involved in DNA damage response checkpoint and MYC proto-oncogene stability. Involved in DNA damage induced apoptosis by specifically deubiquitinating proteins of the DNA damage pathway such as CLSPN. Also involved in G2 DNA damage checkpoint, by deubiquitinating CLSPN, and preventing its degradation by the anaphase promoting complex/cyclosome (APC/C). In contrast, it does not deubiquitinate PLK1. Specifically deubiquitinates MYC in the nucleoplasm, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm and counteracting ubiquitination of MYC by the SCF(FBW7) complex. In contrast, it does not interact with isoform 4 of FBXW7 (FBW7gamma) in the nucleolus, allowing MYC degradation and explaining the selective MYC degradation in the nucleolus. Deubiquitinates ZNF304, hence preventing ZNF304 degradation by the proteasome and leading to the activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) in a subset of colorectal cancers (CRC) cells (PubMed:24623306). {ECO:0000269|PubMed:16901786, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:24623306}.
Q99569 PKP4 S263 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99959 PKP2 S151 ochoa Plakophilin-2 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}.
Q99959 PKP2 S313 ochoa Plakophilin-2 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}.
Q9BTA9 WAC S241 ochoa WW domain-containing adapter protein with coiled-coil Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}.
Q9C0B5 ZDHHC5 Y396 ochoa Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.
Q9C0B5 ZDHHC5 S448 ochoa Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.
Q9C0C2 TNKS1BP1 S1158 ochoa 182 kDa tankyrase-1-binding protein None
Q9H0H5 RACGAP1 S203 ochoa Rac GTPase-activating protein 1 (Male germ cell RacGap) (MgcRacGAP) (Protein CYK4 homolog) (CYK4) (HsCYK-4) Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Required for proper attachment of the midbody to the cell membrane during cytokinesis. Sequentially binds to ECT2 and RAB11FIP3 which regulates cleavage furrow ingression and abscission during cytokinesis (PubMed:18511905). Plays key roles in controlling cell growth and differentiation of hematopoietic cells through mechanisms other than regulating Rac GTPase activity (PubMed:10979956). Has a critical role in erythropoiesis (PubMed:34818416). Also involved in the regulation of growth-related processes in adipocytes and myoblasts. May be involved in regulating spermatogenesis and in the RACGAP1 pathway in neuronal proliferation. Shows strong GAP (GTPase activation) activity towards CDC42 and RAC1 and less towards RHOA. Essential for the early stages of embryogenesis. May play a role in regulating cortical activity through RHOA during cytokinesis. May participate in the regulation of sulfate transport in male germ cells. {ECO:0000269|PubMed:10979956, ECO:0000269|PubMed:11085985, ECO:0000269|PubMed:11278976, ECO:0000269|PubMed:11782313, ECO:0000269|PubMed:14729465, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16129829, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:23235882, ECO:0000269|PubMed:9497316}.
Q9H2P0 ADNP S442 ochoa Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}.
Q9H3D4 TP63 S479 psp Tumor protein 63 (p63) (Chronic ulcerative stomatitis protein) (CUSP) (Keratinocyte transcription factor KET) (Transformation-related protein 63) (TP63) (Tumor protein p73-like) (p73L) (p40) (p51) Acts as a sequence specific DNA binding transcriptional activator or repressor. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. Isoform 2 activates RIPK4 transcription. May be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. Involved in Notch signaling by probably inducing JAG1 and JAG2. Plays a role in the regulation of epithelial morphogenesis. The ratio of DeltaN-type and TA*-type isoforms may govern the maintenance of epithelial stem cell compartments and regulate the initiation of epithelial stratification from the undifferentiated embryonal ectoderm. Required for limb formation from the apical ectodermal ridge. Activates transcription of the p21 promoter. {ECO:0000269|PubMed:11641404, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12446779, ECO:0000269|PubMed:12446784, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:22197488, ECO:0000269|PubMed:9774969}.
Q9H6S0 YTHDC2 S1279 ochoa 3'-5' RNA helicase YTHDC2 (EC 3.6.4.13) (YTH domain-containing protein 2) (hYTHDC2) 3'-5' RNA helicase that plays a key role in the male and female germline by promoting transition from mitotic to meiotic divisions in stem cells (PubMed:26318451, PubMed:29033321, PubMed:29970596). Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, a modification present at internal sites of mRNAs and some non-coding RNAs that plays a role in the efficiency of RNA processing and stability (PubMed:26318451, PubMed:29033321). Essential for ensuring a successful progression of the meiotic program in the germline by regulating the level of m6A-containing RNAs (By similarity). Acts by binding and promoting degradation of m6A-containing mRNAs: the 3'-5' RNA helicase activity is required for this process and RNA degradation may be mediated by XRN1 exoribonuclease (PubMed:29033321). Required for both spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B2RR83, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:29033321, ECO:0000269|PubMed:29970596}.
Q9H6T3 RPAP3 S523 ochoa RNA polymerase II-associated protein 3 Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. {ECO:0000269|PubMed:17643375}.
Q9HCD6 TANC2 S254 ochoa Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}.
Q9HCE3 ZNF532 S314 ochoa Zinc finger protein 532 May be involved in transcriptional regulation.
Q9HCK8 CHD8 S2220 ochoa Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}.
Q9NP61 ARFGAP3 S474 ochoa ADP-ribosylation factor GTPase-activating protein 3 (ARF GAP 3) GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:11172815}.
Q9NQS7 INCENP S330 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NQT8 KIF13B S1398 ochoa Kinesin-like protein KIF13B (Kinesin-like protein GAKIN) Involved in reorganization of the cortical cytoskeleton. Regulates axon formation by promoting the formation of extra axons. May be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes. {ECO:0000269|PubMed:20194617}.
Q9NRA8 EIF4ENIF1 S768 ochoa Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}.
Q9NWB6 ARGLU1 S76 ochoa Arginine and glutamate-rich protein 1 Dual function regulator of gene expression; regulator of transcription and modulator of alternative splicing (PubMed:30698747). General coactivator of nuclear receptor-induced gene expression, including genes activated by the glucocorticoid receptor NR3C1 (PubMed:30698747). Binds to a subset of pre-mRNAs and to components of the spliceosome machinery to directly modulate basal alternative splicing; involved in simple and complex cassette exon splicing events (PubMed:30698747). Binds its own pre-mRNA and regulates its alternative splicing and degradation; one of the alternatively spliced products is a stable intronic sequence RNA (sisRNA) that binds the protein to regulate its ability to affect splicing (PubMed:27899669, PubMed:36533631). Binding of the sisRNA stimulates phase separation and localization to nuclear speckles, which may contribute to activation of nuclear receptor-induced gene expression (PubMed:36533631). May also indirectly modulate alternative splicing (PubMed:30698747). Regulates transcription of genes involved in heart development, neuronal cell function, protein localization and chromatin localization (By similarity). Regulates splicing of genes involved in neurogenesis and chromatin organization (By similarity). Essential for central nervous system development (By similarity). Required for the estrogen-dependent expression of ESR1 target genes (PubMed:21454576). Can act in cooperation with MED1 (PubMed:21454576). {ECO:0000250|UniProtKB:Q3UL36, ECO:0000269|PubMed:21454576, ECO:0000269|PubMed:27899669, ECO:0000269|PubMed:30698747, ECO:0000269|PubMed:36533631}.
Q9NWH9 SLTM S553 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NX95 SYBU S214 ochoa Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}.
Q9NY74 ETAA1 S111 ochoa Ewing's tumor-associated antigen 1 (Ewing's tumor-associated antigen 16) Replication stress response protein that accumulates at DNA damage sites and promotes replication fork progression and integrity (PubMed:27601467, PubMed:27723717, PubMed:27723720). Recruited to stalled replication forks via interaction with the RPA complex and directly stimulates ATR kinase activity independently of TOPBP1 (PubMed:27723717, PubMed:27723720, PubMed:30139873). Probably only regulates a subset of ATR targets (PubMed:27723717, PubMed:27723720). {ECO:0000269|PubMed:27601467, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873}.
Q9NYL2 MAP3K20 S584 ochoa Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.
Q9NYL2 MAP3K20 S654 ochoa Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.
Q9NZJ0 DTL S444 ochoa Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}.
Q9P219 CCDC88C S1601 ochoa Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}.
Q9P2Y5 UVRAG S525 ochoa UV radiation resistance-associated gene protein (p63) Versatile protein that is involved in regulation of different cellular pathways implicated in membrane trafficking. Involved in regulation of the COPI-dependent retrograde transport from Golgi and the endoplasmic reticulum by associating with the NRZ complex; the function is dependent on its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) (PubMed:16799551, PubMed:18552835, PubMed:20643123, PubMed:24056303, PubMed:28306502). During autophagy acts as a regulatory subunit of the alternative PI3K complex II (PI3KC3-C2) that mediates formation of phosphatidylinositol 3-phosphate and is believed to be involved in maturation of autophagosomes and endocytosis. Activates lipid kinase activity of PIK3C3 (PubMed:16799551, PubMed:20643123, PubMed:24056303, PubMed:28306502). Involved in the regulation of degradative endocytic trafficking and cytokinesis, and in regulation of ATG9A transport from the Golgi to the autophagosome; the functions seems to implicate its association with PI3KC3-C2 (PubMed:16799551, PubMed:20643123, PubMed:24056303). Involved in maturation of autophagosomes and degradative endocytic trafficking independently of BECN1 but depending on its association with a class C Vps complex (possibly the HOPS complex); the association is also proposed to promote autophagosome recruitment and activation of Rab7 and endosome-endosome fusion events (PubMed:18552835, PubMed:28306502). Enhances class C Vps complex (possibly HOPS complex) association with a SNARE complex and promotes fusogenic SNARE complex formation during late endocytic membrane fusion (PubMed:24550300). In case of negative-strand RNA virus infection is required for efficient virus entry, promotes endocytic transport of virions and is implicated in a VAMP8-specific fusogenic SNARE complex assembly (PubMed:24550300). {ECO:0000269|PubMed:18552835, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:24056303, ECO:0000269|PubMed:28306502, ECO:0000305}.; FUNCTION: Involved in maintaining chromosomal stability. Promotes DNA double-strand break (DSB) repair by association with DNA-dependent protein kinase complex DNA-PK and activating it in non-homologous end joining (NHEJ) (PubMed:22542840). Required for centrosome stability and proper chromosome segregation (PubMed:22542840). {ECO:0000269|PubMed:22542840}.
Q9UBC2 EPS15L1 S732 ochoa Epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) Seems to be a constitutive component of clathrin-coated pits that is required for receptor-mediated endocytosis. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:9407958}.
Q9UBC2 EPS15L1 S734 ochoa Epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) Seems to be a constitutive component of clathrin-coated pits that is required for receptor-mediated endocytosis. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:9407958}.
Q9UDY2 TJP2 S431 ochoa Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}.
Q9UH99 SUN2 S38 ochoa SUN domain-containing protein 2 (Protein unc-84 homolog B) (Rab5-interacting protein) (Rab5IP) (Sad1/unc-84 protein-like 2) As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. Required for interkinetic nuclear migration (INM) and essential for nucleokinesis and centrosome-nucleus coupling during radial neuronal migration in the cerebral cortex and during glial migration. Required for nuclear migration in retinal photoreceptor progenitors implicating association with cytoplasmic dynein-dynactin and kinesin motor complexes, and probably B-type lamins; SUN1 and SUN2 seem to act redundantly. The SUN1/2:KASH5 LINC complex couples telomeres to microtubules during meiosis; SUN1 and SUN2 seem to act at least partial redundantly. Anchors chromosome movement in the prophase of meiosis and is involved in selective gene expression of coding and non-coding RNAs needed for gametogenesis. Required for telomere attachment to nuclear envelope and gametogenesis. May also function on endocytic vesicles as a receptor for RAB5-GDP and participate in the activation of RAB5. {ECO:0000250|UniProtKB:Q8BJS4, ECO:0000269|PubMed:18396275, ECO:0000305}.
Q9UH99 SUN2 S130 ochoa SUN domain-containing protein 2 (Protein unc-84 homolog B) (Rab5-interacting protein) (Rab5IP) (Sad1/unc-84 protein-like 2) As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. Required for interkinetic nuclear migration (INM) and essential for nucleokinesis and centrosome-nucleus coupling during radial neuronal migration in the cerebral cortex and during glial migration. Required for nuclear migration in retinal photoreceptor progenitors implicating association with cytoplasmic dynein-dynactin and kinesin motor complexes, and probably B-type lamins; SUN1 and SUN2 seem to act redundantly. The SUN1/2:KASH5 LINC complex couples telomeres to microtubules during meiosis; SUN1 and SUN2 seem to act at least partial redundantly. Anchors chromosome movement in the prophase of meiosis and is involved in selective gene expression of coding and non-coding RNAs needed for gametogenesis. Required for telomere attachment to nuclear envelope and gametogenesis. May also function on endocytic vesicles as a receptor for RAB5-GDP and participate in the activation of RAB5. {ECO:0000250|UniProtKB:Q8BJS4, ECO:0000269|PubMed:18396275, ECO:0000305}.
Q9UHB7 AFF4 S212 ochoa AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}.
Q9UKE5 TNIK S750 ochoa TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.
Q9ULH7 MRTFB S225 ochoa Myocardin-related transcription factor B (MRTF-B) (MKL/myocardin-like protein 2) (Megakaryoblastic leukemia 2) Acts as a transcriptional coactivator of serum response factor (SRF). Required for skeletal myogenic differentiation. {ECO:0000269|PubMed:14565952}.
Q9ULJ7 ANKRD50 S1183 ochoa Ankyrin repeat domain-containing protein 50 Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552).
Q9UQ35 SRRM2 S437 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S456 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S472 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S837 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S838 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S892 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S912 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1336 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1403 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1420 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1421 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1441 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1460 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1499 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1519 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1539 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1559 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1598 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1618 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1691 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9Y242 TCF19 S183 ochoa Transcription factor 19 (TCF-19) (Transcription factor SC1) Potential transcription factor that may play a role in the regulation of genes involved in cell cycle G1/S transition (PubMed:1868030, PubMed:31141247). May bind to regulatory elements of genes, including the promoter of the transcription factor FOXO1 (PubMed:31141247). {ECO:0000269|PubMed:1868030, ECO:0000269|PubMed:31141247}.
Q9Y2K5 R3HDM2 S349 ochoa R3H domain-containing protein 2 None
Q9Y2U5 MAP3K2 S331 ochoa Mitogen-activated protein kinase kinase kinase 2 (EC 2.7.11.25) (MAPK/ERK kinase kinase 2) (MEK kinase 2) (MEKK 2) Component of a protein kinase signal transduction cascade. Regulates the JNK and ERK5 pathways by phosphorylating and activating MAP2K5 and MAP2K7 (By similarity). Plays a role in caveolae kiss-and-run dynamics. {ECO:0000250, ECO:0000269|PubMed:10713157, ECO:0000269|PubMed:16001074}.
