Motif 412 (n=1,128)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0B4J203 | None | S801 | ochoa | receptor protein-tyrosine kinase (EC 2.7.10.1) | None |
A1L390 | PLEKHG3 | S617 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A1L390 | PLEKHG3 | S639 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A2RUS2 | DENND3 | S489 | ochoa | DENN domain-containing protein 3 | Guanine nucleotide exchange factor (GEF) activating RAB12. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB12 into its active GTP-bound form (PubMed:20937701). Regulates autophagy in response to starvation through RAB12 activation. Starvation leads to ULK1/2-dependent phosphorylation of Ser-472 and Ser-490, which in turn allows recruitment of 14-3-3 adapter proteins and leads to up-regulation of GEF activity towards RAB12 (By similarity). Also plays a role in protein transport from recycling endosomes to lysosomes, regulating, for instance, the degradation of the transferrin receptor and of the amino acid transporter PAT4 (PubMed:20937701). Starvation also induces phosphorylation at Tyr-858, which leads to up-regulated GEF activity and initiates autophagy (By similarity). {ECO:0000250|UniProtKB:A2RT67, ECO:0000269|PubMed:20937701}. |
A2RUS2 | DENND3 | S502 | ochoa | DENN domain-containing protein 3 | Guanine nucleotide exchange factor (GEF) activating RAB12. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB12 into its active GTP-bound form (PubMed:20937701). Regulates autophagy in response to starvation through RAB12 activation. Starvation leads to ULK1/2-dependent phosphorylation of Ser-472 and Ser-490, which in turn allows recruitment of 14-3-3 adapter proteins and leads to up-regulation of GEF activity towards RAB12 (By similarity). Also plays a role in protein transport from recycling endosomes to lysosomes, regulating, for instance, the degradation of the transferrin receptor and of the amino acid transporter PAT4 (PubMed:20937701). Starvation also induces phosphorylation at Tyr-858, which leads to up-regulated GEF activity and initiates autophagy (By similarity). {ECO:0000250|UniProtKB:A2RT67, ECO:0000269|PubMed:20937701}. |
A7KAX9 | ARHGAP32 | S731 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A8K5M9 | C15orf62 | S30 | ochoa | Uncharacterized protein C15orf62, mitochondrial | None |
B2RTY4 | MYO9A | S812 | ochoa | Unconventional myosin-IXa (Unconventional myosin-9a) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Regulates Rho by stimulating it's GTPase activity in neurons. Required for the regulation of neurite branching and motor neuron axon guidance (By similarity). {ECO:0000250|UniProtKB:Q8C170, ECO:0000250|UniProtKB:Q9Z1N3}. |
E7ERA6 | RNF223 | S19 | ochoa | RING finger protein 223 | None |
E9PAM4 | None | S431 | ochoa | Phosphatidylinositol 4-kinase type 2 (EC 2.7.1.67) | None |
F8WAN1 | SPECC1L-ADORA2A | S831 | ochoa | SPECC1L-ADORA2A readthrough (NMD candidate) | None |
H8Y6P7 | GCOM1 | S575 | ochoa | DNA-directed RNA polymerase II subunit GRINL1A (DNA-directed RNA polymerase II subunit M) (Glutamate receptor-like protein 1A) | None |
O00273 | DFFA | Y27 | ochoa | DNA fragmentation factor subunit alpha (DNA fragmentation factor 45 kDa subunit) (DFF-45) (Inhibitor of CAD) (ICAD) | Inhibitor of the caspase-activated DNase (DFF40). |
O00478 | BTN3A3 | S213 | ochoa | Butyrophilin subfamily 3 member A3 | Plays a role in T-cell responses in the adaptive immune response. {ECO:0000269|PubMed:22767497}. |
O00560 | SDCBP | S87 | ochoa | Syntenin-1 (Melanoma differentiation-associated protein 9) (MDA-9) (Pro-TGF-alpha cytoplasmic domain-interacting protein 18) (TACIP18) (Scaffold protein Pbp1) (Syndecan-binding protein 1) | Multifunctional adapter protein involved in diverse array of functions including trafficking of transmembrane proteins, neuro and immunomodulation, exosome biogenesis, and tumorigenesis (PubMed:26291527). Positively regulates TGFB1-mediated SMAD2/3 activation and TGFB1-induced epithelial-to-mesenchymal transition (EMT) and cell migration in various cell types. May increase TGFB1 signaling by enhancing cell-surface expression of TGFR1 by preventing the interaction between TGFR1 and CAV1 and subsequent CAV1-dependent internalization and degradation of TGFR1 (PubMed:25893292). In concert with SDC1/4 and PDCD6IP, regulates exosome biogenesis (PubMed:22660413). Regulates migration, growth, proliferation, and cell cycle progression in a variety of cancer types (PubMed:26539120). In adherens junctions may function to couple syndecans to cytoskeletal proteins or signaling components. Seems to couple transcription factor SOX4 to the IL-5 receptor (IL5RA) (PubMed:11498591). May also play a role in vesicular trafficking (PubMed:11179419). Seems to be required for the targeting of TGFA to the cell surface in the early secretory pathway (PubMed:10230395). {ECO:0000269|PubMed:10230395, ECO:0000269|PubMed:11179419, ECO:0000269|PubMed:11498591, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:25893292, ECO:0000269|PubMed:26539120, ECO:0000303|PubMed:26291527}. |
O14641 | DVL2 | S169 | ochoa|psp | Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) | Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}. |
O14654 | IRS4 | S457 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14681 | EI24 | S46 | ochoa | Etoposide-induced protein 2.4 homolog (p53-induced gene 8 protein) | Acts as a negative growth regulator via p53-mediated apoptosis pathway. Regulates formation of degradative autolysosomes during autophagy (By similarity). {ECO:0000250}. |
O14917 | PCDH17 | S1111 | ochoa | Protocadherin-17 (Protocadherin-68) | Potential calcium-dependent cell-adhesion protein. |
O14981 | BTAF1 | S1478 | ochoa | TATA-binding protein-associated factor 172 (EC 3.6.4.-) (ATP-dependent helicase BTAF1) (B-TFIID transcription factor-associated 170 kDa subunit) (TAF(II)170) (TBP-associated factor 172) (TAF-172) | Regulates transcription in association with TATA binding protein (TBP). Removes TBP from the TATA box in an ATP-dependent manner. |
O15018 | PDZD2 | S2373 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15040 | TECPR2 | S411 | ochoa | Tectonin beta-propeller repeat-containing protein 2 (WD repeat-containing protein KIAA0329/KIAA0297) | Probably plays a role as positive regulator of autophagy. {ECO:0000269|PubMed:23176824}. |
O15047 | SETD1A | S220 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15047 | SETD1A | S221 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15211 | RGL2 | S736 | ochoa | Ral guanine nucleotide dissociation stimulator-like 2 (RalGDS-like 2) (RalGDS-like factor) (Ras-associated protein RAB2L) | Probable guanine nucleotide exchange factor. Putative effector of Ras and/or Rap. Associates with the GTP-bound form of Rap 1A and H-Ras in vitro (By similarity). {ECO:0000250}. |
O15231 | ZNF185 | S130 | ochoa | Zinc finger protein 185 (LIM domain protein ZNF185) (P1-A) | May be involved in the regulation of cellular proliferation and/or differentiation. |
O15400 | STX7 | S125 | ochoa | Syntaxin-7 | May be involved in protein trafficking from the plasma membrane to the early endosome (EE) as well as in homotypic fusion of endocytic organelles. Mediates the endocytic trafficking from early endosomes to late endosomes and lysosomes. |
O15516 | CLOCK | S440 | ochoa | Circadian locomoter output cycles protein kaput (hCLOCK) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 8) (bHLHe8) | Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates the circadian expression of ICAM1, VCAM1, CCL2, THPO and MPL and also acts as an enhancer of the transactivation potential of NF-kappaB. Plays an important role in the homeostatic regulation of sleep. The CLOCK-BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The CLOCK-BMAL2 heterodimer activates the transcription of SERPINE1/PAI1 and BHLHE40/DEC1. The preferred binding motif for the CLOCK-BMAL1 heterodimer is 5'-CACGTGA-3', which contains a flanking adenine nucleotide at the 3-prime end of the canonical 6-nucleotide E-box sequence (PubMed:23229515). CLOCK specifically binds to the half-site 5'-CAC-3', while BMAL1 binds to the half-site 5'-GTGA-3' (PubMed:23229515). The CLOCK-BMAL1 heterodimer also recognizes the non-canonical E-box motifs 5'-AACGTGA-3' and 5'-CATGTGA-3' (PubMed:23229515). CLOCK has an intrinsic acetyltransferase activity, which enables circadian chromatin remodeling by acetylating histones and nonhistone proteins, including its own partner BMAL1. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) via the acetylation of multiple lysine residues located in its hinge region (PubMed:21980503). The acetyltransferase activity of CLOCK is as important as its transcription activity in circadian control. Acetylates metabolic enzymes IMPDH2 and NDUFA9 in a circadian manner. Facilitated by BMAL1, rhythmically interacts and acetylates argininosuccinate synthase 1 (ASS1) leading to enzymatic inhibition of ASS1 as well as the circadian oscillation of arginine biosynthesis and subsequent ureagenesis (PubMed:28985504). Drives the circadian rhythm of blood pressure through transcriptional activation of ATP1B1 (By similarity). {ECO:0000250|UniProtKB:O08785, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:18587630, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:21980503, ECO:0000269|PubMed:22284746, ECO:0000269|PubMed:23229515, ECO:0000269|PubMed:23785138, ECO:0000269|PubMed:24005054, ECO:0000269|PubMed:28985504}. |
O15527 | OGG1 | S231 | psp | N-glycosylase/DNA lyase [Includes: 8-oxoguanine DNA glycosylase (EC 3.2.2.-); DNA-(apurinic or apyrimidinic site) lyase (AP lyase) (EC 4.2.99.18)] | DNA repair enzyme that incises DNA at 8-oxoG residues. Excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (FAPY) from damaged DNA. Has a beta-lyase activity that nicks DNA 3' to the lesion. |
O43150 | ASAP2 | S821 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 (Development and differentiation-enhancing factor 2) (Paxillin-associated protein with ARF GAP activity 3) (PAG3) (Pyk2 C-terminus-associated protein) (PAP) | Activates the small GTPases ARF1, ARF5 and ARF6. Regulates the formation of post-Golgi vesicles and modulates constitutive secretion. Modulates phagocytosis mediated by Fc gamma receptor and ARF6. Modulates PXN recruitment to focal contacts and cell migration. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:10749932, ECO:0000269|PubMed:11304556}. |
O43295 | SRGAP3 | S1029 | ochoa | SLIT-ROBO Rho GTPase-activating protein 3 (srGAP3) (Mental disorder-associated GAP) (Rho GTPase-activating protein 14) (WAVE-associated Rac GTPase-activating protein) (WRP) | GTPase-activating protein for RAC1 and perhaps Cdc42, but not for RhoA small GTPase. May attenuate RAC1 signaling in neurons. {ECO:0000269|PubMed:12195014, ECO:0000269|PubMed:12447388}. |
O43295 | SRGAP3 | S1069 | ochoa | SLIT-ROBO Rho GTPase-activating protein 3 (srGAP3) (Mental disorder-associated GAP) (Rho GTPase-activating protein 14) (WAVE-associated Rac GTPase-activating protein) (WRP) | GTPase-activating protein for RAC1 and perhaps Cdc42, but not for RhoA small GTPase. May attenuate RAC1 signaling in neurons. {ECO:0000269|PubMed:12195014, ECO:0000269|PubMed:12447388}. |
O43303 | CCP110 | S383 | ochoa | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43379 | WDR62 | S979 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43379 | WDR62 | S1248 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O60268 | KIAA0513 | S73 | ochoa | Uncharacterized protein KIAA0513 | None |
O60292 | SIPA1L3 | S171 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60293 | ZFC3H1 | S41 | ochoa | Zinc finger C3H1 domain-containing protein (Coiled-coil domain-containing protein 131) (Proline/serine-rich coiled-coil protein 2) | Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters. {ECO:0000269|PubMed:27871484}. |
O60307 | MAST3 | S134 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60343 | TBC1D4 | S317 | ochoa | TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) | May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}. |
O60547 | GMDS | S57 | ochoa | GDP-mannose 4,6 dehydratase (EC 4.2.1.47) (GDP-D-mannose dehydratase) (GMD) | Catalyzes the conversion of GDP-D-mannose to GDP-4-dehydro-6-deoxy-D-mannose. {ECO:0000269|PubMed:9525924, ECO:0000269|PubMed:9603974}. |
O75022 | LILRB3 | S502 | ochoa | Leukocyte immunoglobulin-like receptor subfamily B member 3 (LIR-3) (Leukocyte immunoglobulin-like receptor 3) (CD85 antigen-like family member A) (Immunoglobulin-like transcript 5) (ILT-5) (Monocyte inhibitory receptor HL9) (CD antigen CD85a) | May act as receptor for class I MHC antigens. Becomes activated upon coligation of LILRB3 and immune receptors, such as FCGR2B and the B-cell receptor. Down-regulates antigen-induced B-cell activation by recruiting phosphatases to its immunoreceptor tyrosine-based inhibitor motifs (ITIM). {ECO:0000250|UniProtKB:P97484}. |
O75081 | CBFA2T3 | S458 | ochoa | Protein CBFA2T3 (MTG8-related protein 2) (Myeloid translocation gene on chromosome 16 protein) (hMTG16) (Zinc finger MYND domain-containing protein 4) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:12559562, PubMed:15203199). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). Reduces the protein levels and stability of the transcriptinal regulator HIF1A; interacts with EGLN1 and promotes the HIF1A prolyl hydroxylation-dependent ubiquitination and proteasomal degradation pathway (PubMed:25974097). Contributes to inhibition of glycolysis and stimulation of mitochondrial respiration by down-regulating the expression of glycolytic genes including PFKFB3, PFKFB4, PDK1, PFKP, LDHA and HK1 which are direct targets of HIF1A (PubMed:23840896, PubMed:25974097). Regulates the proliferation and the differentiation of erythroid progenitors by repressing the expression of TAL1 target genes (By similarity). Plays a role in granulocyte differentiation (PubMed:15231665). {ECO:0000250|UniProtKB:O54972, ECO:0000269|PubMed:12183414, ECO:0000269|PubMed:15231665, ECO:0000269|PubMed:16966434, ECO:0000269|PubMed:23251453, ECO:0000269|PubMed:23840896, ECO:0000269|PubMed:25974097, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}.; FUNCTION: Isoform 2 functions as an A-kinase-anchoring protein (PubMed:11823486). {ECO:0000269|PubMed:11823486}. |
O75122 | CLASP2 | S21 | ochoa | CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}. |
O75152 | ZC3H11A | S758 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75154 | RAB11FIP3 | S647 | ochoa|psp | Rab11 family-interacting protein 3 (FIP3) (FIP3-Rab11) (Rab11-FIP3) (Arfophilin-1) (EF hands-containing Rab-interacting protein) (Eferin) (MU-MB-17.148) | Downstream effector molecule for Rab11 GTPase which is involved in endocytic trafficking, cytokinesis and intracellular ciliogenesis by participating in membrane delivery (PubMed:15601896, PubMed:16148947, PubMed:17394487, PubMed:17628206, PubMed:18511905, PubMed:19327867, PubMed:20026645, PubMed:25673879, PubMed:26258637, PubMed:31204173). Recruited by Rab11 to endosomes where it links Rab11 to dynein motor complex (PubMed:20026645). The functional Rab11-RAB11FIP3-dynein complex regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endocytic recycling compartment (ERC) during interphase of cell cycle (PubMed:17394487, PubMed:20026645). Facilitates the interaction between dynein and dynactin and activates dynein processivity (PubMed:25035494). Binding with ASAP1 is needed to regulate the pericentrosomal localization of recycling endosomes (By similarity). The Rab11-RAB11FIP3 complex is also implicated in the transport during telophase of vesicles derived from recycling endosomes to the cleavage furrow via centrosome-anchored microtubules, where the vesicles function to deliver membrane during late cytokinesis and abscission (PubMed:15601896, PubMed:16148947). The recruitment of Rab11-RAB11FIP3-containing endosomes to the cleavage furrow and tethering to the midbody is co-mediated by RAB11FIP3 interaction with ARF6-exocyst and RACGAP1-MKLP1 tethering complexes (PubMed:17628206, PubMed:18511905). Also involved in the Rab11-Rabin8-Rab8 ciliogenesis cascade by facilitating the orderly assembly of a ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which directs preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:26258637, PubMed:31204173). Also promotes the activity of Rab11 and ASAP1 in the ARF4-dependent Golgi-to-cilia transport of the sensory receptor rhodopsin (PubMed:25673879). Competes with WDR44 for binding to Rab11, which controls intracellular ciliogenesis pathway (PubMed:31204173). May play a role in breast cancer cell motility by regulating actin cytoskeleton (PubMed:19327867). {ECO:0000250|UniProtKB:Q8CHD8, ECO:0000269|PubMed:15601896, ECO:0000269|PubMed:16148947, ECO:0000269|PubMed:17394487, ECO:0000269|PubMed:17628206, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19327867, ECO:0000269|PubMed:20026645, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26258637, ECO:0000269|PubMed:31204173}. |
O75376 | NCOR1 | S2351 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75427 | LRCH4 | S512 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) | Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}. |
O75995 | SASH3 | S26 | ochoa | SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) | May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}. |
O94886 | TMEM63A | S97 | ochoa | Mechanosensitive cation channel TMEM63A (Transmembrane protein 63A) (hTMEM63A) | Mechanosensitive cation channel with low conductance and high activation threshold (PubMed:30382938, PubMed:31587869, PubMed:37543036). In contrast to TMEM63B, does not show phospholipid scramblase activity (PubMed:39716028). Acts as a regulator of lysosomal morphology by mediating lysosomal mechanosensitivity (By similarity). Important for the baby's first breath and respiration throughout life (PubMed:38127458). Upon lung inflation conducts cation currents in alveolar type 1 and 2 cells triggering lamellar body exocytosis and surfactant secretion into airspace (PubMed:38127458). Also acts as an osmosensitive cation channel preferentially activated by hypotonic stress (By similarity). {ECO:0000250|UniProtKB:Q91YT8, ECO:0000269|PubMed:30382938, ECO:0000269|PubMed:31587869, ECO:0000269|PubMed:37543036, ECO:0000269|PubMed:38127458, ECO:0000269|PubMed:39716028}. |
O94887 | FARP2 | S339 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) | Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}. |
O94988 | FAM13A | S651 | ochoa | Protein FAM13A | None |
O95049 | TJP3 | S338 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95136 | S1PR2 | S331 | ochoa | Sphingosine 1-phosphate receptor 2 (S1P receptor 2) (S1P2) (Endothelial differentiation G-protein coupled receptor 5) (Sphingosine 1-phosphate receptor Edg-5) (S1P receptor Edg-5) | Receptor for the lysosphingolipid sphingosine 1-phosphate (S1P) (PubMed:10617617, PubMed:25274307). S1P is a bioactive lysophospholipid that elicits diverse physiological effects on most types of cells and tissues (PubMed:10617617). When expressed in rat HTC4 hepatoma cells, is capable of mediating S1P-induced cell proliferation and suppression of apoptosis (PubMed:10617617). Receptor for the chemokine-like protein FAM19A5 (PubMed:29453251). Mediates the inhibitory effect of FAM19A5 on vascular smooth muscle cell proliferation and migration (By similarity). In lymphoid follicles, couples the binding of S1P to the activation of GNA13 and downstream inhibition of AKT activation leading to suppression of germinal center (GC) B cell growth and migration outside the GC niche. {ECO:0000250|UniProtKB:P47752, ECO:0000269|PubMed:10617617, ECO:0000269|PubMed:25274307, ECO:0000269|PubMed:29453251}. |
O95208 | EPN2 | S172 | ochoa | Epsin-2 (EPS-15-interacting protein 2) | Plays a role in the formation of clathrin-coated invaginations and endocytosis. {ECO:0000269|PubMed:10567358}. |
O95210 | STBD1 | S210 | ochoa | Starch-binding domain-containing protein 1 (Genethonin-1) (Glycophagy cargo receptor STBD1) | Acts as a cargo receptor for glycogen. Delivers its cargo to an autophagic pathway called glycophagy, resulting in the transport of glycogen to lysosomes. {ECO:0000269|PubMed:20810658, ECO:0000269|PubMed:21893048, ECO:0000269|PubMed:24837458}. |
O95249 | GOSR1 | S51 | ochoa | Golgi SNAP receptor complex member 1 (28 kDa Golgi SNARE protein) (28 kDa cis-Golgi SNARE p28) (GOS-28) | Involved in transport from the ER to the Golgi apparatus as well as in intra-Golgi transport. It belongs to a super-family of proteins called t-SNAREs or soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor. May play a protective role against hydrogen peroxide induced cytotoxicity under glutathione depleted conditions in neuronal cells by regulating the intracellular ROS levels via inhibition of p38 MAPK (MAPK11, MAPK12, MAPK13 and MAPK14). Participates in docking and fusion stage of ER to cis-Golgi transport. Plays an important physiological role in VLDL-transport vesicle-Golgi fusion and thus in VLDL delivery to the hepatic cis-Golgi. {ECO:0000269|PubMed:15215310, ECO:0000269|PubMed:21860593}. |
O95759 | TBC1D8 | S1035 | ochoa | TBC1 domain family member 8 (AD 3) (Vascular Rab-GAP/TBC-containing protein) | May act as a GTPase-activating protein for Rab family protein(s). |
O95819 | MAP4K4 | S709 | psp | Mitogen-activated protein kinase kinase kinase kinase 4 (EC 2.7.11.1) (HPK/GCK-like kinase HGK) (MAPK/ERK kinase kinase kinase 4) (MEK kinase kinase 4) (MEKKK 4) (Nck-interacting kinase) | Serine/threonine kinase that plays a role in the response to environmental stress and cytokines such as TNF-alpha. Appears to act upstream of the JUN N-terminal pathway (PubMed:9890973). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). Phosphorylates SMAD1 on Thr-322 (PubMed:21690388). {ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:9890973}. |
P00519 | ABL1 | S619 | ochoa|psp | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P00533 | EGFR | S1070 | ochoa|psp | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P01042 | KNG1 | S390 | psp | Kininogen-1 (Alpha-2-thiol proteinase inhibitor) (Fitzgerald factor) (High molecular weight kininogen) (HMWK) (Williams-Fitzgerald-Flaujeac factor) [Cleaved into: Kininogen-1 heavy chain; T-kinin (Ile-Ser-Bradykinin); Bradykinin (Kallidin I); Lysyl-bradykinin (Kallidin II); Kininogen-1 light chain; Low molecular weight growth-promoting factor] | Kininogens are inhibitors of thiol proteases. HMW-kininogen plays an important role in blood coagulation by helping to position optimally prekallikrein and factor XI next to factor XII; HMW-kininogen inhibits the thrombin- and plasmin-induced aggregation of thrombocytes. LMW-kininogen inhibits the aggregation of thrombocytes. LMW-kininogen is in contrast to HMW-kininogen not involved in blood clotting.; FUNCTION: [Bradykinin]: The active peptide bradykinin is a potent vasodilatator that is released from HMW-kininogen shows a variety of physiological effects: (A) influence in smooth muscle contraction, (B) induction of hypotension, (C) natriuresis and diuresis, (D) decrease in blood glucose level, (E) it is a mediator of inflammation and causes (E1) increase in vascular permeability, (E2) stimulation of nociceptors (4E3) release of other mediators of inflammation (e.g. prostaglandins), (F) it has a cardioprotective effect (directly via bradykinin action, indirectly via endothelium-derived relaxing factor action). {ECO:0000305|PubMed:4322742, ECO:0000305|PubMed:6055465}. |
P01833 | PIGR | S274 | ochoa | Polymeric immunoglobulin receptor (PIgR) (Poly-Ig receptor) (Hepatocellular carcinoma-associated protein TB6) [Cleaved into: Secretory component] | [Polymeric immunoglobulin receptor]: Mediates selective transcytosis of polymeric IgA and IgM across mucosal epithelial cells. Binds polymeric IgA and IgM at the basolateral surface of epithelial cells. The complex is then transported across the cell to be secreted at the apical surface. During this process, a cleavage occurs that separates the extracellular (known as the secretory component) from the transmembrane segment. {ECO:0000269|PubMed:10229845, ECO:0000269|PubMed:15530357, ECO:0000269|PubMed:9379029}.; FUNCTION: [Secretory component]: Through its N-linked glycans ensures anchoring of secretory IgA (sIgA) molecules to mucus lining the epithelial surface to neutralize extracellular pathogens (PubMed:12150896). On its own (free form) may act as a non-specific microbial scavenger to prevent pathogen interaction with epithelial cells (PubMed:16543244). {ECO:0000269|PubMed:12150896, ECO:0000269|PubMed:16543244}. |
P04049 | RAF1 | S338 | psp | RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) | Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}. |
P04626 | ERBB2 | S1050 | ochoa | Receptor tyrosine-protein kinase erbB-2 (EC 2.7.10.1) (Metastatic lymph node gene 19 protein) (MLN 19) (Proto-oncogene Neu) (Proto-oncogene c-ErbB-2) (Tyrosine kinase-type cell surface receptor HER2) (p185erbB2) (CD antigen CD340) | Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. {ECO:0000305}.; FUNCTION: In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth. {ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:15380516, ECO:0000269|PubMed:21555369}. |
P07550 | ADRB2 | S261 | psp | Beta-2 adrenergic receptor (Beta-2 adrenoreceptor) (Beta-2 adrenoceptor) | Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. The beta-2-adrenergic receptor binds epinephrine with an approximately 30-fold greater affinity than it does norepinephrine. {ECO:0000269|PubMed:2831218, ECO:0000269|PubMed:7915137}. |
P07550 | ADRB2 | S345 | psp | Beta-2 adrenergic receptor (Beta-2 adrenoreceptor) (Beta-2 adrenoceptor) | Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. The beta-2-adrenergic receptor binds epinephrine with an approximately 30-fold greater affinity than it does norepinephrine. {ECO:0000269|PubMed:2831218, ECO:0000269|PubMed:7915137}. |
P0CAP2 | POLR2M | S178 | ochoa | DNA-directed RNA polymerase II subunit GRINL1A (DNA-directed RNA polymerase II subunit M) (Glutamate receptor-like protein 1A) | [Isoform 1]: Appears to be a stable component of the Pol II(G) complex form of RNA polymerase II (Pol II). Pol II synthesizes mRNA precursors and many functional non-coding RNAs and is the central component of the basal RNA polymerase II transcription machinery. May play a role in the Mediator complex-dependent regulation of transcription activation. Acts as a negative regulator of transcriptional activation; this repression is relieved by the Mediator complex, which restores Pol II(G) activator-dependent transcription to a level equivalent to that of Pol II. {ECO:0000269|PubMed:16769904, ECO:0000269|PubMed:30190596}. |
P0CG40 | SP9 | S54 | ochoa | Transcription factor Sp9 | Transcription factor which plays a key role in limb development. Positively regulates FGF8 expression in the apical ectodermal ridge (AER) and contributes to limb outgrowth in embryos (By similarity). {ECO:0000250}. |
P10070 | GLI2 | S823 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P10070 | GLI2 | S835 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P10645 | CHGA | S397 | ochoa | Chromogranin-A (CgA) (Pituitary secretory protein I) (SP-I) [Cleaved into: Vasostatin-1 (Vasostatin I); Vasostatin-2 (Vasostatin II); EA-92; ES-43; Pancreastatin; SS-18; WA-8; WE-14; LF-19; Catestatin (SL21); AL-11; GV-19; GR-44; ER-37; GE-25; Serpinin-RRG; Serpinin; p-Glu serpinin precursor] | [Pancreastatin]: Strongly inhibits glucose induced insulin release from the pancreas.; FUNCTION: [Catestatin]: Inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist (PubMed:15326220). Displays antibacterial activity against Gram-positive bacteria S.aureus and M.luteus, and Gram-negative bacteria E.coli and P.aeruginosa (PubMed:15723172, PubMed:24723458). Can induce mast cell migration, degranulation and production of cytokines and chemokines (PubMed:21214543). Acts as a potent scavenger of free radicals in vitro (PubMed:24723458). May play a role in the regulation of cardiac function and blood pressure (PubMed:18541522). {ECO:0000269|PubMed:15326220, ECO:0000269|PubMed:15723172, ECO:0000269|PubMed:21214543, ECO:0000269|PubMed:24723458, ECO:0000303|PubMed:18541522}.; FUNCTION: [Serpinin]: Regulates granule biogenesis in endocrine cells by up-regulating the transcription of protease nexin 1 (SERPINE2) via a cAMP-PKA-SP1 pathway. This leads to inhibition of granule protein degradation in the Golgi complex which in turn promotes granule formation. {ECO:0000250|UniProtKB:P26339}. |
P11362 | FGFR1 | S450 | ochoa | Fibroblast growth factor receptor 1 (FGFR-1) (EC 2.7.10.1) (Basic fibroblast growth factor receptor 1) (BFGFR) (bFGF-R-1) (Fms-like tyrosine kinase 2) (FLT-2) (N-sam) (Proto-oncogene c-Fgr) (CD antigen CD331) | Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of embryonic development, cell proliferation, differentiation and migration. Required for normal mesoderm patterning and correct axial organization during embryonic development, normal skeletogenesis and normal development of the gonadotropin-releasing hormone (GnRH) neuronal system. Phosphorylates PLCG1, FRS2, GAB1 and SHB. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Promotes phosphorylation of SHC1, STAT1 and PTPN11/SHP2. In the nucleus, enhances RPS6KA1 and CREB1 activity and contributes to the regulation of transcription. FGFR1 signaling is down-regulated by IL17RD/SEF, and by FGFR1 ubiquitination, internalization and degradation. {ECO:0000250|UniProtKB:P16092, ECO:0000269|PubMed:10830168, ECO:0000269|PubMed:11353842, ECO:0000269|PubMed:12181353, ECO:0000269|PubMed:1379697, ECO:0000269|PubMed:1379698, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17623664, ECO:0000269|PubMed:18480409, ECO:0000269|PubMed:19224897, ECO:0000269|PubMed:19261810, ECO:0000269|PubMed:19665973, ECO:0000269|PubMed:20133753, ECO:0000269|PubMed:20139426, ECO:0000269|PubMed:21765395, ECO:0000269|PubMed:8622701, ECO:0000269|PubMed:8663044}. |
P11836 | MS4A1 | S35 | ochoa | B-lymphocyte antigen CD20 (B-lymphocyte surface antigen B1) (Bp35) (Leukocyte surface antigen Leu-16) (Membrane-spanning 4-domains subfamily A member 1) (CD antigen CD20) | B-lymphocyte-specific membrane protein that plays a role in the regulation of cellular calcium influx necessary for the development, differentiation, and activation of B-lymphocytes (PubMed:12920111, PubMed:3925015, PubMed:7684739). Functions as a store-operated calcium (SOC) channel component promoting calcium influx after activation by the B-cell receptor/BCR (PubMed:12920111, PubMed:18474602, PubMed:7684739). {ECO:0000269|PubMed:12920111, ECO:0000269|PubMed:18474602, ECO:0000269|PubMed:3925015, ECO:0000269|PubMed:7684739}. |
P12268 | IMPDH2 | S495 | ochoa | Inosine-5'-monophosphate dehydrogenase 2 (IMP dehydrogenase 2) (IMPD 2) (IMPDH 2) (EC 1.1.1.205) (Inosine-5'-monophosphate dehydrogenase type II) (IMP dehydrogenase II) (IMPDH-II) | Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (PubMed:7763314, PubMed:7903306). Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism (PubMed:14766016). It may also have a role in the development of malignancy and the growth progression of some tumors. {ECO:0000269|PubMed:14766016, ECO:0000269|PubMed:7763314, ECO:0000269|PubMed:7903306}. |
P14416 | DRD2 | S147 | psp | D(2) dopamine receptor (Dopamine D2 receptor) | Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase (PubMed:21645528). Positively regulates postnatal regression of retinal hyaloid vessels via suppression of VEGFR2/KDR activity, downstream of OPN5 (By similarity). {ECO:0000250|UniProtKB:P61168, ECO:0000269|PubMed:21645528}. |
P14598 | NCF1 | S303 | psp | Neutrophil cytosol factor 1 (NCF-1) (47 kDa autosomal chronic granulomatous disease protein) (47 kDa neutrophil oxidase factor) (NCF-47K) (Neutrophil NADPH oxidase factor 1) (Nox organizer 2) (Nox-organizing protein 2) (SH3 and PX domain-containing protein 1A) (p47-phox) | Subunit of the phagocyte NADPH oxidase complex that mediates the transfer of electrons from cytosolic NADPH to O2 to produce the superoxide anion (O2(-)) (PubMed:2547247, PubMed:2550933, PubMed:38355798). In the activated complex, electrons are first transferred from NADPH to flavin adenine dinucleotide (FAD) and subsequently transferred via two heme molecules to molecular oxygen, producing superoxide through an outer-sphere reaction (PubMed:38355798). Activation of the NADPH oxidase complex is initiated by the assembly of cytosolic subunits of the NADPH oxidase complex with the core NADPH oxidase complex to form a complex at the plasma membrane or phagosomal membrane (PubMed:38355798). This activation process is initiated by phosphorylation dependent binding of the cytosolic NCF1/p47-phox subunit to the C-terminus of CYBA/p22-phox (PubMed:12732142, PubMed:19801500). {ECO:0000269|PubMed:12732142, ECO:0000269|PubMed:19801500, ECO:0000269|PubMed:2547247, ECO:0000269|PubMed:2550933, ECO:0000269|PubMed:38355798}. |
P15056 | BRAF | S364 | ochoa|psp | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P15056 | BRAF | S428 | psp | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P15407 | FOSL1 | S251 | ochoa | Fos-related antigen 1 (FRA-1) | None |
P15924 | DSP | S165 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P16234 | PDGFRA | S1041 | ochoa | Platelet-derived growth factor receptor alpha (PDGF-R-alpha) (PDGFR-alpha) (EC 2.7.10.1) (Alpha platelet-derived growth factor receptor) (Alpha-type platelet-derived growth factor receptor) (CD140 antigen-like family member A) (CD140a antigen) (Platelet-derived growth factor alpha receptor) (Platelet-derived growth factor receptor 2) (PDGFR-2) (CD antigen CD140a) | Tyrosine-protein kinase that acts as a cell-surface receptor for PDGFA, PDGFB and PDGFC and plays an essential role in the regulation of embryonic development, cell proliferation, survival and chemotaxis. Depending on the context, promotes or inhibits cell proliferation and cell migration. Plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells. Required for normal skeleton development and cephalic closure during embryonic development. Required for normal development of the mucosa lining the gastrointestinal tract, and for recruitment of mesenchymal cells and normal development of intestinal villi. Plays a role in cell migration and chemotaxis in wound healing. Plays a role in platelet activation, secretion of agonists from platelet granules, and in thrombin-induced platelet aggregation. Binding of its cognate ligands - homodimeric PDGFA, homodimeric PDGFB, heterodimers formed by PDGFA and PDGFB or homodimeric PDGFC -leads to the activation of several signaling cascades; the response depends on the nature of the bound ligand and is modulated by the formation of heterodimers between PDGFRA and PDGFRB. Phosphorylates PIK3R1, PLCG1, and PTPN11. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, mobilization of cytosolic Ca(2+) and the activation of protein kinase C. Phosphorylates PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, and thereby mediates activation of the AKT1 signaling pathway. Mediates activation of HRAS and of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3 and STAT5A and/or STAT5B. Receptor signaling is down-regulated by protein phosphatases that dephosphorylate the receptor and its down-stream effectors, and by rapid internalization of the activated receptor. {ECO:0000269|PubMed:10734113, ECO:0000269|PubMed:10947961, ECO:0000269|PubMed:11297552, ECO:0000269|PubMed:12522257, ECO:0000269|PubMed:1646396, ECO:0000269|PubMed:17087943, ECO:0000269|PubMed:1709159, ECO:0000269|PubMed:17141222, ECO:0000269|PubMed:20972453, ECO:0000269|PubMed:21224473, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:2554309, ECO:0000269|PubMed:8188664, ECO:0000269|PubMed:8760137, ECO:0000269|PubMed:8943348}. |
P16871 | IL7R | S365 | ochoa | Interleukin-7 receptor subunit alpha (IL-7 receptor subunit alpha) (IL-7R subunit alpha) (IL-7R-alpha) (IL-7RA) (CDw127) (CD antigen CD127) | Receptor for interleukin-7. Also acts as a receptor for thymic stromal lymphopoietin (TSLP). |
P19429 | TNNI3 | S23 | psp | Troponin I, cardiac muscle (Cardiac troponin I) | Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. |
P20700 | LMNB1 | S278 | ochoa | Lamin-B1 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:28716252, PubMed:32910914). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:28716252, PubMed:32910914). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:28716252, PubMed:32910914). {ECO:0000269|PubMed:28716252, ECO:0000269|PubMed:32910914}. |
P22607 | FGFR3 | S444 | ochoa | Fibroblast growth factor receptor 3 (FGFR-3) (EC 2.7.10.1) (CD antigen CD333) | Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation and apoptosis. Plays an essential role in the regulation of chondrocyte differentiation, proliferation and apoptosis, and is required for normal skeleton development. Regulates both osteogenesis and postnatal bone mineralization by osteoblasts. Promotes apoptosis in chondrocytes, but can also promote cancer cell proliferation. Required for normal development of the inner ear. Phosphorylates PLCG1, CBL and FRS2. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Plays a role in the regulation of vitamin D metabolism. Mutations that lead to constitutive kinase activation or impair normal FGFR3 maturation, internalization and degradation lead to aberrant signaling. Over-expressed or constitutively activated FGFR3 promotes activation of PTPN11/SHP2, STAT1, STAT5A and STAT5B. Secreted isoform 3 retains its capacity to bind FGF1 and FGF2 and hence may interfere with FGF signaling. {ECO:0000269|PubMed:10611230, ECO:0000269|PubMed:11294897, ECO:0000269|PubMed:11703096, ECO:0000269|PubMed:14534538, ECO:0000269|PubMed:16410555, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17145761, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17561467, ECO:0000269|PubMed:19088846, ECO:0000269|PubMed:19286672, ECO:0000269|PubMed:8663044}. |
P26045 | PTPN3 | S394 | ochoa | Tyrosine-protein phosphatase non-receptor type 3 (EC 3.1.3.48) (Protein-tyrosine phosphatase H1) (PTP-H1) | May act at junctions between the membrane and the cytoskeleton. Possesses tyrosine phosphatase activity. |
P27815 | PDE4A | S165 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4A (EC 3.1.4.53) (DPDE2) (PDE46) (cAMP-specific phosphodiesterase 4A) | Hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:11566027, ECO:0000269|PubMed:2160582}.; FUNCTION: [Isoform 1]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 2]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 3]: Efficiently hydrolyzes cAMP. The phosphodiesterase activity is not affected by calcium, calmodulin or cyclic GMP (cGMP) levels. Does not hydrolyze cGMP. {ECO:0000269|PubMed:7888306}.; FUNCTION: [Isoform 4]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:9677330}.; FUNCTION: [Isoform 6]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310, ECO:0000269|PubMed:17727341}.; FUNCTION: [Isoform 7]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:18095939}. |
P29350 | PTPN6 | S556 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 6 (EC 3.1.3.48) (Hematopoietic cell protein-tyrosine phosphatase) (Protein-tyrosine phosphatase 1C) (PTP-1C) (Protein-tyrosine phosphatase SHP-1) (SH-PTP1) | Tyrosine phosphatase enzyme that plays important roles in controlling immune signaling pathways and fundamental physiological processes such as hematopoiesis (PubMed:14739280, PubMed:29925997). Dephosphorylates and negatively regulate several receptor tyrosine kinases (RTKs) such as EGFR, PDGFR and FGFR, thereby modulating their signaling activities (PubMed:21258366, PubMed:9733788). When recruited to immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors such as immunoglobulin-like transcript 2/LILRB1, programmed cell death protein 1/PDCD1, CD3D, CD22, CLEC12A and other receptors involved in immune regulation, initiates their dephosphorylation and subsequently inhibits downstream signaling events (PubMed:11907092, PubMed:14739280, PubMed:37932456, PubMed:38166031). Modulates the signaling of several cytokine receptors including IL-4 receptor (PubMed:9065461). Additionally, targets multiple cytoplasmic signaling molecules including STING1, LCK or STAT1 among others involved in diverse cellular processes including modulation of T-cell activation or cGAS-STING signaling (PubMed:34811497, PubMed:38532423). Within the nucleus, negatively regulates the activity of some transcription factors such as NFAT5 via direct dephosphorylation. Also acts as a key transcriptional regulator of hepatic gluconeogenesis by controlling recruitment of RNA polymerase II to the PCK1 promoter together with STAT5A (PubMed:37595871). {ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:11266449, ECO:0000269|PubMed:11907092, ECO:0000269|PubMed:14739280, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:29925997, ECO:0000269|PubMed:34811497, ECO:0000269|PubMed:37595871, ECO:0000269|PubMed:37932456, ECO:0000269|PubMed:38166031, ECO:0000269|PubMed:38532423, ECO:0000269|PubMed:9065461, ECO:0000269|PubMed:9733788}. |
P30305 | CDC25B | S229 | ochoa | M-phase inducer phosphatase 2 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25B) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner (PubMed:17332740). The three isoforms seem to have a different level of activity (PubMed:1836978). {ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P31629 | HIVEP2 | S1031 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P31939 | ATIC | S313 | ochoa | Bifunctional purine biosynthesis protein ATIC (AICAR transformylase/inosine monophosphate cyclohydrolase) (ATIC) [Cleaved into: Bifunctional purine biosynthesis protein ATIC, N-terminally processed] [Includes: Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) (AICAR formyltransferase) (AICAR transformylase); Inosine 5'-monophosphate cyclohydrolase (IMP cyclohydrolase) (EC 3.5.4.10) (IMP synthase) (Inosinicase)] | Bifunctional enzyme that catalyzes the last two steps of purine biosynthesis (PubMed:11948179, PubMed:14756554). Acts as a transformylase that incorporates a formyl group to the AMP analog AICAR (5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide) to produce the intermediate formyl-AICAR (FAICAR) (PubMed:10985775, PubMed:11948179, PubMed:9378707). Can use both 10-formyldihydrofolate and 10-formyltetrahydrofolate as the formyl donor in this reaction (PubMed:10985775). Also catalyzes the cyclization of FAICAR to inosine monophosphate (IMP) (PubMed:11948179, PubMed:14756554). Is able to convert thio-AICAR to 6-mercaptopurine ribonucleotide, an inhibitor of purine biosynthesis used in the treatment of human leukemias (PubMed:10985775). Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571). {ECO:0000269|PubMed:10985775, ECO:0000269|PubMed:11948179, ECO:0000269|PubMed:14756554, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:9378707}. |
P32418 | SLC8A1 | S284 | ochoa | Sodium/calcium exchanger 1 (Na(+)/Ca(2+)-exchange protein 1) (Solute carrier family 8 member 1) | Mediates the exchange of one Ca(2+) ion against three to four Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes (PubMed:11241183, PubMed:1374913, PubMed:1476165). Contributes to Ca(2+) transport during excitation-contraction coupling in muscle (PubMed:11241183, PubMed:1374913, PubMed:1476165). In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum (PubMed:11241183, PubMed:1374913, PubMed:1476165). SLC8A1 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels rapidly return to baseline (PubMed:11241183, PubMed:1374913, PubMed:1476165). Required for normal embryonic heart development and the onset of heart contractions (By similarity). {ECO:0000250|UniProtKB:P70414, ECO:0000269|PubMed:11241183, ECO:0000269|PubMed:1374913, ECO:0000269|PubMed:1476165}. |
P35568 | IRS1 | S329 | ochoa | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35568 | IRS1 | S1100 | ochoa|psp | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35609 | ACTN2 | S594 | ochoa | Alpha-actinin-2 (Alpha-actinin skeletal muscle isoform 2) (F-actin cross-linking protein) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein. |
P38159 | RBMX | Y272 | ochoa | RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] | RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}. |
P39880 | CUX1 | S1215 | ochoa|psp | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P40818 | USP8 | Y717 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) | Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}. |
P42694 | HELZ | S1763 | ochoa | Probable helicase with zinc finger domain (EC 3.6.4.-) (Down-regulated in human cancers protein) | May act as a helicase that plays a role in RNA metabolism in multiple tissues and organs within the developing embryo. |
P43405 | SYK | S306 | ochoa | Tyrosine-protein kinase SYK (EC 2.7.10.2) (Spleen tyrosine kinase) (p72-Syk) | Non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immunoreceptors like the B-cell receptor (BCR). Regulates several biological processes including innate and adaptive immunity, cell adhesion, osteoclast maturation, platelet activation and vascular development (PubMed:12387735, PubMed:33782605). Assembles into signaling complexes with activated receptors at the plasma membrane via interaction between its SH2 domains and the receptor tyrosine-phosphorylated ITAM domains. The association with the receptor can also be indirect and mediated by adapter proteins containing ITAM or partial hemITAM domains. The phosphorylation of the ITAM domains is generally mediated by SRC subfamily kinases upon engagement of the receptor. More rarely signal transduction via SYK could be ITAM-independent. Direct downstream effectors phosphorylated by SYK include DEPTOR, VAV1, PLCG1, PI-3-kinase, LCP2 and BLNK (PubMed:12456653, PubMed:15388330, PubMed:34634301, PubMed:8657103). Initially identified as essential in B-cell receptor (BCR) signaling, it is necessary for the maturation of B-cells most probably at the pro-B to pre-B transition (PubMed:12456653). Activated upon BCR engagement, it phosphorylates and activates BLNK an adapter linking the activated BCR to downstream signaling adapters and effectors. It also phosphorylates and activates PLCG1 and the PKC signaling pathway. It also phosphorylates BTK and regulates its activity in B-cell antigen receptor (BCR)-coupled signaling. In addition to its function downstream of BCR also plays a role in T-cell receptor signaling. Also plays a crucial role in the innate immune response to fungal, bacterial and viral pathogens. It is for instance activated by the membrane lectin CLEC7A. Upon stimulation by fungal proteins, CLEC7A together with SYK activates immune cells inducing the production of ROS. Also activates the inflammasome and NF-kappa-B-mediated transcription of chemokines and cytokines in presence of pathogens. Regulates neutrophil degranulation and phagocytosis through activation of the MAPK signaling cascade (By similarity). Required for the stimulation of neutrophil phagocytosis by IL15 (PubMed:15123770). Also mediates the activation of dendritic cells by cell necrosis stimuli. Also involved in mast cells activation. Involved in interleukin-3/IL3-mediated signaling pathway in basophils (By similarity). Also functions downstream of receptors mediating cell adhesion (PubMed:12387735). Relays for instance, integrin-mediated neutrophils and macrophages activation and P-selectin receptor/SELPG-mediated recruitment of leukocytes to inflammatory loci. Also plays a role in non-immune processes. It is for instance involved in vascular development where it may regulate blood and lymphatic vascular separation. It is also required for osteoclast development and function. Functions in the activation of platelets by collagen, mediating PLCG2 phosphorylation and activation. May be coupled to the collagen receptor by the ITAM domain-containing FCER1G. Also activated by the membrane lectin CLEC1B that is required for activation of platelets by PDPN/podoplanin. Involved in platelet adhesion being activated by ITGB3 engaged by fibrinogen. Together with CEACAM20, enhances production of the cytokine CXCL8/IL-8 via the NFKB pathway and may thus have a role in the intestinal immune response (By similarity). {ECO:0000250|UniProtKB:P48025, ECO:0000269|PubMed:12387735, ECO:0000269|PubMed:12456653, ECO:0000269|PubMed:15123770, ECO:0000269|PubMed:15388330, ECO:0000269|PubMed:19909739, ECO:0000269|PubMed:33782605, ECO:0000269|PubMed:34634301, ECO:0000269|PubMed:8657103, ECO:0000269|PubMed:9535867}. |
P46108 | CRK | S40 | ochoa | Adapter molecule crk (Proto-oncogene c-Crk) (p38) | Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1. {ECO:0000269|PubMed:12432078}.; FUNCTION: [Isoform Crk-II]: Regulates cell adhesion, spreading and migration (PubMed:31311869). Mediates attachment-induced MAPK8 activation, membrane ruffling and cell motility in a Rac-dependent manner. Involved in phagocytosis of apoptotic cells and cell motility via its interaction with DOCK1 and DOCK4 (PubMed:19004829). May regulate the EFNA5-EPHA3 signaling (By similarity). {ECO:0000250|UniProtKB:Q64010, ECO:0000269|PubMed:11870224, ECO:0000269|PubMed:1630456, ECO:0000269|PubMed:17515907, ECO:0000269|PubMed:19004829, ECO:0000269|PubMed:31311869}. |
P46109 | CRKL | S41 | ochoa | Crk-like protein | May mediate the transduction of intracellular signals. |
P46937 | YAP1 | S163 | ochoa|psp | Transcriptional coactivator YAP1 (Yes-associated protein 1) (Protein yorkie homolog) (Yes-associated protein YAP65 homolog) | Transcriptional regulator with dual roles as a coactivator and corepressor. Critical downstream regulatory target in the Hippo signaling pathway, crucial for organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:17974916, PubMed:18280240, PubMed:18579750, PubMed:21364637, PubMed:30447097). The Hippo signaling pathway core involves a kinase cascade featuring STK3/MST2 and STK4/MST1, along with its regulatory partner SAV1, which phosphorylates and activates LATS1/2 in complex with their regulatory protein, MOB1. This activation leads to the phosphorylation and inactivation of the YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288). Phosphorylation of YAP1 by LATS1/2 prevents its nuclear translocation, thereby regulating the expression of its target genes (PubMed:18158288, PubMed:26598551, PubMed:34404733). The transcriptional regulation of gene expression requires TEAD transcription factors and modulates cell growth, anchorage-independent growth, and induction of epithelial-mesenchymal transition (EMT) (PubMed:18579750). Plays a key role in tissue tension and 3D tissue shape by regulating the cortical actomyosin network, acting via ARHGAP18, a Rho GTPase activating protein that suppresses F-actin polymerization (PubMed:25778702). It also suppresses ciliogenesis by acting as a transcriptional corepressor of TEAD4 target genes AURKA and PLK1 (PubMed:25849865). In conjunction with WWTR1, regulates TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). Synergizes with WBP2 to enhance PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:P46938, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:17974916, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:18280240, ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:25778702, ECO:0000269|PubMed:25849865, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:30447097, ECO:0000269|PubMed:34404733}.; FUNCTION: [Isoform 2]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.; FUNCTION: [Isoform 3]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}. |
P47736 | RAP1GAP | S498 | ochoa | Rap1 GTPase-activating protein 1 (Rap1GAP) (Rap1GAP1) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15141215}. |
P49815 | TSC2 | S1337 | ochoa | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P50443 | SLC26A2 | S35 | ochoa | Sulfate transporter (Diastrophic dysplasia protein) (Solute carrier family 26 member 2) | Sulfate transporter which mediates sulfate uptake into chondrocytes in order to maintain adequate sulfation of proteoglycans which is needed for cartilage development (PubMed:11448940, PubMed:15294877, PubMed:20219950, PubMed:7923357). Mediates electroneutral anion exchange of sulfate ions for oxalate ions and of sulfate and oxalate ions for chloride ions (PubMed:20219950). Mediates exchange of sulfate and oxalate ions for hydroxyl ions and of chloride ions for bromide, iodide and nitrate ions (By similarity). The coupling of sulfate transport to both hydroxyl and chloride ions likely serves to ensure transport at both acidic pH when most sulfate uptake is mediated by sulfate-hydroxide exchange and alkaline pH when most sulfate uptake is mediated by sulfate-chloride exchange (By similarity). Essential for chondrocyte proliferation, differentiation and cell size expansion (By similarity). {ECO:0000250|UniProtKB:Q62273, ECO:0000269|PubMed:11448940, ECO:0000269|PubMed:15294877, ECO:0000269|PubMed:20219950, ECO:0000269|PubMed:7923357}. |
P51003 | PAPOLA | S653 | ochoa | Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) | Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}. |
P51398 | DAP3 | S251 | psp | Small ribosomal subunit protein mS29 (EC 3.6.5.-) (28S ribosomal protein S29, mitochondrial) (MRP-S29) (S29mt) (Death-associated protein 3) (DAP-3) (Ionizing radiation resistance conferring protein) | As a component of the mitochondrial small ribosomal subunit, it plays a role in the translation of mitochondrial mRNAs (PubMed:39701103). Involved in mediating interferon-gamma-induced cell death (PubMed:7499268). Displays GTPase activity in vitro (PubMed:39701103). {ECO:0000269|PubMed:39701103, ECO:0000269|PubMed:7499268}. |
P51813 | BMX | S324 | ochoa | Cytoplasmic tyrosine-protein kinase BMX (EC 2.7.10.2) (Bone marrow tyrosine kinase gene in chromosome X protein) (Epithelial and endothelial tyrosine kinase) (ETK) (NTK38) | Non-receptor tyrosine kinase that plays central but diverse modulatory roles in various signaling processes involved in the regulation of actin reorganization, cell migration, cell proliferation and survival, cell adhesion, and apoptosis. Participates in signal transduction stimulated by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen receptors and integrins. Induces tyrosine phosphorylation of BCAR1 in response to integrin regulation. Activation of BMX by integrins is mediated by PTK2/FAK1, a key mediator of integrin signaling events leading to the regulation of actin cytoskeleton and cell motility. Plays a critical role in TNF-induced angiogenesis, and implicated in the signaling of TEK and FLT1 receptors, 2 important receptor families essential for angiogenesis. Required for the phosphorylation and activation of STAT3, a transcription factor involved in cell differentiation. Also involved in interleukin-6 (IL6) induced differentiation. Also plays a role in programming adaptive cytoprotection against extracellular stress in different cell systems, salivary epithelial cells, brain endothelial cells, and dermal fibroblasts. May be involved in regulation of endocytosis through its interaction with an endosomal protein RUFY1. May also play a role in the growth and differentiation of hematopoietic cells; as well as in signal transduction in endocardial and arterial endothelial cells. {ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:12370298, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:15788485, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:9520419}. |
P51957 | NEK4 | S661 | ochoa | Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) | Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}. |
P52943 | CRIP2 | S114 | ochoa | Cysteine-rich protein 2 (CRP-2) (Protein ESP1) | None |
P54132 | BLM | S601 | ochoa | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P54296 | MYOM2 | S58 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P55196 | AFDN | S561 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55196 | AFDN | S1082 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P57078 | RIPK4 | S405 | ochoa | Receptor-interacting serine/threonine-protein kinase 4 (EC 2.7.11.1) (Ankyrin repeat domain-containing protein 3) (PKC-delta-interacting protein kinase) | Serine/threonine protein kinase (By similarity). Required for embryonic skin development and correct skin homeostasis in adults, via phosphorylation of PKP1 and subsequent promotion of keratinocyte differentiation and cell adhesion (By similarity). It is a direct transcriptional target of TP63 (PubMed:22197488). Plays a role in NF-kappa-B activation (PubMed:12446564). {ECO:0000250|UniProtKB:Q9ERK0, ECO:0000269|PubMed:12446564, ECO:0000269|PubMed:22197488}. |
P98171 | ARHGAP4 | S216 | ochoa | Rho GTPase-activating protein 4 (Rho-GAP hematopoietic protein C1) (Rho-type GTPase-activating protein 4) (p115) | Inhibitory effect on stress fiber organization. May down-regulate Rho-like GTPase in hematopoietic cells. |
P98171 | ARHGAP4 | S497 | ochoa | Rho GTPase-activating protein 4 (Rho-GAP hematopoietic protein C1) (Rho-type GTPase-activating protein 4) (p115) | Inhibitory effect on stress fiber organization. May down-regulate Rho-like GTPase in hematopoietic cells. |
Q01850 | CDR2 | S310 | ochoa | Cerebellar degeneration-related protein 2 (Major Yo paraneoplastic antigen) (Paraneoplastic cerebellar degeneration-associated antigen) | None |
Q02241 | KIF23 | S911 | ochoa|psp | Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}. |
Q02833 | RASSF7 | S96 | ochoa | Ras association domain-containing protein 7 (HRAS1-related cluster protein 1) | Negatively regulates stress-induced JNK activation and apoptosis by promoting MAP2K7 phosphorylation and inhibiting its ability to activate JNK. Following prolonged stress, anti-apoptotic effect stops because of degradation of RASSF7 protein via the ubiquitin-proteasome pathway. Required for the activation of AURKB and chromosomal congression during mitosis where it stimulates microtubule polymerization. {ECO:0000269|PubMed:20629633, ECO:0000269|PubMed:21278800}. |
Q03164 | KMT2A | S3026 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q05469 | LIPE | S950 | ochoa|psp | Hormone-sensitive lipase (HSL) (EC 3.1.1.79) (Monoacylglycerol lipase LIPE) (EC 3.1.1.23) (Retinyl ester hydrolase) (REH) | Lipase with broad substrate specificity, catalyzing the hydrolysis of triacylglycerols (TAGs), diacylglycerols (DAGs), monoacylglycerols (MAGs), cholesteryl esters and retinyl esters (PubMed:15716583, PubMed:15955102, PubMed:19800417, PubMed:8812477). Shows a preferential hydrolysis of DAGs over TAGs and MAGs and preferentially hydrolyzes the fatty acid (FA) esters at the sn-3 position of the glycerol backbone in DAGs (PubMed:19800417). Preferentially hydrolyzes FA esters at the sn-1 and sn-2 positions of the glycerol backbone in TAGs (By similarity). Catalyzes the hydrolysis of 2-arachidonoylglycerol, an endocannabinoid and of 2-acetyl monoalkylglycerol ether, the penultimate precursor of the pathway for de novo synthesis of platelet-activating factor (By similarity). In adipose tissue and heart, it primarily hydrolyzes stored triglycerides to free fatty acids, while in steroidogenic tissues, it principally converts cholesteryl esters to free cholesterol for steroid hormone production (By similarity). {ECO:0000250|UniProtKB:P15304, ECO:0000250|UniProtKB:P54310, ECO:0000269|PubMed:15716583, ECO:0000269|PubMed:15955102, ECO:0000269|PubMed:19800417, ECO:0000269|PubMed:8812477}. |
Q08999 | RBL2 | S671 | ochoa | Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) | Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor. |
Q08AD1 | CAMSAP2 | S415 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q10570 | CPSF1 | S765 | ochoa | Cleavage and polyadenylation specificity factor subunit 1 (Cleavage and polyadenylation specificity factor 160 kDa subunit) (CPSF 160 kDa subunit) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (PubMed:14749727). May play a role in eye morphogenesis and the development of retinal ganglion cell projections to the midbrain (By similarity). {ECO:0000250|UniProtKB:A0A0R4IC37, ECO:0000269|PubMed:14749727}. |
Q12767 | TMEM94 | S797 | ochoa | Transmembrane protein 94 (Endoplasmic reticulum magnesium ATPase) | Could function in the uptake of Mg(2+) from the cytosol into the endoplasmic reticulum and regulate intracellular Mg(2+) homeostasis. {ECO:0000269|PubMed:38513662}. |
Q12789 | GTF3C1 | S602 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12789 | GTF3C1 | S844 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12968 | NFATC3 | S415 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) | Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}. |
Q13009 | TIAM1 | S59 | ochoa | Rho guanine nucleotide exchange factor TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) (TIAM-1) | Guanyl-nucleotide exchange factor that activates RHO-like proteins and connects extracellular signals to cytoskeletal activities. Activates RAC1, CDC42, and to a lesser extent RHOA and their downstream signaling to regulate processes like cell adhesion and cell migration. {ECO:0000269|PubMed:20361982, ECO:0000269|PubMed:25684205}. |
Q13107 | USP4 | S592 | ochoa | Ubiquitin carboxyl-terminal hydrolase 4 (EC 3.4.19.12) (Deubiquitinating enzyme 4) (Ubiquitin thioesterase 4) (Ubiquitin-specific-processing protease 4) (Ubiquitous nuclear protein homolog) | Deubiquitinating enzyme that removes conjugated ubiquitin from target proteins (PubMed:16316627, PubMed:16339847, PubMed:16472766, PubMed:20595234, PubMed:22347420, PubMed:25404403, PubMed:28604766, PubMed:30514904). Deubiquitinates PDPK1 (PubMed:22347420). Deubiquitinates TRIM21 (PubMed:16316627). Deubiquitinates receptor ADORA2A which increases the amount of functional receptor at the cell surface (PubMed:16339847). Deubiquitinates HAS2 (PubMed:28604766). Deubiquitinates RHEB in response to EGF signaling, promoting mTORC1 signaling (PubMed:30514904). May regulate mRNA splicing through deubiquitination of the U4 spliceosomal protein PRPF3 (PubMed:20595234). This may prevent its recognition by the U5 component PRPF8 thereby destabilizing interactions within the U4/U6.U5 snRNP (PubMed:20595234). May also play a role in the regulation of quality control in the ER (PubMed:16339847). {ECO:0000269|PubMed:16316627, ECO:0000269|PubMed:16339847, ECO:0000269|PubMed:16472766, ECO:0000269|PubMed:20595234, ECO:0000269|PubMed:22347420, ECO:0000269|PubMed:25404403, ECO:0000269|PubMed:28604766, ECO:0000269|PubMed:30514904}. |
Q13177 | PAK2 | S19 | ochoa | Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}. |
Q13322 | GRB10 | S133 | ochoa | Growth factor receptor-bound protein 10 (GRB10 adapter protein) (Insulin receptor-binding protein Grb-IR) | Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation. Blocks association between INSR and IRS1 and IRS2 and prevents insulin-stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. May play a role in mediating insulin-stimulated ubiquitination of INSR, leading to proteasomal degradation. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2. {ECO:0000269|PubMed:12493740, ECO:0000269|PubMed:15060076, ECO:0000269|PubMed:16434550, ECO:0000269|PubMed:17376403}. |
Q13370 | PDE3B | S279 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13370 | PDE3B | S295 | ochoa|psp | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13370 | PDE3B | S441 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13370 | PDE3B | S494 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13427 | PPIG | S375 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13428 | TCOF1 | S478 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13428 | TCOF1 | S997 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13439 | GOLGA4 | S40 | ochoa | Golgin subfamily A member 4 (256 kDa golgin) (Golgin-245) (Protein 72.1) (Trans-Golgi p230) | Involved in vesicular trafficking at the Golgi apparatus level. May play a role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with MACF1. Involved in endosome-to-Golgi trafficking (PubMed:29084197). {ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:29084197}. |
Q13439 | GOLGA4 | S88 | ochoa | Golgin subfamily A member 4 (256 kDa golgin) (Golgin-245) (Protein 72.1) (Trans-Golgi p230) | Involved in vesicular trafficking at the Golgi apparatus level. May play a role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with MACF1. Involved in endosome-to-Golgi trafficking (PubMed:29084197). {ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:29084197}. |
Q13480 | GAB1 | Y265 | ochoa | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q13671 | RIN1 | S291 | ochoa|psp | Ras and Rab interactor 1 (Ras inhibitor JC99) (Ras interaction/interference protein 1) | Ras effector protein, which may serve as an inhibitory modulator of neuronal plasticity in aversive memory formation. Can affect Ras signaling at different levels. First, by competing with RAF1 protein for binding to activated Ras. Second, by enhancing signaling from ABL1 and ABL2, which regulate cytoskeletal remodeling. Third, by activating RAB5A, possibly by functioning as a guanine nucleotide exchange factor (GEF) for RAB5A, by exchanging bound GDP for free GTP, and facilitating Ras-activated receptor endocytosis. {ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9208849}. |
Q13835 | PKP1 | S118 | ochoa|psp | Plakophilin-1 (Band 6 protein) (B6P) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}. |
Q13835 | PKP1 | S232 | ochoa | Plakophilin-1 (Band 6 protein) (B6P) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}. |
Q14123 | PDE1C | S468 | ochoa | Dual specificity calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1C (Cam-PDE 1C) (EC 3.1.4.17) (Hcam3) | Calmodulin-dependent cyclic nucleotide phosphodiesterase with a dual specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:29860631, PubMed:8557689). Has a high affinity for both cAMP and cGMP (PubMed:8557689). Modulates the amplitude and duration of the cAMP signal in sensory cilia in response to odorant stimulation, hence contributing to the generation of action potentials. Regulates smooth muscle cell proliferation. Regulates the stability of growth factor receptors, including PDGFRB (Probable). {ECO:0000269|PubMed:29860631, ECO:0000269|PubMed:8557689, ECO:0000305|PubMed:29860631}. |
Q14153 | FAM53B | S166 | ochoa | Protein FAM53B (Protein simplet) | Acts as a regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) nuclear localization. {ECO:0000269|PubMed:25183871}. |
Q14244 | MAP7 | S200 | ochoa | Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) | Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}. |
Q14315 | FLNC | S2623 | ochoa|psp | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14432 | PDE3A | S293 | ochoa|psp | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) | Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}. |
Q14432 | PDE3A | S438 | ochoa|psp | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) | Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}. |
Q14469 | HES1 | S37 | psp | Transcription factor HES-1 (Class B basic helix-loop-helix protein 39) (bHLHb39) (Hairy and enhancer of split 1) (Hairy homolog) (Hairy-like protein) (hHL) | Transcriptional repressor of genes that require a bHLH protein for their transcription. May act as a negative regulator of myogenesis by inhibiting the functions of MYOD1 and ASH1. Binds DNA on N-box motifs: 5'-CACNAG-3' with high affinity and on E-box motifs: 5'-CANNTG-3' with low affinity (By similarity). May play a role in a functional FA core complex response to DNA cross-link damage, being required for the stability and nuclear localization of FA core complex proteins, as well as for FANCD2 monoubiquitination in response to DNA damage. {ECO:0000250, ECO:0000269|PubMed:18550849}. |
Q14524 | SCN5A | S483 | psp | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
Q14678 | KANK1 | Y324 | ochoa | KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) | Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}. |
Q14680 | MELK | S335 | ochoa | Maternal embryonic leucine zipper kinase (hMELK) (EC 2.7.11.1) (Protein kinase Eg3) (pEg3 kinase) (Protein kinase PK38) (hPK38) (Tyrosine-protein kinase MELK) (EC 2.7.10.2) | Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, self-renewal of stem cells, apoptosis and splicing regulation. Has a broad substrate specificity; phosphorylates BCL2L14, CDC25B, MAP3K5/ASK1 and ZNF622. Acts as an activator of apoptosis by phosphorylating and activating MAP3K5/ASK1. Acts as a regulator of cell cycle, notably by mediating phosphorylation of CDC25B, promoting localization of CDC25B to the centrosome and the spindle poles during mitosis. Plays a key role in cell proliferation and carcinogenesis. Required for proliferation of embryonic and postnatal multipotent neural progenitors. Phosphorylates and inhibits BCL2L14, possibly leading to affect mammary carcinogenesis by mediating inhibition of the pro-apoptotic function of BCL2L14. Also involved in the inhibition of spliceosome assembly during mitosis by phosphorylating ZNF622, thereby contributing to its redirection to the nucleus. May also play a role in primitive hematopoiesis. {ECO:0000269|PubMed:11802789, ECO:0000269|PubMed:12400006, ECO:0000269|PubMed:14699119, ECO:0000269|PubMed:15908796, ECO:0000269|PubMed:16216881, ECO:0000269|PubMed:17280616}. |
Q14789 | GOLGB1 | S538 | ochoa | Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) | May participate in forming intercisternal cross-bridges of the Golgi complex. |
Q14839 | CHD4 | S309 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q14934 | NFATC4 | S334 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 4 (NF-ATc4) (NFATc4) (T-cell transcription factor NFAT3) (NF-AT3) | Ca(2+)-regulated transcription factor that is involved in several processes, including the development and function of the immune, cardiovascular, musculoskeletal, and nervous systems (PubMed:11514544, PubMed:11997522, PubMed:17213202, PubMed:17875713, PubMed:18668201, PubMed:25663301, PubMed:7749981). Involved in T-cell activation, stimulating the transcription of cytokine genes, including that of IL2 and IL4 (PubMed:18347059, PubMed:18668201, PubMed:7749981). Along with NFATC3, involved in embryonic heart development. Following JAK/STAT signaling activation and as part of a complex with NFATC3 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). Involved in mitochondrial energy metabolism required for cardiac morphogenesis and function (By similarity). Transactivates many genes involved in the cardiovascular system, including AGTR2, NPPB/BNP (in synergy with GATA4), NPPA/ANP/ANF and MYH7/beta-MHC (By similarity). Involved in the regulation of adult hippocampal neurogenesis. Involved in BDNF-driven pro-survival signaling in hippocampal adult-born neurons. Involved in the formation of long-term spatial memory and long-term potentiation (By similarity). In cochlear nucleus neurons, may play a role in deafferentation-induced apoptosis during the developmental critical period, when auditory neurons depend on afferent input for survival (By similarity). Binds to and activates the BACE1/Beta-secretase 1 promoter, hence may regulate the proteolytic processing of the amyloid precursor protein (APP) (PubMed:25663301). Plays a role in adipocyte differentiation (PubMed:11997522). May be involved in myoblast differentiation into myotubes (PubMed:17213202). Binds the consensus DNA sequence 5'-GGAAAAT-3' (Probable). In the presence of CREBBP, activates TNF transcription (PubMed:11514544). Binds to PPARG gene promoter and regulates its activity (PubMed:11997522). Binds to PPARG and REG3G gene promoters (By similarity). {ECO:0000250|UniProtKB:D3Z9H7, ECO:0000250|UniProtKB:Q8K120, ECO:0000269|PubMed:11514544, ECO:0000269|PubMed:11997522, ECO:0000269|PubMed:17213202, ECO:0000269|PubMed:17875713, ECO:0000269|PubMed:18347059, ECO:0000269|PubMed:18668201, ECO:0000269|PubMed:25663301, ECO:0000269|PubMed:7749981, ECO:0000305}. |
Q15047 | SETDB1 | S110 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15052 | ARHGEF6 | S123 | ochoa | Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) | Acts as a RAC1 guanine nucleotide exchange factor (GEF). |
Q15111 | PLCL1 | S76 | ochoa | Inactive phospholipase C-like protein 1 (PLC-L1) (Phospholipase C-deleted in lung carcinoma) (Phospholipase C-related but catalytically inactive protein) (PRIP) | Involved in an inositol phospholipid-based intracellular signaling cascade. Shows no PLC activity to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol. Component in the phospho-dependent endocytosis process of GABA A receptor (By similarity). Regulates the turnover of receptors and thus contributes to the maintenance of GABA-mediated synaptic inhibition. Its aberrant expression could contribute to the genesis and progression of lung carcinoma. Acts as an inhibitor of PPP1C. {ECO:0000250, ECO:0000269|PubMed:17254016}. |
Q15139 | PRKD1 | S218 | ochoa | Serine/threonine-protein kinase D1 (EC 2.7.11.13) (Protein kinase C mu type) (Protein kinase D) (nPKC-D1) (nPKC-mu) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response (PubMed:10764790, PubMed:12505989, PubMed:12637538, PubMed:17442957, PubMed:18509061, PubMed:19135240, PubMed:19211839). Phosphorylates the epidermal growth factor receptor (EGFR) on dual threonine residues, which leads to the suppression of epidermal growth factor (EGF)-induced MAPK8/JNK1 activation and subsequent JUN phosphorylation (PubMed:10523301). Phosphorylates RIN1, inducing RIN1 binding to 14-3-3 proteins YWHAB, YWHAE and YWHAZ and increased competition with RAF1 for binding to GTP-bound form of Ras proteins (NRAS, HRAS and KRAS). Acts downstream of the heterotrimeric G-protein beta/gamma-subunit complex to maintain the structural integrity of the Golgi membranes, and is required for protein transport along the secretory pathway. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane. May act by activating the lipid kinase phosphatidylinositol 4-kinase beta (PI4KB) at the TGN for the local synthesis of phosphorylated inositol lipids, which induces a sequential production of DAG, phosphatidic acid (PA) and lyso-PA (LPA) that are necessary for membrane fission and generation of specific transport carriers to the cell surface. Under oxidative stress, is phosphorylated at Tyr-463 via SRC-ABL1 and contributes to cell survival by activating IKK complex and subsequent nuclear translocation and activation of NFKB1 (PubMed:12505989). Involved in cell migration by regulating integrin alpha-5/beta-3 recycling and promoting its recruitment in newly forming focal adhesion. In osteoblast differentiation, mediates the bone morphogenetic protein 2 (BMP2)-induced nuclear export of HDAC7, which results in the inhibition of HDAC7 transcriptional repression of RUNX2 (PubMed:18509061). In neurons, plays an important role in neuronal polarity by regulating the biogenesis of TGN-derived dendritic vesicles, and is involved in the maintenance of dendritic arborization and Golgi structure in hippocampal cells. May potentiate mitogenesis induced by the neuropeptide bombesin or vasopressin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression. Plays an important role in the proliferative response induced by low calcium in keratinocytes, through sustained activation of MAPK1/3 (ERK1/2) pathway. Downstream of novel PKC signaling, plays a role in cardiac hypertrophy by phosphorylating HDAC5, which in turn triggers XPO1/CRM1-dependent nuclear export of HDAC5, MEF2A transcriptional activation and induction of downstream target genes that promote myocyte hypertrophy and pathological cardiac remodeling (PubMed:18332134). Mediates cardiac troponin I (TNNI3) phosphorylation at the PKA sites, which results in reduced myofilament calcium sensitivity, and accelerated crossbridge cycling kinetics. The PRKD1-HDAC5 pathway is also involved in angiogenesis by mediating VEGFA-induced specific subset of gene expression, cell migration, and tube formation (PubMed:19211839). In response to VEGFA, is necessary and required for HDAC7 phosphorylation which induces HDAC7 nuclear export and endothelial cell proliferation and migration. During apoptosis induced by cytarabine and other genotoxic agents, PRKD1 is cleaved by caspase-3 at Asp-378, resulting in activation of its kinase function and increased sensitivity of cells to the cytotoxic effects of genotoxic agents (PubMed:10764790). In epithelial cells, is required for transducing flagellin-stimulated inflammatory responses by binding and phosphorylating TLR5, which contributes to MAPK14/p38 activation and production of inflammatory cytokines (PubMed:17442957). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). May play a role in inflammatory response by mediating activation of NF-kappa-B. May be involved in pain transmission by directly modulating TRPV1 receptor (PubMed:15471852). Plays a role in activated KRAS-mediated stabilization of ZNF304 in colorectal cancer (CRC) cells (PubMed:24623306). Regulates nuclear translocation of transcription factor TFEB in macrophages upon live S.enterica infection (By similarity). {ECO:0000250|UniProtKB:Q62101, ECO:0000269|PubMed:10523301, ECO:0000269|PubMed:10764790, ECO:0000269|PubMed:12505989, ECO:0000269|PubMed:12637538, ECO:0000269|PubMed:15471852, ECO:0000269|PubMed:17442957, ECO:0000269|PubMed:18332134, ECO:0000269|PubMed:18509061, ECO:0000269|PubMed:19135240, ECO:0000269|PubMed:19211839, ECO:0000269|PubMed:24623306}. |
Q15436 | SEC23A | S587 | ochoa | Protein transport protein Sec23A (hSec23A) (SEC23-related protein A) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex. Required for the translocation of insulin-induced glucose transporter SLC2A4/GLUT4 to the cell membrane (By similarity). {ECO:0000250|UniProtKB:Q01405, ECO:0000269|PubMed:16980979, ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:27551091, ECO:0000269|PubMed:8898360}. |
Q15477 | SKIC2 | S255 | ochoa | Superkiller complex protein 2 (Ski2) (EC 3.6.4.13) (Helicase-like protein) (HLP) | Helicase component of the SKI complex, a multiprotein complex that assists the RNA-degrading exosome during the mRNA decay and quality-control pathways (PubMed:16024656, PubMed:32006463, PubMed:35120588). The SKI complex catalyzes mRNA extraction from 80S ribosomal complexes in the 3'-5' direction and channels mRNA to the cytosolic exosome for degradation (PubMed:32006463, PubMed:35120588). SKI-mediated extraction of mRNA from stalled ribosomes allow binding of the Pelota-HBS1L complex and subsequent ribosome disassembly by ABCE1 for ribosome recycling (PubMed:32006463). In the nucleus, the SKI complex associates with transcriptionally active genes in a manner dependent on PAF1 complex (PAF1C) (PubMed:16024656). {ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:32006463, ECO:0000269|PubMed:35120588}. |