Q9Y2W1 THRAP3 S237 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y446 PKP3 S238 ochoa Plakophilin-3 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:24124604). Required for the localization of DSG2, DSP and PKP2 to mature desmosome junctions (PubMed:20859650). May also play a role in the maintenance of DSG3 protein abundance in keratinocytes (By similarity). Required for the formation of DSP-containing desmosome precursors in the cytoplasm during desmosome assembly (PubMed:25208567). Also regulates the accumulation of CDH1 to mature desmosome junctions, via cAMP-dependent signaling and its interaction with activated RAP1A (PubMed:25208567). Positively regulates the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with FXR1, may also regulate the protein abundance of DSP via the same mechanism (PubMed:25225333). May also regulate the protein abundance of the desmosome component PKP1 (By similarity). Required for the organization of desmosome junctions at intercellular borders between basal keratinocytes of the epidermis, as a result plays a role in maintenance of the dermal barrier and regulation of the dermal inflammatory response (By similarity). Required during epidermal keratinocyte differentiation for cell adherence at tricellular cell-cell contacts, via regulation of the timely formation of adherens junctions and desmosomes in a calcium-dependent manner, and may also play a role in the organization of the intracellular actin fiber belt (By similarity). Acts as a negative regulator of the inflammatory response in hematopoietic cells of the skin and intestine, via modulation of proinflammatory cytokine production (By similarity). Important for epithelial barrier maintenance in the intestine to reduce intestinal permeability, thereby plays a role in protection from intestinal-derived endotoxemia (By similarity). Required for the development of hair follicles, via a role in the regulation of inner root sheaf length, correct alignment and anterior-posterior polarity of hair follicles (By similarity). Promotes proliferation and cell-cycle G1/S phase transition of keratinocytes (By similarity). Promotes E2F1-driven transcription of G1/S phase promoting genes by acting to release E2F1 from its inhibitory interaction with RB1, via sequestering RB1 and CDKN1A to the cytoplasm and thereby increasing CDK4- and CDK6-driven phosphorylation of RB1 (By similarity). May act as a scaffold protein to facilitate MAPK phosphorylation of RPS6KA protein family members and subsequently promote downstream EGFR signaling (By similarity). May play a role in the positive regulation of transcription of Wnt-mediated TCF-responsive target genes (PubMed:34058472). {ECO:0000250|UniProtKB:Q9QY23, ECO:0000269|PubMed:20859650, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:34058472}.
Q9Y4G8 RAPGEF2 S1178 ochoa Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}.
Q9Y520 PRRC2C S799 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
Q9Y520 PRRC2C S801 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
Q9Y5S2 CDC42BPB S1659 ochoa Serine/threonine-protein kinase MRCK beta (EC 2.7.11.1) (CDC42-binding protein kinase beta) (CDC42BP-beta) (DMPK-like beta) (Myotonic dystrophy kinase-related CDC42-binding kinase beta) (MRCK beta) (Myotonic dystrophy protein kinase-like beta) Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration. Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715, PubMed:21949762). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates PPP1R12A (PubMed:21457715). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). {ECO:0000250|UniProtKB:Q7TT50, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:21949762}.
Q9Y6R4 MAP3K4 S1268 ochoa Mitogen-activated protein kinase kinase kinase 4 (EC 2.7.11.25) (MAP three kinase 1) (MAPK/ERK kinase kinase 4) (MEK kinase 4) (MEKK 4) Component of a protein kinase signal transduction cascade. Activates the CSBP2, P38 and JNK MAPK pathways, but not the ERK pathway. Specifically phosphorylates and activates MAP2K4 and MAP2K6. {ECO:0000269|PubMed:12052864, ECO:0000269|PubMed:9305639}.
P02671 FGA S578 ELM Fibrinogen alpha chain [Cleaved into: Fibrinopeptide A; Fibrinogen alpha chain] Cleaved by the protease thrombin to yield monomers which, together with fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of the primary components of blood clots. In addition, functions during the early stages of wound repair to stabilize the lesion and guide cell migration during re-epithelialization. Was originally thought to be essential for platelet aggregation, based on in vitro studies using anticoagulated blood. However, subsequent studies have shown that it is not absolutely required for thrombus formation in vivo. Enhances expression of SELP in activated platelets via an ITGB3-dependent pathway. Maternal fibrinogen is essential for successful pregnancy. Fibrin deposition is also associated with infection, where it protects against IFNG-mediated hemorrhage. May also facilitate the immune response via both innate and T-cell mediated pathways. {ECO:0000250|UniProtKB:E9PV24}.
O15371 EIF3D S324 Sugiyama Eukaryotic translation initiation factor 3 subunit D (eIF3d) (Eukaryotic translation initiation factor 3 subunit 7) (eIF-3-zeta) (eIF3 p66) mRNA cap-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, a complex required for several steps in the initiation of protein synthesis of a specialized repertoire of mRNAs (PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:18599441, PubMed:25849773). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). In the eIF-3 complex, EIF3D specifically recognizes and binds the 7-methylguanosine cap of a subset of mRNAs (PubMed:27462815). {ECO:0000269|PubMed:18599441, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}.
Download
reactome_id name p -log10_p
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 3.380496e-11 10.471
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 1.752815e-10 9.756
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 3.880279e-10 9.411
R-HSA-9821993 Replacement of protamines by nucleosomes in the male pronucleus 6.020998e-10 9.220
R-HSA-1221632 Meiotic synapsis 1.145286e-09 8.941
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 1.233545e-09 8.909
R-HSA-171306 Packaging Of Telomere Ends 1.604541e-09 8.795
R-HSA-73728 RNA Polymerase I Promoter Opening 1.604541e-09 8.795
R-HSA-5334118 DNA methylation 2.928829e-09 8.533
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 3.710595e-09 8.431
R-HSA-9670095 Inhibition of DNA recombination at telomere 5.538696e-09 8.257
R-HSA-9018519 Estrogen-dependent gene expression 5.290063e-09 8.277
R-HSA-110330 Recognition and association of DNA glycosylase with site containing an affected ... 6.759988e-09 8.170
R-HSA-68616 Assembly of the ORC complex at the origin of replication 8.793595e-09 8.056
R-HSA-110329 Cleavage of the damaged pyrimidine 1.086748e-08 7.964
R-HSA-73928 Depyrimidination 1.086748e-08 7.964
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 1.456601e-08 7.837
R-HSA-5693606 DNA Double Strand Break Response 1.497700e-08 7.825
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 2.042040e-08 7.690
R-HSA-774815 Nucleosome assembly 2.042040e-08 7.690
R-HSA-212300 PRC2 methylates histones and DNA 2.350384e-08 7.629
R-HSA-9764560 Regulation of CDH1 Gene Transcription 2.420846e-08 7.616
R-HSA-427359 SIRT1 negatively regulates rRNA expression 2.958699e-08 7.529
R-HSA-110331 Cleavage of the damaged purine 2.958699e-08 7.529
R-HSA-73927 Depurination 3.703360e-08 7.431
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 3.726048e-08 7.429
R-HSA-3214847 HATs acetylate histones 4.340315e-08 7.362
R-HSA-69473 G2/M DNA damage checkpoint 4.447819e-08 7.352
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 5.709686e-08 7.243
R-HSA-5625886 Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... 7.036070e-08 7.153
R-HSA-9821002 Chromatin modifications during the maternal to zygotic transition (MZT) 7.036070e-08 7.153
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 9.193136e-08 7.037
R-HSA-73929 Base-Excision Repair, AP Site Formation 1.092206e-07 6.962
R-HSA-68875 Mitotic Prophase 1.132352e-07 6.946
R-HSA-5693607 Processing of DNA double-strand break ends 1.192435e-07 6.924
R-HSA-3214815 HDACs deacetylate histones 1.293573e-07 6.888
R-HSA-9710421 Defective pyroptosis 1.280496e-07 6.893
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 1.770558e-07 6.752
R-HSA-1500620 Meiosis 2.013162e-07 6.696
R-HSA-2299718 Condensation of Prophase Chromosomes 2.243258e-07 6.649
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 2.886202e-07 6.540
R-HSA-9645723 Diseases of programmed cell death 3.311897e-07 6.480
R-HSA-9616222 Transcriptional regulation of granulopoiesis 3.904902e-07 6.408
R-HSA-912446 Meiotic recombination 5.304965e-07 6.275
R-HSA-73772 RNA Polymerase I Promoter Escape 6.239225e-07 6.205
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 7.658809e-07 6.116
R-HSA-4839726 Chromatin organization 7.504372e-07 6.125
R-HSA-977225 Amyloid fiber formation 7.622562e-07 6.118
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 9.138305e-07 6.039
R-HSA-3247509 Chromatin modifying enzymes 1.061267e-06 5.974
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 1.192532e-06 5.924
R-HSA-162582 Signal Transduction 1.196948e-06 5.922
R-HSA-8939211 ESR-mediated signaling 1.281794e-06 5.892
R-HSA-446728 Cell junction organization 1.212214e-06 5.916
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 1.358243e-06 5.867
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 1.366507e-06 5.864
R-HSA-5578749 Transcriptional regulation by small RNAs 1.544014e-06 5.811
R-HSA-201681 TCF dependent signaling in response to WNT 1.791838e-06 5.747
R-HSA-5693538 Homology Directed Repair 2.392360e-06 5.621
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 2.711357e-06 5.567
R-HSA-1500931 Cell-Cell communication 2.905024e-06 5.537
R-HSA-5693532 DNA Double-Strand Break Repair 3.044384e-06 5.517
R-HSA-9909648 Regulation of PD-L1(CD274) expression 3.256437e-06 5.487
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 4.624508e-06 5.335
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 5.055183e-06 5.296
R-HSA-69481 G2/M Checkpoints 5.686884e-06 5.245
R-HSA-157579 Telomere Maintenance 6.111809e-06 5.214
R-HSA-68886 M Phase 7.775922e-06 5.109
R-HSA-427413 NoRC negatively regulates rRNA expression 8.367684e-06 5.077
R-HSA-9842860 Regulation of endogenous retroelements 9.821362e-06 5.008
R-HSA-2559580 Oxidative Stress Induced Senescence 9.821362e-06 5.008
R-HSA-5619507 Activation of HOX genes during differentiation 1.289476e-05 4.890
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 1.289476e-05 4.890
R-HSA-73884 Base Excision Repair 1.293255e-05 4.888
R-HSA-73886 Chromosome Maintenance 1.419321e-05 4.848
R-HSA-73854 RNA Polymerase I Promoter Clearance 1.467978e-05 4.833
R-HSA-1640170 Cell Cycle 1.527309e-05 4.816
R-HSA-9609690 HCMV Early Events 1.576262e-05 4.802
R-HSA-211000 Gene Silencing by RNA 1.678369e-05 4.775
R-HSA-73864 RNA Polymerase I Transcription 1.817678e-05 4.740
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 2.106579e-05 4.676
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 2.106579e-05 4.676
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 2.106579e-05 4.676
R-HSA-389948 Co-inhibition by PD-1 2.003044e-05 4.698
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 2.237362e-05 4.650
R-HSA-1474165 Reproduction 3.305295e-05 4.481
R-HSA-388841 Regulation of T cell activation by CD28 family 4.090591e-05 4.388
R-HSA-69620 Cell Cycle Checkpoints 4.512768e-05 4.346
R-HSA-73894 DNA Repair 6.188741e-05 4.208
R-HSA-111465 Apoptotic cleavage of cellular proteins 6.740784e-05 4.171
R-HSA-9816359 Maternal to zygotic transition (MZT) 6.954483e-05 4.158
R-HSA-1912408 Pre-NOTCH Transcription and Translation 6.964926e-05 4.157
R-HSA-8852135 Protein ubiquitination 7.082745e-05 4.150
R-HSA-2559583 Cellular Senescence 7.378780e-05 4.132
R-HSA-68867 Assembly of the pre-replicative complex 9.011245e-05 4.045