Q15648 | MED1 | S770 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15717 | ELAVL1 | S99 | ochoa | ELAV-like protein 1 (Hu-antigen R) (HuR) | RNA-binding protein that binds to the 3'-UTR region of mRNAs and increases their stability (PubMed:14517288, PubMed:18285462, PubMed:31358969). Involved in embryonic stem cell (ESC) differentiation: preferentially binds mRNAs that are not methylated by N6-methyladenosine (m6A), stabilizing them, promoting ESC differentiation (By similarity). Has also been shown to be capable of binding to m6A-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398, PubMed:17632515, PubMed:18285462, PubMed:23519412, PubMed:8626503). Binds avidly to the AU-rich element in FOS and IL3/interleukin-3 mRNAs. In the case of the FOS AU-rich element, binds to a core element of 27 nucleotides that contain AUUUA, AUUUUA, and AUUUUUA motifs. Binds preferentially to the 5'-UUUU[AG]UUU-3' motif in vitro (PubMed:8626503). With ZNF385A, binds the 3'-UTR of p53/TP53 mRNA to control their nuclear export induced by CDKN2A. Hence, may regulate p53/TP53 expression and mediate in part the CDKN2A anti-proliferative activity. May also bind with ZNF385A the CCNB1 mRNA (By similarity). Increases the stability of the leptin mRNA harboring an AU-rich element (ARE) in its 3' UTR (PubMed:29180010). {ECO:0000250|UniProtKB:P70372, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:17632515, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:23519412, ECO:0000269|PubMed:29180010, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:32245947, ECO:0000269|PubMed:8626503}. |
Q15942 | ZYX | S169 | ochoa | Zyxin (Zyxin-2) | Adhesion plaque protein. Binds alpha-actinin and the CRP protein. Important for targeting TES and ENA/VASP family members to focal adhesions and for the formation of actin-rich structures. May be a component of a signal transduction pathway that mediates adhesion-stimulated changes in gene expression (By similarity). {ECO:0000250}. |
Q16513 | PKN2 | S582 | ochoa | Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) | PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}. |
Q16625 | OCLN | S369 | ochoa | Occludin | May play a role in the formation and regulation of the tight junction (TJ) paracellular permeability barrier. It is able to induce adhesion when expressed in cells lacking tight junctions. {ECO:0000269|PubMed:19114660}.; FUNCTION: (Microbial infection) Acts as a coreceptor for hepatitis C virus (HCV) in hepatocytes. {ECO:0000269|PubMed:19182773, ECO:0000269|PubMed:20375010}. |
Q16643 | DBN1 | S141 | ochoa|psp | Drebrin (Developmentally-regulated brain protein) | Actin cytoskeleton-organizing protein that plays a role in the formation of cell projections (PubMed:20215400). Required for actin polymerization at immunological synapses (IS) and for the recruitment of the chemokine receptor CXCR4 to IS (PubMed:20215400). Plays a role in dendritic spine morphogenesis and organization, including the localization of the dopamine receptor DRD1 to the dendritic spines (By similarity). Involved in memory-related synaptic plasticity in the hippocampus (By similarity). {ECO:0000250|UniProtKB:Q9QXS6, ECO:0000269|PubMed:20215400}. |
Q16832 | DDR2 | S460 | ochoa | Discoidin domain-containing receptor 2 (Discoidin domain receptor 2) (EC 2.7.10.1) (CD167 antigen-like family member B) (Discoidin domain-containing receptor tyrosine kinase 2) (Neurotrophic tyrosine kinase, receptor-related 3) (Receptor protein-tyrosine kinase TKT) (Tyrosine-protein kinase TYRO10) (CD antigen CD167b) | Tyrosine kinase involved in the regulation of tissues remodeling (PubMed:30449416). It functions as a cell surface receptor for fibrillar collagen and regulates cell differentiation, remodeling of the extracellular matrix, cell migration and cell proliferation. Required for normal bone development. Regulates osteoblast differentiation and chondrocyte maturation via a signaling pathway that involves MAP kinases and leads to the activation of the transcription factor RUNX2. Regulates remodeling of the extracellular matrix by up-regulation of the collagenases MMP1, MMP2 and MMP13, and thereby facilitates cell migration and tumor cell invasion. Promotes fibroblast migration and proliferation, and thereby contributes to cutaneous wound healing. {ECO:0000269|PubMed:16186104, ECO:0000269|PubMed:16186108, ECO:0000269|PubMed:17665456, ECO:0000269|PubMed:18201965, ECO:0000269|PubMed:20004161, ECO:0000269|PubMed:20564243, ECO:0000269|PubMed:20734453, ECO:0000269|PubMed:30449416, ECO:0000269|PubMed:9659899}. |
Q17RB8 | LONRF1 | S412 | ochoa | LON peptidase N-terminal domain and RING finger protein 1 (RING finger protein 191) | None |
Q17RC7 | EXOC3L4 | S79 | ochoa | Exocyst complex component 3-like protein 4 | None |
Q17RS7 | GEN1 | S801 | ochoa | Flap endonuclease GEN homolog 1 (EC 3.1.-.-) | Endonuclease which resolves Holliday junctions (HJs) by the introduction of symmetrically related cuts across the junction point, to produce nicked duplex products in which the nicks can be readily ligated. Four-way DNA intermediates, also known as Holliday junctions, are formed during homologous recombination and DNA repair, and their resolution is necessary for proper chromosome segregation (PubMed:19020614, PubMed:26682650). Cleaves HJs by a nick and counter-nick mechanism involving dual coordinated incisions that lead to the formation of ligatable nicked duplex products. Cleavage of the first strand is rate limiting, while second strand cleavage is rapid. Largely monomeric, dimerizes on the HJ and the first nick occurs upon dimerization at the junction (PubMed:26578604). Efficiently cleaves both single and double HJs contained within large recombination intermediates. Exhibits a weak sequence preference for incision between two G residues that reside in a T-rich region of DNA (PubMed:28049850). Also has endonuclease activity on 5'-flap and replication fork (RF) DNA substrates (PubMed:26578604). {ECO:0000269|PubMed:19020614, ECO:0000269|PubMed:26578604, ECO:0000269|PubMed:26682650, ECO:0000269|PubMed:28049850}. |
Q27J81 | INF2 | S1076 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q2KJY2 | KIF26B | S1491 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q2LD37 | BLTP1 | S3635 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2M1Z3 | ARHGAP31 | S1105 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2PPJ7 | RALGAPA2 | S765 | ochoa | Ral GTPase-activating protein subunit alpha-2 (250 kDa substrate of Akt) (AS250) (p220) | Catalytic subunit of the heterodimeric RalGAP2 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q4G0J3 | LARP7 | S299 | ochoa | La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) | RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}. |
Q4G0P3 | HYDIN | S3972 | ochoa | Hydrocephalus-inducing protein homolog | Required for ciliary motility. {ECO:0000250}. |
Q53ET0 | CRTC2 | S170 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q53QZ3 | ARHGAP15 | S211 | ochoa | Rho GTPase-activating protein 15 (ArhGAP15) (Rho-type GTPase-activating protein 15) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has activity toward RAC1. Overexpression results in an increase in actin stress fibers and cell contraction. {ECO:0000269|PubMed:12650940}. |
Q562F6 | SGO2 | S278 | ochoa | Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) | Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}. |
Q5JSZ5 | PRRC2B | S2160 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTV8 | TOR1AIP1 | S253 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5M775 | SPECC1 | S54 | ochoa | Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) | None |
Q5SQI0 | ATAT1 | S271 | ochoa | Alpha-tubulin N-acetyltransferase 1 (Alpha-TAT) (Alpha-TAT1) (TAT) (EC 2.3.1.108) (Acetyltransferase mec-17 homolog) | Specifically acetylates 'Lys-40' in alpha-tubulin on the lumenal side of microtubules. Promotes microtubule destabilization and accelerates microtubule dynamics; this activity may be independent of acetylation activity. Acetylates alpha-tubulin with a slow enzymatic rate, due to a catalytic site that is not optimized for acetyl transfer. Enters the microtubule through each end and diffuses quickly throughout the lumen of microtubules. Acetylates only long/old microtubules because of its slow acetylation rate since it does not have time to act on dynamically unstable microtubules before the enzyme is released. Required for normal sperm flagellar function. Promotes directional cell locomotion and chemotaxis, through AP2A2-dependent acetylation of alpha-tubulin at clathrin-coated pits that are concentrated at the leading edge of migrating cells. May facilitate primary cilium assembly. {ECO:0000255|HAMAP-Rule:MF_03130, ECO:0000269|PubMed:20829795, ECO:0000269|PubMed:21068373, ECO:0000269|PubMed:24097348, ECO:0000269|PubMed:24906155}. |
Q5T0Z8 | C6orf132 | S313 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T1R4 | HIVEP3 | S2353 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T5C0 | STXBP5 | S781 | ochoa | Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) | Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}. |
Q5T7N3 | KANK4 | S163 | ochoa | KN motif and ankyrin repeat domain-containing protein 4 (Ankyrin repeat domain-containing protein 38) | May be involved in the control of cytoskeleton formation by regulating actin polymerization. {ECO:0000269|PubMed:17996375}. |
Q5T8A7 | PPP1R26 | S1160 | ochoa | Protein phosphatase 1 regulatory subunit 26 | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. May positively regulate cell proliferation. {ECO:0000269|PubMed:16053918, ECO:0000269|PubMed:19389623}. |
Q5T8I3 | EEIG2 | S227 | ochoa | EEIG family member 2 (EEIG2) | None |
Q5T9C2 | EEIG1 | S250 | ochoa | Early estrogen-induced gene 1 protein (EEIG1) | Key component of TNFSF11/RANKL- and TNF-induced osteoclastogenesis pathways, thereby mediates bone resorption in pathological bone loss conditions (By similarity). Required for TNFSF11/RANKL-induced osteoclastogenesis via its interaction with TNFRSF11A/RANK, thereby facilitates the downsteam transcription of NFATC1 and activation of PLCG2 (By similarity). Facilitates recruitment of the transcriptional repressor PRDM1/BLIMP1 to the promoter of the anti-osteoclastogenesis gene IRF8, thereby resulting in transcription of osteoclast differentiation factors (By similarity). May play a role in estrogen action (PubMed:14605097). {ECO:0000250|UniProtKB:Q78T81, ECO:0000269|PubMed:14605097}. |
Q5TCZ1 | SH3PXD2A | S818 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5TCZ1 | SH3PXD2A | S819 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5THJ4 | VPS13D | S2434 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5THJ4 | VPS13D | S3799 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5VT52 | RPRD2 | S1068 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VV41 | ARHGEF16 | S577 | ochoa | Rho guanine nucleotide exchange factor 16 (Ephexin-4) | Guanyl-nucleotide exchange factor of the RHOG GTPase stimulating the exchange of RHOG-associated GDP for GTP. May play a role in chemotactic cell migration by mediating the activation of RAC1 by EPHA2. May also activate CDC42 and mediate activation of CDC42 by the viral protein HPV16 E6. {ECO:0000269|PubMed:20679435}. |
Q5VV67 | PPRC1 | S482 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) | Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}. |
Q5VZ89 | DENND4C | S999 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5VZK9 | CARMIL1 | S1067 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q5W0B1 | OBI1 | S525 | ochoa | ORC ubiquitin ligase 1 (OBI1) (EC 2.3.2.27) (RING finger protein 219) | E3 ubiquitin ligase essential for DNA replication origin activation during S phase (PubMed:31160578). Acts as a replication origin selector which selects the origins to be fired and catalyzes the multi-mono-ubiquitination of a subset of chromatin-bound ORC3 and ORC5 during S-phase (PubMed:31160578). {ECO:0000269|PubMed:31160578}. |
Q63HQ0 | AP1AR | S174 | ochoa | AP-1 complex-associated regulatory protein (2c18) (Adaptor-related protein complex 1-associated regulatory protein) (Gamma-1-adaptin brefeldin A resistance protein) (GBAR) (Gamma-BAR) (Gamma-A1-adaptin and kinesin interactor) (Gadkin) | Necessary for adaptor protein complex 1 (AP-1)-dependent transport between the trans-Golgi network and endosomes. Regulates the membrane association of AP1G1/gamma1-adaptin, one of the subunits of the AP-1 adaptor complex. The direct interaction with AP1G1/gamma1-adaptin attenuates the release of the AP-1 complex from membranes. Regulates endosomal membrane traffic via association with AP-1 and KIF5B thus linking kinesin-based plus-end-directed microtubular transport to AP-1-dependent membrane traffic. May act as effector of AP-1 in calcium-induced endo-lysosome secretion. Inhibits Arp2/3 complex function; negatively regulates cell spreading, size and motility via intracellular sequestration of the Arp2/3 complex. {ECO:0000269|PubMed:15775984, ECO:0000269|PubMed:19706427, ECO:0000269|PubMed:21525240, ECO:0000269|PubMed:22689987}. |
Q63ZY3 | KANK2 | S71 | ochoa | KN motif and ankyrin repeat domain-containing protein 2 (Ankyrin repeat domain-containing protein 25) (Matrix-remodeling-associated protein 3) (SRC-1-interacting protein) (SIP) (SRC-interacting protein) (SRC1-interacting protein) | Involved in transcription regulation by sequestering in the cytoplasm nuclear receptor coactivators such as NCOA1, NCOA2 and NCOA3 (PubMed:17476305). Involved in regulation of caspase-independent apoptosis by sequestering the proapoptotic factor AIFM1 in mitochondria (PubMed:22371500). Pro-apoptotic stimuli can induce its proteasomal degradation allowing the translocation of AIFM1 to the nucleus to induce apoptosis (PubMed:22371500). Involved in the negative control of vitamin D receptor signaling pathway (PubMed:24671081). Involved in actin stress fibers formation through its interaction with ARHGDIA and the regulation of the Rho signaling pathway (PubMed:17996375, PubMed:25961457). May thereby play a role in cell adhesion and migration, regulating for instance podocytes migration during development of the kidney (PubMed:25961457). Through the Rho signaling pathway may also regulate cell proliferation (By similarity). {ECO:0000250|UniProtKB:Q8BX02, ECO:0000269|PubMed:17476305, ECO:0000269|PubMed:17996375, ECO:0000269|PubMed:22371500, ECO:0000269|PubMed:24671081, ECO:0000269|PubMed:25961457}. |
Q659C4 | LARP1B | S862 | ochoa | La-related protein 1B (La ribonucleoprotein domain family member 1B) (La ribonucleoprotein domain family member 2) (La-related protein 2) | None |
Q68CZ2 | TNS3 | S941 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q69YQ0 | SPECC1L | S831 | ochoa | Cytospin-A (Renal carcinoma antigen NY-REN-22) (Sperm antigen with calponin homology and coiled-coil domains 1-like) (SPECC1-like protein) | Involved in cytokinesis and spindle organization. May play a role in actin cytoskeleton organization and microtubule stabilization and hence required for proper cell adhesion and migration. {ECO:0000269|PubMed:21703590}. |
Q6DN12 | MCTP2 | S134 | ochoa | Multiple C2 and transmembrane domain-containing protein 2 | Might play a role in the development of cardiac outflow tract. {ECO:0000269|PubMed:23773997}. |
Q6GYQ0 | RALGAPA1 | S796 | ochoa | Ral GTPase-activating protein subunit alpha-1 (GAP-related-interacting partner to E12) (GRIPE) (GTPase-activating Rap/Ran-GAP domain-like 1) (Tuberin-like protein 1) (p240) | Catalytic subunit of the heterodimeric RalGAP1 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q6IQ23 | PLEKHA7 | S117 | ochoa | Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) | Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}. |
Q6KC79 | NIPBL | S255 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6P2E9 | EDC4 | S37 | ochoa | Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) | In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}. |
Q6P3S1 | DENND1B | S652 | ochoa | DENN domain-containing protein 1B (Connecdenn 2) (Protein FAM31B) | Guanine nucleotide exchange factor (GEF) for RAB35 that acts as a regulator of T-cell receptor (TCR) internalization in TH2 cells (PubMed:20154091, PubMed:20937701, PubMed:24520163, PubMed:26774822). Acts by promoting the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form (PubMed:20154091, PubMed:20937701). Plays a role in clathrin-mediated endocytosis (PubMed:20154091). Controls cytokine production in TH2 lymphocytes by controlling the rate of TCR internalization and routing to endosomes: acts by mediating clathrin-mediated endocytosis of TCR via its interaction with the adapter protein complex 2 (AP-2) and GEF activity (PubMed:26774822). Dysregulation leads to impaired TCR down-modulation and recycling, affecting cytokine production in TH2 cells (PubMed:26774822). {ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:24520163, ECO:0000269|PubMed:26774822}. |
Q6P597 | KLC3 | S430 | ochoa | Kinesin light chain 3 (KLC2-like) (kinesin light chain 2) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport. Plays a role during spermiogenesis in the development of the sperm tail midpiece and in the normal function of spermatozoa (By similarity). May play a role in the formation of the mitochondrial sheath formation in the developing spermatid midpiece (By similarity). {ECO:0000250|UniProtKB:Q91W40}. |
Q6P996 | PDXDC1 | S736 | ochoa | Pyridoxal-dependent decarboxylase domain-containing protein 1 (EC 4.1.1.-) | None |
Q6PKG0 | LARP1 | S823 | ochoa | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6PL18 | ATAD2 | S336 | ochoa | ATPase family AAA domain-containing protein 2 (EC 3.6.1.-) (AAA nuclear coregulator cancer-associated protein) (ANCCA) | May be a transcriptional coactivator of the nuclear receptor ESR1 required to induce the expression of a subset of estradiol target genes, such as CCND1, MYC and E2F1. May play a role in the recruitment or occupancy of CREBBP at some ESR1 target gene promoters. May be required for histone hyperacetylation. Involved in the estrogen-induced cell proliferation and cell cycle progression of breast cancer cells. {ECO:0000269|PubMed:17998543}. |
Q6R327 | RICTOR | S1407 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6T4R5 | NHS | Y1193 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UUV7 | CRTC3 | S321 | ochoa | CREB-regulated transcription coactivator 3 (Transducer of regulated cAMP response element-binding protein 3) (TORC-3) (Transducer of CREB protein 3) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:15466468, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223, ECO:0000269|PubMed:17644518}. |
Q6UXY8 | TMC5 | S269 | ochoa | Transmembrane channel-like protein 5 | Probable component of an ion channel (Probable). Molecular function hasn't been characterized yet (Probable). {ECO:0000305}. |
Q6WKZ4 | RAB11FIP1 | S434 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6XZF7 | DNMBP | S482 | ochoa | Dynamin-binding protein (Scaffold protein Tuba) | Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}. |
Q6ZRV2 | FAM83H | S1024 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZU35 | CRACD | S873 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q70E73 | RAPH1 | S979 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q70EL2 | USP45 | S523 | ochoa | Ubiquitin carboxyl-terminal hydrolase 45 (EC 3.4.19.12) (Deubiquitinating enzyme 45) (Ubiquitin thioesterase 45) (Ubiquitin-specific-processing protease 45) | Catalyzes the deubiquitination of SPDL1 (PubMed:30258100). Plays a role in the repair of UV-induced DNA damage via deubiquitination of ERCC1, promoting its recruitment to DNA damage sites (PubMed:25538220). May be involved in the maintenance of photoreceptor function (PubMed:30573563). May play a role in normal retinal development (By similarity). Plays a role in cell migration (PubMed:30258100). {ECO:0000250|UniProtKB:E9QG68, ECO:0000269|PubMed:25538220, ECO:0000269|PubMed:30258100, ECO:0000269|PubMed:30573563}. |
Q765P7 | MTSS2 | S321 | ochoa | Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) | Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}. |
Q76L83 | ASXL2 | S570 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q7L2E3 | DHX30 | S225 | ochoa | ATP-dependent RNA helicase DHX30 (EC 3.6.4.13) (DEAH box protein 30) | RNA-dependent helicase (PubMed:29100085). Plays an important role in the assembly of the mitochondrial large ribosomal subunit (PubMed:25683715, PubMed:29100085). Required for optimal function of the zinc-finger antiviral protein ZC3HAV1 (By similarity). Associates with mitochondrial DNA (PubMed:18063578). Involved in nervous system development and differentiation through its involvement in the up-regulation of a number of genes which are required for neurogenesis, including GSC, NCAM1, neurogenin, and NEUROD (By similarity). {ECO:0000250|UniProtKB:Q5BJS0, ECO:0000250|UniProtKB:Q99PU8, ECO:0000269|PubMed:18063578, ECO:0000269|PubMed:25683715, ECO:0000269|PubMed:29100085}. |
Q7Z309 | PABIR2 | S24 | ochoa | PABIR family member 2 | None |
Q7Z401 | DENND4A | S754 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z460 | CLASP1 | S253 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q7Z460 | CLASP1 | S646 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q7Z591 | AKNA | S1160 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z5H3 | ARHGAP22 | S394 | ochoa | Rho GTPase-activating protein 22 (Rho-type GTPase-activating protein 22) | Rho GTPase-activating protein involved in the signal transduction pathway that regulates endothelial cell capillary tube formation during angiogenesis. Acts as a GTPase activator for the RAC1 by converting it to an inactive GDP-bound state. Inhibits RAC1-dependent lamellipodia formation. May also play a role in transcription regulation via its interaction with VEZF1, by regulating activity of the endothelin-1 (EDN1) promoter (By similarity). {ECO:0000250}. |
Q7Z5R6 | APBB1IP | S525 | ochoa | Amyloid beta A4 precursor protein-binding family B member 1-interacting protein (APBB1-interacting protein 1) (Proline-rich EVH1 ligand 1) (PREL-1) (Proline-rich protein 73) (Rap1-GTP-interacting adapter molecule) (RIAM) (Retinoic acid-responsive proline-rich protein 1) (RARP-1) | Appears to function in the signal transduction from Ras activation to actin cytoskeletal remodeling. Suppresses insulin-induced promoter activities through AP1 and SRE. Mediates Rap1-induced adhesion. {ECO:0000269|PubMed:14530287, ECO:0000269|PubMed:15469846}. |
Q7Z628 | NET1 | S50 | ochoa | Neuroepithelial cell-transforming gene 1 protein (Proto-oncogene p65 Net1) (Rho guanine nucleotide exchange factor 8) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPase. May be involved in activation of the SAPK/JNK pathway Stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:21373644}. |
Q7Z6E9 | RBBP6 | S1462 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6Z7 | HUWE1 | S648 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86SQ0 | PHLDB2 | S414 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86UU0 | BCL9L | S1052 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86UU1 | PHLDB1 | S290 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86V48 | LUZP1 | S573 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86VQ1 | GLCCI1 | S171 | ochoa | Glucocorticoid-induced transcript 1 protein | None |
Q86VQ1 | GLCCI1 | S341 | ochoa | Glucocorticoid-induced transcript 1 protein | None |
Q86VQ6 | TXNRD3 | S41 | ochoa | Thioredoxin reductase 3 (EC 1.8.1.9) (Thioredoxin and glutathione reductase) (Thioredoxin reductase 3 intronic transcript 1) (Thioredoxin reductase 3 neighbor gene) (Thioredoxin reductase TR2) | Displays thioredoxin reductase, glutaredoxin and glutathione reductase activities. Catalyzes disulfide bond isomerization. Promotes disulfide bond formation between GPX4 and various sperm proteins and may play a role in sperm maturation by promoting formation of sperm structural components (By similarity). {ECO:0000250|UniProtKB:Q99MD6}. |
Q86X10 | RALGAPB | S469 | ochoa | Ral GTPase-activating protein subunit beta (p170) | Non-catalytic subunit of the heterodimeric RalGAP1 and RalGAP2 complexes which act as GTPase activators for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q86X29 | LSR | S364 | ochoa | Lipolysis-stimulated lipoprotein receptor (Angulin-1) | Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}. |
Q86XN8 | MEX3D | S505 | ochoa | RNA-binding protein MEX3D (RING finger and KH domain-containing protein 1) (RING finger protein 193) (TINO) | RNA binding protein, may be involved in post-transcriptional regulatory mechanisms. {ECO:0000250}. |
Q86XZ4 | SPATS2 | S385 | ochoa | Spermatogenesis-associated serine-rich protein 2 (Serine-rich spermatocytes and round spermatid 59 kDa protein) (p59scr) | None |
Q8IWB9 | TEX2 | S747 | ochoa | Testis-expressed protein 2 (Transmembrane protein 96) | During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}. |
Q8IWC1 | MAP7D3 | S831 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IWU2 | LMTK2 | S438 | ochoa | Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) | Phosphorylates PPP1C, phosphorylase b and CFTR. |
Q8IX21 | SLF2 | S316 | ochoa | SMC5-SMC6 complex localization factor protein 2 (Smc5/6 localization factor 1) | Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of the SMC5-SMC6 complex to DNA lesions (PubMed:25931565). Plays a role in SMC5-SMC6 complex recruitment for viral restriction. Forms a complex with SIMC1 and this complex is required to recruit SMC5-SMC6 complex to PML nuclear bodies and sites of viral replication (PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}. |
Q8IY92 | SLX4 | S1243 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IYM9 | TRIM22 | S383 | ochoa | E3 ubiquitin-protein ligase TRIM22 (EC 2.3.2.27) (50 kDa-stimulated trans-acting factor) (RING finger protein 94) (RING-type E3 ubiquitin transferase TRIM22) (Staf-50) (Tripartite motif-containing protein 22) | Interferon-induced E3 ubiquitin ligase that plays important roles in innate and adaptive immunity (PubMed:25683609, PubMed:35777501). Restricts the replication of many viruses including HIV-1, encephalomyocarditis virus (EMCV), hepatitis B virus (HBV), hepatitis C virus (HCV) or Zika virus (ZIKV) (PubMed:25683609, PubMed:35777501, PubMed:36042495). Mechanistically, negatively regulates HCV replication by promoting ubiquitination and subsequent degradation of viral NS5A (PubMed:25683609). Also acts by promoting the degradation of Zika virus NS1 and NS3 proteins through proteasomal degradation (PubMed:36042495). Acts as a suppressor of basal HIV-1 LTR-driven transcription by preventing Sp1 binding to the HIV-1 promoter (PubMed:26683615). Also plays a role in antiviral immunity by co-regulating together with NT5C2 the RIGI/NF-kappa-B pathway by promoting 'Lys-63'-linked ubiquitination of RIGI, while NT5C2 is responsible for 'Lys-48'-linked ubiquitination of RIGI (PubMed:36159777). Participates in adaptive immunity by suppressing the amount of MHC class II protein in a negative feedback manner in order to limit the extent of MHC class II induction (PubMed:35777501). {ECO:0000269|PubMed:18389079, ECO:0000269|PubMed:18656448, ECO:0000269|PubMed:19218198, ECO:0000269|PubMed:19585648, ECO:0000269|PubMed:25683609, ECO:0000269|PubMed:26683615, ECO:0000269|PubMed:35777501, ECO:0000269|PubMed:36042495, ECO:0000269|PubMed:36159777}. |
Q8IZ21 | PHACTR4 | S117 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8IZ83 | ALDH16A1 | S550 | ochoa | Aldehyde dehydrogenase family 16 member A1 | None |
Q8IZW8 | TNS4 | S197 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8N0Z3 | SPICE1 | S810 | ochoa | Spindle and centriole-associated protein 1 (Coiled-coil domain-containing protein 52) (Spindle and centriole-associated protein) | Regulator required for centriole duplication, for proper bipolar spindle formation and chromosome congression in mitosis. {ECO:0000269|PubMed:20736305}. |
Q8N1G0 | ZNF687 | S1082 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N271 | PROM2 | S814 | ochoa | Prominin-2 (PROM-2) (Prominin-like protein 2) (hPROML2) | None |
Q8N3F8 | MICALL1 | S195 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3F8 | MICALL1 | S588 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N4C8 | MINK1 | S673 | ochoa | Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) | Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration. |
Q8N568 | DCLK2 | S361 | ochoa | Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) | Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}. |
Q8N5C8 | TAB3 | S505 | ochoa | TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 3) (NF-kappa-B-activating protein 1) (TAK1-binding protein 3) (TAB-3) (TGF-beta-activated kinase 1-binding protein 3) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122, PubMed:36593296). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). {ECO:0000269|PubMed:14633987, ECO:0000269|PubMed:14766965, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:36593296}.; FUNCTION: [Isoform 2]: May be an oncogenic factor. {ECO:0000269|PubMed:14766965}. |
Q8N684 | CPSF7 | S194 | ochoa | Cleavage and polyadenylation specificity factor subunit 7 (Cleavage and polyadenylation specificity factor 59 kDa subunit) (CPSF 59 kDa subunit) (Cleavage factor Im complex 59 kDa subunit) (CFIm59) (Pre-mRNA cleavage factor Im 59 kDa subunit) | Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:17024186, PubMed:29276085, PubMed:8626397). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:17024186, PubMed:8626397). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF7 activates directly the mRNA 3'-processing machinery (PubMed:29276085). Binds to pA signals in RNA substrates (PubMed:17024186, PubMed:8626397). {ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397}. |
Q8N6F7 | GCSAM | S157 | ochoa | Germinal center-associated signaling and motility protein (Germinal center B-cell-expressed transcript 2 protein) (Germinal center-associated lymphoma protein) (hGAL) | Involved in the negative regulation of lymphocyte motility. It mediates the migration-inhibitory effects of IL6. Serves as a positive regulator of the RhoA signaling pathway. Enhancement of RhoA activation results in inhibition of lymphocyte and lymphoma cell motility by activation of its downstream effector ROCK. Is a regulator of B-cell receptor signaling, that acts through SYK kinase activation. {ECO:0000269|PubMed:17823310, ECO:0000269|PubMed:20844236, ECO:0000269|PubMed:23299888}. |
Q8N6U8 | GPR161 | S429 | ochoa | G-protein coupled receptor 161 (G-protein coupled receptor RE2) | Key negative regulator of Shh signaling, which promotes the processing of GLI3 into GLI3R during neural tube development. Recruited by TULP3 and the IFT-A complex to primary cilia and acts as a regulator of the PKA-dependent basal repression machinery in Shh signaling by increasing cAMP levels, leading to promote the PKA-dependent processing of GLI3 into GLI3R and repress the Shh signaling. In presence of SHH, it is removed from primary cilia and is internalized into recycling endosomes, preventing its activity and allowing activation of the Shh signaling. Its ligand is unknown (By similarity). {ECO:0000250}. |
Q8N8E3 | CEP112 | S240 | ochoa | Centrosomal protein of 112 kDa (Cep112) (Coiled-coil domain-containing protein 46) | None |
Q8NC56 | LEMD2 | S138 | ochoa | LEM domain-containing protein 2 (hLEM2) | Nuclear lamina-associated inner nuclear membrane protein that is involved in nuclear structure organization, maintenance of nuclear envelope (NE) integrity and NE reformation after mitosis (PubMed:16339967, PubMed:17097643, PubMed:28242692, PubMed:32494070). Plays a role as transmembrane adapter for the endosomal sorting complexes required for transport (ESCRT), and is thereby involved in ESCRT-mediated NE reformation (PubMed:28242692, PubMed:32494070). Promotes ESCRT-mediated NE closure by recruiting CHMP7 and downstream ESCRT-III proteins IST1/CHMP8 and CHMP2A to the reforming NE during anaphase (PubMed:28242692). During nuclear reassembly, condenses into a liquid-like coating around microtubule spindles and coassembles with CHMP7 to form a macromolecular O-ring seal at the confluence between membranes, chromatin, and the spindle to facilitate early nuclear sealing (PubMed:32494070). Plays a role in the organization of heterochromatin associated with the NE and in the maintenance of NE organization under mechanical stress (By similarity). Required for embryonic development and involved in regulation of several signaling pathways such as MAPK and AKT (By similarity). Required for myoblast differentiation involving regulation of ERK signaling (By similarity). Essential for cardiac homeostasis and proper heart function (By similarity). {ECO:0000250|UniProtKB:Q6DVA0, ECO:0000269|PubMed:16339967, ECO:0000269|PubMed:17097643, ECO:0000269|PubMed:28242692, ECO:0000269|PubMed:32494070}. |
Q8NCE2 | MTMR14 | S513 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR14 (EC 3.1.3.95) (HCV NS5A-transactivated protein 4 splice variant A-binding protein 1) (NS5ATP4ABP1) (Myotubularin-related protein 14) (Phosphatidylinositol-3-phosphate phosphatase) (hJumpy) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate. {ECO:0000269|PubMed:17008356}. |
Q8ND76 | CCNY | Y98 | ochoa | Cyclin-Y (Cyc-Y) (Cyclin box protein 1) (Cyclin fold protein 1) (cyclin-X) | Positive regulatory subunit of the cyclin-dependent kinases CDK14/PFTK1 and CDK16. Acts as a cell-cycle regulator of Wnt signaling pathway during G2/M phase by recruiting CDK14/PFTK1 to the plasma membrane and promoting phosphorylation of LRP6, leading to the activation of the Wnt signaling pathway. Recruits CDK16 to the plasma membrane. Isoform 3 might play a role in the activation of MYC-mediated transcription. {ECO:0000269|PubMed:18060517, ECO:0000269|PubMed:19524571, ECO:0000269|PubMed:20059949, ECO:0000269|PubMed:22184064}. |
Q8NDF8 | TENT4B | S524 | ochoa | Terminal nucleotidyltransferase 4B (Non-canonical poly(A) RNA polymerase PAPD5) (EC 2.7.7.19) (PAP-associated domain-containing protein 5) (Terminal guanylyltransferase) (EC 2.7.7.-) (Terminal uridylyltransferase 3) (TUTase 3) (Topoisomerase-related function protein 4-2) (TRF4-2) | Terminal nucleotidyltransferase that catalyzes preferentially the transfer of ATP and GTP on RNA 3' poly(A) tail creating a heterogeneous 3' poly(A) tail leading to mRNAs stabilization by protecting mRNAs from active deadenylation (PubMed:21788334, PubMed:30026317). Also functions as a catalytic subunit of a TRAMP-like complex which has a poly(A) RNA polymerase activity and is involved in a post-transcriptional quality control mechanism. Polyadenylation with short oligo(A) tails is required for the degradative activity of the exosome on several of its nuclear RNA substrates. Doesn't need a cofactor for polyadenylation activity (in vitro) (PubMed:21788334, PubMed:21855801). Required for cytoplasmic polyadenylation of mRNAs involved in carbohydrate metabolism, including the glucose transporter SLC2A1/GLUT1 (PubMed:28383716). Plays a role in replication-dependent histone mRNA degradation, probably through terminal uridylation of mature histone mRNAs. May play a role in sister chromatid cohesion (PubMed:18172165). Mediates 3' adenylation of the microRNA MIR21 followed by its 3'-to-5' trimming by the exoribonuclease PARN leading to degradation (PubMed:25049417). Mediates 3' adenylation of H/ACA box snoRNAs (small nucleolar RNAs) followed by its 3'-to-5' trimming by the exoribonuclease PARN which enhances snoRNA stability and maturation (PubMed:22442037). {ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21788334, ECO:0000269|PubMed:21855801, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:28383716, ECO:0000269|PubMed:30026317}. |
Q8NEM7 | SUPT20H | S508 | ochoa | Transcription factor SPT20 homolog (p38-interacting protein) (p38IP) | Required for MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) activation during gastrulation. Required for down-regulation of E-cadherin during gastrulation by regulating E-cadherin protein level downstream from NCK-interacting kinase (NIK) and independently of the regulation of transcription by FGF signaling and Snail (By similarity). Required for starvation-induced ATG9A trafficking during autophagy. {ECO:0000250, ECO:0000269|PubMed:19893488}. |
Q8NFH8 | REPS2 | S492 | ochoa | RalBP1-associated Eps domain-containing protein 2 (Partner of RalBP1) (RalBP1-interacting protein 2) | Involved in ligand-dependent receptor mediated endocytosis of the EGF and insulin receptors as part of the Ral signaling pathway (PubMed:10393179, PubMed:12771942, PubMed:9422736). By controlling growth factor receptors endocytosis may regulate cell survival (PubMed:12771942). Through ASAP1 may regulate cell adhesion and migration (PubMed:12149250). {ECO:0000269|PubMed:10393179, ECO:0000269|PubMed:12149250, ECO:0000269|PubMed:12771942, ECO:0000269|PubMed:9422736}. |
Q8NFY9 | KBTBD8 | S346 | ochoa | Kelch repeat and BTB domain-containing protein 8 (T-cell activation kelch repeat protein) (TA-KRP) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a regulator of neural crest specification (PubMed:26399832). The BCR(KBTBD8) complex acts by mediating monoubiquitination of NOLC1 and TCOF1: monoubiquitination promotes the formation of a NOLC1-TCOF1 complex that acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:26399832}. |
Q8TAB5 | C1orf216 | S61 | ochoa | UPF0500 protein C1orf216 | None |
Q8TD55 | PLEKHO2 | S389 | ochoa | Pleckstrin homology domain-containing family O member 2 (PH domain-containing family O member 2) (Pleckstrin homology domain-containing family Q member 1) (PH domain-containing family Q member 1) | None |
Q8TES7 | FBF1 | S142 | ochoa | Fas-binding factor 1 (FBF-1) (Protein albatross) | Keratin-binding protein required for epithelial cell polarization. Involved in apical junction complex (AJC) assembly via its interaction with PARD3. Required for ciliogenesis. {ECO:0000269|PubMed:18838552, ECO:0000269|PubMed:23348840}. |
Q8TEW0 | PARD3 | S143 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TEW8 | PARD3B | S140 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TEW8 | PARD3B | S402 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TF72 | SHROOM3 | S402 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8TF72 | SHROOM3 | S676 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8TF72 | SHROOM3 | S962 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WUA4 | GTF3C2 | S378 | ochoa | General transcription factor 3C polypeptide 2 (TF3C-beta) (Transcription factor IIIC 110 kDa subunit) (TFIIIC 110 kDa subunit) (TFIIIC110) (Transcription factor IIIC subunit beta) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. May play a direct role in stabilizing interactions of TFIIIC2 with TFIIIC1. |
Q8WUF5 | PPP1R13L | S71 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WUM0 | NUP133 | S56 | ochoa | Nuclear pore complex protein Nup133 (133 kDa nucleoporin) (Nucleoporin Nup133) | Involved in poly(A)+ RNA transport. Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:11684705, ECO:0000269|PubMed:30179222}. |