R-HSA-5688426 Deubiquitination 1.167511e-04 3.933
R-HSA-69278 Cell Cycle, Mitotic 1.461914e-04 3.835
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 1.651252e-04 3.782
R-HSA-5689880 Ub-specific processing proteases 1.670932e-04 3.777
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 1.670932e-04 3.777
R-HSA-9764265 Regulation of CDH1 Expression and Function 1.670932e-04 3.777
R-HSA-9006931 Signaling by Nuclear Receptors 1.810182e-04 3.742
R-HSA-195721 Signaling by WNT 2.638350e-04 3.579
R-HSA-212165 Epigenetic regulation of gene expression 2.659878e-04 3.575
R-HSA-9609646 HCMV Infection 2.682583e-04 3.571
R-HSA-9927432 Developmental Lineage of Mammary Gland Myoepithelial Cells 3.258769e-04 3.487
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 3.300590e-04 3.481
R-HSA-69002 DNA Replication Pre-Initiation 3.535814e-04 3.452
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 4.469933e-04 3.350
R-HSA-1912422 Pre-NOTCH Expression and Processing 4.622622e-04 3.335
R-HSA-418990 Adherens junctions interactions 5.295318e-04 3.276
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 5.396835e-04 3.268
R-HSA-75153 Apoptotic execution phase 5.576722e-04 3.254
R-HSA-9617828 FOXO-mediated transcription of cell cycle genes 7.276896e-04 3.138
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 7.276896e-04 3.138
R-HSA-8878171 Transcriptional regulation by RUNX1 7.486396e-04 3.126
R-HSA-421270 Cell-cell junction organization 7.681652e-04 3.115
R-HSA-446388 Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... 1.219170e-03 2.914
R-HSA-9924644 Developmental Lineages of the Mammary Gland 1.220347e-03 2.914
R-HSA-157118 Signaling by NOTCH 1.318801e-03 2.880
R-HSA-193648 NRAGE signals death through JNK 1.476466e-03 2.831
R-HSA-446353 Cell-extracellular matrix interactions 1.564825e-03 2.806
R-HSA-9610379 HCMV Late Events 2.165609e-03 2.664
R-HSA-193704 p75 NTR receptor-mediated signalling 2.413187e-03 2.617
R-HSA-446107 Type I hemidesmosome assembly 2.995351e-03 2.524
R-HSA-4419969 Depolymerization of the Nuclear Lamina 3.102902e-03 2.508
R-HSA-428543 Inactivation of CDC42 and RAC1 3.816451e-03 2.418
R-HSA-446343 Localization of the PINCH-ILK-PARVIN complex to focal adhesions 4.882603e-03 2.311
R-HSA-69306 DNA Replication 5.198919e-03 2.284
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 5.333604e-03 2.273
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 5.891116e-03 2.230
R-HSA-177929 Signaling by EGFR 6.600690e-03 2.180
R-HSA-1266738 Developmental Biology 6.441437e-03 2.191
R-HSA-416482 G alpha (12/13) signalling events 7.290658e-03 2.137
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 8.206279e-03 2.086
R-HSA-9656223 Signaling by RAF1 mutants 9.109326e-03 2.041
R-HSA-5674135 MAP2K and MAPK activation 9.109326e-03 2.041
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 1.204169e-02 1.919
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 1.211971e-02 1.917
R-HSA-9649948 Signaling downstream of RAS mutants 1.337226e-02 1.874
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 1.337226e-02 1.874
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 1.337226e-02 1.874
R-HSA-6802949 Signaling by RAS mutants 1.337226e-02 1.874
R-HSA-3134963 DEx/H-box helicases activate type I IFN and inflammatory cytokines production 1.421894e-02 1.847
R-HSA-73887 Death Receptor Signaling 1.439156e-02 1.842
R-HSA-199991 Membrane Trafficking 1.443835e-02 1.840
R-HSA-182971 EGFR downregulation 1.576085e-02 1.802
R-HSA-5603029 IkBA variant leads to EDA-ID 1.826400e-02 1.738
R-HSA-5674499 Negative feedback regulation of MAPK pathway 1.826400e-02 1.738
R-HSA-5637810 Constitutive Signaling by EGFRvIII 1.951823e-02 1.710
R-HSA-5637812 Signaling by EGFRvIII in Cancer 1.951823e-02 1.710
R-HSA-2028269 Signaling by Hippo 1.951823e-02 1.710
R-HSA-3928664 Ephrin signaling 2.189385e-02 1.660
R-HSA-912631 Regulation of signaling by CBL 2.442022e-02 1.612
R-HSA-9613829 Chaperone Mediated Autophagy 2.189385e-02 1.660
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 2.372859e-02 1.625
R-HSA-422475 Axon guidance 2.133059e-02 1.671
R-HSA-844456 The NLRP3 inflammasome 2.442022e-02 1.612
R-HSA-5467333 APC truncation mutants are not K63 polyubiquitinated 2.526154e-02 1.598
R-HSA-2980766 Nuclear Envelope Breakdown 2.703864e-02 1.568
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 2.709720e-02 1.567
R-HSA-9732724 IFNG signaling activates MAPKs 2.760274e-02 1.559
R-HSA-9726840 SHOC2 M1731 mutant abolishes MRAS complex function 2.760274e-02 1.559
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 2.760274e-02 1.559
R-HSA-5336415 Uptake and function of diphtheria toxin 2.760274e-02 1.559
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 2.992432e-02 1.524
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 2.992432e-02 1.524
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 3.158352e-02 1.501
R-HSA-9725554 Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin 3.158352e-02 1.501
R-HSA-9660537 Signaling by MRAS-complex mutants 3.284956e-02 1.483
R-HSA-9726842 Gain-of-function MRAS complexes activate RAF signaling 3.284956e-02 1.483
R-HSA-351906 Apoptotic cleavage of cell adhesion proteins 3.284956e-02 1.483
R-HSA-6802957 Oncogenic MAPK signaling 3.400214e-02 1.468
R-HSA-3214841 PKMTs methylate histone lysines 3.601829e-02 1.443
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 3.602566e-02 1.443
R-HSA-9612973 Autophagy 3.721092e-02 1.429
R-HSA-373755 Semaphorin interactions 3.726016e-02 1.429
R-HSA-2025928 Calcineurin activates NFAT 3.845161e-02 1.415
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 3.845161e-02 1.415
R-HSA-9619229 Activation of RAC1 downstream of NMDARs 3.845161e-02 1.415
R-HSA-9834752 Respiratory syncytial virus genome replication 3.845161e-02 1.415
R-HSA-448706 Interleukin-1 processing 3.845161e-02 1.415
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 3.929757e-02 1.406
R-HSA-9675108 Nervous system development 3.931378e-02 1.405
R-HSA-2682334 EPH-Ephrin signaling 4.919051e-02 1.308
R-HSA-8875555 MET activates RAP1 and RAC1 4.438768e-02 1.353
R-HSA-3928662 EPHB-mediated forward signaling 4.591285e-02 1.338
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 4.271504e-02 1.369
R-HSA-8863678 Neurodegenerative Diseases 4.271504e-02 1.369
R-HSA-68882 Mitotic Anaphase 4.298215e-02 1.367
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 4.271504e-02 1.369
R-HSA-2555396 Mitotic Metaphase and Anaphase 4.405683e-02 1.356
R-HSA-165159 MTOR signalling 4.079453e-02 1.389
R-HSA-9820962 Assembly and release of respiratory syncytial virus (RSV) virions 4.438768e-02 1.353
R-HSA-9673013 Diseases of Telomere Maintenance 4.988644e-02 1.302
R-HSA-9006821 Alternative Lengthening of Telomeres (ALT) 4.988644e-02 1.302
R-HSA-9670621 Defective Inhibition of DNA Recombination at Telomere 4.988644e-02 1.302
R-HSA-9670615 Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations 4.988644e-02 1.302
R-HSA-9670613 Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations 4.988644e-02 1.302
R-HSA-1643713 Signaling by EGFR in Cancer 4.997955e-02 1.301
R-HSA-525793 Myogenesis 4.997955e-02 1.301
R-HSA-1632852 Macroautophagy 5.280834e-02 1.277
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 5.382255e-02 1.269
R-HSA-622312 Inflammasomes 5.780307e-02 1.238
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 5.917842e-02 1.228
R-HSA-73893 DNA Damage Bypass 6.019684e-02 1.220
R-HSA-4641265 Repression of WNT target genes 6.400049e-02 1.194
R-HSA-877312 Regulation of IFNG signaling 6.400049e-02 1.194
R-HSA-199977 ER to Golgi Anterograde Transport 6.443879e-02 1.191
R-HSA-380972 Energy dependent regulation of mTOR by LKB1-AMPK 6.616681e-02 1.179
R-HSA-170968 Frs2-mediated activation 7.107703e-02 1.148
R-HSA-9665230 Drug resistance in ERBB2 KD mutants 9.728997e-02 1.012
R-HSA-9652282 Drug-mediated inhibition of ERBB2 signaling 9.728997e-02 1.012
R-HSA-9665244 Resistance of ERBB2 KD mutants to sapitinib 9.728997e-02 1.012
R-HSA-9665737 Drug resistance in ERBB2 TMD/JMD mutants 9.728997e-02 1.012
R-HSA-9665251 Resistance of ERBB2 KD mutants to lapatinib 9.728997e-02 1.012
R-HSA-9665233 Resistance of ERBB2 KD mutants to trastuzumab 9.728997e-02 1.012
R-HSA-9665247 Resistance of ERBB2 KD mutants to osimertinib 9.728997e-02 1.012
R-HSA-9665250 Resistance of ERBB2 KD mutants to AEE788 9.728997e-02 1.012
R-HSA-9665246 Resistance of ERBB2 KD mutants to neratinib 9.728997e-02 1.012
R-HSA-9665245 Resistance of ERBB2 KD mutants to tesevatinib 9.728997e-02 1.012
R-HSA-9665249 Resistance of ERBB2 KD mutants to afatinib 9.728997e-02 1.012
R-HSA-5673000 RAF activation 8.929716e-02 1.049
R-HSA-72649 Translation initiation complex formation 7.656335e-02 1.116
R-HSA-72702 Ribosomal scanning and start codon recognition 8.367400e-02 1.077
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 9.591069e-02 1.018
R-HSA-141424 Amplification of signal from the kinetochores 9.591069e-02 1.018
R-HSA-1538133 G0 and Early G1 7.504973e-02 1.125
R-HSA-169893 Prolonged ERK activation events 9.368136e-02 1.028
R-HSA-190827 Transport of connexins along the secretory pathway 7.389072e-02 1.131
R-HSA-198765 Signalling to ERK5 9.728997e-02 1.012
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 8.593370e-02 1.066
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 9.109617e-02 1.040
R-HSA-1295596 Spry regulation of FGF signaling 8.593370e-02 1.066
R-HSA-418885 DCC mediated attractive signaling 8.593370e-02 1.066
R-HSA-1433559 Regulation of KIT signaling 7.839363e-02 1.106
R-HSA-190704 Oligomerization of connexins into connexons 7.389072e-02 1.131
R-HSA-352238 Breakdown of the nuclear lamina 7.389072e-02 1.131
R-HSA-5607763 CLEC7A (Dectin-1) induces NFAT activation 7.839363e-02 1.106
R-HSA-399954 Sema3A PAK dependent Axon repulsion 8.593370e-02 1.066
R-HSA-5653656 Vesicle-mediated transport 8.446328e-02 1.073
R-HSA-6806834 Signaling by MET 7.764344e-02 1.110
R-HSA-193639 p75NTR signals via NF-kB 8.593370e-02 1.066
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 7.839363e-02 1.106
R-HSA-3700989 Transcriptional Regulation by TP53 7.798025e-02 1.108
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 8.734665e-02 1.059
R-HSA-109581 Apoptosis 9.434263e-02 1.025
R-HSA-68877 Mitotic Prometaphase 9.791172e-02 1.009
R-HSA-72163 mRNA Splicing - Major Pathway 1.000109e-01 1.000
R-HSA-8866910 TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... 1.016214e-01 0.993
R-HSA-8953897 Cellular responses to stimuli 1.049662e-01 0.979
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 1.057933e-01 0.976
R-HSA-9663891 Selective autophagy 1.057933e-01 0.976
R-HSA-9707616 Heme signaling 1.068408e-01 0.971
R-HSA-8875878 MET promotes cell motility 1.098860e-01 0.959
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 1.109577e-01 0.955
R-HSA-380259 Loss of Nlp from mitotic centrosomes 1.109577e-01 0.955
R-HSA-1280218 Adaptive Immune System 1.119513e-01 0.951
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 1.126494e-01 0.948
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 1.131446e-01 0.946
R-HSA-9734767 Developmental Cell Lineages 1.145609e-01 0.941
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 1.151443e-01 0.939
R-HSA-9665348 Signaling by ERBB2 ECD mutants 1.180206e-01 0.928
R-HSA-180292 GAB1 signalosome 1.180206e-01 0.928
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 1.180206e-01 0.928
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 1.180206e-01 0.928
R-HSA-156711 Polo-like kinase mediated events 1.180206e-01 0.928
R-HSA-9926550 Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... 1.180206e-01 0.928
R-HSA-2262752 Cellular responses to stress 1.195849e-01 0.922
R-HSA-8875513 MET interacts with TNS proteins 1.200994e-01 0.920
R-HSA-5368598 Negative regulation of TCF-dependent signaling by DVL-interacting proteins 1.200994e-01 0.920
R-HSA-9646399 Aggrephagy 1.208039e-01 0.918
R-HSA-5602358 Diseases associated with the TLR signaling cascade 1.208039e-01 0.918
R-HSA-5260271 Diseases of Immune System 1.208039e-01 0.918
R-HSA-9007101 Rab regulation of trafficking 1.225883e-01 0.912
R-HSA-191650 Regulation of gap junction activity 1.423339e-01 0.847
R-HSA-165181 Inhibition of TSC complex formation by PKB 1.423339e-01 0.847
R-HSA-1251932 PLCG1 events in ERBB2 signaling 1.423339e-01 0.847
R-HSA-8952158 RUNX3 regulates BCL2L11 (BIM) transcription 1.423339e-01 0.847
R-HSA-74713 IRS activation 1.640078e-01 0.785
R-HSA-9706377 FLT3 signaling by CBL mutants 1.640078e-01 0.785
R-HSA-5638303 Inhibition of Signaling by Overexpressed EGFR 1.851353e-01 0.733
R-HSA-5638302 Signaling by Overexpressed Wild-Type EGFR in Cancer 1.851353e-01 0.733
R-HSA-111957 Cam-PDE 1 activation 1.851353e-01 0.733
R-HSA-8985586 SLIT2:ROBO1 increases RHOA activity 1.851353e-01 0.733
R-HSA-9022537 Loss of MECP2 binding ability to the NCoR/SMRT complex 1.851353e-01 0.733
R-HSA-8857538 PTK6 promotes HIF1A stabilization 2.057302e-01 0.687
R-HSA-4411364 Binding of TCF/LEF:CTNNB1 to target gene promoters 2.258057e-01 0.646
R-HSA-112412 SOS-mediated signalling 2.258057e-01 0.646
R-HSA-212718 EGFR interacts with phospholipase C-gamma 2.453751e-01 0.610
R-HSA-196025 Formation of annular gap junctions 2.453751e-01 0.610
R-HSA-8875656 MET receptor recycling 2.453751e-01 0.610
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 1.264524e-01 0.898
R-HSA-190873 Gap junction degradation 2.644509e-01 0.578
R-HSA-6803529 FGFR2 alternative splicing 1.614347e-01 0.792
R-HSA-4839744 Signaling by APC mutants 3.011715e-01 0.521
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 3.011715e-01 0.521
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 3.011715e-01 0.521
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 3.011715e-01 0.521
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 1.795195e-01 0.746
R-HSA-429947 Deadenylation of mRNA 1.795195e-01 0.746
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 3.188402e-01 0.496
R-HSA-5339716 Signaling by GSK3beta mutants 3.188402e-01 0.496
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 3.360631e-01 0.474
R-HSA-9820865 Z-decay: degradation of maternal mRNAs by zygotically expressed factors 3.360631e-01 0.474
R-HSA-3000484 Scavenging by Class F Receptors 3.360631e-01 0.474
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 3.360631e-01 0.474
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 3.360631e-01 0.474
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 3.360631e-01 0.474
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 3.360631e-01 0.474
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 2.071598e-01 0.684
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 2.071598e-01 0.684
R-HSA-9927418 Developmental Lineage of Mammary Gland Luminal Epithelial Cells 1.378838e-01 0.860
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 2.164739e-01 0.665
R-HSA-113418 Formation of the Early Elongation Complex 2.164739e-01 0.665
R-HSA-9619483 Activation of AMPK downstream of NMDARs 2.164739e-01 0.665
R-HSA-167287 HIV elongation arrest and recovery 2.164739e-01 0.665
R-HSA-167290 Pausing and recovery of HIV elongation 2.164739e-01 0.665
R-HSA-8847993 ERBB2 Activates PTK6 Signaling 3.692167e-01 0.433
R-HSA-8854518 AURKA Activation by TPX2 1.237216e-01 0.908
R-HSA-112382 Formation of RNA Pol II elongation complex 1.997978e-01 0.699
R-HSA-390522 Striated Muscle Contraction 2.728636e-01 0.564
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 1.557355e-01 0.808
R-HSA-75955 RNA Polymerase II Transcription Elongation 2.063241e-01 0.685
R-HSA-9927426 Developmental Lineage of Mammary Gland Alveolar Cells 2.822819e-01 0.549
R-HSA-380287 Centrosome maturation 1.654029e-01 0.781
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 3.291083e-01 0.483
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 3.383861e-01 0.471
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 3.383861e-01 0.471
R-HSA-72172 mRNA Splicing 1.247848e-01 0.904
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 1.489652e-01 0.827
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 3.685574e-01 0.433
R-HSA-167169 HIV Transcription Elongation 3.383861e-01 0.471
R-HSA-195253 Degradation of beta-catenin by the destruction complex 3.221436e-01 0.492
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 3.082644e-01 0.511
R-HSA-1227990 Signaling by ERBB2 in Cancer 2.352034e-01 0.629
R-HSA-9664565 Signaling by ERBB2 KD Mutants 2.258243e-01 0.646
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 3.692167e-01 0.433
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 3.383861e-01 0.471
R-HSA-198203 PI3K/AKT activation 2.830457e-01 0.548
R-HSA-5696394 DNA Damage Recognition in GG-NER 2.728636e-01 0.564
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 3.291083e-01 0.483
R-HSA-5696395 Formation of Incision Complex in GG-NER 3.383861e-01 0.471
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 2.822819e-01 0.549
R-HSA-5635851 GLI proteins bind promoters of Hh responsive genes to promote transcription 1.851353e-01 0.733
R-HSA-163680 AMPK inhibits chREBP transcriptional activation activity 2.644509e-01 0.578
R-HSA-674695 RNA Polymerase II Pre-transcription Events 3.498941e-01 0.456
R-HSA-179812 GRB2 events in EGFR signaling 3.360631e-01 0.474
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 2.822819e-01 0.549
R-HSA-9614085 FOXO-mediated transcription 1.539324e-01 0.813
R-HSA-1227986 Signaling by ERBB2 2.531713e-01 0.597
R-HSA-8937144 Aryl hydrocarbon receptor signalling 1.851353e-01 0.733
R-HSA-8951430 RUNX3 regulates WNT signaling 2.258057e-01 0.646
R-HSA-9613354 Lipophagy 2.644509e-01 0.578
R-HSA-9614399 Regulation of localization of FOXO transcription factors 3.011715e-01 0.521
R-HSA-399956 CRMPs in Sema3A signaling 3.692167e-01 0.433
R-HSA-8856828 Clathrin-mediated endocytosis 2.330573e-01 0.633
R-HSA-69618 Mitotic Spindle Checkpoint 1.579643e-01 0.801
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 3.476245e-01 0.459
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 2.352034e-01 0.629
R-HSA-5621575 CD209 (DC-SIGN) signaling 1.795195e-01 0.746
R-HSA-1433557 Signaling by SCF-KIT 1.437508e-01 0.842
R-HSA-2470946 Cohesin Loading onto Chromatin 2.258057e-01 0.646
R-HSA-2179392 EGFR Transactivation by Gastrin 2.830457e-01 0.548
R-HSA-6803544 Ion influx/efflux at host-pathogen interface 2.830457e-01 0.548
R-HSA-2151209 Activation of PPARGC1A (PGC-1alpha) by phosphorylation 2.830457e-01 0.548
R-HSA-192905 vRNP Assembly 3.011715e-01 0.521
R-HSA-933542 TRAF6 mediated NF-kB activation 1.795195e-01 0.746
R-HSA-209560 NF-kB is activated and signals survival 3.188402e-01 0.496
R-HSA-4839748 Signaling by AMER1 mutants 3.188402e-01 0.496
R-HSA-4839735 Signaling by AXIN mutants 3.188402e-01 0.496
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 3.360631e-01 0.474
R-HSA-5654732 Negative regulation of FGFR3 signaling 2.164739e-01 0.665
R-HSA-9933947 Formation of the non-canonical BAF (ncBAF) complex 3.528517e-01 0.452
R-HSA-5654733 Negative regulation of FGFR4 signaling 2.258243e-01 0.646
R-HSA-5654727 Negative regulation of FGFR2 signaling 2.822819e-01 0.549
R-HSA-6807878 COPI-mediated anterograde transport 1.421030e-01 0.847
R-HSA-429914 Deadenylation-dependent mRNA decay 2.463755e-01 0.608
R-HSA-5654726 Negative regulation of FGFR1 signaling 2.634404e-01 0.579
R-HSA-5218920 VEGFR2 mediated vascular permeability 3.476245e-01 0.459
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 3.221436e-01 0.492
R-HSA-9843745 Adipogenesis 1.778930e-01 0.750
R-HSA-9909396 Circadian clock 3.293643e-01 0.482
R-HSA-74749 Signal attenuation 2.830457e-01 0.548
R-HSA-8863795 Downregulation of ERBB2 signaling 2.352034e-01 0.629
R-HSA-3371511 HSF1 activation 3.010810e-01 0.521
R-HSA-5675221 Negative regulation of MAPK pathway 1.321013e-01 0.879
R-HSA-390648 Muscarinic acetylcholine receptors 1.640078e-01 0.785
R-HSA-139915 Activation of PUMA and translocation to mitochondria 2.258057e-01 0.646
R-HSA-9603381 Activated NTRK3 signals through PI3K 2.258057e-01 0.646
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 1.978903e-01 0.704
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 2.634404e-01 0.579
R-HSA-2559585 Oncogene Induced Senescence 2.916895e-01 0.535
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 1.421030e-01 0.847
R-HSA-5689603 UCH proteinases 3.637306e-01 0.439
R-HSA-187687 Signalling to ERKs 2.916895e-01 0.535
R-HSA-187706 Signalling to p38 via RIT and RIN 1.851353e-01 0.733
R-HSA-8964046 VLDL clearance 2.258057e-01 0.646
R-HSA-170984 ARMS-mediated activation 2.644509e-01 0.578
R-HSA-9623433 NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis 3.188402e-01 0.496
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 1.618253e-01 0.791
R-HSA-176187 Activation of ATR in response to replication stress 2.634404e-01 0.579
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 2.113042e-01 0.675
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 2.219608e-01 0.654
R-HSA-8856688 Golgi-to-ER retrograde transport 1.816454e-01 0.741
R-HSA-6809371 Formation of the cornified envelope 2.799924e-01 0.553
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 3.685574e-01 0.433
R-HSA-1839124 FGFR1 mutant receptor activation 2.634404e-01 0.579
R-HSA-5683057 MAPK family signaling cascades 2.344029e-01 0.630
R-HSA-5655302 Signaling by FGFR1 in disease 3.568196e-01 0.448
R-HSA-5607764 CLEC7A (Dectin-1) signaling 2.940250e-01 0.532
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 2.654688e-01 0.576
R-HSA-9932451 SWI/SNF chromatin remodelers 1.886739e-01 0.724
R-HSA-9932444 ATP-dependent chromatin remodelers 1.886739e-01 0.724
R-HSA-9842663 Signaling by LTK 3.360631e-01 0.474
R-HSA-6811438 Intra-Golgi traffic 3.568196e-01 0.448
R-HSA-9818749 Regulation of NFE2L2 gene expression 2.057302e-01 0.687
R-HSA-8934903 Receptor Mediated Mitophagy 2.830457e-01 0.548
R-HSA-6803211 TP53 Regulates Transcription of Death Receptors and Ligands 3.692167e-01 0.433
R-HSA-9020702 Interleukin-1 signaling 3.225714e-01 0.491
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 2.737070e-01 0.563
R-HSA-8848021 Signaling by PTK6 2.737070e-01 0.563
R-HSA-9705677 SARS-CoV-2 targets PDZ proteins in cell-cell junction 1.423339e-01 0.847
R-HSA-8941284 RUNX2 regulates chondrocyte maturation 1.640078e-01 0.785
R-HSA-5660668 CLEC7A/inflammasome pathway 1.851353e-01 0.733
R-HSA-5576890 Phase 3 - rapid repolarisation 2.258057e-01 0.646
R-HSA-8849469 PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 2.453751e-01 0.610
R-HSA-198693 AKT phosphorylates targets in the nucleus 2.644509e-01 0.578
R-HSA-9634638 Estrogen-dependent nuclear events downstream of ESR-membrane signaling 1.704365e-01 0.768
R-HSA-68884 Mitotic Telophase/Cytokinesis 3.188402e-01 0.496
R-HSA-9839394 TGFBR3 expression 1.886739e-01 0.724
R-HSA-445355 Smooth Muscle Contraction 2.063241e-01 0.685
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 1.400396e-01 0.854
R-HSA-74160 Gene expression (Transcription) 1.290292e-01 0.889
R-HSA-6794362 Protein-protein interactions at synapses 2.166145e-01 0.664
R-HSA-5654738 Signaling by FGFR2 1.904566e-01 0.720
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 1.679964e-01 0.775
R-HSA-9682385 FLT3 signaling in disease 3.010810e-01 0.521
R-HSA-430116 GP1b-IX-V activation signalling 2.644509e-01 0.578
R-HSA-9617629 Regulation of FOXO transcriptional activity by acetylation 3.360631e-01 0.474
R-HSA-9660826 Purinergic signaling in leishmaniasis infection 1.618253e-01 0.791
R-HSA-9664424 Cell recruitment (pro-inflammatory response) 1.618253e-01 0.791
R-HSA-948021 Transport to the Golgi and subsequent modification 2.087585e-01 0.680
R-HSA-8854214 TBC/RABGAPs 1.437508e-01 0.842
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 2.668398e-01 0.574
R-HSA-73857 RNA Polymerase II Transcription 1.455264e-01 0.837
R-HSA-69275 G2/M Transition 2.737020e-01 0.563
R-HSA-193692 Regulated proteolysis of p75NTR 2.644509e-01 0.578
R-HSA-9754560 SARS-CoV-2 modulates autophagy 3.011715e-01 0.521
R-HSA-9697154 Disorders of Nervous System Development 3.360631e-01 0.474