Q8WUY3 | PRUNE2 | S1024 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WVR3 | TRAPPC14 | S494 | ochoa | Trafficking protein particle complex subunit 14 (Microtubule-associated protein 11) | Specific subunit of the TRAPP (transport protein particle) II complex, a highly conserved vesicle tethering complex that functions in late Golgi trafficking as a membrane tether (PubMed:30715179, PubMed:31467083). TRAPP II complex also has GEF activity toward RAB1A (By similarity). TRAPPC14 is dispensable for TRAPPII complex integrity but mediates RAB3IP preciliary vesicle trafficking to the mother centriole during ciliogenesis (PubMed:31467083). Modulates YAP1 activity as transcriptional regulator (PubMed:30447097). {ECO:0000250|UniProtKB:Q3TLI0, ECO:0000269|PubMed:30447097, ECO:0000269|PubMed:30715179, ECO:0000269|PubMed:31467083}. |
Q8WWI1 | LMO7 | Y804 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWN8 | ARAP3 | S1337 | ochoa | Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (Centaurin-delta-3) (Cnt-d3) | Phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members. Is activated by phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding. Can be activated by phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding, albeit with lower efficiency. Acts on ARF6, RAC1, RHOA and CDC42. Plays a role in the internalization of anthrax toxin. {ECO:0000269|PubMed:11804589, ECO:0000269|PubMed:15569923}. |
Q8WXE0 | CASKIN2 | S877 | ochoa | Caskin-2 (CASK-interacting protein 2) | None |
Q8WXG6 | MADD | S1191 | ochoa | MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) | Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}. |
Q8WY36 | BBX | S478 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q92538 | GBF1 | S1780 | ochoa | Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (BFA-resistant GEF 1) | Guanine-nucleotide exchange factor (GEF) for members of the Arf family of small GTPases involved in trafficking in the early secretory pathway; its GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs through replacement of GDP with GTP. Recruitment to cis-Golgi membranes requires membrane association of Arf-GDP and can be regulated by ARF1, ARF3, ARF4 and ARF5. Involved in the recruitment of the COPI coat complex to the endoplasmic reticulum exit sites (ERES), and the endoplasmic reticulum-Golgi intermediate (ERGIC) and cis-Golgi compartments which implicates ARF1 activation. Involved in COPI vesicle-dependent retrograde transport from the ERGIC and cis-Golgi compartments to the endoplasmic reticulum (ER) (PubMed:12047556, PubMed:12808027, PubMed:16926190, PubMed:17956946, PubMed:18003980, PubMed:19039328, PubMed:24213530). Involved in the trans-Golgi network recruitment of GGA1, GGA2, GGA3, BIG1, BIG2, and the AP-1 adaptor protein complex related to chlathrin-dependent transport; the function requires its GEF activity (probably at least in part on ARF4 and ARF5) (PubMed:23386609). Has GEF activity towards ARF1 (PubMed:15616190). Has in vitro GEF activity towards ARF5 (By similarity). Involved in the processing of PSAP (PubMed:17666033). Required for the assembly of the Golgi apparatus (PubMed:12808027, PubMed:18003980). The AMPK-phosphorylated form is involved in Golgi disassembly during mitotis and under stress conditions (PubMed:18063581, PubMed:23418352). May be involved in the COPI vesicle-dependent recruitment of PNPLA2 to lipid droplets; however, this function is under debate (PubMed:19461073, PubMed:22185782). In neutrophils, involved in G protein-coupled receptor (GPCR)-mediated chemotaxis und superoxide production. Proposed to be recruited by phosphatidylinositol-phosphates generated upon GPCR stimulation to the leading edge where it recruits and activates ARF1, and is involved in recruitment of GIT2 and the NADPH oxidase complex (PubMed:22573891). Plays a role in maintaining mitochondrial morphology (PubMed:25190516). {ECO:0000250|UniProtKB:Q9R1D7, ECO:0000269|PubMed:12047556, ECO:0000269|PubMed:12808027, ECO:0000269|PubMed:15616190, ECO:0000269|PubMed:16926190, ECO:0000269|PubMed:17666033, ECO:0000269|PubMed:17956946, ECO:0000269|PubMed:18003980, ECO:0000269|PubMed:18063581, ECO:0000269|PubMed:19461073, ECO:0000269|PubMed:22185782, ECO:0000269|PubMed:22573891, ECO:0000269|PubMed:23386609, ECO:0000269|PubMed:23418352, ECO:0000269|PubMed:24213530, ECO:0000269|PubMed:25190516, ECO:0000305|PubMed:19039328, ECO:0000305|PubMed:22573891}. |
Q92539 | LPIN2 | S199 | ochoa | Phosphatidate phosphatase LPIN2 (EC 3.1.3.4) (Lipin-2) | Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the endoplasmic reticulum membrane. Plays important roles in controlling the metabolism of fatty acids at different levels. Also acts as a nuclear transcriptional coactivator for PPARGC1A to modulate lipid metabolism. {ECO:0000250|UniProtKB:Q99PI5}. |
Q92545 | TMEM131 | S1336 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92545 | TMEM131 | S1341 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92576 | PHF3 | S677 | ochoa | PHD finger protein 3 | None |
Q92576 | PHF3 | S868 | ochoa | PHD finger protein 3 | None |
Q92608 | DOCK2 | S586 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q92614 | MYO18A | S1067 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92619 | ARHGAP45 | S577 | ochoa | Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}. |
Q92622 | RUBCN | S387 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q92698 | RAD54L | S37 | ochoa | DNA repair and recombination protein RAD54-like (EC 3.6.4.12) (RAD54 homolog) (hHR54) (hRAD54) | Plays an essential role in homologous recombination (HR) which is a major pathway for repairing DNA double-strand breaks (DSBs), single-stranded DNA (ssDNA) gaps, and stalled or collapsed replication forks (PubMed:11459989, PubMed:12205100, PubMed:24798879, PubMed:27264870, PubMed:32457312, PubMed:9774452). Acts as a molecular motor during the homology search and guides RAD51 ssDNA along a donor dsDNA thereby changing the homology search from the diffusion-based mechanism to a motor-guided mechanism. Also plays an essential role in RAD51-mediated synaptic complex formation which consists of three strands encased in a protein filament formed once homology is recognized. Once DNA strand exchange occured, dissociates RAD51 from nucleoprotein filaments formed on dsDNA (By similarity). {ECO:0000250|UniProtKB:P32863, ECO:0000269|PubMed:11459989, ECO:0000269|PubMed:12205100, ECO:0000269|PubMed:24798879, ECO:0000269|PubMed:27264870, ECO:0000269|PubMed:32457312, ECO:0000269|PubMed:9774452}. |
Q92794 | KAT6A | S447 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q92888 | ARHGEF1 | S630 | ochoa | Rho guanine nucleotide exchange factor 1 (115 kDa guanine nucleotide exchange factor) (p115-RhoGEF) (p115RhoGEF) (Sub1.5) | Seems to play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13) subunits (PubMed:9641915, PubMed:9641916). Acts as a GTPase-activating protein (GAP) for GNA12 and GNA13, and as guanine nucleotide exchange factor (GEF) for RhoA GTPase (PubMed:30521495, PubMed:8810315, PubMed:9641915, PubMed:9641916). Activated G alpha 13/GNA13 stimulates the RhoGEF activity through interaction with the RGS-like domain (PubMed:9641916). This GEF activity is inhibited by binding to activated GNA12 (PubMed:9641916). Mediates angiotensin-2-induced RhoA activation (PubMed:20098430). In lymphoid follicles, may trigger activation of GNA13 as part of S1PR2-dependent signaling pathway that leads to inhibition of germinal center (GC) B cell growth and migration outside the GC niche. {ECO:0000250|UniProtKB:Q61210, ECO:0000269|PubMed:20098430, ECO:0000269|PubMed:30521495, ECO:0000269|PubMed:8810315, ECO:0000269|PubMed:9641915, ECO:0000269|PubMed:9641916}. |
Q92918 | MAP4K1 | S325 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 1 (EC 2.7.11.1) (Hematopoietic progenitor kinase) (MAPK/ERK kinase kinase kinase 1) (MEK kinase kinase 1) (MEKKK 1) | Serine/threonine-protein kinase, which plays a role in the response to environmental stress (PubMed:24362026). Appears to act upstream of the JUN N-terminal pathway (PubMed:8824585). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). May play a role in hematopoietic lineage decisions and growth regulation (PubMed:24362026, PubMed:8824585). Together with CLNK, it enhances CD3-triggered activation of T-cells and subsequent IL2 production (By similarity). {ECO:0000250|UniProtKB:P70218, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:8824585}. |
Q92934 | BAD | S74 | ochoa|psp | Bcl2-associated agonist of cell death (BAD) (Bcl-2-binding component 6) (Bcl-2-like protein 8) (Bcl2-L-8) (Bcl-xL/Bcl-2-associated death promoter) (Bcl2 antagonist of cell death) | Promotes cell death. Successfully competes for the binding to Bcl-X(L), Bcl-2 and Bcl-W, thereby affecting the level of heterodimerization of these proteins with BAX. Can reverse the death repressor activity of Bcl-X(L), but not that of Bcl-2 (By similarity). Appears to act as a link between growth factor receptor signaling and the apoptotic pathways. {ECO:0000250}. |
Q92974 | ARHGEF2 | S121 | ochoa | Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) | Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}. |
Q96AQ6 | PBXIP1 | S146 | ochoa|psp | Pre-B-cell leukemia transcription factor-interacting protein 1 (Hematopoietic PBX-interacting protein) | Regulator of pre-B-cell leukemia transcription factors (BPXs) function. Inhibits the binding of PBX1-HOX complex to DNA and blocks the transcriptional activity of E2A-PBX1. Tethers estrogen receptor-alpha (ESR1) to microtubules and allows them to influence estrogen receptors-alpha signaling. {ECO:0000269|PubMed:10825160, ECO:0000269|PubMed:12360403, ECO:0000269|PubMed:17043237}. |
Q96B33 | CLDN23 | S203 | ochoa | Claudin-23 | Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell-adhesion activity. {ECO:0000250}. |
Q96DR7 | ARHGEF26 | S739 | ochoa | Rho guanine nucleotide exchange factor 26 (SH3 domain-containing guanine exchange factor) | Activates RhoG GTPase by promoting the exchange of GDP by GTP. Required for the formation of membrane ruffles during macropinocytosis. Required for the formation of cup-like structures during trans-endothelial migration of leukocytes. In case of Salmonella enterica infection, activated by SopB, which induces cytoskeleton rearrangements and promotes bacterial entry. {ECO:0000269|PubMed:15133129, ECO:0000269|PubMed:17074883, ECO:0000269|PubMed:17875742}. |
Q96E39 | RBMXL1 | Y272 | ochoa | RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) | RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}. |
Q96EZ8 | MCRS1 | S35 | ochoa|psp | Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) | Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}. |
Q96G42 | KLHDC7B | S485 | ochoa | Kelch domain-containing protein 7B | None |
Q96GA3 | LTV1 | S379 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}. |
Q96GN5 | CDCA7L | S320 | ochoa | Cell division cycle-associated 7-like protein (Protein JPO2) (Transcription factor RAM2) | Plays a role in transcriptional regulation as a repressor that inhibits monoamine oxidase A (MAOA) activity and gene expression by binding to the promoter. Plays an important oncogenic role in mediating the full transforming effect of MYC in medulloblastoma cells. Involved in apoptotic signaling pathways; May act downstream of P38-kinase and BCL-2, but upstream of CASP3/caspase-3 as well as CCND1/cyclin D1 and E2F1. {ECO:0000269|PubMed:15654081, ECO:0000269|PubMed:15994933, ECO:0000269|PubMed:16829576}. |
Q96HH9 | GRAMD2B | S241 | ochoa | GRAM domain-containing protein 2B (HCV NS3-transactivated protein 2) | None |
Q96JH7 | VCPIP1 | S997 | ochoa | Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) | Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}. |
Q96KP1 | EXOC2 | S431 | ochoa | Exocyst complex component 2 (Exocyst complex component Sec5) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. {ECO:0000269|PubMed:12459492, ECO:0000269|PubMed:32639540}. |
Q96MU7 | YTHDC1 | S416 | ochoa | YTH domain-containing protein 1 (Splicing factor YT521) (YT521-B) | Regulator of alternative splicing that specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs (PubMed:25242552, PubMed:26318451, PubMed:26876937, PubMed:28984244). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability (PubMed:25242552, PubMed:26318451). Acts as a key regulator of exon-inclusion or exon-skipping during alternative splicing via interaction with mRNA splicing factors SRSF3 and SRSF10 (PubMed:26876937). Specifically binds m6A-containing mRNAs and promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing (PubMed:26876937). In contrast, interaction with SRSF3 prevents interaction with SRSF10, a splicing factor that promotes exon skipping: this prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May also regulate alternative splice site selection (PubMed:20167602). Also involved in nuclear export of m6A-containing mRNAs via interaction with SRSF3: interaction with SRSF3 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). Involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts, probably by binding m6A-containing MAT2A mRNAs (By similarity). Also recognizes and binds m6A on other RNA molecules (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: recognizes and binds m6A-containing Xist and promotes transcription repression activity of Xist (PubMed:27602518). Also recognizes and binds m6A-containing single-stranded DNA (PubMed:32663306). Involved in germline development: required for spermatogonial development in males and oocyte growth and maturation in females, probably via its role in alternative splicing (By similarity). {ECO:0000250|UniProtKB:E9Q5K9, ECO:0000269|PubMed:20167602, ECO:0000269|PubMed:25242552, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26876937, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:32663306}. |
Q96N67 | DOCK7 | S963 | ochoa | Dedicator of cytokinesis protein 7 | Functions as a guanine nucleotide exchange factor (GEF), which activates Rac1 and Rac3 Rho small GTPases by exchanging bound GDP for free GTP. Does not have a GEF activity for CDC42. Required for STMN1 'Ser-15' phosphorylation during axon formation and consequently for neuronal polarization (PubMed:16982419). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). Has a role in pigmentation (By similarity). Involved in the regulation of cortical neurogenesis through the control of radial glial cells (RGCs) proliferation versus differentiation; negatively regulates the basal-to-apical interkinetic nuclear migration of RGCs by antagonizing the microtubule growth-promoting function of TACC3 (By similarity). {ECO:0000250|UniProtKB:Q8R1A4, ECO:0000269|PubMed:16982419, ECO:0000269|PubMed:29467281}. |
Q96P48 | ARAP1 | S428 | ochoa | Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (Centaurin-delta-2) (Cnt-d2) | Phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members (PubMed:11804590, PubMed:19666464). Activated by phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding and, to a lesser extent, by phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) binding (PubMed:11804590). Has a preference for ARF1 and ARF5 (PubMed:11804590, PubMed:19666464). Positively regulates the ring size of circular dorsal ruffles and promotes macropinocytosis (PubMed:22573888). Acts as a bridging factor in osteoclasts to control actin and membrane dynamics (By similarity). Regulates the condensing of osteoclast podosomes into sealing zones which segregate the bone-facing membrane from other membrane domains and are required for osteoclast resorption activity (By similarity). Also regulates recruitment of the AP-3 complex to endosomal membranes and trafficking of lysosomal membrane proteins to the ruffled membrane border of osteoclasts to modulate bone resorption (By similarity). Regulates the endocytic trafficking of EGFR (PubMed:18764928, PubMed:18939958, PubMed:21275903). Regulates the incorporation of CD63 and CD9 into multivesicular bodies (PubMed:38682696). Required in the retinal pigment epithelium (RPE) for photoreceptor survival due to its role in promoting RPE phagocytosis (By similarity). {ECO:0000250|UniProtKB:Q4LDD4, ECO:0000269|PubMed:11804590, ECO:0000269|PubMed:18764928, ECO:0000269|PubMed:18939958, ECO:0000269|PubMed:19666464, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:22573888, ECO:0000269|PubMed:38682696}. |
Q96PE2 | ARHGEF17 | S394 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PE2 | ARHGEF17 | S1330 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PX1 | RNF157 | S660 | psp | E3 ubiquitin ligase RNF157 (EC 2.3.2.27) (RING finger protein 157) (RING-type E3 ubiquitin transferase RNF157) | E3 ubiquitin ligase that ubiquitinates APBB1 for its degradation by the proteasome and thus prevents apoptosis and promotes survival of neurons (PubMed:25342469). Has a dual role in neurons as it is also required for dendrite growth and maintenance for which its ligase activity is not critical (PubMed:25342469). May act as a scaffold molecule to regulate this process (PubMed:25342469). Acts as a downstream effector of the interconnected PI3K and MAPK signaling pathways and thus participates in the regulation of the cell cycle (PubMed:28655764). {ECO:0000269|PubMed:25342469, ECO:0000269|PubMed:28655764}. |
Q96RG2 | PASK | S70 | ochoa | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96RT1 | ERBIN | S1078 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96RT1 | ERBIN | Y1132 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96ST8 | CEP89 | S113 | ochoa | Centrosomal protein of 89 kDa (Cep89) (Centrosomal protein 123) (Cep123) (Coiled-coil domain-containing protein 123) | Required for ciliogenesis. Also plays a role in mitochondrial metabolism where it may modulate complex IV activity. {ECO:0000269|PubMed:23348840, ECO:0000269|PubMed:23575228}. |
Q96T17 | MAP7D2 | S186 | ochoa | MAP7 domain-containing protein 2 | Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}. |
Q96T23 | RSF1 | S1245 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T37 | RBM15 | S872 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q99081 | TCF12 | S558 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99501 | GAS2L1 | S489 | ochoa | GAS2-like protein 1 (GAS2-related protein on chromosome 22) (Growth arrest-specific protein 2-like 1) | Involved in the cross-linking of microtubules and microfilaments (PubMed:12584248, PubMed:24706950). Regulates microtubule dynamics and stability by interacting with microtubule plus-end tracking proteins, such as MAPRE1, to regulate microtubule growth along actin stress fibers (PubMed:24706950). {ECO:0000269|PubMed:12584248, ECO:0000269|PubMed:24706950}. |
Q99590 | SCAF11 | S1169 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99607 | ELF4 | S544 | ochoa | ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) | Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}. |
Q99959 | PKP2 | S81 | ochoa | Plakophilin-2 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}. |
Q99963 | SH3GL3 | S264 | ochoa | Endophilin-A3 (EEN-B2) (Endophilin-3) (SH3 domain protein 2C) (SH3 domain-containing GRB2-like protein 3) | Implicated in endocytosis. May recruit other proteins to membranes with high curvature (By similarity). {ECO:0000250}. |
Q9BQ89 | FAM110A | S228 | ochoa | Protein FAM110A | None |
Q9BQ89 | FAM110A | S252 | ochoa | Protein FAM110A | None |
Q9BRG2 | SH2D3A | S179 | ochoa | SH2 domain-containing protein 3A (Novel SH2-containing protein 1) | May play a role in JNK activation. |
Q9BSF8 | BTBD10 | S74 | ochoa | BTB/POZ domain-containing protein 10 (Glucose metabolism-related protein 1) | Plays a major role as an activator of AKT family members by inhibiting PPP2CA-mediated dephosphorylation, thereby keeping AKTs activated. Plays a role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. {ECO:0000250|UniProtKB:Q80X66}. |
Q9BSJ8 | ESYT1 | S626 | ochoa | Extended synaptotagmin-1 (E-Syt1) (Membrane-bound C2 domain-containing protein) | Binds calcium (via the C2 domains) and translocates to sites of contact between the endoplasmic reticulum and the cell membrane in response to increased cytosolic calcium levels (PubMed:23791178, PubMed:24183667). Helps tether the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane (PubMed:24183667). Acts as an inhibitor of ADGRD1 G-protein-coupled receptor activity in absence of cytosolic calcium (PubMed:38758649). Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport (By similarity). {ECO:0000250|UniProtKB:A0FGR8, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24183667, ECO:0000269|PubMed:38758649}. |
Q9BSU1 | PHAF1 | S372 | ochoa | Phagosome assembly factor 1 | Plays a regulatory role in autophagic activity. In complex with BCAS3, associates with the autophagosome formation site during both non-selective and selective autophagy. {ECO:0000269|PubMed:33499712}. |
Q9BTA9 | WAC | S519 | ochoa | WW domain-containing adapter protein with coiled-coil | Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}. |
Q9BTC0 | DIDO1 | S1713 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BTL4 | IER2 | S124 | ochoa | Immediate early response gene 2 protein (Protein ETR101) | DNA-binding protein that seems to act as a transcription factor (PubMed:19584537). Involved in the regulation of neuronal differentiation, acts upon JNK-signaling pathway activation and plays a role in neurite outgrowth in hippocampal cells (By similarity). May mediate with FIBP FGF-signaling in the establishment of laterality in the embryo (By similarity). Promotes cell motility, seems to stimulate tumor metastasis (PubMed:22120713). {ECO:0000250|UniProtKB:B7SXM5, ECO:0000250|UniProtKB:Q6P7D3, ECO:0000269|PubMed:19584537, ECO:0000269|PubMed:22120713}. |
Q9BTL4 | IER2 | S125 | ochoa | Immediate early response gene 2 protein (Protein ETR101) | DNA-binding protein that seems to act as a transcription factor (PubMed:19584537). Involved in the regulation of neuronal differentiation, acts upon JNK-signaling pathway activation and plays a role in neurite outgrowth in hippocampal cells (By similarity). May mediate with FIBP FGF-signaling in the establishment of laterality in the embryo (By similarity). Promotes cell motility, seems to stimulate tumor metastasis (PubMed:22120713). {ECO:0000250|UniProtKB:B7SXM5, ECO:0000250|UniProtKB:Q6P7D3, ECO:0000269|PubMed:19584537, ECO:0000269|PubMed:22120713}. |
Q9BTU6 | PI4K2A | S461 | ochoa | Phosphatidylinositol 4-kinase type 2-alpha (EC 2.7.1.67) (Phosphatidylinositol 4-kinase type II-alpha) | Membrane-bound phosphatidylinositol-4 kinase (PI4-kinase) that catalyzes the phosphorylation of phosphatidylinositol (PI) to phosphatidylinositol 4-phosphate (PI4P), a lipid that plays important roles in endocytosis, Golgi function, protein sorting and membrane trafficking and is required for prolonged survival of neurons. Besides, phosphorylation of phosphatidylinositol (PI) to phosphatidylinositol 4-phosphate (PI4P) is the first committed step in the generation of phosphatidylinositol 4,5-bisphosphate (PIP2), a precursor of the second messenger inositol 1,4,5-trisphosphate (InsP3). {ECO:0000269|PubMed:11279162, ECO:0000269|PubMed:16443754, ECO:0000269|PubMed:20388919, ECO:0000269|PubMed:23146885, ECO:0000269|PubMed:24675427, ECO:0000269|PubMed:25168678, ECO:0000305}. |
Q9BUF7 | CRB3 | S96 | ochoa | Protein crumbs homolog 3 | Involved in the establishment of cell polarity in mammalian epithelial cells (PubMed:12771187, PubMed:14718572, PubMed:23439680). Regulates the morphogenesis of tight junctions (PubMed:12771187, PubMed:14718572). Involved in promoting phosphorylation and cytoplasmic retention of transcriptional coactivators YAP1 and WWTR1/TAZ which leads to suppression of TGFB1-dependent transcription of target genes such as CCN2/CTGF, SERPINE1/PAI1, SNAI1/SNAIL1 and SMAD7 (By similarity). {ECO:0000250|UniProtKB:Q8QZT4, ECO:0000269|PubMed:12771187, ECO:0000269|PubMed:14718572, ECO:0000269|PubMed:23439680}. |
Q9BV36 | MLPH | S336 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BW91 | NUDT9 | S182 | ochoa | ADP-ribose pyrophosphatase, mitochondrial (EC 3.6.1.13) (ADP-ribose diphosphatase) (ADP-ribose phosphohydrolase) (Adenosine diphosphoribose pyrophosphatase) (ADPR-PPase) (Nucleoside diphosphate-linked moiety X motif 9) (Nudix motif 9) | Hydrolyzes ADP-ribose (ADPR) to AMP and ribose 5'-phosphate. {ECO:0000269|PubMed:11385575}. |
Q9BX66 | SORBS1 | S115 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BXW9 | FANCD2 | S330 | ochoa | Fanconi anemia group D2 protein (Protein FACD2) | Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}. |
Q9BY89 | KIAA1671 | S1573 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYV9 | BACH2 | S520 | psp | Transcription regulator protein BACH2 (BTB and CNC homolog 2) | Transcriptional regulator that acts as a repressor or activator (By similarity). Binds to Maf recognition elements (MARE) (By similarity). Plays an important role in coordinating transcription activation and repression by MAFK (By similarity). Induces apoptosis in response to oxidative stress through repression of the antiapoptotic factor HMOX1 (PubMed:17018862). Positively regulates the nuclear import of actin (By similarity). Is a key regulator of adaptive immunity, crucial for the maintenance of regulatory T-cell function and B-cell maturation (PubMed:28530713). {ECO:0000250|UniProtKB:P97303, ECO:0000269|PubMed:17018862, ECO:0000269|PubMed:28530713}. |
Q9BYW2 | SETD2 | S2079 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZL6 | PRKD2 | S395 | ochoa | Serine/threonine-protein kinase D2 (EC 2.7.11.13) (nPKC-D2) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion (PubMed:14743217, PubMed:15604256, PubMed:16928771, PubMed:17077180, PubMed:17951978, PubMed:17962809, PubMed:18262756, PubMed:19001381, PubMed:19192391, PubMed:23503467, PubMed:28428613). May potentiate mitogenesis induced by the neuropeptide bombesin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression (By similarity). In response to oxidative stress, is phosphorylated at Tyr-438 and Tyr-717 by ABL1, which leads to the activation of PRKD2 without increasing its catalytic activity, and mediates activation of NF-kappa-B (PubMed:15604256, PubMed:28428613). In response to the activation of the gastrin receptor CCKBR, is phosphorylated at Ser-244 by CSNK1D and CSNK1E, translocates to the nucleus, phosphorylates HDAC7, leading to nuclear export of HDAC7 and inhibition of HDAC7 transcriptional repression of NR4A1/NUR77 (PubMed:17962809). Upon TCR stimulation, is activated independently of ZAP70, translocates from the cytoplasm to the nucleus and is required for interleukin-2 (IL2) promoter up-regulation (PubMed:17077180). During adaptive immune responses, is required in peripheral T-lymphocytes for the production of the effector cytokines IL2 and IFNG after TCR engagement and for optimal induction of antibody responses to antigens (By similarity). In epithelial cells stimulated with lysophosphatidic acid (LPA), is activated through a PKC-dependent pathway and mediates LPA-stimulated interleukin-8 (IL8) secretion via a NF-kappa-B-dependent pathway (PubMed:16928771). During TCR-induced T-cell activation, interacts with and is activated by the tyrosine kinase LCK, which results in the activation of the NFAT transcription factors (PubMed:19192391). In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane and in polarized cells is involved in the transport of proteins from the TGN to the basolateral membrane (PubMed:14743217). Plays an important role in endothelial cell proliferation and migration prior to angiogenesis, partly through modulation of the expression of KDR/VEGFR2 and FGFR1, two key growth factor receptors involved in angiogenesis (PubMed:19001381). In secretory pathway, is required for the release of chromogranin-A (CHGA)-containing secretory granules from the TGN (PubMed:18262756). Downstream of PRKCA, plays important roles in angiotensin-2-induced monocyte adhesion to endothelial cells (PubMed:17951978). Plays a regulatory role in angiogenesis and tumor growth by phosphorylating a downstream mediator CIB1 isoform 2, resulting in vascular endothelial growth factor A (VEGFA) secretion (PubMed:23503467). {ECO:0000250|UniProtKB:Q8BZ03, ECO:0000269|PubMed:14743217, ECO:0000269|PubMed:15604256, ECO:0000269|PubMed:16928771, ECO:0000269|PubMed:17077180, ECO:0000269|PubMed:17951978, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:18262756, ECO:0000269|PubMed:19001381, ECO:0000269|PubMed:19192391, ECO:0000269|PubMed:23503467, ECO:0000269|PubMed:28428613}. |
Q9C0C9 | UBE2O | S98 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0J8 | WDR33 | S1218 | ochoa | pre-mRNA 3' end processing protein WDR33 (WD repeat-containing protein 33) (WD repeat-containing protein of 146 kDa) | Essential for both cleavage and polyadenylation of pre-mRNA 3' ends. {ECO:0000269|PubMed:19217410}. |
Q9C0K0 | BCL11B | S788 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9GZY6 | LAT2 | Y58 | psp | Linker for activation of T-cells family member 2 (Linker for activation of B-cells) (Membrane-associated adapter molecule) (Non-T-cell activation linker) (Williams-Beuren syndrome chromosomal region 15 protein) (Williams-Beuren syndrome chromosomal region 5 protein) | Involved in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. May also be involved in BCR (B-cell antigen receptor)-mediated signaling in B-cells and FCGR1 (high affinity immunoglobulin gamma Fc receptor I)-mediated signaling in myeloid cells. Couples activation of these receptors and their associated kinases with distal intracellular events through the recruitment of GRB2. {ECO:0000269|PubMed:12486104, ECO:0000269|PubMed:12514734, ECO:0000269|PubMed:15010370}. |
Q9H0B6 | KLC2 | S507 | ochoa | Kinesin light chain 2 (KLC 2) | Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}. |
Q9H0B6 | KLC2 | S581 | ochoa | Kinesin light chain 2 (KLC 2) | Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}. |
Q9H165 | BCL11A | S734 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H6R7 | WDCP | S528 | ochoa | WD repeat and coiled-coil-containing protein | None |
Q9H6S0 | YTHDC2 | S1201 | ochoa | 3'-5' RNA helicase YTHDC2 (EC 3.6.4.13) (YTH domain-containing protein 2) (hYTHDC2) | 3'-5' RNA helicase that plays a key role in the male and female germline by promoting transition from mitotic to meiotic divisions in stem cells (PubMed:26318451, PubMed:29033321, PubMed:29970596). Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, a modification present at internal sites of mRNAs and some non-coding RNAs that plays a role in the efficiency of RNA processing and stability (PubMed:26318451, PubMed:29033321). Essential for ensuring a successful progression of the meiotic program in the germline by regulating the level of m6A-containing RNAs (By similarity). Acts by binding and promoting degradation of m6A-containing mRNAs: the 3'-5' RNA helicase activity is required for this process and RNA degradation may be mediated by XRN1 exoribonuclease (PubMed:29033321). Required for both spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B2RR83, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:29033321, ECO:0000269|PubMed:29970596}. |
Q9H6Z4 | RANBP3 | S125 | ochoa | Ran-binding protein 3 (RanBP3) | Acts as a cofactor for XPO1/CRM1-mediated nuclear export, perhaps as export complex scaffolding protein. Bound to XPO1/CRM1, stabilizes the XPO1/CRM1-cargo interaction. In the absence of Ran-bound GTP prevents binding of XPO1/CRM1 to the nuclear pore complex. Binds to CHC1/RCC1 and increases the guanine nucleotide exchange activity of CHC1/RCC1. Recruits XPO1/CRM1 to CHC1/RCC1 in a Ran-dependent manner. Negative regulator of TGF-beta signaling through interaction with the R-SMAD proteins, SMAD2 and SMAD3, and mediating their nuclear export. {ECO:0000269|PubMed:11425870, ECO:0000269|PubMed:11571268, ECO:0000269|PubMed:11932251, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:9637251}. |
Q9H773 | DCTPP1 | S137 | ochoa | dCTP pyrophosphatase 1 (EC 3.6.1.12) (Deoxycytidine-triphosphatase 1) (dCTPase 1) (RS21C6) (XTP3-transactivated gene A protein) | Hydrolyzes deoxynucleoside triphosphates (dNTPs) to the corresponding nucleoside monophosphates. Has a strong preference for dCTP and its analogs including 5-iodo-dCTP and 5-methyl-dCTP for which it may even have a higher efficiency. May protect DNA or RNA against the incorporation of these genotoxic nucleotide analogs through their catabolism. {ECO:0000269|PubMed:24467396}. |
Q9H7U1 | CCSER2 | S198 | ochoa | Serine-rich coiled-coil domain-containing protein 2 (Coiled-coil serine-rich protein 2) (Protein GCAP14 homolog) | Microtubule-binding protein which might play a role in microtubule bundling. {ECO:0000250|UniProtKB:Q3UHI0}. |
Q9H992 | MARCHF7 | S128 | ochoa | E3 ubiquitin-protein ligase MARCHF7 (EC 2.3.2.27) (Axotrophin) (Membrane-associated RING finger protein 7) (Membrane-associated RING-CH protein VII) (MARCH-VII) (RING finger protein 177) (RING-type E3 ubiquitin transferase MARCHF7) | E3 ubiquitin-protein ligase which may specifically enhance the E2 activity of HIP2. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfer the ubiquitin to targeted substrates (PubMed:16868077). May be involved in T-cell proliferation by regulating LIF secretion (By similarity). May play a role in lysosome homeostasis (PubMed:31270356). Promotes 'Lys-6', 'Lys-11' and 'Lys-63'-linked mixed polyubiquitination on ATG14 leading to the inhibition of autophagy by impairing the interaction between ATG14 and STX7 (PubMed:37632749). Participates in the dopamine-mediated negative regulation of the NLRP3 inflammasome by promoting its uibiquitination and subsequent degradation (PubMed:25594175). {ECO:0000250|UniProtKB:Q9WV66, ECO:0000269|PubMed:16868077, ECO:0000269|PubMed:25594175, ECO:0000269|PubMed:31270356, ECO:0000269|PubMed:37632749}. |
Q9H9A7 | RMI1 | S283 | ochoa | RecQ-mediated genome instability protein 1 (BLM-associated protein of 75 kDa) (BLAP75) (FAAP75) | Essential component of the RMI complex, a complex that plays an important role in the processing of homologous recombination intermediates to limit DNA crossover formation in cells. Promotes TOP3A binding to double Holliday junctions (DHJ) and hence stimulates TOP3A-mediated dissolution. Required for BLM phosphorylation during mitosis. Within the BLM complex, required for BLM and TOP3A stability. {ECO:0000269|PubMed:15775963, ECO:0000269|PubMed:16537486, ECO:0000269|PubMed:16595695}. |
Q9H9H4 | VPS37B | S98 | ochoa | Vacuolar protein sorting-associated protein 37B (hVps37B) (ESCRT-I complex subunit VPS37B) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies. May be involved in cell growth and differentiation. {ECO:0000269|PubMed:15218037}. |
Q9HBA0 | TRPV4 | S823 | psp | Transient receptor potential cation channel subfamily V member 4 (TrpV4) (Osm-9-like TRP channel 4) (OTRPC4) (Transient receptor potential protein 12) (TRP12) (Vanilloid receptor-like channel 2) (Vanilloid receptor-like protein 2) (VRL-2) (Vanilloid receptor-related osmotically-activated channel) (VR-OAC) | Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity (PubMed:16293632, PubMed:18695040, PubMed:18826956, PubMed:22526352, PubMed:23136043, PubMed:29899501). Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification (PubMed:18695040, PubMed:18826956, PubMed:29899501). Also activated by heat, low pH, citrate and phorbol esters (PubMed:16293632, PubMed:18695040, PubMed:18826956, PubMed:20037586, PubMed:21964574, PubMed:25256292). Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (PubMed:12724311, PubMed:18826956). Promotes cell-cell junction formation in skin keratinocytes and plays an important role in the formation and/or maintenance of functional intercellular barriers (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (PubMed:19759329). Plays an obligatory role as a molecular component in the nonselective cation channel activation induced by 4-alpha-phorbol 12,13-didecanoate and hypotonic stimulation in synoviocytes and also regulates production of IL-8 (PubMed:19759329). Together with PKD2, forms mechano- and thermosensitive channels in cilium (PubMed:18695040). Negatively regulates expression of PPARGC1A, UCP1, oxidative metabolism and respiration in adipocytes (By similarity). Regulates expression of chemokines and cytokines related to pro-inflammatory pathway in adipocytes (By similarity). Together with AQP5, controls regulatory volume decrease in salivary epithelial cells (By similarity). Required for normal development and maintenance of bone and cartilage (PubMed:26249260). In its inactive state, may sequester DDX3X at the plasma membrane. When activated, the interaction between both proteins is affected and DDX3X relocalizes to the nucleus (PubMed:29899501). In neurons of the central nervous system, could play a role in triggering voluntary water intake in response to increased sodium concentration in body fluid (By similarity). {ECO:0000250|UniProtKB:Q9EPK8, ECO:0000269|PubMed:11025659, ECO:0000269|PubMed:12724311, ECO:0000269|PubMed:16293632, ECO:0000269|PubMed:18587396, ECO:0000269|PubMed:18695040, ECO:0000269|PubMed:18826956, ECO:0000269|PubMed:19759329, ECO:0000269|PubMed:20037586, ECO:0000269|PubMed:21964574, ECO:0000269|PubMed:23136043, ECO:0000269|PubMed:25256292, ECO:0000269|PubMed:26249260, ECO:0000269|PubMed:29899501}.; FUNCTION: [Isoform 1]: Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by phorbol esters. Has the same channel activity as isoform 1, and is activated by the same stimuli. {ECO:0000269|PubMed:16293632}.; FUNCTION: [Isoform 5]: Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by phorbol esters. Has the same channel activity as isoform 1, and is activated by the same stimuli. {ECO:0000269|PubMed:16293632}.; FUNCTION: [Isoform 2]: Lacks channel activity, due to impaired oligomerization and intracellular retention. {ECO:0000269|PubMed:16293632}.; FUNCTION: [Isoform 4]: Lacks channel activity, due to impaired oligomerization and intracellular retention. {ECO:0000269|PubMed:16293632}.; FUNCTION: [Isoform 6]: Lacks channel activity, due to impaired oligomerization and intracellular retention. {ECO:0000269|PubMed:16293632}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication, possibly through its action on DDX3X. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication, possibly through its action on DDX3X. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication, possibly through its action on DDX3X. {ECO:0000269|PubMed:29899501}. |
Q9HCD6 | TANC2 | S1702 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCH5 | SYTL2 | S277 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCK8 | CHD8 | S2219 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9NQS7 | INCENP | S893 | ochoa|psp | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NR48 | ASH1L | S1688 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NRL3 | STRN4 | S634 | ochoa | Striatin-4 (Zinedin) | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:32640226). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:32640226). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). Key regulator of the expanded Hippo signaling pathway by interacting and allowing the inhibition of MAP4K kinases by the STRIPAK complex (PubMed:32640226). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:32640226, ECO:0000305|PubMed:26876214}. |
Q9NTM9 | CUTC | S238 | ochoa | Copper homeostasis protein cutC homolog | May play a role in copper homeostasis. Can bind one Cu(1+) per subunit. {ECO:0000269|PubMed:16182249, ECO:0000269|PubMed:19878721}. |