R-HSA-9005895 Pervasive developmental disorders 3.360631e-01 0.474
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 3.360631e-01 0.474
R-HSA-6804759 Regulation of TP53 Activity through Association with Co-factors 3.528517e-01 0.452
R-HSA-75035 Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 3.528517e-01 0.452
R-HSA-9933937 Formation of the canonical BAF (cBAF) complex 3.692167e-01 0.433
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 1.745118e-01 0.758
R-HSA-3371568 Attenuation phase 3.383861e-01 0.471
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 2.004941e-01 0.698
R-HSA-453274 Mitotic G2-G2/M phases 2.815718e-01 0.550
R-HSA-2219528 PI3K/AKT Signaling in Cancer 2.511246e-01 0.600
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 1.378838e-01 0.860
R-HSA-187037 Signaling by NTRK1 (TRKA) 3.045256e-01 0.516
R-HSA-9845576 Glycosphingolipid transport 3.010810e-01 0.521
R-HSA-9855142 Cellular responses to mechanical stimuli 2.230808e-01 0.652
R-HSA-9607240 FLT3 Signaling 3.476245e-01 0.459
R-HSA-212436 Generic Transcription Pathway 1.498652e-01 0.824
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 1.916884e-01 0.717
R-HSA-69202 Cyclin E associated events during G1/S transition 3.221436e-01 0.492
R-HSA-376176 Signaling by ROBO receptors 3.420797e-01 0.466
R-HSA-9764790 Positive Regulation of CDH1 Gene Transcription 2.830457e-01 0.548
R-HSA-210990 PECAM1 interactions 3.011715e-01 0.521
R-HSA-69205 G1/S-Specific Transcription 3.010810e-01 0.521
R-HSA-5689896 Ovarian tumor domain proteases 3.104512e-01 0.508
R-HSA-9700206 Signaling by ALK in cancer 1.916884e-01 0.717
R-HSA-9824446 Viral Infection Pathways 2.115663e-01 0.675
R-HSA-8983711 OAS antiviral response 3.360631e-01 0.474
R-HSA-170834 Signaling by TGF-beta Receptor Complex 2.997113e-01 0.523
R-HSA-438064 Post NMDA receptor activation events 2.327553e-01 0.633
R-HSA-110357 Displacement of DNA glycosylase by APEX1 2.258057e-01 0.646
R-HSA-8953750 Transcriptional Regulation by E2F6 3.291083e-01 0.483
R-HSA-1226099 Signaling by FGFR in disease 3.498941e-01 0.456
R-HSA-190236 Signaling by FGFR 3.054105e-01 0.515
R-HSA-9705683 SARS-CoV-2-host interactions 3.040089e-01 0.517
R-HSA-9860931 Response of endothelial cells to shear stress 3.397979e-01 0.469
R-HSA-198323 AKT phosphorylates targets in the cytosol 3.360631e-01 0.474
R-HSA-209543 p75NTR recruits signalling complexes 3.360631e-01 0.474
R-HSA-9683610 Maturation of nucleoprotein 3.528517e-01 0.452
R-HSA-9012852 Signaling by NOTCH3 2.195167e-01 0.659
R-HSA-2586552 Signaling by Leptin 2.830457e-01 0.548
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 3.360261e-01 0.474
R-HSA-9006936 Signaling by TGFB family members 3.059234e-01 0.514
R-HSA-8941326 RUNX2 regulates bone development 3.010810e-01 0.521
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 2.352034e-01 0.629
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 2.916895e-01 0.535
R-HSA-5357801 Programmed Cell Death 1.271875e-01 0.896
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 2.826971e-01 0.549
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 3.283081e-01 0.484
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 2.047979e-01 0.689
R-HSA-1059683 Interleukin-6 signaling 3.528517e-01 0.452
R-HSA-381038 XBP1(S) activates chaperone genes 2.273416e-01 0.643
R-HSA-2022090 Assembly of collagen fibrils and other multimeric structures 2.463755e-01 0.608
R-HSA-381070 IRE1alpha activates chaperones 2.602612e-01 0.585
R-HSA-9820965 Respiratory syncytial virus (RSV) genome replication, transcription and translat... 3.291083e-01 0.483
R-HSA-1852241 Organelle biogenesis and maintenance 3.725725e-01 0.429
R-HSA-5654743 Signaling by FGFR4 3.750652e-01 0.426
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 3.750652e-01 0.426
R-HSA-397014 Muscle contraction 3.833066e-01 0.416
R-HSA-373752 Netrin-1 signaling 3.841089e-01 0.416
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 3.841089e-01 0.416
R-HSA-9027284 Erythropoietin activates RAS 3.851689e-01 0.414
R-HSA-2173791 TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) 3.851689e-01 0.414
R-HSA-180336 SHC1 events in EGFR signaling 3.851689e-01 0.414
R-HSA-196299 Beta-catenin phosphorylation cascade 3.851689e-01 0.414
R-HSA-6785631 ERBB2 Regulates Cell Motility 3.851689e-01 0.414
R-HSA-8875360 InlB-mediated entry of Listeria monocytogenes into host cell 3.851689e-01 0.414
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 3.851689e-01 0.414
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 3.895419e-01 0.409
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 3.912459e-01 0.408
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 3.930958e-01 0.406
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 3.930958e-01 0.406
R-HSA-5654741 Signaling by FGFR3 3.930958e-01 0.406
R-HSA-5673001 RAF/MAP kinase cascade 3.941816e-01 0.404
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 3.980811e-01 0.400
R-HSA-1362300 Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... 4.007186e-01 0.397
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 4.007186e-01 0.397
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion 4.007186e-01 0.397
R-HSA-9942503 Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) 4.007186e-01 0.397
R-HSA-9945266 Differentiation of T cells 4.007186e-01 0.397
R-HSA-9706369 Negative regulation of FLT3 4.007186e-01 0.397
R-HSA-388844 Receptor-type tyrosine-protein phosphatases 4.007186e-01 0.397
R-HSA-6803207 TP53 Regulates Transcription of Caspase Activators and Caspases 4.007186e-01 0.397
R-HSA-72165 mRNA Splicing - Minor Pathway 4.020228e-01 0.396
R-HSA-9839373 Signaling by TGFBR3 4.020228e-01 0.396
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 4.048954e-01 0.393
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 4.108873e-01 0.386
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 4.108873e-01 0.386
R-HSA-5628897 TP53 Regulates Metabolic Genes 4.143569e-01 0.383
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 4.143569e-01 0.383
R-HSA-8964616 G beta:gamma signalling through CDC42 4.158759e-01 0.381
R-HSA-77595 Processing of Intronless Pre-mRNAs 4.158759e-01 0.381
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 4.158759e-01 0.381
R-HSA-1963640 GRB2 events in ERBB2 signaling 4.158759e-01 0.381
R-HSA-5576893 Phase 2 - plateau phase 4.158759e-01 0.381
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 4.158759e-01 0.381
R-HSA-9675151 Disorders of Developmental Biology 4.158759e-01 0.381
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 4.184545e-01 0.378
R-HSA-5684996 MAPK1/MAPK3 signaling 4.194227e-01 0.377
R-HSA-166520 Signaling by NTRKs 4.195781e-01 0.377
R-HSA-389356 Co-stimulation by CD28 4.196868e-01 0.377
R-HSA-5687128 MAPK6/MAPK4 signaling 4.251963e-01 0.371
R-HSA-72737 Cap-dependent Translation Initiation 4.257087e-01 0.371
R-HSA-72613 Eukaryotic Translation Initiation 4.257087e-01 0.371
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 4.284188e-01 0.368
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 4.306508e-01 0.366
R-HSA-190840 Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane 4.306508e-01 0.366
R-HSA-1963642 PI3K events in ERBB2 signaling 4.306508e-01 0.366
R-HSA-1592230 Mitochondrial biogenesis 4.313642e-01 0.365
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 4.385969e-01 0.358
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 4.426293e-01 0.354
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 4.426293e-01 0.354
R-HSA-9614657 FOXO-mediated transcription of cell death genes 4.450529e-01 0.352
R-HSA-190872 Transport of connexons to the plasma membrane 4.450529e-01 0.352
R-HSA-2564830 Cytosolic iron-sulfur cluster assembly 4.450529e-01 0.352
R-HSA-8849932 Synaptic adhesion-like molecules 4.450529e-01 0.352
R-HSA-9679504 Translation of Replicase and Assembly of the Replication Transcription Complex 4.450529e-01 0.352
R-HSA-5617833 Cilium Assembly 4.451402e-01 0.352
R-HSA-3371571 HSF1-dependent transactivation 4.456719e-01 0.351
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 4.540615e-01 0.343
R-HSA-72187 mRNA 3'-end processing 4.541890e-01 0.343
R-HSA-6794361 Neurexins and neuroligins 4.541890e-01 0.343
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 4.541890e-01 0.343
R-HSA-5339562 Uptake and actions of bacterial toxins 4.541890e-01 0.343
R-HSA-597592 Post-translational protein modification 4.584283e-01 0.339
R-HSA-8851708 Signaling by FGFR2 IIIa TM 4.590915e-01 0.338
R-HSA-9856532 Mechanical load activates signaling by PIEZO1 and integrins in osteocytes 4.590915e-01 0.338
R-HSA-881907 Gastrin-CREB signalling pathway via PKC and MAPK 4.590915e-01 0.338
R-HSA-429958 mRNA decay by 3' to 5' exoribonuclease 4.590915e-01 0.338
R-HSA-449836 Other interleukin signaling 4.590915e-01 0.338
R-HSA-392517 Rap1 signalling 4.590915e-01 0.338
R-HSA-9834899 Specification of the neural plate border 4.590915e-01 0.338
R-HSA-9694631 Maturation of nucleoprotein 4.590915e-01 0.338
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 4.593988e-01 0.338
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 4.593988e-01 0.338
R-HSA-9694516 SARS-CoV-2 Infection 4.711535e-01 0.327
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 4.727758e-01 0.325
R-HSA-9609523 Insertion of tail-anchored proteins into the endoplasmic reticulum membrane 4.727758e-01 0.325
R-HSA-6807004 Negative regulation of MET activity 4.727758e-01 0.325
R-HSA-5620922 BBSome-mediated cargo-targeting to cilium 4.727758e-01 0.325
R-HSA-389513 Co-inhibition by CTLA4 4.727758e-01 0.325
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 4.727758e-01 0.325
R-HSA-140875 Common Pathway of Fibrin Clot Formation 4.727758e-01 0.325
R-HSA-9629569 Protein hydroxylation 4.727758e-01 0.325
R-HSA-445144 Signal transduction by L1 4.727758e-01 0.325
R-HSA-1181150 Signaling by NODAL 4.727758e-01 0.325
R-HSA-373753 Nephrin family interactions 4.727758e-01 0.325
R-HSA-877300 Interferon gamma signaling 4.738680e-01 0.324
R-HSA-5633007 Regulation of TP53 Activity 4.787295e-01 0.320
R-HSA-5602498 MyD88 deficiency (TLR2/4) 4.861147e-01 0.313
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 4.861147e-01 0.313
R-HSA-422085 Synthesis, secretion, and deacylation of Ghrelin 4.861147e-01 0.313
R-HSA-5654736 Signaling by FGFR1 4.874881e-01 0.312
R-HSA-1474290 Collagen formation 4.972718e-01 0.303
R-HSA-2467813 Separation of Sister Chromatids 4.980201e-01 0.303
R-HSA-5603041 IRAK4 deficiency (TLR2/4) 4.991170e-01 0.302
R-HSA-8876384 Listeria monocytogenes entry into host cells 4.991170e-01 0.302
R-HSA-450302 activated TAK1 mediates p38 MAPK activation 4.991170e-01 0.302
R-HSA-947581 Molybdenum cofactor biosynthesis 4.991170e-01 0.302
R-HSA-9825892 Regulation of MITF-M-dependent genes involved in cell cycle and proliferation 4.991170e-01 0.302
R-HSA-9034015 Signaling by NTRK3 (TRKC) 4.991170e-01 0.302
R-HSA-72689 Formation of a pool of free 40S subunits 5.098948e-01 0.293
R-HSA-9938206 Developmental Lineage of Mammary Stem Cells 5.117911e-01 0.291
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 5.117911e-01 0.291
R-HSA-350054 Notch-HLH transcription pathway 5.117911e-01 0.291
R-HSA-9669938 Signaling by KIT in disease 5.117911e-01 0.291
R-HSA-6803205 TP53 regulates transcription of several additional cell death genes whose specif... 5.117911e-01 0.291
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 5.117911e-01 0.291
R-HSA-166208 mTORC1-mediated signalling 5.117911e-01 0.291
R-HSA-2173788 Downregulation of TGF-beta receptor signaling 5.117911e-01 0.291
R-HSA-8964038 LDL clearance 5.117911e-01 0.291
R-HSA-9694676 Translation of Replicase and Assembly of the Replication Transcription Complex 5.117911e-01 0.291
R-HSA-983189 Kinesins 5.194911e-01 0.284
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 5.241452e-01 0.281
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE during HIV infection 5.241452e-01 0.281
R-HSA-200425 Carnitine shuttle 5.241452e-01 0.281
R-HSA-3000170 Syndecan interactions 5.241452e-01 0.281
R-HSA-982772 Growth hormone receptor signaling 5.241452e-01 0.281
R-HSA-168325 Viral Messenger RNA Synthesis 5.272814e-01 0.278
R-HSA-73856 RNA Polymerase II Transcription Termination 5.272814e-01 0.278
R-HSA-450294 MAP kinase activation 5.272814e-01 0.278
R-HSA-975871 MyD88 cascade initiated on plasma membrane 5.285122e-01 0.277
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 5.285122e-01 0.277
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 5.285122e-01 0.277
R-HSA-6784531 tRNA processing in the nucleus 5.349859e-01 0.272
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 5.349859e-01 0.272
R-HSA-5621481 C-type lectin receptors (CLRs) 5.357457e-01 0.271
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 5.361874e-01 0.271
R-HSA-6783589 Interleukin-6 family signaling 5.361874e-01 0.271
R-HSA-69615 G1/S DNA Damage Checkpoints 5.426038e-01 0.266
R-HSA-9009391 Extra-nuclear estrogen signaling 5.467307e-01 0.262
R-HSA-420029 Tight junction interactions 5.479256e-01 0.261
R-HSA-400685 Sema4D in semaphorin signaling 5.479256e-01 0.261
R-HSA-3000157 Laminin interactions 5.479256e-01 0.261
R-HSA-5601884 PIWI-interacting RNA (piRNA) biogenesis 5.479256e-01 0.261
R-HSA-1266695 Interleukin-7 signaling 5.479256e-01 0.261
R-HSA-9730414 MITF-M-regulated melanocyte development 5.492296e-01 0.260
R-HSA-936837 Ion transport by P-type ATPases 5.501348e-01 0.260
R-HSA-1483255 PI Metabolism 5.527117e-01 0.258
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 5.541199e-01 0.256
R-HSA-9678108 SARS-CoV-1 Infection 5.541199e-01 0.256
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 5.593675e-01 0.252
R-HSA-9703465 Signaling by FLT3 fusion proteins 5.593675e-01 0.252
R-HSA-3295583 TRP channels 5.593675e-01 0.252
R-HSA-381119 Unfolded Protein Response (UPR) 5.657746e-01 0.247
R-HSA-9833110 RSV-host interactions 5.703709e-01 0.244
R-HSA-3928663 EPHA-mediated growth cone collapse 5.705204e-01 0.244
R-HSA-445095 Interaction between L1 and Ankyrins 5.705204e-01 0.244
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 5.705204e-01 0.244
R-HSA-9841251 Mitochondrial unfolded protein response (UPRmt) 5.705204e-01 0.244
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 5.705204e-01 0.244
R-HSA-389357 CD28 dependent PI3K/Akt signaling 5.705204e-01 0.244
R-HSA-5685942 HDR through Homologous Recombination (HRR) 5.722012e-01 0.242
R-HSA-196807 Nicotinate metabolism 5.722012e-01 0.242
R-HSA-5696398 Nucleotide Excision Repair 5.761609e-01 0.239
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 5.761609e-01 0.239
R-HSA-167172 Transcription of the HIV genome 5.793801e-01 0.237
R-HSA-5218859 Regulated Necrosis 5.793801e-01 0.237
R-HSA-171319 Telomere Extension By Telomerase 5.813917e-01 0.236
R-HSA-5620971 Pyroptosis 5.813917e-01 0.236
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 5.813917e-01 0.236
R-HSA-9692914 SARS-CoV-1-host interactions 5.819020e-01 0.235
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 5.864704e-01 0.232
R-HSA-9615710 Late endosomal microautophagy 5.919885e-01 0.228
R-HSA-72086 mRNA Capping 5.919885e-01 0.228
R-HSA-9006335 Signaling by Erythropoietin 5.919885e-01 0.228
R-HSA-5656169 Termination of translesion DNA synthesis 5.919885e-01 0.228
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 5.932357e-01 0.227
R-HSA-2672351 Stimuli-sensing channels 5.932357e-01 0.227
R-HSA-448424 Interleukin-17 signaling 5.934720e-01 0.227
R-HSA-204005 COPII-mediated vesicle transport 5.934720e-01 0.227
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 5.934720e-01 0.227
R-HSA-975155 MyD88 dependent cascade initiated on endosome 5.988276e-01 0.223
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 6.003847e-01 0.222
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 6.023177e-01 0.220
R-HSA-1250196 SHC1 events in ERBB2 signaling 6.023177e-01 0.220
R-HSA-1474151 Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation 6.023177e-01 0.220
R-HSA-114452 Activation of BH3-only proteins 6.023177e-01 0.220
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 6.043690e-01 0.219
R-HSA-166166 MyD88-independent TLR4 cascade 6.043690e-01 0.219
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 6.123859e-01 0.213
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 6.123859e-01 0.213
R-HSA-5694530 Cargo concentration in the ER 6.123859e-01 0.213
R-HSA-9820960 Respiratory syncytial virus (RSV) attachment and entry 6.123859e-01 0.213
R-HSA-186763 Downstream signal transduction 6.123859e-01 0.213
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 6.139439e-01 0.212
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 6.139439e-01 0.212
R-HSA-4086398 Ca2+ pathway 6.139439e-01 0.212
R-HSA-9679506 SARS-CoV Infections 6.143599e-01 0.212
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 6.144504e-01 0.212
R-HSA-983712 Ion channel transport 6.154436e-01 0.211
R-HSA-1236394 Signaling by ERBB4 6.205905e-01 0.207
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 6.206876e-01 0.207
R-HSA-4791275 Signaling by WNT in cancer 6.221999e-01 0.206
R-HSA-9675126 Diseases of mitotic cell cycle 6.221999e-01 0.206
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 6.221999e-01 0.206
R-HSA-9679191 Potential therapeutics for SARS 6.237708e-01 0.205
R-HSA-9856651 MITF-M-dependent gene expression 6.237708e-01 0.205
R-HSA-168898 Toll-like Receptor Cascades 6.237924e-01 0.205
R-HSA-1855170 IPs transport between nucleus and cytosol 6.317660e-01 0.199
R-HSA-159227 Transport of the SLBP independent Mature mRNA 6.317660e-01 0.199
R-HSA-354192 Integrin signaling 6.317660e-01 0.199
R-HSA-397795 G-protein beta:gamma signalling 6.317660e-01 0.199
R-HSA-9930044 Nuclear RNA decay 6.317660e-01 0.199
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 6.317660e-01 0.199
R-HSA-5675482 Regulation of necroptotic cell death 6.317660e-01 0.199
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 6.317660e-01 0.199
R-HSA-9022692 Regulation of MECP2 expression and activity 6.317660e-01 0.199
R-HSA-446652 Interleukin-1 family signaling 6.329480e-01 0.199
R-HSA-1980143 Signaling by NOTCH1 6.336186e-01 0.198
R-HSA-9694635 Translation of Structural Proteins 6.400005e-01 0.194
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 6.410905e-01 0.193
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 6.410905e-01 0.193
R-HSA-5693537 Resolution of D-Loop Structures 6.410905e-01 0.193
R-HSA-4420097 VEGFA-VEGFR2 Pathway 6.417248e-01 0.193
R-HSA-383280 Nuclear Receptor transcription pathway 6.462948e-01 0.190
R-HSA-1989781 PPARA activates gene expression 6.464415e-01 0.189
R-HSA-168273 Influenza Viral RNA Transcription and Replication 6.464415e-01 0.189
R-HSA-373760 L1CAM interactions 6.468542e-01 0.189
R-HSA-5696400 Dual Incision in GG-NER 6.501794e-01 0.187
R-HSA-190861 Gap junction assembly 6.501794e-01 0.187
R-HSA-168638 NOD1/2 Signaling Pathway 6.501794e-01 0.187
R-HSA-203615 eNOS activation 6.501794e-01 0.187
R-HSA-180746 Nuclear import of Rev protein 6.501794e-01 0.187
R-HSA-5205647 Mitophagy 6.501794e-01 0.187
R-HSA-5686938 Regulation of TLR by endogenous ligand 6.501794e-01 0.187
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 6.501794e-01 0.187
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 6.552537e-01 0.184
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 6.590387e-01 0.181
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 6.590387e-01 0.181
R-HSA-111933 Calmodulin induced events 6.676741e-01 0.175
R-HSA-111997 CaM pathway 6.676741e-01 0.175
R-HSA-140877 Formation of Fibrin Clot (Clotting Cascade) 6.676741e-01 0.175
R-HSA-1839126 FGFR2 mutant receptor activation 6.676741e-01 0.175
R-HSA-6804757 Regulation of TP53 Degradation 6.676741e-01 0.175
R-HSA-3371556 Cellular response to heat stress 6.717179e-01 0.173
R-HSA-1296072 Voltage gated Potassium channels 6.760914e-01 0.170
R-HSA-180910 Vpr-mediated nuclear import of PICs 6.760914e-01 0.170
R-HSA-549127 SLC-mediated transport of organic cations 6.760914e-01 0.170
R-HSA-8948216 Collagen chain trimerization 6.760914e-01 0.170
R-HSA-9707564 Cytoprotection by HMOX1 6.764648e-01 0.170
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 6.812974e-01 0.167
R-HSA-202131 Metabolism of nitric oxide: NOS3 activation and regulation 6.842959e-01 0.165
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 6.842959e-01 0.165
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 6.842959e-01 0.165
R-HSA-5213460 RIPK1-mediated regulated necrosis 6.842959e-01 0.165
R-HSA-452723 Transcriptional regulation of pluripotent stem cells 6.842959e-01 0.165
R-HSA-449147 Signaling by Interleukins 6.843802e-01 0.165
R-HSA-6805567 Keratinization 6.865531e-01 0.163
R-HSA-168276 NS1 Mediated Effects on Host Pathways 6.922932e-01 0.160
R-HSA-8964043 Plasma lipoprotein clearance 6.922932e-01 0.160
R-HSA-201556 Signaling by ALK 6.922932e-01 0.160
R-HSA-6806003 Regulation of TP53 Expression and Degradation 6.922932e-01 0.160
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 6.935424e-01 0.159
R-HSA-194138 Signaling by VEGF 6.952754e-01 0.158
R-HSA-69206 G1/S Transition 6.952754e-01 0.158
R-HSA-1257604 PIP3 activates AKT signaling 6.962721e-01 0.157
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 6.990675e-01 0.155
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 7.000883e-01 0.155
R-HSA-177243 Interactions of Rev with host cellular proteins 7.000883e-01 0.155
R-HSA-176033 Interactions of Vpr with host cellular proteins 7.000883e-01 0.155
R-HSA-1251985 Nuclear signaling by ERBB4 7.000883e-01 0.155
R-HSA-114608 Platelet degranulation 7.043342e-01 0.152
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 7.076864e-01 0.150
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 7.076864e-01 0.150
R-HSA-8853884 Transcriptional Regulation by VENTX 7.076864e-01 0.150
R-HSA-9694548 Maturation of spike protein 7.076864e-01 0.150
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 7.076864e-01 0.150
R-HSA-73933 Resolution of Abasic Sites (AP sites) 7.076864e-01 0.150
R-HSA-9006925 Intracellular signaling by second messengers 7.087044e-01 0.150
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 7.150925e-01 0.146
R-HSA-5610783 Degradation of GLI2 by the proteasome 7.150925e-01 0.146
R-HSA-167161 HIV Transcription Initiation 7.150925e-01 0.146
R-HSA-75953 RNA Polymerase II Transcription Initiation 7.150925e-01 0.146
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 7.150925e-01 0.146
R-HSA-9683701 Translation of Structural Proteins 7.150925e-01 0.146
R-HSA-199418 Negative regulation of the PI3K/AKT network 7.175354e-01 0.144
R-HSA-202424 Downstream TCR signaling 7.203470e-01 0.142
R-HSA-111996 Ca-dependent events 7.223114e-01 0.141
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 7.254650e-01 0.139
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 7.278377e-01 0.138
R-HSA-73776 RNA Polymerase II Promoter Escape 7.293478e-01 0.137
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 7.344215e-01 0.134
R-HSA-9772573 Late SARS-CoV-2 Infection Events 7.354639e-01 0.133
R-HSA-190828 Gap junction trafficking 7.362063e-01 0.133
R-HSA-69236 G1 Phase 7.362063e-01 0.133
R-HSA-69231 Cyclin D associated events in G1 7.362063e-01 0.133
R-HSA-3214858 RMTs methylate histone arginines 7.362063e-01 0.133
R-HSA-375280 Amine ligand-binding receptors 7.362063e-01 0.133
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 7.428915e-01 0.129
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 7.428915e-01 0.129
R-HSA-76009 Platelet Aggregation (Plug Formation) 7.428915e-01 0.129
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 7.428915e-01 0.129
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 7.428915e-01 0.129
R-HSA-6783310 Fanconi Anemia Pathway 7.428915e-01 0.129
R-HSA-1489509 DAG and IP3 signaling 7.428915e-01 0.129
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 7.451514e-01 0.128
R-HSA-168255 Influenza Infection 7.458474e-01 0.127
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 7.494076e-01 0.125
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 7.494076e-01 0.125
R-HSA-5357905 Regulation of TNFR1 signaling 7.494076e-01 0.125