Q9NV58 | RNF19A | S283 | ochoa | E3 ubiquitin-protein ligase RNF19A (EC 2.3.2.31) (Double ring-finger protein) (Dorfin) (RING finger protein 19A) (p38) | E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates, such as SNCAIP or CASR. Specifically ubiquitinates pathogenic SOD1 variants, which leads to their proteasomal degradation and to neuronal protection. {ECO:0000269|PubMed:11237715, ECO:0000269|PubMed:12145308, ECO:0000269|PubMed:12750386, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16513638}. |
Q9NVW2 | RLIM | S163 | ochoa | E3 ubiquitin-protein ligase RLIM (EC 2.3.2.27) (LIM domain-interacting RING finger protein) (RING finger LIM domain-binding protein) (R-LIM) (RING finger protein 12) (RING-type E3 ubiquitin transferase RLIM) (Renal carcinoma antigen NY-REN-43) | E3 ubiquitin-protein ligase. Acts as a negative coregulator for LIM homeodomain transcription factors by mediating the ubiquitination and subsequent degradation of LIM cofactors LDB1 and LDB2 and by mediating the recruitment the SIN3a/histone deacetylase corepressor complex. Ubiquitination and degradation of LIM cofactors LDB1 and LDB2 allows DNA-bound LIM homeodomain transcription factors to interact with other protein partners such as RLIM. Plays a role in telomere length-mediated growth suppression by mediating the ubiquitination and degradation of TERF1. By targeting ZFP42 for degradation, acts as an activator of random inactivation of X chromosome in the embryo, a stochastic process in which one X chromosome is inactivated to minimize sex-related dosage differences of X-encoded genes in somatic cells of female placental mammals. {ECO:0000269|PubMed:19164295, ECO:0000269|PubMed:19945382}. |
Q9NXR1 | NDE1 | S306 | ochoa|psp | Nuclear distribution protein nudE homolog 1 (NudE) | Required for centrosome duplication and formation and function of the mitotic spindle. Essential for the development of the cerebral cortex. May regulate the production of neurons by controlling the orientation of the mitotic spindle during division of cortical neuronal progenitors of the proliferative ventricular zone of the brain. Orientation of the division plane perpendicular to the layers of the cortex gives rise to two proliferative neuronal progenitors whereas parallel orientation of the division plane yields one proliferative neuronal progenitor and a postmitotic neuron. A premature shift towards a neuronal fate within the progenitor population may result in an overall reduction in the final number of neurons and an increase in the number of neurons in the deeper layers of the cortex. Acts as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:21529752, ECO:0000269|PubMed:34793709}. |
Q9NYA4 | MTMR4 | S628 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR4 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 2) (FYVE-DSP2) (Myotubularin-related protein 4) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Zinc finger FYVE domain-containing protein 11) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:11302699, PubMed:16787938, PubMed:20736309, PubMed:27625994, PubMed:29962048, PubMed:30944173). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic, in a subset of endosomal membranes to negatively regulate both endocytic recycling and trafficking and/or maturation of endosomes toward lysosomes (PubMed:16787938, PubMed:20736309, PubMed:29962048). Through phosphatidylinositol 3-phosphate turnover in phagosome membranes regulates phagocytosis and phagosome maturation (PubMed:31543504). By decreasing phosphatidylinositol 3-monophosphate (PI3P) levels in immune cells it can also regulate the innate immune response (PubMed:30944173). Beside its lipid phosphatase activity, can also function as a molecular adapter to regulate midbody abscission during mitotic cytokinesis (PubMed:25659891). Can also negatively regulate TGF-beta and BMP signaling through Smad proteins dephosphorylation and retention in endosomes (PubMed:20061380, PubMed:23150675). {ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:16787938, ECO:0000269|PubMed:20061380, ECO:0000269|PubMed:20736309, ECO:0000269|PubMed:23150675, ECO:0000269|PubMed:25659891, ECO:0000269|PubMed:27625994, ECO:0000269|PubMed:29962048, ECO:0000269|PubMed:30944173, ECO:0000269|PubMed:31543504}. |
Q9NYL2 | MAP3K20 | S636 | ochoa | Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) | Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}. |
Q9NYV4 | CDK12 | S333 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NZ52 | GGA3 | S371 | ochoa | ADP-ribosylation factor-binding protein GGA3 (Golgi-localized, gamma ear-containing, ARF-binding protein 3) | Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif (PubMed:11301005). Mediates export of the GPCR receptor ADRA2B to the cell surface (PubMed:26811329). nvolved in BACE1 transport and sorting as well as regulation of BACE1 protein levels (PubMed:15615712, PubMed:17553422, PubMed:20484053). Regulates retrograde transport of BACE1 from endosomes to the trans-Golgi network via interaction through the VHS motif and dependent of BACE1 phosphorylation (PubMed:15615712). Modulates BACE1 protein levels independently of the interaction between VHS domain and DXXLL motif through recognition of ubiquitination (PubMed:20484053). Key player in a novel DXXLL-mediated endosomal sorting machinery to the recycling pathway that targets NTRK1 to the plasma membrane (By similarity). {ECO:0000250|UniProtKB:A0A0G2JV04, ECO:0000269|PubMed:11301005, ECO:0000269|PubMed:15615712, ECO:0000269|PubMed:17553422, ECO:0000269|PubMed:20484053, ECO:0000269|PubMed:26811329}. |
Q9NZI5 | GRHL1 | S76 | ochoa|psp | Grainyhead-like protein 1 homolog (Mammalian grainyhead) (NH32) (Transcription factor CP2-like 2) (Transcription factor LBP-32) | Transcription factor involved in epithelial development. Binds directly to the consensus DNA sequence 5'-AACCGGTT-3' (PubMed:12175488, PubMed:18288204, PubMed:29309642). Important regulator of DSG1 in the context of hair anchorage and epidermal differentiation, participates in the maintenance of the skin barrier. There is no genetic interaction with GRHL3, nor functional cooperativity due to diverse target gene selectivity during epithelia development (By similarity). May play a role in regulating glucose homeostasis and insulin signaling. {ECO:0000250|UniProtKB:Q921D9, ECO:0000269|PubMed:12175488, ECO:0000269|PubMed:18288204, ECO:0000269|PubMed:29309642, ECO:0000269|PubMed:35013237}.; FUNCTION: [Isoform 1]: Functions as a transcription activator. {ECO:0000269|PubMed:12175488, ECO:0000269|PubMed:29309642}.; FUNCTION: [Isoform 2]: May function as a repressor in tissues where both isoform 1 and isoform 2 are expressed. {ECO:0000269|PubMed:12175488}. |
Q9P0L2 | MARK1 | S393 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P227 | ARHGAP23 | S610 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P246 | STIM2 | S718 | ochoa | Stromal interaction molecule 2 | Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Functions as a highly sensitive Ca(2+) sensor in the endoplasmic reticulum which activates both store-operated and store-independent Ca(2+)-influx. Regulates basal cytosolic and endoplasmic reticulum Ca(2+) concentrations. Upon mild variations of the endoplasmic reticulum Ca(2+) concentration, translocates from the endoplasmic reticulum to the plasma membrane where it probably activates the Ca(2+) release-activated Ca(2+) (CRAC) channels ORAI1, ORAI2 and ORAI3. May inhibit STIM1-mediated Ca(2+) influx. {ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16860747, ECO:0000269|PubMed:17905723, ECO:0000269|PubMed:18160041, ECO:0000269|PubMed:21217057, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:23359669}. |
Q9P258 | RCC2 | S43 | ochoa | Protein RCC2 (RCC1-like protein TD-60) (Telophase disk protein of 60 kDa) | Multifunctional protein that may affect its functions by regulating the activity of small GTPases, such as RAC1 and RALA (PubMed:12919680, PubMed:25074804, PubMed:26158537, PubMed:28869598). Required for normal progress through the cell cycle, both during interphase and during mitosis (PubMed:12919680, PubMed:23388455, PubMed:26158537). Required for the presence of normal levels of MAD2L1, AURKB and BIRC5 on inner centromeres during mitosis, and for normal attachment of kinetochores to mitotic spindles (PubMed:12919680, PubMed:26158537). Required for normal organization of the microtubule cytoskeleton in interphase cells (PubMed:23388455). Functions as guanine nucleotide exchange factor (GEF) for RALA (PubMed:26158537). Interferes with the activation of RAC1 by guanine nucleotide exchange factors (PubMed:25074804). Prevents accumulation of active, GTP-bound RAC1, and suppresses RAC1-mediated reorganization of the actin cytoskeleton and formation of membrane protrusions (PubMed:25074804, PubMed:28869598). Required for normal cellular responses to contacts with the extracellular matrix of adjacent cells, and for directional cell migration in response to a fibronectin gradient (in vitro) (PubMed:25074804, PubMed:28869598). {ECO:0000269|PubMed:12919680, ECO:0000269|PubMed:23388455, ECO:0000269|PubMed:25074804, ECO:0000269|PubMed:26158537, ECO:0000269|PubMed:28869598}. |
Q9P270 | SLAIN2 | S87 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P2D6 | FAM135A | S639 | ochoa | Protein FAM135A | None |
Q9P2Q2 | FRMD4A | S710 | ochoa | FERM domain-containing protein 4A | Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}. |
Q9P2Y5 | UVRAG | S482 | ochoa | UV radiation resistance-associated gene protein (p63) | Versatile protein that is involved in regulation of different cellular pathways implicated in membrane trafficking. Involved in regulation of the COPI-dependent retrograde transport from Golgi and the endoplasmic reticulum by associating with the NRZ complex; the function is dependent on its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) (PubMed:16799551, PubMed:18552835, PubMed:20643123, PubMed:24056303, PubMed:28306502). During autophagy acts as a regulatory subunit of the alternative PI3K complex II (PI3KC3-C2) that mediates formation of phosphatidylinositol 3-phosphate and is believed to be involved in maturation of autophagosomes and endocytosis. Activates lipid kinase activity of PIK3C3 (PubMed:16799551, PubMed:20643123, PubMed:24056303, PubMed:28306502). Involved in the regulation of degradative endocytic trafficking and cytokinesis, and in regulation of ATG9A transport from the Golgi to the autophagosome; the functions seems to implicate its association with PI3KC3-C2 (PubMed:16799551, PubMed:20643123, PubMed:24056303). Involved in maturation of autophagosomes and degradative endocytic trafficking independently of BECN1 but depending on its association with a class C Vps complex (possibly the HOPS complex); the association is also proposed to promote autophagosome recruitment and activation of Rab7 and endosome-endosome fusion events (PubMed:18552835, PubMed:28306502). Enhances class C Vps complex (possibly HOPS complex) association with a SNARE complex and promotes fusogenic SNARE complex formation during late endocytic membrane fusion (PubMed:24550300). In case of negative-strand RNA virus infection is required for efficient virus entry, promotes endocytic transport of virions and is implicated in a VAMP8-specific fusogenic SNARE complex assembly (PubMed:24550300). {ECO:0000269|PubMed:18552835, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:24056303, ECO:0000269|PubMed:28306502, ECO:0000305}.; FUNCTION: Involved in maintaining chromosomal stability. Promotes DNA double-strand break (DSB) repair by association with DNA-dependent protein kinase complex DNA-PK and activating it in non-homologous end joining (NHEJ) (PubMed:22542840). Required for centrosome stability and proper chromosome segregation (PubMed:22542840). {ECO:0000269|PubMed:22542840}. |
Q9P2Y5 | UVRAG | S508 | ochoa|psp | UV radiation resistance-associated gene protein (p63) | Versatile protein that is involved in regulation of different cellular pathways implicated in membrane trafficking. Involved in regulation of the COPI-dependent retrograde transport from Golgi and the endoplasmic reticulum by associating with the NRZ complex; the function is dependent on its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) (PubMed:16799551, PubMed:18552835, PubMed:20643123, PubMed:24056303, PubMed:28306502). During autophagy acts as a regulatory subunit of the alternative PI3K complex II (PI3KC3-C2) that mediates formation of phosphatidylinositol 3-phosphate and is believed to be involved in maturation of autophagosomes and endocytosis. Activates lipid kinase activity of PIK3C3 (PubMed:16799551, PubMed:20643123, PubMed:24056303, PubMed:28306502). Involved in the regulation of degradative endocytic trafficking and cytokinesis, and in regulation of ATG9A transport from the Golgi to the autophagosome; the functions seems to implicate its association with PI3KC3-C2 (PubMed:16799551, PubMed:20643123, PubMed:24056303). Involved in maturation of autophagosomes and degradative endocytic trafficking independently of BECN1 but depending on its association with a class C Vps complex (possibly the HOPS complex); the association is also proposed to promote autophagosome recruitment and activation of Rab7 and endosome-endosome fusion events (PubMed:18552835, PubMed:28306502). Enhances class C Vps complex (possibly HOPS complex) association with a SNARE complex and promotes fusogenic SNARE complex formation during late endocytic membrane fusion (PubMed:24550300). In case of negative-strand RNA virus infection is required for efficient virus entry, promotes endocytic transport of virions and is implicated in a VAMP8-specific fusogenic SNARE complex assembly (PubMed:24550300). {ECO:0000269|PubMed:18552835, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:24056303, ECO:0000269|PubMed:28306502, ECO:0000305}.; FUNCTION: Involved in maintaining chromosomal stability. Promotes DNA double-strand break (DSB) repair by association with DNA-dependent protein kinase complex DNA-PK and activating it in non-homologous end joining (NHEJ) (PubMed:22542840). Required for centrosome stability and proper chromosome segregation (PubMed:22542840). {ECO:0000269|PubMed:22542840}. |
Q9UBG0 | MRC2 | S1456 | ochoa | C-type mannose receptor 2 (C-type lectin domain family 13 member E) (Endocytic receptor 180) (Macrophage mannose receptor 2) (Urokinase-type plasminogen activator receptor-associated protein) (UPAR-associated protein) (Urokinase receptor-associated protein) (CD antigen CD280) | May play a role as endocytotic lectin receptor displaying calcium-dependent lectin activity. Internalizes glycosylated ligands from the extracellular space for release in an endosomal compartment via clathrin-mediated endocytosis. May be involved in plasminogen activation system controlling the extracellular level of PLAUR/PLAU, and thus may regulate protease activity at the cell surface. May contribute to cellular uptake, remodeling and degradation of extracellular collagen matrices. May play a role during cancer progression as well as in other chronic tissue destructive diseases acting on collagen turnover. May participate in remodeling of extracellular matrix cooperating with the matrix metalloproteinases (MMPs). {ECO:0000269|PubMed:10683150, ECO:0000269|PubMed:12972549}. |
Q9UHB6 | LIMA1 | S93 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UHB7 | AFF4 | S179 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UHD2 | TBK1 | S509 | ochoa | Serine/threonine-protein kinase TBK1 (EC 2.7.11.1) (NF-kappa-B-activating kinase) (T2K) (TANK-binding kinase 1) | Serine/threonine kinase that plays an essential role in regulating inflammatory responses to foreign agents (PubMed:10581243, PubMed:11839743, PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:15485837, PubMed:18583960, PubMed:21138416, PubMed:23453971, PubMed:23453972, PubMed:23746807, PubMed:25636800, PubMed:26611359, PubMed:32404352, PubMed:34363755, PubMed:32298923). Following activation of toll-like receptors by viral or bacterial components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors (IRFs) IRF3 and IRF7 as well as DDX3X (PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:18583960, PubMed:25636800). This activity allows subsequent homodimerization and nuclear translocation of the IRFs leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNA and IFNB (PubMed:12702806, PubMed:15367631, PubMed:25636800, PubMed:32972995). In order to establish such an antiviral state, TBK1 form several different complexes whose composition depends on the type of cell and cellular stimuli (PubMed:23453971, PubMed:23453972, PubMed:23746807). Plays a key role in IRF3 activation: acts by first phosphorylating innate adapter proteins MAVS, STING1 and TICAM1 on their pLxIS motif, leading to recruitment of IRF3, thereby licensing IRF3 for phosphorylation by TBK1 (PubMed:25636800, PubMed:30842653, PubMed:37926288). Phosphorylated IRF3 dissociates from the adapter proteins, dimerizes, and then enters the nucleus to induce expression of interferons (PubMed:25636800). Thus, several scaffolding molecules including FADD, TRADD, MAVS, AZI2, TANK or TBKBP1/SINTBAD can be recruited to the TBK1-containing-complexes (PubMed:21931631). Under particular conditions, functions as a NF-kappa-B effector by phosphorylating NF-kappa-B inhibitor alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus (PubMed:10783893, PubMed:15489227). Restricts bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177', thus enhancing LC3 binding affinity and antibacterial autophagy (PubMed:21617041). Phosphorylates SMCR8 component of the C9orf72-SMCR8 complex, promoting autophagosome maturation (PubMed:27103069). Phosphorylates ATG8 proteins MAP1LC3C and GABARAPL2, thereby preventing their delipidation and premature removal from nascent autophagosomes (PubMed:31709703). Seems to play a role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, which leads to a negative impact on insulin sensitivity (By similarity). Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C (PubMed:21270402). Phosphorylates Borna disease virus (BDV) P protein (PubMed:16155125). Plays an essential role in the TLR3- and IFN-dependent control of herpes virus HSV-1 and HSV-2 infections in the central nervous system (PubMed:22851595). Acts both as a positive and negative regulator of the mTORC1 complex, depending on the context: activates mTORC1 in response to growth factors by catalyzing phosphorylation of MTOR, while it limits the mTORC1 complex by promoting phosphorylation of RPTOR (PubMed:29150432, PubMed:31530866). Acts as a positive regulator of the mTORC2 complex by mediating phosphorylation of MTOR, leading to increased phosphorylation and activation of AKT1 (By similarity). Phosphorylates and activates AKT1 (PubMed:21464307). Involved in the regulation of TNF-induced RIPK1-mediated cell death, probably acting via CYLD phosphorylation that in turn controls RIPK1 ubiquitination status (PubMed:34363755). Also participates in the differentiation of T follicular regulatory cells together with the receptor ICOS (PubMed:27135603). {ECO:0000250|UniProtKB:Q9WUN2, ECO:0000269|PubMed:10581243, ECO:0000269|PubMed:10783893, ECO:0000269|PubMed:11839743, ECO:0000269|PubMed:12692549, ECO:0000269|PubMed:12702806, ECO:0000269|PubMed:14703513, ECO:0000269|PubMed:15367631, ECO:0000269|PubMed:15485837, ECO:0000269|PubMed:15489227, ECO:0000269|PubMed:16155125, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:21270402, ECO:0000269|PubMed:21464307, ECO:0000269|PubMed:21617041, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:22851595, ECO:0000269|PubMed:23453971, ECO:0000269|PubMed:23453972, ECO:0000269|PubMed:23746807, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:26611359, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27135603, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:30842653, ECO:0000269|PubMed:31530866, ECO:0000269|PubMed:31709703, ECO:0000269|PubMed:32298923, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:34363755, ECO:0000269|PubMed:37926288}. |
Q9UHV7 | MED13 | Y394 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UI08 | EVL | S259 | ochoa | Ena/VASP-like protein (Ena/vasodilator-stimulated phosphoprotein-like) | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. EVL enhances actin nucleation and polymerization. |
Q9UJD0 | RIMS3 | S21 | ochoa | Regulating synaptic membrane exocytosis protein 3 (Nim3) (RIM3 gamma) (Rab-3-interacting molecule 3) (RIM 3) | Regulates synaptic membrane exocytosis. {ECO:0000250}. |
Q9UK76 | JPT1 | S87 | ochoa | Jupiter microtubule associated homolog 1 (Androgen-regulated protein 2) (Hematological and neurological expressed 1 protein) [Cleaved into: Jupiter microtubule associated homolog 1, N-terminally processed] | Modulates negatively AKT-mediated GSK3B signaling (PubMed:21323578, PubMed:22155408). Induces CTNNB1 'Ser-33' phosphorylation and degradation through the suppression of the inhibitory 'Ser-9' phosphorylation of GSK3B, which represses the function of the APC:CTNNB1:GSK3B complex and the interaction with CDH1/E-cadherin in adherent junctions (PubMed:25169422). Plays a role in the regulation of cell cycle and cell adhesion (PubMed:25169422, PubMed:25450365). Has an inhibitory role on AR-signaling pathway through the induction of receptor proteasomal degradation (PubMed:22155408). {ECO:0000269|PubMed:21323578, ECO:0000269|PubMed:22155408, ECO:0000269|PubMed:25169422, ECO:0000269|PubMed:25450365}. |
Q9UKE5 | TNIK | S547 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKN1 | MUC12 | S1615 | ochoa | Mucin-12 (MUC-12) (Mucin-11) (MUC-11) | Involved in epithelial cell protection, adhesion modulation, and signaling. May be involved in epithelial cell growth regulation. Stimulated by both cytokine TNF-alpha and TGF-beta in intestinal epithelium. {ECO:0000269|PubMed:17058067}. |
Q9ULC8 | ZDHHC8 | S642 | ochoa | Palmitoyltransferase ZDHHC8 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 8) (DHHC-8) (Zinc finger protein 378) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates and therefore functions in several unrelated biological processes (Probable). Through the palmitoylation of ABCA1 regulates the localization of the transporter to the plasma membrane and thereby regulates its function in cholesterol and phospholipid efflux (Probable). Could also pamitoylate the D(2) dopamine receptor DRD2 and regulate its stability and localization to the plasma membrane (Probable). Could also play a role in glutamatergic transmission (By similarity). {ECO:0000250|UniProtKB:Q5Y5T5, ECO:0000305|PubMed:19556522, ECO:0000305|PubMed:23034182, ECO:0000305|PubMed:26535572}.; FUNCTION: (Microbial infection) Able to palmitoylate SARS coronavirus-2/SARS-CoV-2 spike protein following its synthesis in the endoplasmic reticulum (ER). In the infected cell, promotes spike biogenesis by protecting it from premature ER degradation, increases half-life and controls the lipid organization of its immediate membrane environment. Once the virus has formed, spike palmitoylation controls fusion with the target cell. {ECO:0000269|PubMed:34599882}. |
Q9ULD2 | MTUS1 | S760 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULL8 | SHROOM4 | S377 | ochoa | Protein Shroom4 (Second homolog of apical protein) | Probable regulator of cytoskeletal architecture that plays an important role in development. May regulate cellular and cytoskeletal architecture by modulating the spatial distribution of myosin II (By similarity). {ECO:0000250, ECO:0000269|PubMed:16684770}. |
Q9ULT8 | HECTD1 | S1570 | ochoa | E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (E3 ligase for inhibin receptor) (EULIR) (HECT domain-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:33711283). Mediates 'Lys-63'-linked polyubiquitination of HSP90AA1 which leads to its intracellular localization and reduced secretion (By similarity). Negatively regulating HSP90AA1 secretion in cranial mesenchyme cells may impair their emigration and may be essential for the correct development of the cranial neural folds and neural tube closure (By similarity). Catalyzes ubiquitination and degradation of ZNF622, an assembly factor for the ribosomal 60S subunit, in hematopoietic cells, thereby promoting hematopoietic stem cell renewal (PubMed:33711283). {ECO:0000250|UniProtKB:Q69ZR2, ECO:0000269|PubMed:33711283}. |
Q9ULV0 | MYO5B | S1643 | ochoa | Unconventional myosin-Vb | May be involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation. Required in a complex with RAB11A and RAB11FIP2 for the transport of NPC1L1 to the plasma membrane. Together with RAB11A participates in CFTR trafficking to the plasma membrane and TF (transferrin) recycling in nonpolarized cells. Together with RAB11A and RAB8A participates in epithelial cell polarization. Together with RAB25 regulates transcytosis. Required for proper localization of bile salt export pump ABCB11 at the apical/canalicular plasma membrane of hepatocytes (PubMed:34816459). {ECO:0000269|PubMed:21206382, ECO:0000269|PubMed:21282656, ECO:0000269|PubMed:34816459}. |
Q9UNI6 | DUSP12 | S232 | ochoa | Dual specificity protein phosphatase 12 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity tyrosine phosphatase YVH1) | Dual specificity phosphatase; can dephosphorylate both phosphotyrosine and phosphoserine or phosphothreonine residues. Can dephosphorylate glucokinase (in vitro) (By similarity). Has phosphatase activity with the synthetic substrate 6,8-difluoro-4-methylumbelliferyl phosphate and other in vitro substrates (PubMed:10446167, PubMed:24531476). {ECO:0000250|UniProtKB:Q9JIM4, ECO:0000269|PubMed:10446167, ECO:0000269|PubMed:24531476}. |
Q9UPQ0 | LIMCH1 | S225 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPU5 | USP24 | S1371 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UPU7 | TBC1D2B | S316 | ochoa | TBC1 domain family member 2B | GTPase-activating protein that plays a role in the early steps of endocytosis (PubMed:32623794). {ECO:0000269|PubMed:32623794}. |
Q9UPZ3 | HPS5 | S436 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9UQ35 | SRRM2 | S818 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S1102 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQB8 | BAIAP2 | S365 | ochoa | BAR/IMD domain-containing adapter protein 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2) (BAI-associated protein 2) (BAI1-associated protein 2) (Protein BAP2) (Fas ligand-associated factor 3) (FLAF3) (Insulin receptor substrate p53/p58) (IRS-58) (IRSp53/58) (Insulin receptor substrate protein of 53 kDa) (IRSp53) (Insulin receptor substrate p53) | Adapter protein that links membrane-bound small G-proteins to cytoplasmic effector proteins. Necessary for CDC42-mediated reorganization of the actin cytoskeleton and for RAC1-mediated membrane ruffling. Involved in the regulation of the actin cytoskeleton by WASF family members and the Arp2/3 complex. Plays a role in neurite growth. Acts syngeristically with ENAH to promote filipodia formation. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. Participates in actin bundling when associated with EPS8, promoting filopodial protrusions. {ECO:0000269|PubMed:11130076, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:14752106, ECO:0000269|PubMed:17115031, ECO:0000269|PubMed:19366662}. |
Q9UQB8 | BAIAP2 | Y491 | ochoa | BAR/IMD domain-containing adapter protein 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2) (BAI-associated protein 2) (BAI1-associated protein 2) (Protein BAP2) (Fas ligand-associated factor 3) (FLAF3) (Insulin receptor substrate p53/p58) (IRS-58) (IRSp53/58) (Insulin receptor substrate protein of 53 kDa) (IRSp53) (Insulin receptor substrate p53) | Adapter protein that links membrane-bound small G-proteins to cytoplasmic effector proteins. Necessary for CDC42-mediated reorganization of the actin cytoskeleton and for RAC1-mediated membrane ruffling. Involved in the regulation of the actin cytoskeleton by WASF family members and the Arp2/3 complex. Plays a role in neurite growth. Acts syngeristically with ENAH to promote filipodia formation. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. Participates in actin bundling when associated with EPS8, promoting filopodial protrusions. {ECO:0000269|PubMed:11130076, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:14752106, ECO:0000269|PubMed:17115031, ECO:0000269|PubMed:19366662}. |
Q9UQC2 | GAB2 | S404 | ochoa | GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) | Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}. |
Q9Y227 | ENTPD4 | S596 | ochoa | Ectonucleoside triphosphate diphosphohydrolase 4 (NTPDase 4) (EC 3.6.1.15) (EC 3.6.1.6) (Golgi UDPase) (Lysosomal apyrase-like protein of 70 kDa) (Uridine-diphosphatase) (UDPase) (EC 3.6.1.42) | [Isoform 1]: Catalyzes the hydrolysis of nucleoside triphosphates and diphosphates in a calcium- or magnesium-dependent manner, with a preference for pyrimidines. Preferentially hydrolyzes UTP and TTP. AMP, ADP, ATP and UMP are not substrates (PubMed:10858452, PubMed:9556635). Preferentially activated by Ca(2+) over Mg(2+) (PubMed:10858452). {ECO:0000269|PubMed:10858452, ECO:0000269|PubMed:9556635}.; FUNCTION: [Isoform 2]: Has a broad substrate specificity with the ability of cleaving all nucleotide di- and triphosphates with the exception of adenosine di- and triphosphate (ADP and ATP). Preferentially hydrolyzes CTP, UDP, CDP, GTP and GDP. Can use either Ca(2+) or Mg(2+) equally. {ECO:0000269|PubMed:10858452, ECO:0000269|PubMed:9556635}. |
Q9Y228 | TRAF3IP3 | S110 | ochoa | TRAF3-interacting JNK-activating modulator (TRAF3-interacting protein 3) | Adapter protein that plays essential roles in both innate and adaptive immunity. Plays a crucial role in the regulation of thymocyte development (PubMed:26195727). Mechanistically, mediates TCR-stimulated activation through recruiting MAP2K1/MEK1 to the Golgi and, thereby, facilitating the interaction of MAP2K1/MEK1 with its activator BRAF (PubMed:26195727). Also plays an essential role in regulatory T-cell stability and function by recruiting the serine-threonine phosphatase catalytic subunit (PPP2CA) to the lysosome, thereby facilitating the interaction of PP2Ac with the mTORC1 component RPTOR and restricting glycolytic metabolism (PubMed:30115741). Positively regulates TLR4 signaling activity in macrophage-mediated inflammation by acting as a molecular clamp to facilitate LPS-induced translocation of TLR4 to lipid rafts (PubMed:30573680). In response to viral infection, facilitates the recruitment of TRAF3 to MAVS within mitochondria leading to IRF3 activation and interferon production (PubMed:31390091). However, participates in the maintenance of immune homeostasis and the prevention of overzealous innate immunity by promoting 'Lys-48'-dependent ubiquitination of TBK1 (PubMed:32366851). {ECO:0000269|PubMed:26195727, ECO:0000269|PubMed:30115741, ECO:0000269|PubMed:30573680, ECO:0000269|PubMed:31390091, ECO:0000269|PubMed:32366851}. |
Q9Y2H5 | PLEKHA6 | S313 | ochoa | Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) | None |
Q9Y2H9 | MAST1 | S826 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2H9 | MAST1 | S1425 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2K9 | STXBP5L | S771 | psp | Syntaxin-binding protein 5-like (Lethal(2) giant larvae protein homolog 4) (Tomosyn-2) | Plays a role in vesicle trafficking and exocytosis inhibition. In pancreatic beta-cells, inhibits insulin secretion probably by interacting with and regulating STX1A and STX4, key t-SNARE proteins involved in the fusion of insulin granules to the plasma membrane. Also plays a role in neurotransmitter release by inhibiting basal acetylcholine release from axon terminals and by preventing synaptic fatigue upon repetitive stimulation (By similarity). Promotes as well axonal outgrowth (PubMed:25504045). {ECO:0000250|UniProtKB:Q5DQR4, ECO:0000269|PubMed:25504045}. |
Q9Y2K9 | STXBP5L | S819 | ochoa | Syntaxin-binding protein 5-like (Lethal(2) giant larvae protein homolog 4) (Tomosyn-2) | Plays a role in vesicle trafficking and exocytosis inhibition. In pancreatic beta-cells, inhibits insulin secretion probably by interacting with and regulating STX1A and STX4, key t-SNARE proteins involved in the fusion of insulin granules to the plasma membrane. Also plays a role in neurotransmitter release by inhibiting basal acetylcholine release from axon terminals and by preventing synaptic fatigue upon repetitive stimulation (By similarity). Promotes as well axonal outgrowth (PubMed:25504045). {ECO:0000250|UniProtKB:Q5DQR4, ECO:0000269|PubMed:25504045}. |
Q9Y2L6 | FRMD4B | S627 | ochoa | FERM domain-containing protein 4B (GRP1-binding protein GRSP1) | Member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling. May function as a scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex. Plays a redundant role with FRMD4A in epithelial polarization. {ECO:0000250|UniProtKB:Q920B0}. |
Q9Y446 | PKP3 | S134 | ochoa | Plakophilin-3 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:24124604). Required for the localization of DSG2, DSP and PKP2 to mature desmosome junctions (PubMed:20859650). May also play a role in the maintenance of DSG3 protein abundance in keratinocytes (By similarity). Required for the formation of DSP-containing desmosome precursors in the cytoplasm during desmosome assembly (PubMed:25208567). Also regulates the accumulation of CDH1 to mature desmosome junctions, via cAMP-dependent signaling and its interaction with activated RAP1A (PubMed:25208567). Positively regulates the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with FXR1, may also regulate the protein abundance of DSP via the same mechanism (PubMed:25225333). May also regulate the protein abundance of the desmosome component PKP1 (By similarity). Required for the organization of desmosome junctions at intercellular borders between basal keratinocytes of the epidermis, as a result plays a role in maintenance of the dermal barrier and regulation of the dermal inflammatory response (By similarity). Required during epidermal keratinocyte differentiation for cell adherence at tricellular cell-cell contacts, via regulation of the timely formation of adherens junctions and desmosomes in a calcium-dependent manner, and may also play a role in the organization of the intracellular actin fiber belt (By similarity). Acts as a negative regulator of the inflammatory response in hematopoietic cells of the skin and intestine, via modulation of proinflammatory cytokine production (By similarity). Important for epithelial barrier maintenance in the intestine to reduce intestinal permeability, thereby plays a role in protection from intestinal-derived endotoxemia (By similarity). Required for the development of hair follicles, via a role in the regulation of inner root sheaf length, correct alignment and anterior-posterior polarity of hair follicles (By similarity). Promotes proliferation and cell-cycle G1/S phase transition of keratinocytes (By similarity). Promotes E2F1-driven transcription of G1/S phase promoting genes by acting to release E2F1 from its inhibitory interaction with RB1, via sequestering RB1 and CDKN1A to the cytoplasm and thereby increasing CDK4- and CDK6-driven phosphorylation of RB1 (By similarity). May act as a scaffold protein to facilitate MAPK phosphorylation of RPS6KA protein family members and subsequently promote downstream EGFR signaling (By similarity). May play a role in the positive regulation of transcription of Wnt-mediated TCF-responsive target genes (PubMed:34058472). {ECO:0000250|UniProtKB:Q9QY23, ECO:0000269|PubMed:20859650, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:34058472}. |
Q9Y446 | PKP3 | S313 | ochoa | Plakophilin-3 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:24124604). Required for the localization of DSG2, DSP and PKP2 to mature desmosome junctions (PubMed:20859650). May also play a role in the maintenance of DSG3 protein abundance in keratinocytes (By similarity). Required for the formation of DSP-containing desmosome precursors in the cytoplasm during desmosome assembly (PubMed:25208567). Also regulates the accumulation of CDH1 to mature desmosome junctions, via cAMP-dependent signaling and its interaction with activated RAP1A (PubMed:25208567). Positively regulates the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with FXR1, may also regulate the protein abundance of DSP via the same mechanism (PubMed:25225333). May also regulate the protein abundance of the desmosome component PKP1 (By similarity). Required for the organization of desmosome junctions at intercellular borders between basal keratinocytes of the epidermis, as a result plays a role in maintenance of the dermal barrier and regulation of the dermal inflammatory response (By similarity). Required during epidermal keratinocyte differentiation for cell adherence at tricellular cell-cell contacts, via regulation of the timely formation of adherens junctions and desmosomes in a calcium-dependent manner, and may also play a role in the organization of the intracellular actin fiber belt (By similarity). Acts as a negative regulator of the inflammatory response in hematopoietic cells of the skin and intestine, via modulation of proinflammatory cytokine production (By similarity). Important for epithelial barrier maintenance in the intestine to reduce intestinal permeability, thereby plays a role in protection from intestinal-derived endotoxemia (By similarity). Required for the development of hair follicles, via a role in the regulation of inner root sheaf length, correct alignment and anterior-posterior polarity of hair follicles (By similarity). Promotes proliferation and cell-cycle G1/S phase transition of keratinocytes (By similarity). Promotes E2F1-driven transcription of G1/S phase promoting genes by acting to release E2F1 from its inhibitory interaction with RB1, via sequestering RB1 and CDKN1A to the cytoplasm and thereby increasing CDK4- and CDK6-driven phosphorylation of RB1 (By similarity). May act as a scaffold protein to facilitate MAPK phosphorylation of RPS6KA protein family members and subsequently promote downstream EGFR signaling (By similarity). May play a role in the positive regulation of transcription of Wnt-mediated TCF-responsive target genes (PubMed:34058472). {ECO:0000250|UniProtKB:Q9QY23, ECO:0000269|PubMed:20859650, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:34058472}. |
Q9Y467 | SALL2 | S873 | ochoa | Sal-like protein 2 (Zinc finger protein 795) (Zinc finger protein SALL2) (Zinc finger protein Spalt-2) (Sal-2) (hSal2) | Probable transcription factor that plays a role in eye development before, during, and after optic fissure closure. {ECO:0000269|PubMed:24412933}. |
Q9Y4B4 | RAD54L2 | S1194 | ochoa | Helicase ARIP4 (EC 3.6.4.12) (Androgen receptor-interacting protein 4) (RAD54-like protein 2) | DNA helicase that modulates androgen receptor (AR)-dependent transactivation in a promoter-dependent manner. Not able to remodel mononucleosomes in vitro (By similarity). {ECO:0000250}. |
Q9Y4C1 | KDM3A | S264 | ochoa|psp | Lysine-specific demethylase 3A (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2A) (Jumonji domain-containing protein 1A) ([histone H3]-dimethyl-L-lysine(9) demethylase 3A) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Preferentially demethylates mono- and dimethylated H3 'Lys-9' residue, with a preference for dimethylated residue, while it has weak or no activity on trimethylated H3 'Lys-9'. Demethylation of Lys residue generates formaldehyde and succinate. Involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes, resulting in H3 'Lys-9' demethylation and transcriptional activation. Involved in spermatogenesis by regulating expression of target genes such as PRM1 and TNP1 which are required for packaging and condensation of sperm chromatin. Involved in obesity resistance through regulation of metabolic genes such as PPARA and UCP1. {ECO:0000269|PubMed:16603237, ECO:0000269|PubMed:28262558}. |