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 7.498803e-01 0.125
R-HSA-437239 Recycling pathway of L1 7.557590e-01 0.122
R-HSA-1483191 Synthesis of PC 7.557590e-01 0.122
R-HSA-9948299 Ribosome-associated quality control 7.582466e-01 0.120
R-HSA-9031628 NGF-stimulated transcription 7.619498e-01 0.118
R-HSA-8878159 Transcriptional regulation by RUNX3 7.636168e-01 0.117
R-HSA-157858 Gap junction trafficking and regulation 7.679840e-01 0.115
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 7.694977e-01 0.114
R-HSA-109704 PI3K Cascade 7.738656e-01 0.111
R-HSA-5655253 Signaling by FGFR2 in disease 7.738656e-01 0.111
R-HSA-5610787 Hedgehog 'off' state 7.766950e-01 0.110
R-HSA-162599 Late Phase of HIV Life Cycle 7.767590e-01 0.110
R-HSA-1169091 Activation of NF-kappaB in B cells 7.795985e-01 0.108
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 7.850423e-01 0.105
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 7.851864e-01 0.105
R-HSA-432722 Golgi Associated Vesicle Biogenesis 7.906330e-01 0.102
R-HSA-9639288 Amino acids regulate mTORC1 7.906330e-01 0.102
R-HSA-453279 Mitotic G1 phase and G1/S transition 7.907188e-01 0.102
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 7.959418e-01 0.099
R-HSA-69242 S Phase 7.974228e-01 0.098
R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic 8.011163e-01 0.096
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 8.061599e-01 0.094
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 8.061599e-01 0.094
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 8.061599e-01 0.094
R-HSA-5578775 Ion homeostasis 8.061599e-01 0.094
R-HSA-109606 Intrinsic Pathway for Apoptosis 8.061599e-01 0.094
R-HSA-3299685 Detoxification of Reactive Oxygen Species 8.061599e-01 0.094
R-HSA-75893 TNF signaling 8.061599e-01 0.094
R-HSA-112399 IRS-mediated signalling 8.110758e-01 0.091
R-HSA-9764561 Regulation of CDH1 Function 8.110758e-01 0.091
R-HSA-6782135 Dual incision in TC-NER 8.158675e-01 0.088
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 8.158675e-01 0.088
R-HSA-9772572 Early SARS-CoV-2 Infection Events 8.158675e-01 0.088
R-HSA-202403 TCR signaling 8.193747e-01 0.087
R-HSA-191859 snRNP Assembly 8.205378e-01 0.086
R-HSA-194441 Metabolism of non-coding RNA 8.205378e-01 0.086
R-HSA-180786 Extension of Telomeres 8.205378e-01 0.086
R-HSA-8873719 RAB geranylgeranylation 8.250900e-01 0.083
R-HSA-1660661 Sphingolipid de novo biosynthesis 8.250900e-01 0.083
R-HSA-8943724 Regulation of PTEN gene transcription 8.250900e-01 0.083
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 8.250900e-01 0.083
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 8.250900e-01 0.083
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 8.250900e-01 0.083
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 8.250900e-01 0.083
R-HSA-2644603 Signaling by NOTCH1 in Cancer 8.250900e-01 0.083
R-HSA-162587 HIV Life Cycle 8.254057e-01 0.083
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 8.283019e-01 0.082
R-HSA-2428928 IRS-related events triggered by IGF1R 8.295270e-01 0.081
R-HSA-112043 PLC beta mediated events 8.295270e-01 0.081
R-HSA-1442490 Collagen degradation 8.295270e-01 0.081
R-HSA-375165 NCAM signaling for neurite out-growth 8.338517e-01 0.079
R-HSA-186797 Signaling by PDGF 8.338517e-01 0.079
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 8.380670e-01 0.077
R-HSA-74751 Insulin receptor signalling cascade 8.421755e-01 0.075
R-HSA-2428924 IGF1R signaling cascade 8.421755e-01 0.075
R-HSA-2871809 FCERI mediated Ca+2 mobilization 8.425872e-01 0.074
R-HSA-5663205 Infectious disease 8.433319e-01 0.074
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 8.449309e-01 0.073
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 8.461801e-01 0.073
R-HSA-112040 G-protein mediated events 8.538877e-01 0.069
R-HSA-8878166 Transcriptional regulation by RUNX2 8.546060e-01 0.068
R-HSA-1650814 Collagen biosynthesis and modifying enzymes 8.575958e-01 0.067
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 8.575958e-01 0.067
R-HSA-9759194 Nuclear events mediated by NFE2L2 8.602966e-01 0.065
R-HSA-9711123 Cellular response to chemical stress 8.604030e-01 0.065
R-HSA-8951664 Neddylation 8.649619e-01 0.063
R-HSA-2132295 MHC class II antigen presentation 8.657831e-01 0.063
R-HSA-5632684 Hedgehog 'on' state 8.681661e-01 0.061
R-HSA-5620920 Cargo trafficking to the periciliary membrane 8.681661e-01 0.061
R-HSA-8978934 Metabolism of cofactors 8.681661e-01 0.061
R-HSA-199992 trans-Golgi Network Vesicle Budding 8.715126e-01 0.060
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 8.715126e-01 0.060
R-HSA-74259 Purine catabolism 8.715126e-01 0.060
R-HSA-112316 Neuronal System 8.794916e-01 0.056
R-HSA-446203 Asparagine N-linked glycosylation 8.805392e-01 0.055
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 8.810523e-01 0.055
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 8.810523e-01 0.055
R-HSA-1169408 ISG15 antiviral mechanism 8.810523e-01 0.055
R-HSA-3000171 Non-integrin membrane-ECM interactions 8.810523e-01 0.055
R-HSA-9658195 Leishmania infection 8.842364e-01 0.053
R-HSA-9824443 Parasitic Infection Pathways 8.842364e-01 0.053
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 8.870161e-01 0.052
R-HSA-216083 Integrin cell surface interactions 8.898852e-01 0.051
R-HSA-5576891 Cardiac conduction 8.903644e-01 0.050
R-HSA-9659379 Sensory processing of sound 8.926816e-01 0.049
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 8.926816e-01 0.049
R-HSA-913531 Interferon Signaling 8.926932e-01 0.049
R-HSA-983169 Class I MHC mediated antigen processing & presentation 8.926932e-01 0.049
R-HSA-1280215 Cytokine Signaling in Immune system 9.025867e-01 0.045
R-HSA-3858494 Beta-catenin independent WNT signaling 9.030397e-01 0.044
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 9.031765e-01 0.044
R-HSA-5358351 Signaling by Hedgehog 9.069520e-01 0.042
R-HSA-392499 Metabolism of proteins 9.106994e-01 0.041
R-HSA-9664422 FCGR3A-mediated phagocytosis 9.107165e-01 0.041
R-HSA-9664417 Leishmania phagocytosis 9.107165e-01 0.041
R-HSA-9664407 Parasite infection 9.107165e-01 0.041
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 9.126473e-01 0.040
R-HSA-156902 Peptide chain elongation 9.170302e-01 0.038
R-HSA-1236974 ER-Phagosome pathway 9.191387e-01 0.037
R-HSA-8986944 Transcriptional Regulation by MECP2 9.231966e-01 0.035
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 9.235275e-01 0.035
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 9.251488e-01 0.034
R-HSA-8953854 Metabolism of RNA 9.257452e-01 0.034
R-HSA-156842 Eukaryotic Translation Elongation 9.270514e-01 0.033
R-HSA-74752 Signaling by Insulin receptor 9.270514e-01 0.033
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 9.270514e-01 0.033
R-HSA-2029481 FCGR activation 9.289058e-01 0.032
R-HSA-9755511 KEAP1-NFE2L2 pathway 9.304687e-01 0.031
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 9.319138e-01 0.031
R-HSA-72764 Eukaryotic Translation Termination 9.341915e-01 0.030
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 9.347193e-01 0.029
R-HSA-1296071 Potassium Channels 9.358648e-01 0.029
R-HSA-8957275 Post-translational protein phosphorylation 9.390852e-01 0.027
R-HSA-9711097 Cellular response to starvation 9.400056e-01 0.027
R-HSA-192105 Synthesis of bile acids and bile salts 9.406343e-01 0.027
R-HSA-70171 Glycolysis 9.421442e-01 0.026
R-HSA-76002 Platelet activation, signaling and aggregation 9.432917e-01 0.025
R-HSA-2408557 Selenocysteine synthesis 9.436157e-01 0.025
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 9.450499e-01 0.025
R-HSA-192823 Viral mRNA Translation 9.464477e-01 0.024
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 9.478101e-01 0.023
R-HSA-111885 Opioid Signalling 9.478101e-01 0.023
R-HSA-162906 HIV Infection 9.520520e-01 0.021
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 9.529223e-01 0.021
R-HSA-1236975 Antigen processing-Cross presentation 9.541203e-01 0.020
R-HSA-72306 tRNA processing 9.545185e-01 0.020
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 9.547134e-01 0.020
R-HSA-194068 Bile acid and bile salt metabolism 9.564258e-01 0.019
R-HSA-6803157 Antimicrobial peptides 9.575349e-01 0.019
R-HSA-927802 Nonsense-Mediated Decay (NMD) 9.586157e-01 0.018
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 9.586157e-01 0.018
R-HSA-1483249 Inositol phosphate metabolism 9.586157e-01 0.018
R-HSA-1483257 Phospholipid metabolism 9.606500e-01 0.017
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 9.616965e-01 0.017
R-HSA-6798695 Neutrophil degranulation 9.617983e-01 0.017
R-HSA-70326 Glucose metabolism 9.654512e-01 0.015
R-HSA-2980736 Peptide hormone metabolism 9.654512e-01 0.015
R-HSA-168256 Immune System 9.680491e-01 0.014
R-HSA-162909 Host Interactions of HIV factors 9.711598e-01 0.013
R-HSA-1643685 Disease 9.720876e-01 0.012
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 9.733086e-01 0.012
R-HSA-72766 Translation 9.740239e-01 0.011
R-HSA-8956319 Nucleotide catabolism 9.752976e-01 0.011
R-HSA-112315 Transmission across Chemical Synapses 9.762119e-01 0.010
R-HSA-416476 G alpha (q) signalling events 9.766303e-01 0.010
R-HSA-1474228 Degradation of the extracellular matrix 9.777215e-01 0.010
R-HSA-1474244 Extracellular matrix organization 9.794616e-01 0.009
R-HSA-163685 Integration of energy metabolism 9.804204e-01 0.009
R-HSA-6807070 PTEN Regulation 9.818805e-01 0.008
R-HSA-2871837 FCERI mediated NF-kB activation 9.844828e-01 0.007
R-HSA-9758941 Gastrulation 9.863642e-01 0.006
R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Receptors 9.867122e-01 0.006
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 9.873819e-01 0.006
R-HSA-9609507 Protein localization 9.877040e-01 0.005
R-HSA-196854 Metabolism of vitamins and cofactors 9.889407e-01 0.005
R-HSA-2408522 Selenoamino acid metabolism 9.907491e-01 0.004
R-HSA-5619102 SLC transporter disorders 9.914402e-01 0.004
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 9.922822e-01 0.003
R-HSA-9664433 Leishmania parasite growth and survival 9.928590e-01 0.003
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 9.928590e-01 0.003
R-HSA-8868773 rRNA processing in the nucleus and cytosol 9.951583e-01 0.002
R-HSA-428157 Sphingolipid metabolism 9.965437e-01 0.002
R-HSA-388396 GPCR downstream signalling 9.965515e-01 0.002
R-HSA-1483206 Glycerophospholipid biosynthesis 9.967185e-01 0.001
R-HSA-109582 Hemostasis 9.970575e-01 0.001
R-HSA-9824439 Bacterial Infection Pathways 9.983474e-01 0.001
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 9.983722e-01 0.001
R-HSA-72312 rRNA processing 9.984943e-01 0.001
R-HSA-8957322 Metabolism of steroids 9.986325e-01 0.001
R-HSA-15869 Metabolism of nucleotides 9.986430e-01 0.001
R-HSA-202733 Cell surface interactions at the vascular wall 9.986778e-01 0.001
R-HSA-5619115 Disorders of transmembrane transporters 9.989806e-01 0.000
R-HSA-372790 Signaling by GPCR 9.991115e-01 0.000
R-HSA-211945 Phase I - Functionalization of compounds 9.995453e-01 0.000
R-HSA-168249 Innate Immune System 9.997795e-01 0.000
R-HSA-418594 G alpha (i) signalling events 9.998146e-01 0.000
R-HSA-382551 Transport of small molecules 9.999678e-01 0.000
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 9.999787e-01 0.000
R-HSA-425407 SLC-mediated transmembrane transport 9.999803e-01 0.000
R-HSA-8978868 Fatty acid metabolism 9.999849e-01 0.000
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 9.999957e-01 0.000
R-HSA-211859 Biological oxidations 9.999993e-01 0.000
R-HSA-500792 GPCR ligand binding 9.999999e-01 0.000
R-HSA-71291 Metabolism of amino acids and derivatives 9.999999e-01 0.000
R-HSA-556833 Metabolism of lipids 1.000000e+00 0.000
R-HSA-9709957 Sensory Perception 1.000000e+00 0.000
R-HSA-1430728 Metabolism 1.000000e+00 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
CLK3CLK3 0.896 0.391 1 0.879
COTCOT 0.895 0.311 2 0.881
PIM3PIM3 0.885 0.277 -3 0.914
MOSMOS 0.883 0.308 1 0.884
NDR2NDR2 0.881 0.213 -3 0.914
RSK2RSK2 0.879 0.285 -3 0.854
SKMLCKSKMLCK 0.879 0.304 -2 0.877