Q9Y4D8 | HECTD4 | S1138 | ochoa | Probable E3 ubiquitin-protein ligase HECTD4 (EC 2.3.2.26) (HECT domain-containing protein 4) (HECT-type E3 ubiquitin transferase HECTD4) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000250}. |
Q9Y4E6 | WDR7 | S1153 | ochoa | WD repeat-containing protein 7 (Rabconnectin-3 beta) (TGF-beta resistance-associated protein TRAG) | None |
Q9Y4H2 | IRS2 | S1148 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y4I1 | MYO5A | S1651 | ochoa | Unconventional myosin-Va (Dilute myosin heavy chain, non-muscle) (Myosin heavy chain 12) (Myosin-12) (Myoxin) | Processive actin-based motor that can move in large steps approximating the 36-nm pseudo-repeat of the actin filament. Can hydrolyze ATP in the presence of actin, which is essential for its function as a motor protein (PubMed:10448864). Involved in melanosome transport. Also mediates the transport of vesicles to the plasma membrane (By similarity). May also be required for some polarization process involved in dendrite formation (By similarity). {ECO:0000250|UniProtKB:Q99104, ECO:0000250|UniProtKB:Q9QYF3, ECO:0000269|PubMed:10448864}. |
Q9Y4K4 | MAP4K5 | S399 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 5 (EC 2.7.11.1) (Kinase homologous to SPS1/STE20) (KHS) (MAPK/ERK kinase kinase kinase 5) (MEK kinase kinase 5) (MEKKK 5) | May play a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway. {ECO:0000269|PubMed:9038372}. |
Q9Y4K4 | MAP4K5 | S433 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 5 (EC 2.7.11.1) (Kinase homologous to SPS1/STE20) (KHS) (MAPK/ERK kinase kinase kinase 5) (MEK kinase kinase 5) (MEKKK 5) | May play a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway. {ECO:0000269|PubMed:9038372}. |
Q9Y561 | LRP12 | S748 | ochoa | Low-density lipoprotein receptor-related protein 12 (LDLR-related protein 12) (LRP-12) (Suppressor of tumorigenicity 7 protein) | Probable receptor, which may be involved in the internalization of lipophilic molecules and/or signal transduction. May act as a tumor suppressor. {ECO:0000269|PubMed:12809483}. |
Q9Y5P4 | CERT1 | S376 | ochoa | Ceramide transfer protein (hCERT) (Collagen type IV alpha-3-binding protein) (Goodpasture antigen-binding protein) (GPBP) (START domain-containing protein 11) (StARD11) (StAR-related lipid transfer protein 11) | Shelters ceramides and diacylglycerol lipids inside its START domain and mediates the intracellular trafficking of ceramides and diacylglycerol lipids in a non-vesicular manner. {ECO:0000269|PubMed:14685229, ECO:0000269|PubMed:17591919, ECO:0000269|PubMed:18184806, ECO:0000269|PubMed:20036255}. |
Q9Y5X1 | SNX9 | S197 | ochoa | Sorting nexin-9 (SH3 and PX domain-containing protein 1) (Protein SDP1) (SH3 and PX domain-containing protein 3A) | Involved in endocytosis and intracellular vesicle trafficking, both during interphase and at the end of mitosis. Required for efficient progress through mitosis and cytokinesis. Required for normal formation of the cleavage furrow at the end of mitosis. Plays a role in endocytosis via clathrin-coated pits, but also clathrin-independent, actin-dependent fluid-phase endocytosis. Plays a role in macropinocytosis. Promotes internalization of TNFR. Promotes degradation of EGFR after EGF signaling. Stimulates the GTPase activity of DNM1. Promotes DNM1 oligomerization. Promotes activation of the Arp2/3 complex by WASL, and thereby plays a role in the reorganization of the F-actin cytoskeleton. Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate and promotes membrane tubulation. Has lower affinity for membranes enriched in phosphatidylinositol 3-phosphate. {ECO:0000269|PubMed:11799118, ECO:0000269|PubMed:12952949, ECO:0000269|PubMed:15703209, ECO:0000269|PubMed:17609109, ECO:0000269|PubMed:17948057, ECO:0000269|PubMed:18388313, ECO:0000269|PubMed:20427313, ECO:0000269|PubMed:21048941, ECO:0000269|PubMed:22718350}. |
Q9Y608 | LRRFIP2 | S308 | ochoa | Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) | May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}. |
Q9Y6D5 | ARFGEF2 | S276 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) | Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}. |
Q9Y6H5 | SNCAIP | S305 | ochoa | Synphilin-1 (Sph1) (Alpha-synuclein-interacting protein) | Isoform 2 inhibits the ubiquitin ligase activity of SIAH1 and inhibits proteasomal degradation of target proteins. Isoform 2 inhibits autoubiquitination and proteasomal degradation of SIAH1, and thereby increases cellular levels of SIAH. Isoform 2 modulates SNCA monoubiquitination by SIAH1. {ECO:0000269|PubMed:16595633, ECO:0000269|PubMed:19224863}. |
Q9Y6R4 | MAP3K4 | S1251 | ochoa | Mitogen-activated protein kinase kinase kinase 4 (EC 2.7.11.25) (MAP three kinase 1) (MAPK/ERK kinase kinase 4) (MEK kinase 4) (MEKK 4) | Component of a protein kinase signal transduction cascade. Activates the CSBP2, P38 and JNK MAPK pathways, but not the ERK pathway. Specifically phosphorylates and activates MAP2K4 and MAP2K6. {ECO:0000269|PubMed:12052864, ECO:0000269|PubMed:9305639}. |
P05023 | ATP1A1 | S519 | Sugiyama | Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}. |
P33993 | MCM7 | S409 | Sugiyama | DNA replication licensing factor MCM7 (EC 3.6.4.12) (CDC47 homolog) (P1.1-MCM3) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for S-phase checkpoint activation upon UV-induced damage. {ECO:0000269|PubMed:15210935, ECO:0000269|PubMed:15538388, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
Q9C0C2 | TNKS1BP1 | Y961 | Sugiyama | 182 kDa tankyrase-1-binding protein | None |
P04439 | HLA-A | S336 | ELM | HLA class I histocompatibility antigen, A alpha chain (Human leukocyte antigen A) (HLA-A) | Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-A-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells (PubMed:10449296, PubMed:12138174, PubMed:12393434, PubMed:1402688, PubMed:15893615, PubMed:17189421, PubMed:19543285, PubMed:21498667, PubMed:24192765, PubMed:24395804, PubMed:2456340, PubMed:2784196, PubMed:28250417, PubMed:7504010, PubMed:7694806, PubMed:9862734). May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity (PubMed:25880248, PubMed:7506728, PubMed:7679507). Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells (PubMed:12796775, PubMed:18275829, PubMed:19542454, PubMed:28250417). Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome or via endopeptidase IDE/insulin-degrading enzyme (PubMed:17079320, PubMed:17189421, PubMed:20364150, PubMed:26929325, PubMed:27049119). Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 (PubMed:7504010, PubMed:9862734). {ECO:0000269|PubMed:10449296, ECO:0000269|PubMed:12138174, ECO:0000269|PubMed:12393434, ECO:0000269|PubMed:12796775, ECO:0000269|PubMed:1402688, ECO:0000269|PubMed:15893615, ECO:0000269|PubMed:17079320, ECO:0000269|PubMed:17189421, ECO:0000269|PubMed:18275829, ECO:0000269|PubMed:19542454, ECO:0000269|PubMed:19543285, ECO:0000269|PubMed:20364150, ECO:0000269|PubMed:21498667, ECO:0000269|PubMed:24192765, ECO:0000269|PubMed:24395804, ECO:0000269|PubMed:2456340, ECO:0000269|PubMed:25880248, ECO:0000269|PubMed:26929325, ECO:0000269|PubMed:27049119, ECO:0000269|PubMed:2784196, ECO:0000269|PubMed:28250417, ECO:0000269|PubMed:7504010, ECO:0000269|PubMed:7506728, ECO:0000269|PubMed:7679507, ECO:0000269|PubMed:7694806, ECO:0000269|PubMed:9862734}.; FUNCTION: Allele A*01:01: Presents a restricted peptide repertoire including viral epitopes derived from IAV NP/nucleoprotein (CTELKLSDY), IAV PB1/polymerase basic protein 1 (VSDGGPNLY), HAdV-11 capsid L3/hexon protein (LTDLGQNLLY), SARS-CoV-2 3a/ORF3a (FTSDYYQLY) as well as tumor peptide antigens including MAGE1 (EADPTGHSY), MAGEA3 (EVDPIGHLY) and WT1 (TSEKRPFMCAY), all having in common a canonical motif with a negatively charged Asp or Glu residue at position 3 and a Tyr anchor residue at the C-terminus (PubMed:1402688, PubMed:17189421, PubMed:19177349, PubMed:20364150, PubMed:24395804, PubMed:25880248, PubMed:26758806, PubMed:30530481, PubMed:32887977, PubMed:7504010). A number of HLA-A*01:01-restricted peptides carry a post-translational modification with oxidation and N-terminal acetylation being the most frequent (PubMed:25880248). Fails to present highly immunogenic peptides from the EBV latent antigens (PubMed:18779413). {ECO:0000269|PubMed:1402688, ECO:0000269|PubMed:17189421, ECO:0000269|PubMed:18779413, ECO:0000269|PubMed:19177349, ECO:0000269|PubMed:20364150, ECO:0000269|PubMed:24395804, ECO:0000269|PubMed:25880248, ECO:0000269|PubMed:26758806, ECO:0000269|PubMed:30530481, ECO:0000269|PubMed:7504010}.; FUNCTION: Allele A*02:01: A major allele in human populations, presents immunodominant viral epitopes derived from IAV M/matrix protein 1 (GILGFVFTL), HIV-1 env (TLTSCNTSV), HIV-1 gag-pol (ILKEPVHGV), HTLV-1 Tax (LLFGYPVYV), HBV C/core antigen (FLPSDFFPS), HCMV UL83/pp65 (NLVPMVATV) as well as tumor peptide antigens including MAGEA4 (GVYDGREHTV), WT1 (RMFPNAPYL) and CTAG1A/NY-ESO-1 (SLLMWITQC), all having in common hydrophobic amino acids at position 2 and at the C-terminal anchors. {ECO:0000269|PubMed:11502003, ECO:0000269|PubMed:12138174, ECO:0000269|PubMed:12796775, ECO:0000269|PubMed:17079320, ECO:0000269|PubMed:18275829, ECO:0000269|PubMed:19542454, ECO:0000269|PubMed:20619457, ECO:0000269|PubMed:22245737, ECO:0000269|PubMed:26929325, ECO:0000269|PubMed:2784196, ECO:0000269|PubMed:28250417, ECO:0000269|PubMed:7694806, ECO:0000269|PubMed:7935798, ECO:0000269|PubMed:8630735, ECO:0000269|PubMed:8805302, ECO:0000269|PubMed:8906788, ECO:0000269|PubMed:9177355}.; FUNCTION: Allele A*03:01: Presents viral epitopes derived from IAV NP (ILRGSVAHK), HIV-1 nef (QVPLRPMTYK), HIV-1 gag-pol (AIFQSSMTK), SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) as well as tumor peptide antigens including PMEL (LIYRRRLMK), NODAL (HAYIQSLLK), TRP-2 (RMYNMVPFF), all having in common hydrophobic amino acids at position 2 and Lys or Arg anchor residues at the C-terminus (PubMed:19543285, PubMed:21943705, PubMed:2456340, PubMed:32887977, PubMed:7504010, PubMed:7679507, PubMed:9862734). May also display spliced peptides resulting from the ligation of two separate proteasomal cleavage products that are not contiguous in the parental protein (PubMed:27049119). {ECO:0000269|PubMed:19543285, ECO:0000269|PubMed:21943705, ECO:0000269|PubMed:2456340, ECO:0000269|PubMed:27049119, ECO:0000269|PubMed:7504010, ECO:0000269|PubMed:7679507, ECO:0000269|PubMed:9862734}.; FUNCTION: Allele A*11:01: Presents several immunodominant epitopes derived from HIV-1 gag-pol and HHV-4 EBNA4, containing the peptide motif with Val, Ile, Thr, Leu, Tyr or Phe at position 2 and Lys anchor residue at the C-terminus. Important in the control of HIV-1, EBV and HBV infections (PubMed:10449296). Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) (PubMed:32887977). {ECO:0000269|PubMed:10449296, ECO:0000269|PubMed:32887977}.; FUNCTION: Allele A*23:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response. {ECO:0000269|PubMed:17182537}.; FUNCTION: Allele A*24:02: Presents viral epitopes derived from HIV-1 nef (RYPLTFGWCF), EBV lytic- and latent-cycle antigens BRLF1 (TYPVLEEMF), BMLF1 (DYNFVKQLF) and LMP2 (IYVLVMLVL), SARS-CoV nucleocapsid/N (QFKDNVILL), as well as tumor peptide antigens including PRAME (LYVDSLFFL), all sharing a common signature motif, namely an aromatic residue Tyr or Phe at position 2 and a nonhydrophobic anchor residue Phe, Leu or Iso at the C-terminus (PubMed:12393434, PubMed:20844028, PubMed:24192765, PubMed:9047241). Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response (PubMed:17182537, PubMed:18502829). {ECO:0000269|PubMed:12393434, ECO:0000269|PubMed:17182537, ECO:0000269|PubMed:18502829, ECO:0000269|PubMed:20844028, ECO:0000269|PubMed:24192765, ECO:0000269|PubMed:9047241}.; FUNCTION: Allele A*26:01: Presents several epitopes derived from HIV-1 gag-pol (EVIPMFSAL, ETKLGKAGY) and env (LVSDGGPNLY), carrying as anchor residues preferentially Glu at position 1, Val or Thr at position 2 and Tyr at the C-terminus. {ECO:0000269|PubMed:15893615}.; FUNCTION: Allele A*29:02: Presents peptides having a common motif, namely a Glu residue at position 2 and Tyr or Leu anchor residues at the C-terminus. {ECO:0000269|PubMed:8622959}.; FUNCTION: Allele A*32:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response. {ECO:0000269|PubMed:17182537}.; FUNCTION: Allele A*68:01: Presents viral epitopes derived from IAV NP (KTGGPIYKR) and HIV-1 tat (ITKGLGISYGR), having a common signature motif namely, Val or Thr at position 2 and positively charged residues Arg or Lys at the C-terminal anchor. {ECO:0000269|PubMed:1448153, ECO:0000269|PubMed:1448154, ECO:0000269|PubMed:2784196}.; FUNCTION: Allele A*74:01: Presents immunodominant HIV-1 epitopes derived from gag-pol (GQMVHQAISPR, QIYPGIKVR) and rev (RQIHSISER), carrying an aliphatic residue at position 2 and Arg anchor residue at the C-terminus. May contribute to viral load control in chronic HIV-1 infection. {ECO:0000269|PubMed:21498667}. |
P23142 | FBLN1 | S246 | Sugiyama | Fibulin-1 (FIBL-1) | Incorporated into fibronectin-containing matrix fibers. May play a role in cell adhesion and migration along protein fibers within the extracellular matrix (ECM). Could be important for certain developmental processes and contribute to the supramolecular organization of ECM architecture, in particular to those of basement membranes. Has been implicated in a role in cellular transformation and tumor invasion, it appears to be a tumor suppressor. May play a role in haemostasis and thrombosis owing to its ability to bind fibrinogen and incorporate into clots. Could play a significant role in modulating the neurotrophic activities of APP, particularly soluble APP. {ECO:0000269|PubMed:11792823, ECO:0000269|PubMed:9393974, ECO:0000269|PubMed:9466671}. |
Q08289 | CACNB2 | S533 | ELM|EPSD | Voltage-dependent L-type calcium channel subunit beta-2 (CAB2) (Calcium channel voltage-dependent subunit beta 2) (Lambert-Eaton myasthenic syndrome antigen B) (MYSB) | Beta subunit of voltage-dependent calcium channels which contributes to the function of the calcium channel by increasing peak calcium current (By similarity). Plays a role in shifting voltage dependencies of activation and inactivation of the channel (By similarity). May modulate G protein inhibition (By similarity). May contribute to beta-adrenergic augmentation of Ca(2+) influx in cardiomyocytes, thereby regulating increases in heart rate and contractile force (PubMed:36424916). Involved in membrane targeting of the alpha-1 subunit CACNA1C (PubMed:17525370). {ECO:0000250|UniProtKB:Q8CC27, ECO:0000250|UniProtKB:Q8VGC3, ECO:0000269|PubMed:17525370, ECO:0000269|PubMed:36424916}. |
Q5TAX3 | TUT4 | S1383 | Sugiyama | Terminal uridylyltransferase 4 (TUTase 4) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 11) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:25480299, PubMed:31036859). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets. Also functions as an integral regulator of microRNA biogenesis using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7), miR107, miR-143 and miR-200c. Uridylated miRNAs are not processed by Dicer and undergo degradation. Degradation of pre-let-7 contributes to the maintenance of embryonic stem (ES) cell pluripotency (By similarity). Also catalyzes the 3' uridylation of miR-26A, a miRNA that targets IL6 transcript. This abrogates the silencing of IL6 transcript, hence promoting cytokine expression (PubMed:19703396). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828). Adds oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). May also suppress Toll-like receptor-induced NF-kappa-B activation via binding to T2BP (PubMed:16643855). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (By similarity) (PubMed:16643855, PubMed:18172165, PubMed:19703396, PubMed:25480299, PubMed:25979828). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:B2RX14, ECO:0000269|PubMed:16643855, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31036859}. |
P16930 | FAH | S164 | Sugiyama | Fumarylacetoacetase (FAA) (EC 3.7.1.2) (Beta-diketonase) (Fumarylacetoacetate hydrolase) | None |
Q9H2C0 | GAN | Y271 | Sugiyama | Gigaxonin (Kelch-like protein 16) | Probable cytoskeletal component that directly or indirectly plays an important role in neurofilament architecture. May act as a substrate-specific adapter of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Controls degradation of TBCB. Controls degradation of MAP1B and MAP1S, and is critical for neuronal maintenance and survival. {ECO:0000269|PubMed:12147674, ECO:0000269|PubMed:15983046, ECO:0000269|PubMed:16227972, ECO:0000269|PubMed:16303566}. |
P63104 | YWHAZ | S57 | Sugiyama | 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}. |
Q9UPU5 | USP24 | S1685 | Sugiyama | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
A0A0B4J269 | None | S395 | ochoa | Melanocyte-stimulating hormone receptor (Melanocortin receptor 1) | Receptor for MSH (alpha, beta and gamma) and ACTH. The activity of this receptor is mediated by G proteins which activate adenylate cyclase. Mediates melanogenesis, the production of eumelanin (black/brown) and phaeomelanin (red/yellow), via regulation of cAMP signaling in melanocytes. {ECO:0000256|ARBA:ARBA00023428}. |
A6NKT7 | RGPD3 | S1232 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A8MVW0 | FAM171A2 | S669 | ochoa | Protein FAM171A2 | None |
E9PCH4 | None | S1143 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
O00192 | ARVCF | S343 | ochoa | Splicing regulator ARVCF (Armadillo repeat protein deleted in velo-cardio-facial syndrome) | Contributes to the regulation of alternative splicing of pre-mRNAs. {ECO:0000269|PubMed:24644279}. |
O14715 | RGPD8 | S1231 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O15350 | TP73 | S289 | psp | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O43149 | ZZEF1 | S1463 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43309 | ZSCAN12 | S399 | ochoa | Zinc finger and SCAN domain-containing protein 12 (Zinc finger protein 305) (Zinc finger protein 96) | May be involved in transcriptional regulation. |
O43318 | MAP3K7 | S374 | ochoa | Mitogen-activated protein kinase kinase kinase 7 (EC 2.7.11.25) (Transforming growth factor-beta-activated kinase 1) (TGF-beta-activated kinase 1) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway (PubMed:10094049, PubMed:11460167, PubMed:12589052, PubMed:16845370, PubMed:16893890, PubMed:21512573, PubMed:8663074, PubMed:9079627). Plays an important role in the cascades of cellular responses evoked by changes in the environment (PubMed:10094049, PubMed:11460167, PubMed:12589052, PubMed:16845370, PubMed:16893890, PubMed:21512573, PubMed:8663074, PubMed:9079627). Mediates signal transduction of TRAF6, various cytokines including interleukin-1 (IL-1), transforming growth factor-beta (TGFB), TGFB-related factors like BMP2 and BMP4, toll-like receptors (TLR), tumor necrosis factor receptor CD40 and B-cell receptor (BCR) (PubMed:16893890, PubMed:9079627). Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade and the p38 MAPK signal transduction cascade through the phosphorylation and activation of several MAP kinase kinases like MAP2K1/MEK1, MAP2K3/MKK3, MAP2K6/MKK6 and MAP2K7/MKK7 (PubMed:11460167, PubMed:8663074). These MAP2Ks in turn activate p38 MAPKs and c-jun N-terminal kinases (JNKs); both p38 MAPK and JNK pathways control the transcription factors activator protein-1 (AP-1) (PubMed:11460167, PubMed:12589052, PubMed:8663074). Independently of MAP2Ks and p38 MAPKs, acts as a key activator of NF-kappa-B by promoting activation of the I-kappa-B-kinase (IKK) core complex (PubMed:12589052, PubMed:8663074). Mechanistically, recruited to polyubiquitin chains of RIPK2 and IKBKG/NEMO via TAB2/MAP3K7IP2 and TAB3/MAP3K7IP3, and catalyzes phosphorylation and activation of IKBKB/IKKB component of the IKK complex, leading to NF-kappa-B activation (PubMed:10094049, PubMed:11460167). In osmotic stress signaling, plays a major role in the activation of MAPK8/JNK1, but not that of NF-kappa-B (PubMed:16893890). Promotes TRIM5 capsid-specific restriction activity (PubMed:21512573). Phosphorylates RIPK1 at 'Ser-321' which positively regulates RIPK1 interaction with RIPK3 to promote necroptosis but negatively regulates RIPK1 kinase activity and its interaction with FADD to mediate apoptosis (By similarity). Phosphorylates STING1 in response to cGAMP-activation, promoting association between STEEP1 and STING1 and STING1 translocation to COPII vesicles (PubMed:37832545). {ECO:0000250|UniProtKB:Q62073, ECO:0000269|PubMed:10094049, ECO:0000269|PubMed:11460167, ECO:0000269|PubMed:12589052, ECO:0000269|PubMed:16845370, ECO:0000269|PubMed:16893890, ECO:0000269|PubMed:21512573, ECO:0000269|PubMed:37832545, ECO:0000269|PubMed:8663074, ECO:0000269|PubMed:9079627}. |
O60238 | BNIP3L | S90 | ochoa | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (Adenovirus E1B19K-binding protein B5) (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3A) (NIP3-like protein X) (NIP3L) | Induces apoptosis. Interacts with viral and cellular anti-apoptosis proteins. Can overcome the suppressors BCL-2 and BCL-XL, although high levels of BCL-XL expression will inhibit apoptosis. Inhibits apoptosis induced by BNIP3. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. May function as a tumor suppressor. {ECO:0000269|PubMed:10381623, ECO:0000269|PubMed:21264228}. |
O60927 | PPP1R11 | S57 | ochoa | E3 ubiquitin-protein ligase PPP1R11 (EC 2.3.2.27) (Hemochromatosis candidate gene V protein) (HCG V) (Protein phosphatase 1 regulatory subunit 11) (Protein phosphatase inhibitor 3) | Atypical E3 ubiquitin-protein ligase which ubiquitinates TLR2 at 'Lys-754' leading to its degradation by the proteasome. Plays a role in regulating inflammatory cytokine release and gram-positive bacterial clearance by functioning, in part, through the ubiquitination and degradation of TLR2 (PubMed:27805901). Inhibitor of protein phosphatase 1 (PubMed:9843442). {ECO:0000269|PubMed:27805901, ECO:0000269|PubMed:9843442}. |
O75128 | COBL | S234 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75962 | TRIO | S1723 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O95104 | SCAF4 | S1004 | ochoa | SR-related and CTD-associated factor 4 (CTD-binding SR-like protein RA4) (Splicing factor, arginine/serine-rich 15) | Anti-terminator protein required to prevent early mRNA termination during transcription (PubMed:31104839). Together with SCAF8, acts by suppressing the use of early, alternative poly(A) sites, thereby preventing the accumulation of non-functional truncated proteins (PubMed:31104839). Mechanistically, associates with the phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit (POLR2A), and subsequently binds nascent RNA upstream of early polyadenylation sites to prevent premature mRNA transcript cleavage and polyadenylation (PubMed:31104839). Independently of SCAF8, also acts as a suppressor of transcriptional readthrough (PubMed:31104839). {ECO:0000269|PubMed:31104839}. |
O95218 | ZRANB2 | S83 | ochoa | Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) | Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}. |
P07437 | TUBB | S48 | ochoa | Tubulin beta chain (Tubulin beta-5 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P07737 | PFN1 | S58 | ochoa | Profilin-1 (Epididymis tissue protein Li 184a) (Profilin I) | Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG. Inhibits androgen receptor (AR) and HTT aggregation and binding of G-actin is essential for its inhibition of AR. {ECO:0000269|PubMed:18573880}. |
P0DJD0 | RGPD1 | S1216 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | S1224 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P10071 | GLI3 | S864 | ochoa | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P10071 | GLI3 | S906 | ochoa | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P10721 | KIT | S741 | psp | Mast/stem cell growth factor receptor Kit (SCFR) (EC 2.7.10.1) (Piebald trait protein) (PBT) (Proto-oncogene c-Kit) (Tyrosine-protein kinase Kit) (p145 c-kit) (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) (CD antigen CD117) | Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1. {ECO:0000269|PubMed:10397721, ECO:0000269|PubMed:12444928, ECO:0000269|PubMed:12511554, ECO:0000269|PubMed:12878163, ECO:0000269|PubMed:17904548, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:21135090, ECO:0000269|PubMed:21640708, ECO:0000269|PubMed:7520444, ECO:0000269|PubMed:9528781}. |
P16144 | ITGB4 | S1364 | ochoa|psp | Integrin beta-4 (GP150) (CD antigen CD104) | Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}. |
P16435 | POR | S67 | ochoa | NADPH--cytochrome P450 reductase (CPR) (P450R) (EC 1.6.2.4) | This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5. {ECO:0000255|HAMAP-Rule:MF_03212}. |
P21980 | TGM2 | S215 | ochoa|psp | Protein-glutamine gamma-glutamyltransferase 2 (EC 2.3.2.13) (Erythrocyte transglutaminase) (Heart G alpha(h)) (hhG alpha(h)) (Isopeptidase TGM2) (EC 3.4.-.-) (Protein G alpha(h)) (G(h)) (Protein-glutamine deamidase TGM2) (EC 3.5.1.44) (Protein-glutamine dopaminyltransferase TGM2) (EC 2.3.1.-) (Protein-glutamine histaminyltransferase TGM2) (EC 2.3.1.-) (Protein-glutamine noradrenalinyltransferase TGM2) (EC 2.3.1.-) (Protein-glutamine serotonyltransferase TGM2) (EC 2.3.1.-) (Tissue transglutaminase) (tTG) (tTgase) (Transglutaminase C) (TG(C)) (TGC) (TGase C) (Transglutaminase H) (TGase H) (Transglutaminase II) (TGase II) (Transglutaminase-2) (TG2) (TGase-2) (hTG2) | Calcium-dependent acyltransferase that catalyzes the formation of covalent bonds between peptide-bound glutamine and various primary amines, such as gamma-amino group of peptide-bound lysine, or mono- and polyamines, thereby producing cross-linked or aminated proteins, respectively (PubMed:23941696, PubMed:31991788, PubMed:9252372). Involved in many biological processes, such as bone development, angiogenesis, wound healing, cellular differentiation, chromatin modification and apoptosis (PubMed:1683874, PubMed:27270573, PubMed:28198360, PubMed:7935379, PubMed:9252372). Acts as a protein-glutamine gamma-glutamyltransferase by mediating the cross-linking of proteins, such as ACO2, HSPB6, FN1, HMGB1, RAP1GDS1, SLC25A4/ANT1, SPP1 and WDR54 (PubMed:23941696, PubMed:24349085, PubMed:29618516, PubMed:30458214). Under physiological conditions, the protein cross-linking activity is inhibited by GTP; inhibition is relieved by Ca(2+) in response to various stresses (PubMed:18092889, PubMed:7592956, PubMed:7649299). When secreted, catalyzes cross-linking of proteins of the extracellular matrix, such as FN1 and SPP1 resulting in the formation of scaffolds (PubMed:12506096). Plays a key role during apoptosis, both by (1) promoting the cross-linking of cytoskeletal proteins resulting in condensation of the cytoplasm, and by (2) mediating cross-linking proteins of the extracellular matrix, resulting in the irreversible formation of scaffolds that stabilize the integrity of the dying cells before their clearance by phagocytosis, thereby preventing the leakage of harmful intracellular components (PubMed:7935379, PubMed:9252372). In addition to protein cross-linking, can use different monoamine substrates to catalyze a vast array of protein post-translational modifications: mediates aminylation of serotonin, dopamine, noradrenaline or histamine into glutamine residues of target proteins to generate protein serotonylation, dopaminylation, noradrenalinylation or histaminylation, respectively (PubMed:23797785, PubMed:30867594). Mediates protein serotonylation of small GTPases during activation and aggregation of platelets, leading to constitutive activation of these GTPases (By similarity). Plays a key role in chromatin organization by mediating serotonylation and dopaminylation of histone H3 (PubMed:30867594, PubMed:32273471). Catalyzes serotonylation of 'Gln-5' of histone H3 (H3Q5ser) during serotonergic neuron differentiation, thereby facilitating transcription (PubMed:30867594). Acts as a mediator of neurotransmission-independent role of nuclear dopamine in ventral tegmental area (VTA) neurons: catalyzes dopaminylation of 'Gln-5' of histone H3 (H3Q5dop), thereby regulating relapse-related transcriptional plasticity in the reward system (PubMed:32273471). Regulates vein remodeling by mediating serotonylation and subsequent inactivation of ATP2A2/SERCA2 (By similarity). Also acts as a protein deamidase by mediating the side chain deamidation of specific glutamine residues of proteins to glutamate (PubMed:20547769, PubMed:9623982). Catalyzes specific deamidation of protein gliadin, a component of wheat gluten in the diet (PubMed:9623982). May also act as an isopeptidase cleaving the previously formed cross-links (PubMed:26250429, PubMed:27131890). Also able to participate in signaling pathways independently of its acyltransferase activity: acts as a signal transducer in alpha-1 adrenergic receptor-mediated stimulation of phospholipase C-delta (PLCD) activity and is required for coupling alpha-1 adrenergic agonists to the stimulation of phosphoinositide lipid metabolism (PubMed:8943303). {ECO:0000250|UniProtKB:P08587, ECO:0000250|UniProtKB:P21981, ECO:0000269|PubMed:12506096, ECO:0000269|PubMed:1683874, ECO:0000269|PubMed:18092889, ECO:0000269|PubMed:20547769, ECO:0000269|PubMed:23797785, ECO:0000269|PubMed:23941696, ECO:0000269|PubMed:24349085, ECO:0000269|PubMed:26250429, ECO:0000269|PubMed:27131890, ECO:0000269|PubMed:28198360, ECO:0000269|PubMed:29618516, ECO:0000269|PubMed:30458214, ECO:0000269|PubMed:30867594, ECO:0000269|PubMed:31991788, ECO:0000269|PubMed:32273471, ECO:0000269|PubMed:7592956, ECO:0000269|PubMed:7649299, ECO:0000269|PubMed:7935379, ECO:0000269|PubMed:8943303, ECO:0000269|PubMed:9252372, ECO:0000269|PubMed:9623982, ECO:0000303|PubMed:27270573}.; FUNCTION: [Isoform 2]: Has cytotoxic activity: is able to induce apoptosis independently of its acyltransferase activity. {ECO:0000269|PubMed:17116873}. |
P24821 | TNC | S903 | ochoa | Tenascin (TN) (Cytotactin) (GMEM) (GP 150-225) (Glioma-associated-extracellular matrix antigen) (Hexabrachion) (JI) (Myotendinous antigen) (Neuronectin) (Tenascin-C) (TN-C) | Extracellular matrix protein implicated in guidance of migrating neurons as well as axons during development, synaptic plasticity as well as neuronal regeneration. Promotes neurite outgrowth from cortical neurons grown on a monolayer of astrocytes. Ligand for integrins alpha-8/beta-1, alpha-9/beta-1, alpha-V/beta-3 and alpha-V/beta-6. In tumors, stimulates angiogenesis by elongation, migration and sprouting of endothelial cells (PubMed:19884327). {ECO:0000269|PubMed:19884327}. |
P30291 | WEE1 | S471 | ochoa | Wee1-like protein kinase (WEE1hu) (EC 2.7.10.2) (Wee1A kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on 'Tyr-15' (PubMed:15070733, PubMed:7743995, PubMed:8348613, PubMed:8428596). Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase (PubMed:7743995, PubMed:8348613, PubMed:8428596). Phosphorylation of cyclin B1-CDK1 occurs exclusively on 'Tyr-15' and phosphorylation of monomeric CDK1 does not occur (PubMed:7743995, PubMed:8348613, PubMed:8428596). Its activity increases during S and G2 phases and decreases at M phase when it is hyperphosphorylated (PubMed:7743995). A correlated decrease in protein level occurs at M/G1 phase, probably due to its degradation (PubMed:7743995). {ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:7743995, ECO:0000269|PubMed:8348613, ECO:0000269|PubMed:8428596}. |
P31629 | HIVEP2 | S619 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P35348 | ADRA1A | S389 | psp | Alpha-1A adrenergic receptor (Alpha-1A adrenoreceptor) (Alpha-1A adrenoceptor) (Alpha-1C adrenergic receptor) (Alpha-adrenergic receptor 1c) | This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes. {ECO:0000269|PubMed:18802028, ECO:0000269|PubMed:22120526}. |
P35398 | RORA | S100 | psp | Nuclear receptor ROR-alpha (Nuclear receptor RZR-alpha) (Nuclear receptor subfamily 1 group F member 1) (RAR-related orphan receptor A) (Retinoid-related orphan receptor-alpha) | Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of embryonic development, cellular differentiation, immunity, circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target genes regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates genes involved in photoreceptor development including OPN1SW, OPN1SM and ARR3 and skeletal muscle development with MYOD1. Required for proper cerebellum development (PubMed:29656859). Regulates SHH gene expression, among others, to induce granule cells proliferation as well as expression of genes involved in calcium-mediated signal transduction. Regulates the circadian expression of several clock genes, including CLOCK, BMAL1, NPAS2 and CRY1. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORA-mediated activation of clock genes expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Regulates genes involved in lipid metabolism such as apolipoproteins APOA1, APOA5, APOC3 and PPARG. In liver, has specific and redundant functions with RORC as positive or negative modulator of expression of genes encoding phase I and phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as CYP7B1 and SULT2A1. Induces a rhythmic expression of some of these genes. In addition, interplays functionally with NR1H2 and NR1H3 for the regulation of genes involved in cholesterol metabolism. Also involved in the regulation of hepatic glucose metabolism through the modulation of G6PC1 and PCK1. In adipose tissue, plays a role as negative regulator of adipocyte differentiation, probably acting through dual mechanisms. May suppress CEBPB-dependent adipogenesis through direct interaction and PPARG-dependent adipogenesis through competition for DNA-binding. Downstream of IL6 and TGFB and synergistically with RORC isoform 2, is implicated in the lineage specification of uncommitted CD4(+) T-helper (T(H)) cells into T(H)17 cells, antagonizing the T(H)1 program. Probably regulates IL17 and IL17F expression on T(H) by binding to the essential enhancer conserved non-coding sequence 2 (CNS2) in the IL17-IL17F locus. Involved in hypoxia signaling by interacting with and activating the transcriptional activity of HIF1A. May inhibit cell growth in response to cellular stress. May exert an anti-inflammatory role by inducing CHUK expression and inhibiting NF-kappa-B signaling. {ECO:0000269|PubMed:10478845, ECO:0000269|PubMed:11053433, ECO:0000269|PubMed:11252722, ECO:0000269|PubMed:11554739, ECO:0000269|PubMed:12467577, ECO:0000269|PubMed:14570920, ECO:0000269|PubMed:15781255, ECO:0000269|PubMed:15790933, ECO:0000269|PubMed:16462772, ECO:0000269|PubMed:17512500, ECO:0000269|PubMed:18005000, ECO:0000269|PubMed:18354202, ECO:0000269|PubMed:18658046, ECO:0000269|PubMed:19965867, ECO:0000269|PubMed:21499262, ECO:0000269|PubMed:29656859, ECO:0000269|PubMed:7926749, ECO:0000269|PubMed:9328355, ECO:0000269|PubMed:9862959}. |
P41235 | HNF4A | S142 | ochoa|psp | Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) | Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}. |
P42684 | ABL2 | S96 | ochoa | Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) | Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}. |
P46100 | ATRX | S783 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P48634 | PRRC2A | S159 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49792 | RANBP2 | S2207 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P57737 | CORO7 | S806 | ochoa | Coronin-7 (Crn7) (70 kDa WD repeat tumor rejection antigen homolog) | F-actin regulator involved in anterograde Golgi to endosome transport: upon ubiquitination via 'Lys-33'-linked ubiquitin chains by the BCR(KLHL20) E3 ubiquitin ligase complex, interacts with EPS15 and localizes to the trans-Golgi network, where it promotes actin polymerization, thereby facilitating post-Golgi trafficking. May play a role in the maintenance of the Golgi apparatus morphology. {ECO:0000269|PubMed:16905771, ECO:0000269|PubMed:24768539}. |
P61073 | CXCR4 | S324 | ochoa|psp | C-X-C chemokine receptor type 4 (CXC-R4) (CXCR-4) (FB22) (Fusin) (HM89) (LCR1) (Leukocyte-derived seven transmembrane domain receptor) (LESTR) (Lipopolysaccharide-associated protein 3) (LAP-3) (LPS-associated protein 3) (NPYRL) (Stromal cell-derived factor 1 receptor) (SDF-1 receptor) (CD antigen CD184) | Receptor for the C-X-C chemokine CXCL12/SDF-1 that transduces a signal by increasing intracellular calcium ion levels and enhancing MAPK1/MAPK3 activation (PubMed:10452968, PubMed:18799424, PubMed:24912431, PubMed:28978524). Involved in the AKT signaling cascade (PubMed:24912431). Plays a role in regulation of cell migration, e.g. during wound healing (PubMed:28978524). Acts as a receptor for extracellular ubiquitin; leading to enhanced intracellular calcium ions and reduced cellular cAMP levels (PubMed:20228059). Binds bacterial lipopolysaccharide (LPS) et mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Involved in hematopoiesis and in cardiac ventricular septum formation. Also plays an essential role in vascularization of the gastrointestinal tract, probably by regulating vascular branching and/or remodeling processes in endothelial cells. Involved in cerebellar development. In the CNS, could mediate hippocampal-neuron survival (By similarity). {ECO:0000250|UniProtKB:P70658, ECO:0000269|PubMed:10074102, ECO:0000269|PubMed:10452968, ECO:0000269|PubMed:10644702, ECO:0000269|PubMed:10825158, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:17197449, ECO:0000269|PubMed:18799424, ECO:0000269|PubMed:20048153, ECO:0000269|PubMed:20228059, ECO:0000269|PubMed:20505072, ECO:0000269|PubMed:24912431, ECO:0000269|PubMed:28978524, ECO:0000269|PubMed:8752280, ECO:0000269|PubMed:8752281}.; FUNCTION: (Microbial infection) Acts as a coreceptor (CD4 being the primary receptor) for human immunodeficiency virus-1/HIV-1 X4 isolates and as a primary receptor for some HIV-2 isolates. Promotes Env-mediated fusion of the virus (PubMed:10074122, PubMed:10756055, PubMed:8849450, PubMed:8929542, PubMed:9427609). {ECO:0000269|PubMed:10074122, ECO:0000269|PubMed:10756055, ECO:0000269|PubMed:8849450, ECO:0000269|PubMed:8929542, ECO:0000269|PubMed:9427609}. |
P78368 | CSNK1G2 | S32 | ochoa | Casein kinase I isoform gamma-2 (CKI-gamma 2) (EC 2.7.11.1) | Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling (By similarity). Phosphorylates COL4A3BP/CERT, MTA1 and SMAD3. SMAD3 phosphorylation promotes its ligand-dependent ubiquitination and subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-beta responses. Hyperphosphorylation of the serine-repeat motif of COL4A3BP/CERT leads to its inactivation by dissociation from the Golgi complex, thus down-regulating ER-to-Golgi transport of ceramide and sphingomyelin synthesis. Triggers PER1 proteasomal degradation probably through phosphorylation (PubMed:15077195, PubMed:15917222, PubMed:18794808, PubMed:19005213). Involved in brain development and vesicular trafficking and neurotransmitter releasing from small synaptic vesicles. Regulates fast synaptic transmission mediated by glutamate (By similarity). Involved in regulation of reactive oxygen species (ROS) levels (PubMed:37099597). {ECO:0000250|UniProtKB:P48729, ECO:0000250|UniProtKB:Q8BVP5, ECO:0000269|PubMed:15077195, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:18794808, ECO:0000269|PubMed:19005213, ECO:0000269|PubMed:37099597}. |
Q00610 | CLTC | S146 | ochoa | Clathrin heavy chain 1 (Clathrin heavy chain on chromosome 17) (CLH-17) | Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge (PubMed:15858577, PubMed:16968737, PubMed:21297582). The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Plays a role in early autophagosome formation (PubMed:20639872). Interaction with DNAJC6 mediates the recruitment of HSPA8 to the clathrin lattice and creates local destabilization of the lattice promoting uncoating (By similarity). {ECO:0000250|UniProtKB:P49951, ECO:0000269|PubMed:15858577, ECO:0000269|PubMed:16968737, ECO:0000269|PubMed:20639872, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q01081 | U2AF1 | S34 | psp | Splicing factor U2AF 35 kDa subunit (U2 auxiliary factor 35 kDa subunit) (U2 small nuclear RNA auxiliary factor 1) (U2 snRNP auxiliary factor small subunit) | Plays a critical role in both constitutive and enhancer-dependent splicing by mediating protein-protein interactions and protein-RNA interactions required for accurate 3'-splice site selection. Recruits U2 snRNP to the branch point. Directly mediates interactions between U2AF2 and proteins bound to the enhancers and thus may function as a bridge between U2AF2 and the enhancer complex to recruit it to the adjacent intron. {ECO:0000269|PubMed:22158538, ECO:0000269|PubMed:25311244, ECO:0000269|PubMed:8647433}. |
Q05586 | GRIN1 | S896 | psp | Glutamate receptor ionotropic, NMDA 1 (GluN1) (Glutamate [NMDA] receptor subunit zeta-1) (N-methyl-D-aspartate receptor subunit NR1) (NMD-R1) (hNR1) | Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:21376300, PubMed:26875626, PubMed:26919761, PubMed:28126851, PubMed:28228639, PubMed:36959261, PubMed:7679115, PubMed:7681588, PubMed:7685113). NMDARs participate in synaptic plasticity for learning and memory formation by contributing to the long-term potentiation (LTP) (PubMed:26875626). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:21376300, PubMed:26875626, PubMed:26919761, PubMed:27164704, PubMed:28095420, PubMed:28105280, PubMed:28126851, PubMed:28228639, PubMed:36959261, PubMed:38538865, PubMed:7679115, PubMed:7681588, PubMed:7685113). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 or GluN3 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:26919761, PubMed:36309015, PubMed:38598639). {ECO:0000250|UniProtKB:P35438, ECO:0000269|PubMed:21376300, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27164704, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28105280, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:28228639, ECO:0000269|PubMed:36309015, ECO:0000269|PubMed:36959261, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:38598639, ECO:0000269|PubMed:7679115, ECO:0000269|PubMed:7681588, ECO:0000269|PubMed:7685113}. |
Q13303 | KCNAB2 | S111 | ochoa | Voltage-gated potassium channel subunit beta-2 (EC 1.1.1.-) (K(+) channel subunit beta-2) (Kv-beta-2) (hKvbeta2) | Regulatory subunit of the voltage-gated potassium (Kv) Shaker channels composed of pore-forming and potassium-conducting alpha subunits and of regulatory beta subunits (PubMed:11825900, PubMed:7649300). The beta-2/KCNAB2 cytoplasmic subunit promotes potassium channel closure via a mechanism that does not involve physical obstruction of the channel pore (PubMed:11825900, PubMed:7649300). Promotes the inactivation of Kv1.4/KCNA4 and Kv1.5/KCNA5 alpha subunit-containing channels (PubMed:11825900, PubMed:7649300). Displays nicotinamide adenine dinucleotide phosphate (NADPH)-dependent aldoketoreductase activity by catalyzing the NADPH-dependent reduction of a wide range of aldehyde and ketone substrates (By similarity). Substrate specificity includes methylglyoxal, 9,10-phenanthrenequinone, prostaglandin J2, 4-nitrobenzaldehyde, 4-nitroacetophenone and 4-oxo-trans-2-nonenal (in vitro, no physiological substrate identified yet) (By similarity). The binding of oxidized and reduced nucleotide alters Kv channel gating and may contribute to dynamic fine tuning of cell excitability (By similarity). Contributes to the regulation of nerve signaling, and prevents neuronal hyperexcitability (By similarity). {ECO:0000250|UniProtKB:P62482, ECO:0000250|UniProtKB:P62483, ECO:0000269|PubMed:11825900, ECO:0000269|PubMed:7649300}. |
Q13439 | GOLGA4 | S97 | ochoa | Golgin subfamily A member 4 (256 kDa golgin) (Golgin-245) (Protein 72.1) (Trans-Golgi p230) | Involved in vesicular trafficking at the Golgi apparatus level. May play a role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with MACF1. Involved in endosome-to-Golgi trafficking (PubMed:29084197). {ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:29084197}. |
Q13509 | TUBB3 | S48 | ochoa | Tubulin beta-3 chain (Tubulin beta-4 chain) (Tubulin beta-III) | Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:34996871, PubMed:38305685, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:34996871, PubMed:38305685, PubMed:38609661). Below the cap, alpha-beta tubulin heterodimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). TUBB3 plays a critical role in proper axon guidance and maintenance (PubMed:20074521). Binding of NTN1/Netrin-1 to its receptor UNC5C might cause dissociation of UNC5C from polymerized TUBB3 in microtubules and thereby lead to increased microtubule dynamics and axon repulsion (PubMed:28483977). Plays a role in dorsal root ganglion axon projection towards the spinal cord (PubMed:28483977). {ECO:0000269|PubMed:20074521, ECO:0000269|PubMed:28483977, ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}. |
Q14155 | ARHGEF7 | S147 | ochoa | Rho guanine nucleotide exchange factor 7 (Beta-Pix) (COOL-1) (PAK-interacting exchange factor beta) (p85) | Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions (By similarity). May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons. {ECO:0000250, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750}. |
Q14541 | HNF4G | S94 | ochoa | Hepatocyte nuclear factor 4-gamma (HNF-4-gamma) (Nuclear receptor subfamily 2 group A member 2) | Transcription factor. Has a lower transcription activation potential than HNF4-alpha. |
Q14722 | KCNAB1 | S163 | ochoa | Voltage-gated potassium channel subunit beta-1 (EC 1.1.1.-) (K(+) channel subunit beta-1) (Kv-beta-1) | Regulatory subunit of the voltage-gated potassium (Kv) Shaker channels composed of pore-forming and potassium-conducting alpha subunits and of regulatory beta subunits (PubMed:17156368, PubMed:17540341, PubMed:19713757, PubMed:7499366, PubMed:7603988). The beta-1/KCNAB1 cytoplasmic subunit mediates closure of delayed rectifier potassium channels by physically obstructing the pore via its N-terminal domain and increases the speed of channel closure for other family members (PubMed:9763623). Promotes the inactivation of Kv1.1/KCNA1, Kv1.2/KCNA2, Kv1.4/KCNA4, Kv1.5/KCNA5 and Kv1.6/KCNA6 alpha subunit-containing channels (PubMed:12077175, PubMed:12130714, PubMed:15361858, PubMed:17156368, PubMed:17540341, PubMed:19713757, PubMed:7499366, PubMed:7603988, PubMed:7649300, PubMed:7890764, PubMed:9763623). Displays nicotinamide adenine dinucleotide phosphate (NADPH)-dependent aldoketoreductase activity by catalyzing the NADPH-dependent reduction of a variety of endogenous aldehydes and ketones (By similarity). The binding of NADPH is required for efficient down-regulation of potassium channel activity (PubMed:17540341). Oxidation of the bound NADPH restrains N-terminal domain from blocking the channel, thereby decreasing N-type inactivation of potassium channel activity (By similarity). {ECO:0000250|UniProtKB:P63144, ECO:0000269|PubMed:12077175, ECO:0000269|PubMed:12130714, ECO:0000269|PubMed:15361858, ECO:0000269|PubMed:17156368, ECO:0000269|PubMed:17540341, ECO:0000269|PubMed:19713757, ECO:0000269|PubMed:7499366, ECO:0000269|PubMed:7603988, ECO:0000269|PubMed:7649300, ECO:0000269|PubMed:7890764, ECO:0000269|PubMed:9763623}.; FUNCTION: [Isoform KvB1.2]: Isoform KvB1.2 shows no effect on KCNA1, KCNA2 or KCNB1. {ECO:0000269|PubMed:7890032, ECO:0000269|PubMed:7890764}. |
Q15361 | TTF1 | S40 | ochoa | Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) | Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}. |
Q155Q3 | DIXDC1 | S185 | ochoa | Dixin (Coiled-coil protein DIX1) (Coiled-coil-DIX1) (DIX domain-containing protein 1) | Positive effector of the Wnt signaling pathway; activates WNT3A signaling via DVL2. Regulates JNK activation by AXIN1 and DVL2. {ECO:0000269|PubMed:15262978, ECO:0000269|PubMed:21189423}. |
Q1W6H9 | FAM110C | S264 | ochoa | Protein FAM110C | May play a role in microtubule organization. May play a role in cell spreading and cell migration of epithelial cells; the function may involve the AKT1 signaling pathway. {ECO:0000269|PubMed:17499476, ECO:0000269|PubMed:19698782}. |
Q52LW3 | ARHGAP29 | S1143 | ochoa | Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}. |
Q53T59 | HS1BP3 | S150 | ochoa | HCLS1-binding protein 3 (HS1-binding protein 3) (HSP1BP-3) | May be a modulator of IL-2 signaling. {ECO:0000250}. |
Q56NI9 | ESCO2 | S222 | ochoa | N-acetyltransferase ESCO2 (EC 2.3.1.-) (Establishment factor-like protein 2) (EFO2) (EFO2p) (hEFO2) (Establishment of cohesion 1 homolog 2) (ECO1 homolog 2) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15821733, PubMed:15958495). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during the S phase. Acetylates the cohesin component SMC3 (PubMed:21111234). {ECO:0000269|PubMed:15821733, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234}. |
Q5J8M3 | EMC4 | S36 | ochoa | ER membrane protein complex subunit 4 (Cell proliferation-inducing gene 17 protein) (Transmembrane protein 85) | Part of the endoplasmic reticulum membrane protein complex (EMC) that enables the energy-independent insertion into endoplasmic reticulum membranes of newly synthesized membrane proteins (PubMed:29242231, PubMed:29809151, PubMed:30415835, PubMed:32439656, PubMed:32459176). Preferentially accommodates proteins with transmembrane domains that are weakly hydrophobic or contain destabilizing features such as charged and aromatic residues (PubMed:29242231, PubMed:29809151, PubMed:30415835). Involved in the cotranslational insertion of multi-pass membrane proteins in which stop-transfer membrane-anchor sequences become ER membrane spanning helices (PubMed:29809151, PubMed:30415835). It is also required for the post-translational insertion of tail-anchored/TA proteins in endoplasmic reticulum membranes (PubMed:29242231, PubMed:29809151). By mediating the proper cotranslational insertion of N-terminal transmembrane domains in an N-exo topology, with translocated N-terminus in the lumen of the ER, controls the topology of multi-pass membrane proteins like the G protein-coupled receptors (PubMed:30415835). By regulating the insertion of various proteins in membranes, it is indirectly involved in many cellular processes (Probable). {ECO:0000269|PubMed:29242231, ECO:0000269|PubMed:29809151, ECO:0000269|PubMed:30415835, ECO:0000269|PubMed:32439656, ECO:0000269|PubMed:32459176, ECO:0000305|PubMed:18586032}. |
Q5JTZ5 | C9orf152 | S87 | ochoa | Uncharacterized protein C9orf152 | None |
Q5T0N5 | FNBP1L | S488 | ochoa | Formin-binding protein 1-like (Transducer of Cdc42-dependent actin assembly protein 1) (Toca-1) | Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. May bind to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promote membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by activating the WASL/N-WASP-WASPIP/WIP complex, the predominant form of WASL/N-WASP in cells. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Essential for autophagy of intracellular bacterial pathogens. {ECO:0000269|PubMed:15260990, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:19342671}. |
Q5VUB5 | FAM171A1 | S723 | ochoa | Protein FAM171A1 (Astroprincin) (APCN) | Involved in the regulation of the cytoskeletal dynamics, plays a role in actin stress fiber formation. {ECO:0000269|PubMed:30312582}. |
Q6IA17 | SIGIRR | S382 | ochoa | Single Ig IL-1-related receptor (Single Ig IL-1R-related molecule) (Single immunoglobulin domain-containing IL1R-related protein) (Toll/interleukin-1 receptor 8) (TIR8) | Acts as a negative regulator of the Toll-like and IL-1R receptor signaling pathways. Attenuates the recruitment of receptor-proximal signaling components to the TLR4 receptor, probably through an TIR-TIR domain interaction with TLR4. Through its extracellular domain interferes with the heterodimerization of Il1R1 and IL1RAP. {ECO:0000269|PubMed:12925853, ECO:0000269|PubMed:14715412, ECO:0000269|PubMed:15866876, ECO:0000269|PubMed:25963006}. |
Q6P3S1 | DENND1B | S723 | ochoa | DENN domain-containing protein 1B (Connecdenn 2) (Protein FAM31B) | Guanine nucleotide exchange factor (GEF) for RAB35 that acts as a regulator of T-cell receptor (TCR) internalization in TH2 cells (PubMed:20154091, PubMed:20937701, PubMed:24520163, PubMed:26774822). Acts by promoting the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form (PubMed:20154091, PubMed:20937701). Plays a role in clathrin-mediated endocytosis (PubMed:20154091). Controls cytokine production in TH2 lymphocytes by controlling the rate of TCR internalization and routing to endosomes: acts by mediating clathrin-mediated endocytosis of TCR via its interaction with the adapter protein complex 2 (AP-2) and GEF activity (PubMed:26774822). Dysregulation leads to impaired TCR down-modulation and recycling, affecting cytokine production in TH2 cells (PubMed:26774822). {ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:24520163, ECO:0000269|PubMed:26774822}. |
Q6P995 | FAM171B | S688 | ochoa | Protein FAM171B | None |
Q6PIF6 | MYO7B | S904 | ochoa | Unconventional myosin-VIIb | Myosins are actin-based motor molecules with ATPase activity. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. As part of the intermicrovillar adhesion complex/IMAC plays a role in epithelial brush border differentiation, controlling microvilli organization and length (PubMed:24725409, PubMed:26812018, PubMed:32209652). May link the complex to the actin core bundle of microvilli. {ECO:0000269|PubMed:24725409, ECO:0000269|PubMed:26812018, ECO:0000269|PubMed:32209652, ECO:0000305|PubMed:24725409, ECO:0000305|PubMed:26812018}. |
Q7Z3D4 | LYSMD3 | S133 | ochoa | LysM and putative peptidoglycan-binding domain-containing protein 3 | Essential for Golgi structural integrity. {ECO:0000269|PubMed:29851555}. |
Q7Z3J3 | RGPD4 | S1232 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z494 | NPHP3 | S1307 | ochoa | Nephrocystin-3 | Required for normal ciliary development and function. Inhibits disheveled-1-induced canonical Wnt-signaling activity and may also play a role in the control of non-canonical Wnt signaling which regulates planar cell polarity. Probably acts as a molecular switch between different Wnt signaling pathways. Required for proper convergent extension cell movements. {ECO:0000269|PubMed:18371931}. |
Q7Z6Z7 | HUWE1 | S3165 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q8IVL1 | NAV2 | S1190 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVT2 | MISP | S155 | ochoa | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8N697 | SLC15A4 | S279 | ochoa | Solute carrier family 15 member 4 (Peptide transporter 4) (Peptide/histidine transporter 1) (hPHT1) | Proton-coupled amino-acid transporter that mediates the transmembrane transport of L-histidine and some di- and tripeptides from inside the lysosome to the cytosol, and plays a key role in innate immune response (PubMed:16289537, PubMed:25238095, PubMed:29224352). Able to transport a variety of di- and tripeptides, including carnosine and some peptidoglycans (PubMed:29224352, PubMed:31073693). Transporter activity is pH-dependent and maximized in the acidic lysosomal environment (By similarity). Involved in the detection of microbial pathogens by toll-like receptors (TLRs) and NOD-like receptors (NLRs), probably by mediating transport of bacterial peptidoglycans across the endolysosomal membrane: catalyzes the transport of certain bacterial peptidoglycans, such as muramyl dipeptide (MDP), the NOD2 ligand, and L-alanyl-gamma-D-glutamyl-meso-2,6-diaminoheptanedioate (tri-DAP), the NOD1 ligand (PubMed:25238095, PubMed:29224352). Required for TLR7, TLR8 and TLR9-mediated type I interferon (IFN-I) productions in plasmacytoid dendritic cells (pDCs) (PubMed:25238095). Independently of its transporter activity, also promotes the recruitment of innate immune adapter TASL to endolysosome downstream of TLR7, TLR8 and TLR9: TASL recruitment leads to the specific recruitment and activation of IRF5 (PubMed:32433612). Required for isotype class switch recombination to IgG2c isotype in response to TLR9 stimulation (By similarity). Required for mast cell secretory-granule homeostasis by limiting mast cell functions and inflammatory responses (By similarity). {ECO:0000250|UniProtKB:O09014, ECO:0000250|UniProtKB:Q91W98, ECO:0000269|PubMed:16289537, ECO:0000269|PubMed:25238095, ECO:0000269|PubMed:29224352, ECO:0000269|PubMed:31073693, ECO:0000269|PubMed:32433612}. |
Q8NDX5 | PHC3 | S286 | ochoa | Polyhomeotic-like protein 3 (Early development regulatory protein 3) (Homolog of polyhomeotic 3) (hPH3) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:12167701}. |
Q8TBC3 | SHKBP1 | S161 | ochoa | SH3KBP1-binding protein 1 (SETA-binding protein 1) | Inhibits CBL-SH3KBP1 complex mediated down-regulation of EGFR signaling by sequestration of SH3KBP1. Binds to SH3KBP1 and prevents its interaction with CBL and inhibits translocation of SH3KBP1 to EGFR containing vesicles upon EGF stimulation. {ECO:0000250|UniProtKB:Q6P7W2}. |
Q8TEU7 | RAPGEF6 | S1093 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8TF05 | PPP4R1 | S537 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 1 | Regulatory subunit of serine/threonine-protein phosphatase 4. May play a role in regulation of cell division in renal glomeruli. The PPP4C-PPP4R1 PP4 complex may play a role in dephosphorylation and regulation of HDAC3. Plays a role in the inhibition of TNF-induced NF-kappa-B activation by regulating the dephosphorylation of TRAF2. {ECO:0000269|PubMed:15805470}.; FUNCTION: (Microbial infection) Participates in merkel polyomavirus-mediated inhibition of NF-kappa-B by bridging viral small tumor antigen with NEMO. {ECO:0000269|PubMed:28445980}. |
Q8WXE0 | CASKIN2 | S945 | ochoa | Caskin-2 (CASK-interacting protein 2) | None |
Q92558 | WASF1 | S103 | ochoa | Actin-binding protein WASF1 (Protein WAVE-1) (Verprolin homology domain-containing protein 1) (Wiskott-Aldrich syndrome protein family member 1) (WASP family protein member 1) | Downstream effector molecule involved in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Promotes formation of actin filaments. Part of the WAVE complex that regulates lamellipodia formation (PubMed:29961568). The WAVE complex regulates actin filament reorganization via its interaction with the Arp2/3 complex (By similarity). As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). Also involved in the regulation of mitochondrial dynamics (PubMed:29961568). {ECO:0000250|UniProtKB:Q8R5H6, ECO:0000269|PubMed:29961568, ECO:0000269|PubMed:9889097}. |
Q92608 | DOCK2 | S1705 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q93052 | LPP | S115 | ochoa | Lipoma-preferred partner (LIM domain-containing preferred translocation partner in lipoma) | May play a structural role at sites of cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it may also be implicated in signaling events and activation of gene transcription. May be involved in signal transduction from cell adhesion sites to the nucleus allowing successful integration of signals arising from soluble factors and cell-cell adhesion sites. Also suggested to serve as a scaffold protein upon which distinct protein complexes are assembled in the cytoplasm and in the nucleus. {ECO:0000269|PubMed:10637295}. |
Q96A57 | TMEM230 | S23 | ochoa | Transmembrane protein 230 | Involved in trafficking and recycling of synaptic vesicles. {ECO:0000269|PubMed:27270108}. |
Q96CC6 | RHBDF1 | S240 | ochoa | Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}. |
Q96F07 | CYFIP2 | S606 | ochoa | Cytoplasmic FMR1-interacting protein 2 (p53-inducible protein 121) | Involved in T-cell adhesion and p53/TP53-dependent induction of apoptosis. Does not bind RNA. As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). {ECO:0000250|UniProtKB:Q5SQX6, ECO:0000269|PubMed:10449408, ECO:0000269|PubMed:15048733, ECO:0000269|PubMed:17245118}. |
Q96HP0 | DOCK6 | S40 | ochoa | Dedicator of cytokinesis protein 6 | Acts as a guanine nucleotide exchange factor (GEF) for CDC42 and RAC1 small GTPases. Through its activation of CDC42 and RAC1, may regulate neurite outgrowth (By similarity). {ECO:0000250, ECO:0000269|PubMed:17196961}. |
Q96P11 | NSUN5 | S166 | ochoa | 28S rRNA (cytosine-C(5))-methyltransferase (EC 2.1.1.-) (NOL1-related protein) (NOL1R) (NOL1/NOP2/Sun domain family member 5) (Williams-Beuren syndrome chromosomal region 20A protein) | S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 3782 (m5C3782) in 28S rRNA (PubMed:23913415, PubMed:31428936, PubMed:31722427). m5C3782 promotes protein translation without affecting ribosome biogenesis and fidelity (PubMed:31428936, PubMed:31722427). Required for corpus callosum and cerebral cortex development (By similarity). {ECO:0000250|UniProtKB:Q8K4F6, ECO:0000269|PubMed:23913415, ECO:0000269|PubMed:31428936, ECO:0000269|PubMed:31722427}. |
Q96QT4 | TRPM7 | S1476 | ochoa|psp | Transient receptor potential cation channel subfamily M member 7 (EC 2.7.11.1) (Channel-kinase 1) (Long transient receptor potential channel 7) (LTrpC-7) (LTrpC7) [Cleaved into: TRPM7 kinase, cleaved form (M7CK); TRPM7 channel, cleaved form] | Bifunctional protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. The channel is highly permeable to divalent cations, specifically calcium (Ca2+), magnesium (Mg2+) and zinc (Zn2+) and mediates their influx (PubMed:11385574, PubMed:12887921, PubMed:15485879, PubMed:24316671, PubMed:35561741, PubMed:36027648). Controls a wide range of biological processes such as Ca2(+), Mg(2+) and Zn(2+) homeostasis, vesicular Zn(2+) release channel and intracellular Ca(2+) signaling, embryonic development, immune responses, cell motility, proliferation and differentiation (By similarity). The C-terminal alpha-kinase domain autophosphorylates cytoplasmic residues of TRPM7 (PubMed:18365021). In vivo, TRPM7 phosphorylates SMAD2, suggesting that TRPM7 kinase may play a role in activating SMAD signaling pathways. In vitro, TRPM7 kinase phosphorylates ANXA1 (annexin A1), myosin II isoforms and a variety of proteins with diverse cellular functions (PubMed:15485879, PubMed:18394644). {ECO:0000250|UniProtKB:Q923J1, ECO:0000269|PubMed:11385574, ECO:0000269|PubMed:12887921, ECO:0000269|PubMed:15485879, ECO:0000269|PubMed:18365021, ECO:0000269|PubMed:18394644, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:35561741, ECO:0000269|PubMed:36027648}.; FUNCTION: [TRPM7 channel, cleaved form]: The cleaved channel exhibits substantially higher current and potentiates Fas receptor signaling. {ECO:0000250|UniProtKB:Q923J1}.; FUNCTION: [TRPM7 kinase, cleaved form]: The C-terminal kinase domain can be cleaved from the channel segment in a cell-type-specific fashion. In immune cells, the TRPM7 kinase domain is clipped from the channel domain by caspases in response to Fas-receptor stimulation. The cleaved kinase fragments can translocate to the nucleus, and bind chromatin-remodeling complex proteins in a Zn(2+)-dependent manner to ultimately phosphorylate specific Ser/Thr residues of histones known to be functionally important for cell differentiation and embryonic development. {ECO:0000250|UniProtKB:Q923J1}. |
Q96SN7 | ORAI2 | S33 | ochoa | Protein orai-2 (CAP-binding protein complex-interacting protein 2) (Transmembrane protein 142B) | Pore-forming subunit of inward rectifying Ca(2+) release-activated Ca(2+) (CRAC) channels. Assembles with ORAI1 and ORAI3 to form hexameric CRAC channels that mediate Ca(2+) influx upon depletion of endoplasmic reticulum Ca(2+) store and channel activation by Ca(2+) sensor STIM1, a process known as store-operated Ca(2+) entry (SOCE). Various pore subunit combinations may account for distinct CRAC channel spatiotemporal and cell-type specific dynamics. ORAI1 mainly contributes to the generation of Ca(2+) plateaus involved in sustained Ca(2+) entry and is dispensable for cytosolic Ca(2+) oscillations, whereas ORAI2 and ORAI3 generate oscillatory patterns. CRAC channels assemble in Ca(2+) signaling microdomains where Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT transcription factors recruited to ORAI1 via AKAP5. CRAC channels are the main pathway for Ca(2+) influx in T cells and promote the immune response to pathogens by activating NFAT-dependent cytokine and chemokine transcription. {ECO:0000269|PubMed:16807233, ECO:0000269|PubMed:17442569, ECO:0000269|PubMed:17452328, ECO:0000269|PubMed:19182790, ECO:0000269|PubMed:19706554, ECO:0000269|PubMed:32415068, ECO:0000269|PubMed:33941685}. |
Q99623 | PHB2 | S39 | psp | Prohibitin-2 (B-cell receptor-associated protein BAP37) (D-prohibitin) (Repressor of estrogen receptor activity) | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors and sex steroid hormones in the nucleus. {ECO:0000269|PubMed:10359819, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:24003225, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Also regulates cytochrome-c oxidase assembly (COX) and mitochondrial respiration (PubMed:11302691, PubMed:20959514). Binding to sphingoid 1-phosphate (SPP) modulates its regulator activity (PubMed:11302691, PubMed:20959514). Has a key role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305|PubMed:25904163}.; FUNCTION: In the nucleus, serves as transcriptional co-regulator (Probable). Acts as a mediator of transcriptional repression by nuclear hormone receptors via recruitment of histone deacetylases. Functions as an estrogen receptor (ER)-selective coregulator that potentiates the inhibitory activities of antiestrogens and represses the activity of estrogens. Competes with NCOA1 for modulation of ER transcriptional activity (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000305|PubMed:25904163}.; FUNCTION: In the plasma membrane, is involved in IGFBP6-induced cell migration (PubMed:24003225). Cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates. Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:24003225}.; FUNCTION: (Microbial infection) Involved in human enterovirus 71/EV-71 infection by enhancing the autophagy mechanism during the infection. {ECO:0000269|PubMed:32276428}. |
Q99666 | RGPD5 | S1231 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q9BQ39 | DDX50 | S112 | ochoa | ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) | ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}. |
Q9BQ52 | ELAC2 | S237 | ochoa | Zinc phosphodiesterase ELAC protein 2 (EC 3.1.26.11) (ElaC homolog protein 2) (Heredity prostate cancer protein 2) (Ribonuclease Z 2) (RNase Z 2) (tRNA 3 endonuclease 2) (tRNase Z 2) | Zinc phosphodiesterase, which displays mitochondrial tRNA 3'-processing endonuclease activity. Involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA (PubMed:21593607). Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly (PubMed:24703694). {ECO:0000269|PubMed:21593607, ECO:0000269|PubMed:24703694}. |
Q9BU19 | ZNF692 | S146 | ochoa | Zinc finger protein 692 (AICAR responsive element binding protein) | May act as an transcriptional repressor for PCK1 gene expression, in turn may participate in the hepatic gluconeogenesis regulation through the activated AMPK signaling pathway. {ECO:0000269|PubMed:17097062, ECO:0000269|PubMed:21910974}. |
Q9BXF6 | RAB11FIP5 | S243 | ochoa | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9BXF6 | RAB11FIP5 | S481 | ochoa | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9C0C2 | TNKS1BP1 | S877 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S919 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0I1 | MTMR12 | S715 | ochoa | Myotubularin-related protein 12 (Inactive phosphatidylinositol 3-phosphatase 12) (Phosphatidylinositol 3 phosphate 3-phosphatase adapter subunit) (3-PAP) (3-phosphatase adapter protein) | Acts as an adapter for the myotubularin-related phosphatases (PubMed:11504939, PubMed:12847286, PubMed:23818870). Regulates phosphatase MTM1 protein stability and possibly its intracellular location (PubMed:23818870). By stabilizing MTM1 protein levels, required for skeletal muscle maintenance but not for myogenesis (By similarity). {ECO:0000250|UniProtKB:Q80TA6, ECO:0000269|PubMed:11504939, ECO:0000269|PubMed:12847286, ECO:0000269|PubMed:23818870}. |
Q9GZZ9 | UBA5 | S44 | ochoa | Ubiquitin-like modifier-activating enzyme 5 (Ubiquitin-activating enzyme 5) (ThiFP1) (UFM1-activating enzyme) (Ubiquitin-activating enzyme E1 domain-containing protein 1) | E1-like enzyme which specifically catalyzes the first step in ufmylation (PubMed:15071506, PubMed:18442052, PubMed:20368332, PubMed:25219498, PubMed:26929408, PubMed:27545674, PubMed:27545681, PubMed:27653677, PubMed:30412706, PubMed:30626644, PubMed:34588452). Activates UFM1 by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a UFM1-E1 thioester and free AMP (PubMed:20368332, PubMed:26929408, PubMed:27653677, PubMed:30412706). Activates UFM1 via a trans-binding mechanism, in which UFM1 interacts with distinct sites in both subunits of the UBA5 homodimer (PubMed:27653677). Trans-binding also promotes stabilization of the UBA5 homodimer, and enhances ATP-binding (PubMed:29295865). Transfer of UFM1 from UBA5 to the E2-like enzyme UFC1 also takes place using a trans mechanism (PubMed:27653677, PubMed:34588452). Ufmylation plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:30412706, PubMed:32160526, PubMed:35394863). Ufmylation is essential for erythroid differentiation of both megakaryocytes and erythrocytes (By similarity). {ECO:0000250|UniProtKB:Q8VE47, ECO:0000269|PubMed:15071506, ECO:0000269|PubMed:18442052, ECO:0000269|PubMed:20368332, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:26929408, ECO:0000269|PubMed:27545674, ECO:0000269|PubMed:27545681, ECO:0000269|PubMed:27653677, ECO:0000269|PubMed:29295865, ECO:0000269|PubMed:30412706, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:34588452, ECO:0000269|PubMed:35394863}. |
Q9H1A4 | ANAPC1 | S563 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9HAU0 | PLEKHA5 | S494 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HCC0 | MCCC2 | S127 | ochoa | Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial (MCCase subunit beta) (EC 6.4.1.4) (3-methylcrotonyl-CoA carboxylase 2) (3-methylcrotonyl-CoA carboxylase non-biotin-containing subunit) (3-methylcrotonyl-CoA:carbon dioxide ligase subunit beta) | Carboxyltransferase subunit of the 3-methylcrotonyl-CoA carboxylase, an enzyme that catalyzes the conversion of 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA, a critical step for leucine and isovaleric acid catabolism. {ECO:0000269|PubMed:17360195}. |
Q9NSK0 | KLC4 | S565 | ochoa | Kinesin light chain 4 (KLC 4) (Kinesin-like protein 8) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport. The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250}. |
Q9NXR8 | ING3 | S123 | ochoa | Inhibitor of growth protein 3 (p47ING3) | Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when directly recruited to sites of DNA damage. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:12545155, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q9P0J7 | KCMF1 | S169 | ochoa | E3 ubiquitin-protein ligase KCMF1 (EC 2.3.2.27) (FGF-induced in gastric cancer) (Potassium channel modulatory factor) (PCMF) (ZZ-type zinc finger-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme and then transfers it to targeted substrates, promoting their degradation by the proteasome (PubMed:15581609, PubMed:25582440, PubMed:34893540, PubMed:37891180, PubMed:38297121). Together with UBR4, component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR4, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). {ECO:0000269|PubMed:15581609, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38297121}. |
Q9UDY2 | TJP2 | S440 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9ULR3 | PPM1H | S118 | ochoa | Protein phosphatase 1H (EC 3.1.3.16) | Dephosphorylates CDKN1B at 'Thr-187', thus removing a signal for proteasomal degradation. {ECO:0000269|PubMed:22586611}. |
Q9UPY3 | DICER1 | S1141 | ochoa | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UQB3 | CTNND2 | S398 | ochoa | Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) | Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}. |
Q9Y2W1 | THRAP3 | S559 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y3M8 | STARD13 | S457 | ochoa | StAR-related lipid transfer protein 13 (46H23.2) (Deleted in liver cancer 2 protein) (DLC-2) (Rho GTPase-activating protein) (START domain-containing protein 13) (StARD13) | GTPase-activating protein for RhoA, and perhaps for Cdc42. May be involved in regulation of cytoskeletal reorganization, cell proliferation and cell motility. Acts a tumor suppressor in hepatocellular carcinoma cells. {ECO:0000269|PubMed:14697242, ECO:0000269|PubMed:16217026}. |
Q9Y4G8 | RAPGEF2 | S959 | ochoa | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}. |
Q9Y5K6 | CD2AP | S232 | ochoa | CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) | Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}. |
Q9Y6N7 | ROBO1 | S1157 | ochoa | Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) | Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}. |
Q9Y6W5 | WASF2 | S102 | ochoa | Actin-binding protein WASF2 (Protein WAVE-2) (Verprolin homology domain-containing protein 2) (Wiskott-Aldrich syndrome protein family member 2) (WASP family protein member 2) | Downstream effector molecule involved in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Promotes formation of actin filaments. Part of the WAVE complex that regulates lamellipodia formation. The WAVE complex regulates actin filament reorganization via its interaction with the Arp2/3 complex. {ECO:0000269|PubMed:10381382, ECO:0000269|PubMed:16275905}. |
P11717 | IGF2R | S1951 | Sugiyama | Cation-independent mannose-6-phosphate receptor (CI Man-6-P receptor) (CI-MPR) (M6PR) (300 kDa mannose 6-phosphate receptor) (MPR 300) (Insulin-like growth factor 2 receptor) (Insulin-like growth factor II receptor) (IGF-II receptor) (M6P/IGF2 receptor) (M6P/IGF2R) (CD antigen CD222) | Mediates the transport of phosphorylated lysosomal enzymes from the Golgi complex and the cell surface to lysosomes (PubMed:18817523, PubMed:2963003). Lysosomal enzymes bearing phosphomannosyl residues bind specifically to mannose-6-phosphate receptors in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelysosomal compartment where the low pH mediates the dissociation of the complex (PubMed:18817523, PubMed:2963003). The receptor is then recycled back to the Golgi for another round of trafficking through its binding to the retromer (PubMed:18817523). This receptor also binds IGF2 (PubMed:18046459). Acts as a positive regulator of T-cell coactivation by binding DPP4 (PubMed:10900005). {ECO:0000269|PubMed:10900005, ECO:0000269|PubMed:18046459, ECO:0000269|PubMed:18817523, ECO:0000269|PubMed:2963003}. |
P54578 | USP14 | S431 | Sugiyama | Ubiquitin carboxyl-terminal hydrolase 14 (EC 3.4.19.12) (Deubiquitinating enzyme 14) (Ubiquitin thioesterase 14) (Ubiquitin-specific-processing protease 14) | Proteasome-associated deubiquitinase which releases ubiquitin from the proteasome targeted ubiquitinated proteins (PubMed:35145029). Ensures the regeneration of ubiquitin at the proteasome (PubMed:18162577, PubMed:28396413). Is a reversibly associated subunit of the proteasome and a large fraction of proteasome-free protein exists within the cell (PubMed:18162577). Required for the degradation of the chemokine receptor CXCR4 which is critical for CXCL12-induced cell chemotaxis (PubMed:19106094). Also serves as a physiological inhibitor of endoplasmic reticulum-associated degradation (ERAD) under the non-stressed condition by inhibiting the degradation of unfolded endoplasmic reticulum proteins via interaction with ERN1 (PubMed:19135427). Indispensable for synaptic development and function at neuromuscular junctions (NMJs) (By similarity). Plays a role in the innate immune defense against viruses by stabilizing the viral DNA sensor CGAS and thus inhibiting its autophagic degradation (PubMed:27666593). Inhibits OPTN-mediated selective autophagic degradation of KDM4D and thereby negatively regulates H3K9me2 and H3K9me3 (PubMed:35145029). {ECO:0000250|UniProtKB:Q9JMA1, ECO:0000269|PubMed:18162577, ECO:0000269|PubMed:19106094, ECO:0000269|PubMed:19135427, ECO:0000269|PubMed:27666593, ECO:0000269|PubMed:28396413, ECO:0000269|PubMed:35145029}. |
Q92945 | KHSRP | S333 | Sugiyama | Far upstream element-binding protein 2 (FUSE-binding protein 2) (KH type-splicing regulatory protein) (KSRP) (p75) | Binds to the dendritic targeting element and may play a role in mRNA trafficking (By similarity). Part of a ternary complex that binds to the downstream control sequence (DCS) of the pre-mRNA. Mediates exon inclusion in transcripts that are subject to tissue-specific alternative splicing. May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly by recruiting degradation machinery to ARE-containing mRNAs. {ECO:0000250, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:8940189, ECO:0000269|PubMed:9136930}. |
B6ZGS9 | NR1H4 | S154 | GPS6 | Bile acid receptor (Farnesoid X-activated receptor) (Farnesol receptor HRR-1) (Nuclear receptor subfamily 1 group H member 4) (Retinoid X receptor-interacting protein 14) | None |