CLK2CLK2 0.879 0.406 -3 0.848
SRPK1SRPK1 0.878 0.273 -3 0.844
GRK1GRK1 0.878 0.320 -2 0.838
MTORMTOR 0.876 0.150 1 0.828
CDC7CDC7 0.876 0.107 1 0.845
PIM1PIM1 0.876 0.273 -3 0.881
CDKL1CDKL1 0.874 0.221 -3 0.870
KISKIS 0.873 0.228 1 0.782
NDR1NDR1 0.873 0.181 -3 0.901
CAMK1BCAMK1B 0.873 0.204 -3 0.899
HIPK4HIPK4 0.871 0.223 1 0.865
NLKNLK 0.871 0.161 1 0.896
AURCAURC 0.871 0.229 -2 0.705
P90RSKP90RSK 0.870 0.227 -3 0.857
RSK4RSK4 0.870 0.284 -3 0.844
IKKBIKKB 0.870 0.041 -2 0.717
PKACGPKACG 0.869 0.207 -2 0.768
DYRK2DYRK2 0.869 0.264 1 0.800
PKACBPKACB 0.868 0.268 -2 0.714
RAF1RAF1 0.868 0.048 1 0.852
CLK4CLK4 0.868 0.297 -3 0.854
PRKXPRKX 0.868 0.295 -3 0.804
ICKICK 0.868 0.225 -3 0.897
CDKL5CDKL5 0.867 0.189 -3 0.865
PRKD2PRKD2 0.867 0.202 -3 0.851
PRPKPRPK 0.867 -0.063 -1 0.834
NUAK2NUAK2 0.867 0.157 -3 0.903
PKN2PKN2 0.867 0.171 -3 0.889
PKN3PKN3 0.866 0.133 -3 0.882
CAMLCKCAMLCK 0.865 0.189 -2 0.850
PRKD1PRKD1 0.865 0.154 -3 0.881
CAMK2GCAMK2G 0.865 0.051 2 0.816
MSK1MSK1 0.865 0.267 -3 0.839
MST4MST4 0.864 0.106 2 0.849
RIPK3RIPK3 0.864 0.085 3 0.771
WNK1WNK1 0.864 0.113 -2 0.866
SRPK2SRPK2 0.864 0.225 -3 0.779
RSK3RSK3 0.864 0.189 -3 0.842
HIPK2HIPK2 0.864 0.271 1 0.727
P70S6KBP70S6KB 0.863 0.186 -3 0.865
GRK7GRK7 0.863 0.243 1 0.778
ERK5ERK5 0.863 0.082 1 0.864
NIKNIK 0.863 0.130 -3 0.903
DSTYKDSTYK 0.863 0.013 2 0.902
CAMK2ACAMK2A 0.863 0.230 2 0.826
ATRATR 0.863 0.017 1 0.818
GRK5GRK5 0.862 0.056 -3 0.866
DAPK2DAPK2 0.862 0.187 -3 0.901
SRPK3SRPK3 0.862 0.211 -3 0.815
LATS2LATS2 0.862 0.107 -5 0.771
HIPK1HIPK1 0.862 0.280 1 0.816
PKCDPKCD 0.862 0.139 2 0.782
GRK6GRK6 0.861 0.150 1 0.840
CAMK2BCAMK2B 0.861 0.193 2 0.798
CLK1CLK1 0.861 0.273 -3 0.824
LATS1LATS1 0.861 0.223 -3 0.914
PDHK4PDHK4 0.861 -0.171 1 0.867
BMPR1BBMPR1B 0.861 0.203 1 0.815
MSK2MSK2 0.860 0.191 -3 0.838
MAPKAPK2MAPKAPK2 0.859 0.177 -3 0.829
BMPR2BMPR2 0.859 -0.138 -2 0.845
AMPKA1AMPKA1 0.859 0.098 -3 0.909
TBK1TBK1 0.859 -0.083 1 0.748
DYRK4DYRK4 0.859 0.280 1 0.732
CAMK2DCAMK2D 0.858 0.103 -3 0.877
PAK1PAK1 0.858 0.153 -2 0.800
GCN2GCN2 0.858 -0.162 2 0.802
CDK1CDK1 0.858 0.190 1 0.739
MYLK4MYLK4 0.858 0.213 -2 0.800
MLK1MLK1 0.857 -0.018 2 0.816
AKT2AKT2 0.856 0.235 -3 0.790
IKKAIKKA 0.856 0.021 -2 0.706
HUNKHUNK 0.856 -0.008 2 0.826
PASKPASK 0.856 0.332 -3 0.921
IKKEIKKE 0.856 -0.081 1 0.743
MAPKAPK3MAPKAPK3 0.856 0.111 -3 0.852
AURBAURB 0.855 0.179 -2 0.701
MARK4MARK4 0.855 0.015 4 0.813
JNK2JNK2 0.855 0.207 1 0.723
GSK3AGSK3A 0.855 0.311 4 0.624
PKCBPKCB 0.855 0.125 2 0.742
CHAK2CHAK2 0.855 -0.012 -1 0.832
CDK18CDK18 0.854 0.183 1 0.713
DLKDLK 0.854 0.054 1 0.831
TGFBR2TGFBR2 0.854 -0.041 -2 0.781
NEK6NEK6 0.854 -0.071 -2 0.824
PKCGPKCG 0.854 0.117 2 0.744
AMPKA2AMPKA2 0.853 0.103 -3 0.890
PKCAPKCA 0.853 0.124 2 0.729
GRK4GRK4 0.853 0.042 -2 0.842
AURAAURA 0.853 0.173 -2 0.688
MASTLMASTL 0.852 -0.096 -2 0.787
SGK3SGK3 0.852 0.199 -3 0.849
RIPK1RIPK1 0.852 0.002 1 0.832
JNK3JNK3 0.851 0.183 1 0.750
DYRK3DYRK3 0.851 0.272 1 0.818
NEK7NEK7 0.851 -0.150 -3 0.823
MNK2MNK2 0.851 0.119 -2 0.796
CAMK4CAMK4 0.851 0.068 -3 0.877
FAM20CFAM20C 0.851 0.064 2 0.604
MNK1MNK1 0.851 0.141 -2 0.800
TSSK1TSSK1 0.850 0.076 -3 0.920
PKG2PKG2 0.850 0.164 -2 0.707
CK1ECK1E 0.850 0.174 -3 0.647
PIM2PIM2 0.850 0.206 -3 0.829
CDK7CDK7 0.850 0.117 1 0.772
PDHK1PDHK1 0.850 -0.255 1 0.845
CDK8CDK8 0.850 0.096 1 0.752
TSSK2TSSK2 0.850 0.049 -5 0.860
ULK2ULK2 0.850 -0.229 2 0.768
BCKDKBCKDK 0.850 -0.108 -1 0.797
MLK3MLK3 0.849 0.011 2 0.748
PAK3PAK3 0.849 0.078 -2 0.788
ANKRD3ANKRD3 0.849 -0.046 1 0.863
PKACAPKACA 0.848 0.220 -2 0.665
PRKD3PRKD3 0.848 0.137 -3 0.818
DYRK1ADYRK1A 0.848 0.207 1 0.822
TGFBR1TGFBR1 0.848 0.075 -2 0.784
DYRK1BDYRK1B 0.848 0.216 1 0.766
ALK4ALK4 0.848 0.035 -2 0.807
CDK10CDK10 0.847 0.221 1 0.746
GSK3BGSK3B 0.847 0.254 4 0.620
CDK19CDK19 0.847 0.108 1 0.720
CDK14CDK14 0.847 0.196 1 0.757
CAMK1GCAMK1G 0.847 0.156 -3 0.830
QSKQSK 0.847 0.071 4 0.787
PKCZPKCZ 0.847 0.073 2 0.774
PKRPKR 0.846 0.050 1 0.865
CDK5CDK5 0.846 0.135 1 0.789
MLK2MLK2 0.846 -0.090 2 0.817
PAK2PAK2 0.846 0.091 -2 0.786
P38AP38A 0.846 0.142 1 0.802
CDK17CDK17 0.845 0.151 1 0.663
P38GP38G 0.845 0.161 1 0.657
PKCHPKCH 0.845 0.076 2 0.719
PLK1PLK1 0.845 0.005 -2 0.767
GRK2GRK2 0.845 0.079 -2 0.730
NIM1NIM1 0.845 -0.025 3 0.783
IRE1IRE1 0.845 -0.043 1 0.822
HIPK3HIPK3 0.845 0.202 1 0.810
CDK13CDK13 0.845 0.112 1 0.748
P38BP38B 0.845 0.161 1 0.733
ATMATM 0.844 -0.024 1 0.744
CK1DCK1D 0.844 0.185 -3 0.599
WNK3WNK3 0.844 -0.191 1 0.824
MAKMAK 0.844 0.284 -2 0.741
ERK1ERK1 0.844 0.139 1 0.728
PAK6PAK6 0.844 0.131 -2 0.722
MST3MST3 0.844 0.152 2 0.851
DRAK1DRAK1 0.843 0.114 1 0.800
TTBK2TTBK2 0.843 -0.098 2 0.698
DCAMKL1DCAMKL1 0.842 0.130 -3 0.866
NEK9NEK9 0.842 -0.185 2 0.824
QIKQIK 0.842 -0.012 -3 0.871
ACVR2BACVR2B 0.842 0.065 -2 0.768
ALK2ALK2 0.842 0.066 -2 0.802
MELKMELK 0.842 0.040 -3 0.866
YSK4YSK4 0.842 -0.042 1 0.784
NUAK1NUAK1 0.842 0.032 -3 0.858
AKT1AKT1 0.842 0.200 -3 0.808
MEK1MEK1 0.841 -0.065 2 0.843
PHKG1PHKG1 0.841 0.012 -3 0.892
MEKK3MEKK3 0.841 0.077 1 0.818
BRSK1BRSK1 0.841 0.055 -3 0.862
SIKSIK 0.841 0.067 -3 0.836
CDK12CDK12 0.841 0.128 1 0.723
DNAPKDNAPK 0.841 0.042 1 0.701
MLK4MLK4 0.841 -0.028 2 0.725
CK1A2CK1A2 0.841 0.167 -3 0.603
CDK3CDK3 0.840 0.147 1 0.681
SMMLCKSMMLCK 0.840 0.164 -3 0.868
ACVR2AACVR2A 0.839 0.029 -2 0.754
MARK3MARK3 0.839 0.041 4 0.747
GAKGAK 0.839 0.262 1 0.886
PRP4PRP4 0.839 0.131 -3 0.805
ULK1ULK1 0.838 -0.246 -3 0.779
ERK2ERK2 0.838 0.100 1 0.768
VRK2VRK2 0.838 -0.120 1 0.883
DAPK3DAPK3 0.838 0.211 -3 0.879
BMPR1ABMPR1A 0.838 0.107 1 0.785
CDK16CDK16 0.837 0.158 1 0.677
CDK9CDK9 0.836 0.091 1 0.755
DAPK1DAPK1 0.836 0.232 -3 0.868
MPSK1MPSK1 0.836 0.137 1 0.839
GRK3GRK3 0.835 0.097 -2 0.706
TLK2TLK2 0.835 -0.063 1 0.794
CDK2CDK2 0.835 0.053 1 0.806
SGK1SGK1 0.835 0.227 -3 0.730
TAO3TAO3 0.835 0.059 1 0.813
IRE2IRE2 0.835 -0.084 2 0.717
AKT3AKT3 0.834 0.219 -3 0.745
BRSK2BRSK2 0.834 -0.025 -3 0.868
PLK3PLK3 0.834 -0.051 2 0.788
MEK5MEK5 0.834 -0.094 2 0.821
CAMK1DCAMK1D 0.834 0.154 -3 0.785
CHK1CHK1 0.833 -0.001 -3 0.872
GCKGCK 0.833 0.166 1 0.837
PKCEPKCE 0.833 0.140 2 0.725
P70S6KP70S6K 0.833 0.124 -3 0.789
MARK2MARK2 0.833 -0.017 4 0.712
SMG1SMG1 0.832 -0.082 1 0.766
PKCTPKCT 0.832 0.065 2 0.723
CK1G1CK1G1 0.832 0.086 -3 0.632
NEK2NEK2 0.832 -0.129 2 0.804
MEKK2MEKK2 0.831 -0.037 2 0.794
P38DP38D 0.830 0.145 1 0.665
MOKMOK 0.830 0.243 1 0.829
DCAMKL2DCAMKL2 0.830 0.047 -3 0.869
CHAK1CHAK1 0.830 -0.152 2 0.762
WNK4WNK4 0.830 -0.035 -2 0.850
MARK1MARK1 0.830 -0.012 4 0.764
CK2A2CK2A2 0.830 0.139 1 0.741
NEK5NEK5 0.830 -0.067 1 0.839
PLK4PLK4 0.829 -0.089 2 0.620
JNK1JNK1 0.829 0.147 1 0.710
MAPKAPK5MAPKAPK5 0.829 0.003 -3 0.793
ROCK2ROCK2 0.829 0.209 -3 0.872
PKCIPKCI 0.828 0.063 2 0.740
PAK5PAK5 0.828 0.105 -2 0.667
ZAKZAK 0.828 -0.115 1 0.773
SNRKSNRK 0.827 -0.120 2 0.674
HPK1HPK1 0.827 0.136 1 0.824
BRAFBRAF 0.827 -0.107 -4 0.824
MEKK1MEKK1 0.827 -0.146 1 0.810
PAK4PAK4 0.827 0.123 -2 0.681
NEK11NEK11 0.827 -0.024 1 0.812
MRCKBMRCKB 0.827 0.187 -3 0.821
MRCKAMRCKA 0.826 0.183 -3 0.836
TLK1TLK1 0.826 -0.094 -2 0.814
DMPK1DMPK1 0.825 0.244 -3 0.840
PERKPERK 0.825 -0.166 -2 0.807
CK2A1CK2A1 0.824 0.159 1 0.724
CHK2CHK2 0.824 0.153 -3 0.738
SSTKSSTK 0.824 -0.001 4 0.775
IRAK4IRAK4 0.824 -0.096 1 0.812
PDK1PDK1 0.824 0.017 1 0.812
PINK1PINK1 0.823 -0.160 1 0.881
LKB1LKB1 0.823 -0.018 -3 0.838
NEK8NEK8 0.821 -0.099 2 0.810
KHS2KHS2 0.821 0.127 1 0.827
ERK7ERK7 0.820 0.048 2 0.565
PHKG2PHKG2 0.820 -0.018 -3 0.848
CAMK1ACAMK1A 0.820 0.145 -3 0.751
HRIHRI 0.819 -0.244 -2 0.805
TAK1TAK1 0.819 0.052 1 0.823
MST2MST2 0.819 -0.025 1 0.822
TAO2TAO2 0.819 -0.078 2 0.838
TNIKTNIK 0.818 0.025 3 0.838
PKN1PKN1 0.818 0.083 -3 0.802
SBKSBK 0.817 0.179 -3 0.682
KHS1KHS1 0.817 0.070 1 0.807
MINKMINK 0.816 -0.013 1 0.812
CDK6CDK6 0.816 0.095 1 0.735
LRRK2LRRK2 0.816 -0.039 2 0.840
BUB1BUB1 0.815 0.120 -5 0.827
CAMKK2CAMKK2 0.815 -0.117 -2 0.709
CDK4CDK4 0.815 0.104 1 0.711
PLK2PLK2 0.814 0.004 -3 0.753
MAP3K15MAP3K15 0.814 -0.068 1 0.764
CRIKCRIK 0.814 0.196 -3 0.806
CAMKK1CAMKK1 0.814 -0.188 -2 0.715
HGKHGK 0.814 -0.052 3 0.844
MEKK6MEKK6 0.813 -0.088 1 0.799
SLKSLK 0.813 -0.030 -2 0.685
ROCK1ROCK1 0.813 0.177 -3 0.837
EEF2KEEF2K 0.813 -0.044 3 0.812
NEK4NEK4 0.812 -0.136 1 0.810
LOKLOK 0.812 -0.039 -2 0.734
PBKPBK 0.811 0.068 1 0.819
CK1ACK1A 0.810 0.152 -3 0.515
TTBK1TTBK1 0.810 -0.180 2 0.617
HASPINHASPIN 0.810 0.099 -1 0.737
STK33STK33 0.810 -0.088 2 0.627
MST1MST1 0.810 -0.062 1 0.808
NEK1NEK1 0.809 -0.106 1 0.815
VRK1VRK1 0.808 -0.113 2 0.817
PDHK3_TYRPDHK3_TYR 0.807 0.322 4 0.889
IRAK1IRAK1 0.807 -0.287 -1 0.732
PDHK4_TYRPDHK4_TYR 0.805 0.314 2 0.894
YANK3YANK3 0.805 0.012 2 0.423
PKG1PKG1 0.804 0.090 -2 0.620
YSK1YSK1 0.804 -0.078 2 0.800
TTKTTK 0.803 -0.004 -2 0.802
OSR1OSR1 0.801 -0.038 2 0.800
MAP2K6_TYRMAP2K6_TYR 0.800 0.238 -1 0.863
BMPR2_TYRBMPR2_TYR 0.800 0.226 -1 0.877
MAP2K4_TYRMAP2K4_TYR 0.797 0.139 -1 0.854
TESK1_TYRTESK1_TYR 0.796 0.054 3 0.876
PDHK1_TYRPDHK1_TYR 0.795 0.147 -1 0.867
MYO3BMYO3B 0.794 -0.035 2 0.811
MEK2MEK2 0.794 -0.303 2 0.796
RIPK2RIPK2 0.794 -0.267 1 0.736
BIKEBIKE 0.792 0.050 1 0.782
MAP2K7_TYRMAP2K7_TYR 0.792 -0.033 2 0.858
ALPHAK3ALPHAK3 0.792 -0.017 -1 0.747
PKMYT1_TYRPKMYT1_TYR 0.791 -0.003 3 0.853
LIMK2_TYRLIMK2_TYR 0.789 0.038 -3 0.893
MYO3AMYO3A 0.789 -0.083 1 0.816
PINK1_TYRPINK1_TYR 0.787 -0.078 1 0.850
ASK1ASK1 0.787 -0.163 1 0.747
CK1G3CK1G3 0.785 0.107 -3 0.470
NEK3NEK3 0.784 -0.247 1 0.763
TAO1TAO1 0.784 -0.126 1 0.737
EPHA6EPHA6 0.784 0.041 -1 0.847
TXKTXK 0.782 0.123 1 0.839
EPHB4EPHB4 0.781 0.003 -1 0.814
RETRET 0.780 -0.124 1 0.801
FGRFGR 0.778 -0.015 1 0.857
AAK1AAK1 0.778 0.091 1 0.692
LIMK1_TYRLIMK1_TYR 0.777 -0.184 2 0.833
DDR1DDR1 0.776 -0.108 4 0.801
MST1RMST1R 0.775 -0.160 3 0.802
YES1YES1 0.775 -0.043 -1 0.796
INSRRINSRR 0.774 -0.046 3 0.753
CK1G2CK1G2 0.774 0.129 -3 0.557
EPHA4EPHA4 0.773 0.000 2 0.802
TNK2TNK2 0.773 -0.030 3 0.751
STLK3STLK3 0.772 -0.224 1 0.743
JAK3JAK3 0.772 -0.095 1 0.774
ABL2ABL2 0.772 -0.071 -1 0.754
BLKBLK 0.772 0.069 -1 0.806
KDRKDR 0.772 -0.043 3 0.763
LCKLCK 0.772 0.030 -1 0.802
TYRO3TYRO3 0.771 -0.205 3 0.785
CSF1RCSF1R 0.771 -0.142 3 0.786
YANK2YANK2 0.771 -0.025 2 0.435
ROS1ROS1 0.770 -0.205 3 0.760
TYK2TYK2 0.770 -0.290 1 0.794
FLT1FLT1 0.770 0.016 -1 0.817
FYNFYN 0.770 0.098 -1 0.791
ITKITK 0.770 -0.021 -1 0.762
SRMSSRMS 0.769 -0.046 1 0.831
EPHB1EPHB1 0.768 -0.066 1 0.820
FGFR2FGFR2 0.768 -0.122 3 0.811
FERFER 0.768 -0.169 1 0.847
PTK2PTK2 0.767 0.153 -1 0.812
HCKHCK 0.767 -0.080 -1 0.793
JAK2JAK2 0.767 -0.257 1 0.787
METMET 0.767 -0.048 3 0.777
ABL1ABL1 0.766 -0.108 -1 0.741
KITKIT 0.766 -0.116 3 0.791
DDR2DDR2 0.766 0.040 3 0.740
EPHB3EPHB3 0.766 -0.075 -1 0.797
BMXBMX 0.766 -0.014 -1 0.687
EPHB2EPHB2 0.765 -0.057 -1 0.792
TNK1TNK1 0.764 -0.116 3 0.772
WEE1_TYRWEE1_TYR 0.763 -0.074 -1 0.723
NEK10_TYRNEK10_TYR 0.762 -0.157 1 0.685
MERTKMERTK 0.762 -0.112 3 0.777
SYKSYK 0.761 0.139 -1 0.781
EPHA7EPHA7 0.761 -0.053 2 0.793
FGFR3FGFR3 0.760 -0.093 3 0.784
TNNI3K_TYRTNNI3K_TYR 0.760 -0.129 1 0.805
PDGFRBPDGFRB 0.760 -0.255 3 0.794
TECTEC 0.759 -0.109 -1 0.680
EPHA3EPHA3 0.759 -0.094 2 0.766
FLT3FLT3 0.758 -0.228 3 0.782
AXLAXL 0.758 -0.185 3 0.778
ERBB2ERBB2 0.758 -0.132 1 0.752
TEKTEK 0.758 -0.200 3 0.730
JAK1JAK1 0.757 -0.162 1 0.742
FGFR1FGFR1 0.756 -0.231 3 0.766
EPHA5EPHA5 0.756 -0.034 2 0.786
FLT4FLT4 0.753 -0.174 3 0.767
SRCSRC 0.753 -0.036 -1 0.768
NTRK1NTRK1 0.753 -0.228 -1 0.781
BTKBTK 0.753 -0.248 -1 0.715
LYNLYN 0.752 -0.099 3 0.716
EPHA8EPHA8 0.752 -0.052 -1 0.793
LTKLTK 0.752 -0.206 3 0.736
PTK2BPTK2B 0.752 -0.075 -1 0.713
EPHA1EPHA1 0.751 -0.162 3 0.754
FRKFRK 0.751 -0.134 -1 0.797
ALKALK 0.751 -0.236 3 0.708
PDGFRAPDGFRA 0.749 -0.340 3 0.788
MATKMATK 0.749 -0.142 -1 0.688
INSRINSR 0.748 -0.213 3 0.726
PTK6PTK6 0.748 -0.291 -1 0.674
EGFREGFR 0.748 -0.093 1 0.650
NTRK3NTRK3 0.747 -0.181 -1 0.736
NTRK2NTRK2 0.746 -0.289 3 0.759
FGFR4FGFR4 0.746 -0.109 -1 0.728
ERBB4ERBB4 0.744 -0.009 1 0.672
EPHA2EPHA2 0.744 -0.045 -1 0.762
ZAP70ZAP70 0.742 0.056 -1 0.705
CSKCSK 0.741 -0.190 2 0.791
IGF1RIGF1R 0.737 -0.164 3 0.671
MUSKMUSK 0.727 -0.230 1 0.652
FESFES 0.721 -0.176 -1 0.655