Q96RI1 | NR1H4 | S164 | SIGNOR | Bile acid receptor (Farnesoid X-activated receptor) (Farnesol receptor HRR-1) (Nuclear receptor subfamily 1 group H member 4) (Retinoid X receptor-interacting protein 14) (RXR-interacting protein 14) | Ligand-activated transcription factor. Receptor for bile acids (BAs) such as chenodeoxycholic acid (CDCA), lithocholic acid, deoxycholic acid (DCA) and allocholic acid (ACA). Plays a essential role in BA homeostasis through the regulation of genes involved in BA synthesis, conjugation and enterohepatic circulation. Also regulates lipid and glucose homeostasis and is involved innate immune response (PubMed:10334992, PubMed:10334993, PubMed:21383957, PubMed:22820415). The FXR-RXR heterodimer binds predominantly to farnesoid X receptor response elements (FXREs) containing two inverted repeats of the consensus sequence 5'-AGGTCA-3' in which the monomers are spaced by 1 nucleotide (IR-1) but also to tandem repeat DR1 sites with lower affinity, and can be activated by either FXR or RXR-specific ligands. It is proposed that monomeric nuclear receptors such as NR5A2/LRH-1 bound to coregulatory nuclear responsive element (NRE) halfsites located in close proximity to FXREs modulate transcriptional activity (By similarity). In the liver activates transcription of the corepressor NR0B2 thereby indirectly inhibiting CYP7A1 and CYP8B1 (involved in BA synthesis) implicating at least in part histone demethylase KDM1A resulting in epigenomic repression, and SLC10A1/NTCP (involved in hepatic uptake of conjugated BAs). Activates transcription of the repressor MAFG (involved in regulation of BA synthesis) (By similarity). Activates transcription of SLC27A5/BACS and BAAT (involved in BA conjugation), ABCB11/BSEP (involved in bile salt export) by directly recruiting histone methyltransferase CARM1, and ABCC2/MRP2 (involved in secretion of conjugated BAs) and ABCB4 (involved in secretion of phosphatidylcholine in the small intestine) (PubMed:12754200, PubMed:15471871, PubMed:17895379). Activates transcription of SLC27A5/BACS and BAAT (involved in BA conjugation), ABCB11/BSEP (involved in bile salt export) by directly recruiting histone methyltransferase CARM1, and ABCC2/MRP2 (involved in secretion of conjugated BAs) and ABCB4 (involved in secretion of phosphatidylcholine in the small intestine) (PubMed:10514450, PubMed:15239098, PubMed:16269519). In the intestine activates FGF19 expression and secretion leading to hepatic CYP7A1 repression (PubMed:12815072, PubMed:19085950). The function also involves the coordinated induction of hepatic KLB/beta-klotho expression (By similarity). Regulates transcription of liver UGT2B4 and SULT2A1 involved in BA detoxification; binding to the UGT2B4 promoter seems to imply a monomeric transactivation independent of RXRA (PubMed:12806625, PubMed:16946559). Modulates lipid homeostasis by activating liver NR0B2/SHP-mediated repression of SREBF1 (involved in de novo lipogenesis), expression of PLTP (involved in HDL formation), SCARB1 (involved in HDL hepatic uptake), APOE, APOC1, APOC4, PPARA (involved in beta-oxidation of fatty acids), VLDLR and SDC1 (involved in the hepatic uptake of LDL and IDL remnants), and inhibiting expression of MTTP (involved in VLDL assembly (PubMed:12554753, PubMed:12660231, PubMed:15337761). Increases expression of APOC2 (promoting lipoprotein lipase activity implicated in triglyceride clearance) (PubMed:11579204). Transrepresses APOA1 involving a monomeric competition with NR2A1 for binding to a DR1 element (PubMed:11927623, PubMed:21804189). Also reduces triglyceride clearance by inhibiting expression of ANGPTL3 and APOC3 (both involved in inhibition of lipoprotein lipase) (PubMed:12891557). Involved in glucose homeostasis by modulating hepatic gluconeogenesis through activation of NR0B2/SHP-mediated repression of respective genes. Modulates glycogen synthesis (inducing phosphorylation of glycogen synthase kinase-3) (By similarity). Modulates glucose-stimulated insulin secretion and is involved in insulin resistance (PubMed:20447400). Involved in intestinal innate immunity. Plays a role in protecting the distal small intestine against bacterial overgrowth and preservation of the epithelial barrier (By similarity). Down-regulates inflammatory cytokine expression in several types of immune cells including macrophages and mononuclear cells (PubMed:21242261). Mediates trans-repression of TLR4-induced cytokine expression; the function seems to require its sumoylation and prevents N-CoR nuclear receptor corepressor clearance from target genes such as IL1B and NOS2 (PubMed:19864602). Involved in the TLR9-mediated protective mechanism in intestinal inflammation. Plays an anti-inflammatory role in liver inflammation; proposed to inhibit pro-inflammatory (but not antiapoptotic) NF-kappa-B signaling) (By similarity). {ECO:0000250|UniProtKB:Q60641, ECO:0000250|UniProtKB:Q62735, ECO:0000269|PubMed:10334992, ECO:0000269|PubMed:10334993, ECO:0000269|PubMed:10514450, ECO:0000269|PubMed:11579204, ECO:0000269|PubMed:11927623, ECO:0000269|PubMed:12554753, ECO:0000269|PubMed:12660231, ECO:0000269|PubMed:12718892, ECO:0000269|PubMed:12754200, ECO:0000269|PubMed:12806625, ECO:0000269|PubMed:12815072, ECO:0000269|PubMed:12891557, ECO:0000269|PubMed:14684751, ECO:0000269|PubMed:15239098, ECO:0000269|PubMed:15337761, ECO:0000269|PubMed:15471871, ECO:0000269|PubMed:16269519, ECO:0000269|PubMed:16946559, ECO:0000269|PubMed:17895379, ECO:0000269|PubMed:18621523, ECO:0000269|PubMed:19085950, ECO:0000269|PubMed:19410460, ECO:0000269|PubMed:19586769, ECO:0000269|PubMed:19864602, ECO:0000269|PubMed:20447400, ECO:0000269|PubMed:21242261, ECO:0000269|PubMed:21804189, ECO:0000269|PubMed:23928191, ECO:0000305|PubMed:21383957, ECO:0000305|PubMed:22820415}.; FUNCTION: [Isoform 1]: Promotes transcriptional activation of target genes NR0B2/SHP (inducible by unconjugated CDCA), SLC51B/OSTB (inducible by unconjugated CDCA and DCA) and FABP6/IBAP; low activity for ABCB11/BSEP (inducible by unconjugated CDCA, DCA and ACA); not inducible by taurine- and glycine-amidated CDCA. {ECO:0000269|PubMed:23928191}.; FUNCTION: [Isoform 2]: Promotes transcriptional activation of target genes ABCB11/BSEP (inducible by unconjugated CDCA, DCA and ACA), NR0B2/SHP (inducible by unconjugated CDCA DCA and ACA), SLC51B/OSTB (inducible by unconjugated CDCA and DCA) and FABP6/IBAP; not inducible by taurine- and glycine-amidated CDCA. {ECO:0000269|PubMed:23928191}.; FUNCTION: [Isoform 3]: Promotes transcriptional activation of target genes NR0B2/SHP (inducible by unconjugated CDCA), SLC51B/OSTB (inducible by unconjugated CDCA and DCA) and IBAP; low activity for ABCB11/BSEP (inducible by unconjugated CDCA, DCA and ACA); not inducible by taurine- and glycine-amidated CDCA. {ECO:0000269|PubMed:23928191}.; FUNCTION: [Isoform 4]: Promotes transcriptional activation of target genes ABCB11/BSEP (inducible by unconjugated CDCA, ACA and DCA), NR0B2/SHP (inducible by unconjugated CDCA, ACA and DCA), SLC51B/OSTB (inducible by unconjugated CDCA and DCA) and FABP6/IBAP; most efficient isoform compared to isoforms 1 to 3; not inducible by taurine- and glycine-amidated CDCA. {ECO:0000269|PubMed:23928191, ECO:0000269|PubMed:26888176}. |
Q14524 | SCN5A | S524 | PSP | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
Q96PZ0 | PUS7 | S135 | Sugiyama | Pseudouridylate synthase 7 homolog (EC 5.4.99.-) | Pseudouridylate synthase that catalyzes pseudouridylation of RNAs (PubMed:28073919, PubMed:29628141, PubMed:30778726, PubMed:31477916, PubMed:34718722, PubMed:35051350). Acts as a regulator of protein synthesis in embryonic stem cells by mediating pseudouridylation of RNA fragments derived from tRNAs (tRFs): pseudouridylated tRFs inhibit translation by targeting the translation initiation complex (PubMed:29628141). Also catalyzes pseudouridylation of mRNAs: mediates pseudouridylation of mRNAs with the consensus sequence 5'-UGUAG-3' (PubMed:28073919, PubMed:31477916, PubMed:35051350). Acts as a regulator of pre-mRNA splicing by mediating pseudouridylation of pre-mRNAs at locations associated with alternatively spliced regions (PubMed:35051350). Pseudouridylation of pre-mRNAs near splice sites directly regulates mRNA splicing and mRNA 3'-end processing (PubMed:35051350). In addition to mRNAs and tRNAs, binds other types of RNAs, such as snRNAs, Y RNAs and vault RNAs, suggesting that it can catalyze pseudouridylation of many RNA types (PubMed:29628141). {ECO:0000269|PubMed:28073919, ECO:0000269|PubMed:29628141, ECO:0000269|PubMed:30778726, ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:34718722, ECO:0000269|PubMed:35051350}. |
P56645 | PER3 | S633 | SIGNOR|iPTMNet | Period circadian protein homolog 3 (hPER3) (Cell growth-inhibiting gene 13 protein) (Circadian clock protein PERIOD 3) | Originally described as a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1, NR1D2, RORA, RORB and RORG, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Has a redundant role with the other PER proteins PER1 and PER2 and is not essential for the circadian rhythms maintenance. In contrast, plays an important role in sleep-wake timing and sleep homeostasis probably through the transcriptional regulation of sleep homeostasis-related genes, without influencing circadian parameters. Can bind heme. {ECO:0000269|PubMed:17346965, ECO:0000269|PubMed:19716732, ECO:0000269|PubMed:24439663, ECO:0000269|PubMed:24577121, ECO:0000269|PubMed:26903630}. |
P08151 | GLI1 | S543 | GPS6 | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
Q13464 | ROCK1 | S417 | Sugiyama | Rho-associated protein kinase 1 (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-35) (Rho-associated, coiled-coil-containing protein kinase 1) (Rho-associated, coiled-coil-containing protein kinase I) (ROCK-I) (p160 ROCK-1) (p160ROCK) | Protein kinase which is a key regulator of the actin cytoskeleton and cell polarity (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:8617235, PubMed:9722579). Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of DAPK3, GFAP, LIMK1, LIMK2, MYL9/MLC2, TPPP, PFN1 and PPP1R12A (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:23093407, PubMed:23355470, PubMed:8617235, PubMed:9722579). Phosphorylates FHOD1 and acts synergistically with it to promote SRC-dependent non-apoptotic plasma membrane blebbing (PubMed:18694941). Phosphorylates JIP3 and regulates the recruitment of JNK to JIP3 upon UVB-induced stress (PubMed:19036714). Acts as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability (By similarity). Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation (PubMed:19181962). Required for centrosome positioning and centrosome-dependent exit from mitosis (By similarity). Plays a role in terminal erythroid differentiation (PubMed:21072057). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Promotes keratinocyte terminal differentiation (PubMed:19997641). Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process, essential for osteoblast mineralization (By similarity). May regulate closure of the eyelids and ventral body wall by inducing the assembly of actomyosin bundles (By similarity). {ECO:0000250|UniProtKB:P70335, ECO:0000250|UniProtKB:Q8MIT6, ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:10652353, ECO:0000269|PubMed:11018042, ECO:0000269|PubMed:11283607, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18573880, ECO:0000269|PubMed:18694941, ECO:0000269|PubMed:19036714, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19181962, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21072057, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:8617235, ECO:0000269|PubMed:9722579}. |
A6NC98 | CCDC88B | S596 | ochoa | Coiled-coil domain-containing protein 88B (Brain leucine zipper domain-containing protein) (Gipie) (Hook-related protein 3) (HkRP3) | Acts as a positive regulator of T-cell maturation and inflammatory function. Required for several functions of T-cells, in both the CD4(+) and the CD8(+) compartments and this includes expression of cell surface markers of activation, proliferation, and cytokine production in response to specific or non-specific stimulation (By similarity). Enhances NK cell cytotoxicity by positively regulating polarization of microtubule-organizing center (MTOC) to cytotoxic synapse, lytic granule transport along microtubules, and dynein-mediated clustering to MTOC (PubMed:25762780). Interacts with HSPA5 and stabilizes the interaction between HSPA5 and ERN1, leading to suppression of ERN1-induced JNK activation and endoplasmic reticulum stress-induced apoptosis (PubMed:21289099). {ECO:0000250|UniProtKB:Q4QRL3, ECO:0000269|PubMed:21289099, ECO:0000269|PubMed:25762780}. |
A8CG34 | POM121C | S369 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
A8MYA2 | CXorf49; | S420 | ochoa | Uncharacterized protein CXorf49 | None |
E9PCH4 | None | S1482 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
O14523 | C2CD2L | S499 | ochoa | Phospholipid transfer protein C2CD2L (C2 domain-containing protein 2-like) (C2CD2-like) (Transmembrane protein 24) | Lipid-binding protein that transports phosphatidylinositol, the precursor of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), from its site of synthesis in the endoplasmic reticulum to the cell membrane (PubMed:28209843). It thereby maintains the pool of cell membrane phosphoinositides, which are degraded during phospholipase C (PLC) signaling (PubMed:28209843). Plays a key role in the coordination of Ca(2+) and phosphoinositide signaling: localizes to sites of contact between the endoplasmic reticulum and the cell membrane, where it tethers the two bilayers (PubMed:28209843). In response to elevation of cytosolic Ca(2+), it is phosphorylated at its C-terminus and dissociates from the cell membrane, abolishing phosphatidylinositol transport to the cell membrane (PubMed:28209843). Positively regulates insulin secretion in response to glucose: phosphatidylinositol transfer to the cell membrane allows replenishment of PI(4,5)P2 pools and calcium channel opening, priming a new population of insulin granules (PubMed:28209843). {ECO:0000269|PubMed:28209843}. |
O14639 | ABLIM1 | S586 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O14994 | SYN3 | S491 | ochoa | Synapsin-3 (Synapsin III) | May be involved in the regulation of neurotransmitter release and synaptogenesis. |
O15062 | ZBTB5 | S208 | ochoa | Zinc finger and BTB domain-containing protein 5 | May be involved in transcriptional regulation. |
O15392 | BIRC5 | S20 | psp | Baculoviral IAP repeat-containing protein 5 (Apoptosis inhibitor 4) (Apoptosis inhibitor survivin) | Multitasking protein that has dual roles in promoting cell proliferation and preventing apoptosis (PubMed:20627126, PubMed:21364656, PubMed:25778398, PubMed:28218735, PubMed:9859993). Component of a chromosome passage protein complex (CPC) which is essential for chromosome alignment and segregation during mitosis and cytokinesis (PubMed:16322459). Acts as an important regulator of the localization of this complex; directs CPC movement to different locations from the inner centromere during prometaphase to midbody during cytokinesis and participates in the organization of the center spindle by associating with polymerized microtubules (PubMed:20826784). Involved in the recruitment of CPC to centromeres during early mitosis via association with histone H3 phosphorylated at 'Thr-3' (H3pT3) during mitosis (PubMed:20929775). The complex with RAN plays a role in mitotic spindle formation by serving as a physical scaffold to help deliver the RAN effector molecule TPX2 to microtubules (PubMed:18591255). May counteract a default induction of apoptosis in G2/M phase (PubMed:9859993). The acetylated form represses STAT3 transactivation of target gene promoters (PubMed:20826784). May play a role in neoplasia (PubMed:10626797). Inhibitor of CASP3 and CASP7 (PubMed:21536684). Essential for the maintenance of mitochondrial integrity and function (PubMed:25778398). Isoform 2 and isoform 3 do not appear to play vital roles in mitosis (PubMed:12773388, PubMed:16291752). Isoform 3 shows a marked reduction in its anti-apoptotic effects when compared with the displayed wild-type isoform (PubMed:10626797). {ECO:0000269|PubMed:10626797, ECO:0000269|PubMed:12773388, ECO:0000269|PubMed:16291752, ECO:0000269|PubMed:16322459, ECO:0000269|PubMed:18591255, ECO:0000269|PubMed:20627126, ECO:0000269|PubMed:20826784, ECO:0000269|PubMed:20929775, ECO:0000269|PubMed:21364656, ECO:0000269|PubMed:21536684, ECO:0000269|PubMed:25778398, ECO:0000269|PubMed:28218735, ECO:0000269|PubMed:9859993}. |
O15400 | STX7 | S173 | ochoa | Syntaxin-7 | May be involved in protein trafficking from the plasma membrane to the early endosome (EE) as well as in homotypic fusion of endocytic organelles. Mediates the endocytic trafficking from early endosomes to late endosomes and lysosomes. |
O43520 | ATP8B1 | S1207 | ochoa | Phospholipid-transporting ATPase IC (EC 7.6.2.1) (ATPase class I type 8B member 1) (Familial intrahepatic cholestasis type 1) (P4-ATPase flippase complex alpha subunit ATP8B1) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of phospholipids, in particular phosphatidylcholines (PC), from the outer to the inner leaflet of the plasma membrane (PubMed:17948906, PubMed:25315773). May participate in the establishment of the canalicular membrane integrity by ensuring asymmetric distribution of phospholipids in the canicular membrane (By similarity). Thus may have a role in the regulation of bile acids transport into the canaliculus, uptake of bile acids from intestinal contents into intestinal mucosa or both and protect hepatocytes from bile salts (By similarity). Involved in the microvillus formation in polarized epithelial cells; the function seems to be independent from its flippase activity (PubMed:20512993). Participates in correct apical membrane localization of CDC42, CFTR and SLC10A2 (PubMed:25239307, PubMed:27301931). Enables CDC42 clustering at the apical membrane during enterocyte polarization through the interaction between CDC42 polybasic region and negatively charged membrane lipids provided by ATP8B1 (By similarity). Together with TMEM30A is involved in uptake of the synthetic drug alkylphospholipid perifosine (PubMed:20510206). Required for the preservation of cochlear hair cells in the inner ear (By similarity). May act as cardiolipin transporter during inflammatory injury (By similarity). {ECO:0000250|UniProtKB:Q148W0, ECO:0000269|PubMed:17948906, ECO:0000269|PubMed:20510206, ECO:0000269|PubMed:20512993, ECO:0000269|PubMed:25239307, ECO:0000269|PubMed:27301931}. |
O43521 | BCL2L11 | S93 | ochoa|psp | Bcl-2-like protein 11 (Bcl2-L-11) (Bcl2-interacting mediator of cell death) | Induces apoptosis and anoikis. Isoform BimL is more potent than isoform BimEL. Isoform Bim-alpha1, isoform Bim-alpha2 and isoform Bim-alpha3 induce apoptosis, although less potent than isoform BimEL, isoform BimL and isoform BimS. Isoform Bim-gamma induces apoptosis. Isoform Bim-alpha3 induces apoptosis possibly through a caspase-mediated pathway. Isoform BimAC and isoform BimABC lack the ability to induce apoptosis. {ECO:0000269|PubMed:11997495, ECO:0000269|PubMed:15486195, ECO:0000269|PubMed:15661735, ECO:0000269|PubMed:9430630}. |
O43815 | STRN | S381 | ochoa | Striatin | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000305|PubMed:26876214}. |
O60759 | CYTIP | S65 | ochoa | Cytohesin-interacting protein (Cytohesin binder and regulator) (CYBR) (Cytohesin-associated scaffolding protein) (CASP) (Cytohesin-binding protein HE) (Cbp HE) (Pleckstrin homology Sec7 and coiled-coil domains-binding protein) | By its binding to cytohesin-1 (CYTH1), it modifies activation of ARFs by CYTH1 and its precise function may be to sequester CYTH1 in the cytoplasm. |
O75112 | LDB3 | S267 | ochoa | LIM domain-binding protein 3 (Protein cypher) (Z-band alternatively spliced PDZ-motif protein) | May function as an adapter in striated muscle to couple protein kinase C-mediated signaling via its LIM domains to the cytoskeleton. {ECO:0000305}. |
O75157 | TSC22D2 | S205 | ochoa | TSC22 domain family protein 2 (TSC22-related-inducible leucine zipper protein 4) | Reduces the level of nuclear PKM isoform M2 which results in repression of cyclin CCND1 transcription and reduced cell growth. {ECO:0000269|PubMed:27573352}. |
O75417 | POLQ | S1054 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O94806 | PRKD3 | S735 | ochoa|psp | Serine/threonine-protein kinase D3 (EC 2.7.11.13) (Protein kinase C nu type) (Protein kinase EPK2) (nPKC-nu) | Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity). {ECO:0000250}. |
O95049 | TJP3 | S864 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95239 | KIF4A | S508 | ochoa | Chromosome-associated kinesin KIF4A (Chromokinesin-A) | Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}. |
O95490 | ADGRL2 | S1275 | ochoa | Adhesion G protein-coupled receptor L2 (Calcium-independent alpha-latrotoxin receptor 2) (CIRL-2) (Latrophilin homolog 1) (Latrophilin-2) (Lectomedin-1) | Orphan adhesion G-protein coupled receptor (aGPCR), which mediates synapse specificity (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors (By similarity). Following G-protein coupled receptor activation, associates with cell adhesion molecules that are expressed at the surface of adjacent cells to direct synapse specificity. Specifically mediates the establishment of perforant-path synapses on CA1-region pyramidal neurons in the hippocampus. Localizes to postsynaptic spines in excitatory synapses in the S.lacunosum-moleculare and interacts with presynaptic cell adhesion molecules, such as teneurins, promoting synapse formation (By similarity). {ECO:0000250|UniProtKB:Q80TS3, ECO:0000250|UniProtKB:Q8JZZ7}. |
O95639 | CPSF4 | S201 | ochoa | Cleavage and polyadenylation specificity factor subunit 4 (Cleavage and polyadenylation specificity factor 30 kDa subunit) (CPSF 30 kDa subunit) (NS1 effector domain-binding protein 1) (Neb-1) (No arches homolog) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. CPSF4 binds RNA polymers with a preference for poly(U). {ECO:0000269|PubMed:14749727, ECO:0000269|PubMed:9224719}. |
O95816 | BAG2 | S19 | ochoa | BAG family molecular chaperone regulator 2 (BAG-2) (Bcl-2-associated athanogene 2) | Co-chaperone for HSP70 and HSC70 chaperone proteins. Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from the HSP70 and HSC70 proteins thereby triggering client/substrate protein release (PubMed:24318877, PubMed:9873016). {ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:9873016}. |
P02545 | LMNA | S403 | ochoa|psp | Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] | [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}. |
P04183 | TK1 | S62 | ochoa | Thymidine kinase, cytosolic (EC 2.7.1.21) | Cell-cycle-regulated enzyme of importance in nucleotide metabolism (PubMed:9575153). Catalyzes the first enzymatic step in the salvage pathway converting thymidine into thymidine monophosphate (PubMed:22385435). Transcriptional regulation limits expression to the S phase of the cell cycle and transient expression coincides with the oscillation in the intracellular dTTP concentration (Probable). Also important for the activation of anticancer and antiviral nucleoside analog prodrugs such as 1-b-d-arabinofuranosylcytosine (AraC) and 3c-azido-3c-deoxythymidine (AZT) (PubMed:22385435). {ECO:0000269|PubMed:22385435, ECO:0000269|PubMed:9575153, ECO:0000305|PubMed:17407781}. |
P07919 | UQCRH | S58 | ochoa | Cytochrome b-c1 complex subunit 6, mitochondrial (Complex III subunit 6) (Complex III subunit VIII) (Cytochrome c1 non-heme 11 kDa protein) (Mitochondrial hinge protein) (Ubiquinol-cytochrome c reductase complex 11 kDa protein) | Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. The cytochrome b-c1 complex catalyzes electron transfer from ubiquinol to cytochrome c, linking this redox reaction to translocation of protons across the mitochondrial inner membrane, with protons being carried across the membrane as hydrogens on the quinol. In the process called Q cycle, 2 protons are consumed from the matrix, 4 protons are released into the intermembrane space and 2 electrons are passed to cytochrome c. {ECO:0000269|PubMed:34750991}. |
P08134 | RHOC | S152 | ochoa | Rho-related GTP-binding protein RhoC (Rho cDNA clone 9) (h9) | Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers. Serves as a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis. Regulates apical junction formation in bronchial epithelial cells. {ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:20974804}. |
P10070 | GLI2 | S866 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P10109 | FDX1 | S62 | ochoa | Adrenodoxin, mitochondrial (Adrenal ferredoxin) (Ferredoxin-1) (Hepatoredoxin) | Essential for the synthesis of various steroid hormones (PubMed:20547883, PubMed:21636783). Participates in the reduction of mitochondrial cytochrome P450 for steroidogenesis (PubMed:20547883, PubMed:21636783). Transfers electrons from adrenodoxin reductase to CYP11A1, a cytochrome P450 that catalyzes cholesterol side-chain cleavage (PubMed:20547883, PubMed:21636783). Does not form a ternary complex with adrenodoxin reductase and CYP11A1 but shuttles between the two enzymes to transfer electrons (By similarity). {ECO:0000250|UniProtKB:P00257, ECO:0000269|PubMed:20547883, ECO:0000269|PubMed:21636783}. |
P11171 | EPB41 | S510 | ochoa | Protein 4.1 (P4.1) (4.1R) (Band 4.1) (EPB4.1) (Erythrocyte membrane protein band 4.1) | Protein 4.1 is a major structural element of the erythrocyte membrane skeleton. It plays a key role in regulating membrane physical properties of mechanical stability and deformability by stabilizing spectrin-actin interaction. Recruits DLG1 to membranes. Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
P12755 | SKI | S404 | ochoa | Ski oncogene (Proto-oncogene c-Ski) | May play a role in terminal differentiation of skeletal muscle cells but not in the determination of cells to the myogenic lineage. Functions as a repressor of TGF-beta signaling. {ECO:0000269|PubMed:19049980}. |
P15884 | TCF4 | S55 | psp | Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) | Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}. |
P15924 | DSP | S2607 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P16109 | SELP | S689 | ochoa | P-selectin (CD62 antigen-like family member P) (Granule membrane protein 140) (GMP-140) (Leukocyte-endothelial cell adhesion molecule 3) (LECAM3) (Platelet activation dependent granule-external membrane protein) (PADGEM) (CD antigen CD62P) | Ca(2+)-dependent receptor for myeloid cells that binds to carbohydrates on neutrophils and monocytes. Mediates the interaction of activated endothelial cells or platelets with leukocytes. The ligand recognized is sialyl-Lewis X. Mediates rapid rolling of leukocyte rolling over vascular surfaces during the initial steps in inflammation through interaction with SELPLG. Mediates cell-cell interactions and cell adhesion via the interaction with integrin alpha-IIb/beta3 (ITGA2B:ITGB3) and integrin alpha-V/beta-3 (ITGAV:ITGB3) (PubMed:37184585). {ECO:0000269|PubMed:11081633, ECO:0000269|PubMed:28011641, ECO:0000269|PubMed:37184585, ECO:0000269|PubMed:7585950}. |
P17302 | GJA1 | S364 | ochoa|psp | Gap junction alpha-1 protein (Connexin-43) (Cx43) (Gap junction 43 kDa heart protein) | Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). May play a role in cell growth inhibition through the regulation of NOV expression and localization. Plays an essential role in gap junction communication in the ventricles (By similarity). {ECO:0000250|UniProtKB:P08050, ECO:0000250|UniProtKB:P23242}. |
P23497 | SP100 | S451 | ochoa | Nuclear autoantigen Sp-100 (Nuclear dot-associated Sp100 protein) (Speckled 100 kDa) | Together with PML, this tumor suppressor is a major constituent of the PML bodies, a subnuclear organelle involved in a large number of physiological processes including cell growth, differentiation and apoptosis. Functions as a transcriptional coactivator of ETS1 and ETS2 according to PubMed:11909962. Under certain conditions, it may also act as a corepressor of ETS1 preventing its binding to DNA according to PubMed:15247905. Through the regulation of ETS1 it may play a role in angiogenesis, controlling endothelial cell motility and invasion. Through interaction with the MRN complex it may be involved in the regulation of telomeres lengthening. May also regulate TP53-mediated transcription and through CASP8AP2, regulate FAS-mediated apoptosis. Also plays a role in infection by viruses, including human cytomegalovirus and Epstein-Barr virus, through mechanisms that may involve chromatin and/or transcriptional regulation. {ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:14647468, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000269|PubMed:15767676, ECO:0000269|PubMed:16177824, ECO:0000269|PubMed:17245429, ECO:0000269|PubMed:21274506, ECO:0000269|PubMed:21880768}. |
P25963 | NFKBIA | S262 | psp | NF-kappa-B inhibitor alpha (I-kappa-B-alpha) (IkB-alpha) (IkappaBalpha) (Major histocompatibility complex enhancer-binding protein MAD3) | Inhibits the activity of dimeric NF-kappa-B/REL complexes by trapping REL (RELA/p65 and NFKB1/p50) dimers in the cytoplasm by masking their nuclear localization signals (PubMed:1493333, PubMed:36651806, PubMed:7479976). On cellular stimulation by immune and pro-inflammatory responses, becomes phosphorylated promoting ubiquitination and degradation, enabling the dimeric RELA to translocate to the nucleus and activate transcription (PubMed:7479976, PubMed:7628694, PubMed:7796813, PubMed:7878466). {ECO:0000269|PubMed:1493333, ECO:0000269|PubMed:36651806, ECO:0000269|PubMed:7479976, ECO:0000269|PubMed:7628694, ECO:0000269|PubMed:7796813, ECO:0000269|PubMed:7878466}. |
P28472 | GABRB3 | S432 | psp | Gamma-aminobutyric acid receptor subunit beta-3 (GABA(A) receptor subunit beta-3) (GABAAR subunit beta-3) | Beta subunit of the heteropentameric ligand-gated chloride channel gated by gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:14993607, PubMed:18514161, PubMed:22243422, PubMed:22303015, PubMed:24909990, PubMed:26950270, PubMed:30602789). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (PubMed:24909990, PubMed:30140029, PubMed:30602789). GABAARs containing beta-3/GABRB3 subunit are found at both synaptic and extrasynaptic sites (By similarity). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:14993607, PubMed:22303015, PubMed:26950270, PubMed:30602789). Chloride influx into the postsynaptic neuron following GABAAR opening decreases the neuron ability to generate a new action potential, thereby reducing nerve transmission (PubMed:22303015, PubMed:26950270). GABAARs containing alpha-1 and beta-3 subunits exhibit synaptogenic activity; the gamma-2 subunit being necessary but not sufficient to induce rapid synaptic contacts formation (PubMed:25489750). Extrasynaptic beta-3 receptors contribute to the tonic GABAergic inhibition (By similarity). GABAARs containing alpha-1, beta-3 and epsilon subunits may also permit spontaneous chloride channel activity while preserving the structural information required for GABA-gated openings (By similarity). Beta-containing GABAARs can simultaneously bind GABA and histamine where histamine binds at the interface of two neighboring beta subunits, which may be involved in the regulation of sleep and wakefulness (PubMed:18281286, PubMed:24909990, PubMed:35355020). Plays an important role in somatosensation and in the production of antinociception (By similarity). {ECO:0000250|UniProtKB:P63079, ECO:0000250|UniProtKB:P63080, ECO:0000269|PubMed:14993607, ECO:0000269|PubMed:18281286, ECO:0000269|PubMed:18514161, ECO:0000269|PubMed:22243422, ECO:0000269|PubMed:22303015, ECO:0000269|PubMed:24909990, ECO:0000269|PubMed:25489750, ECO:0000269|PubMed:26950270, ECO:0000269|PubMed:30140029, ECO:0000269|PubMed:30602789, ECO:0000269|PubMed:35355020}. |
P29466 | CASP1 | S376 | psp | Caspase-1 (CASP-1) (EC 3.4.22.36) (Interleukin-1 beta convertase) (IL-1BC) (Interleukin-1 beta-converting enzyme) (ICE) (IL-1 beta-converting enzyme) (p45) [Cleaved into: Caspase-1 subunit p20; Caspase-1 subunit p10] | Thiol protease involved in a variety of inflammatory processes by proteolytically cleaving other proteins, such as the precursors of the inflammatory cytokines interleukin-1 beta (IL1B) and interleukin 18 (IL18) as well as the pyroptosis inducer Gasdermin-D (GSDMD), into active mature peptides (PubMed:15326478, PubMed:15498465, PubMed:1574116, PubMed:26375003, PubMed:32051255, PubMed:37993714, PubMed:7876192, PubMed:9334240). Plays a key role in cell immunity as an inflammatory response initiator: once activated through formation of an inflammasome complex, it initiates a pro-inflammatory response through the cleavage of the two inflammatory cytokines IL1B and IL18, releasing the mature cytokines which are involved in a variety of inflammatory processes (PubMed:15326478, PubMed:15498465, PubMed:1574116, PubMed:32051255, PubMed:7876192). Cleaves a tetrapeptide after an Asp residue at position P1 (PubMed:15498465, PubMed:1574116, PubMed:7876192). Also initiates pyroptosis, a programmed lytic cell death pathway, through cleavage of GSDMD (PubMed:26375003). In contrast to cleavage of interleukin IL1B, recognition and cleavage of GSDMD is not strictly dependent on the consensus cleavage site but depends on an exosite interface on CASP1 that recognizes and binds the Gasdermin-D, C-terminal (GSDMD-CT) part (PubMed:32051255, PubMed:32109412, PubMed:32553275). Cleaves and activates CASP7 in response to bacterial infection, promoting plasma membrane repair (PubMed:22464733). Upon inflammasome activation, during DNA virus infection but not RNA virus challenge, controls antiviral immunity through the cleavage of CGAS, rendering it inactive (PubMed:28314590). In apoptotic cells, cleaves SPHK2 which is released from cells and remains enzymatically active extracellularly (PubMed:20197547). {ECO:0000269|PubMed:15326478, ECO:0000269|PubMed:15498465, ECO:0000269|PubMed:1574116, ECO:0000269|PubMed:20197547, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:32051255, ECO:0000269|PubMed:32109412, ECO:0000269|PubMed:32553275, ECO:0000269|PubMed:37993714, ECO:0000269|PubMed:7876192, ECO:0000269|PubMed:9334240}.; FUNCTION: [Isoform Delta]: Apoptosis inactive. {ECO:0000269|PubMed:7876192}.; FUNCTION: [Isoform Epsilon]: Apoptosis inactive. {ECO:0000269|PubMed:7876192}. |
P30291 | WEE1 | S211 | psp | Wee1-like protein kinase (WEE1hu) (EC 2.7.10.2) (Wee1A kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on 'Tyr-15' (PubMed:15070733, PubMed:7743995, PubMed:8348613, PubMed:8428596). Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase (PubMed:7743995, PubMed:8348613, PubMed:8428596). Phosphorylation of cyclin B1-CDK1 occurs exclusively on 'Tyr-15' and phosphorylation of monomeric CDK1 does not occur (PubMed:7743995, PubMed:8348613, PubMed:8428596). Its activity increases during S and G2 phases and decreases at M phase when it is hyperphosphorylated (PubMed:7743995). A correlated decrease in protein level occurs at M/G1 phase, probably due to its degradation (PubMed:7743995). {ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:7743995, ECO:0000269|PubMed:8348613, ECO:0000269|PubMed:8428596}. |
P31645 | SLC6A4 | S62 | ochoa | Sodium-dependent serotonin transporter (SERT) (5HT transporter) (5HTT) (Solute carrier family 6 member 4) | Serotonin transporter that cotransports serotonin with one Na(+) ion in exchange for one K(+) ion and possibly one proton in an overall electroneutral transport cycle. Transports serotonin across the plasma membrane from the extracellular compartment to the cytosol thus limiting serotonin intercellular signaling (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Essential for serotonin homeostasis in the central nervous system. In the developing somatosensory cortex, acts in glutamatergic neurons to control serotonin uptake and its trophic functions accounting for proper spatial organization of cortical neurons and elaboration of sensory circuits. In the mature cortex, acts primarily in brainstem raphe neurons to mediate serotonin uptake from the synaptic cleft back into the pre-synaptic terminal thus terminating serotonin signaling at the synapse (By similarity). Modulates mucosal serotonin levels in the gastrointestinal tract through uptake and clearance of serotonin in enterocytes. Required for enteric neurogenesis and gastrointestinal reflexes (By similarity). Regulates blood serotonin levels by ensuring rapid high affinity uptake of serotonin from plasma to platelets, where it is further stored in dense granules via vesicular monoamine transporters and then released upon stimulation (PubMed:17506858, PubMed:18317590). Mechanistically, the transport cycle starts with an outward-open conformation having Na1(+) and Cl(-) sites occupied. The binding of a second extracellular Na2(+) ion and serotonin substrate leads to structural changes to outward-occluded to inward-occluded to inward-open, where the Na2(+) ion and serotonin are released into the cytosol. Binding of intracellular K(+) ion induces conformational transitions to inward-occluded to outward-open and completes the cycle by releasing K(+) possibly together with a proton bound to Asp-98 into the extracellular compartment. Na1(+) and Cl(-) ions remain bound throughout the transport cycle (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Additionally, displays serotonin-induced channel-like conductance for monovalent cations, mainly Na(+) ions. The channel activity is uncoupled from the transport cycle and may contribute to the membrane resting potential or excitability (By similarity). {ECO:0000250|UniProtKB:P31652, ECO:0000250|UniProtKB:Q60857, ECO:0000269|PubMed:10407194, ECO:0000269|PubMed:12869649, ECO:0000269|PubMed:17506858, ECO:0000269|PubMed:18317590, ECO:0000269|PubMed:21730057, ECO:0000269|PubMed:27049939, ECO:0000269|PubMed:27756841, ECO:0000269|PubMed:34851672}. |
P32519 | ELF1 | S332 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P36915 | GNL1 | S33 | ochoa | Guanine nucleotide-binding protein-like 1 (GTP-binding protein HSR1) | Possible regulatory or functional link with the histocompatibility cluster. |
P37173 | TGFBR2 | S548 | ochoa | TGF-beta receptor type-2 (TGFR-2) (EC 2.7.11.30) (TGF-beta type II receptor) (Transforming growth factor-beta receptor type II) (TGF-beta receptor type II) (TbetaR-II) | Transmembrane serine/threonine kinase forming with the TGF-beta type I serine/threonine kinase receptor, TGFBR1, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and thus regulates a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and activation of TGFBR1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways. {ECO:0000269|PubMed:7774578}.; FUNCTION: [Isoform 1]: Has transforming growth factor beta-activated receptor activity. {ECO:0000269|PubMed:8635485}.; FUNCTION: [Isoform 2]: Has transforming growth factor beta-activated receptor activity. {ECO:0000269|PubMed:8635485}.; FUNCTION: [Isoform 3]: Binds TGFB1, TGFB2 and TGFB3 in the picomolar affinity range without the participation of additional receptors. Blocks activation of SMAD2 and SMAD3 by TGFB1. {ECO:0000269|PubMed:34568316}. |
P38159 | RBMX | S174 | ochoa | RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] | RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}. |
P41182 | BCL6 | S307 | ochoa | B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) | Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}. |
P46013 | MKI67 | S2505 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46100 | ATRX | S703 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P48200 | IREB2 | S187 | ochoa | Iron-responsive element-binding protein 2 (IRE-BP 2) (Iron regulatory protein 2) (IRP2) | RNA-binding protein that binds to iron-responsive elements (IRES), which are stem-loop structures found in the 5'-UTR of ferritin, and delta aminolevulinic acid synthase mRNAs, and in the 3'-UTR of transferrin receptor mRNA. Binding to the IRE element in ferritin results in the repression of its mRNA translation. Binding of the protein to the transferrin receptor mRNA inhibits the degradation of this otherwise rapidly degraded mRNA. {ECO:0000269|PubMed:7983023}. |
P49792 | RANBP2 | S1128 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P51398 | DAP3 | S31 | psp | Small ribosomal subunit protein mS29 (EC 3.6.5.-) (28S ribosomal protein S29, mitochondrial) (MRP-S29) (S29mt) (Death-associated protein 3) (DAP-3) (Ionizing radiation resistance conferring protein) | As a component of the mitochondrial small ribosomal subunit, it plays a role in the translation of mitochondrial mRNAs (PubMed:39701103). Involved in mediating interferon-gamma-induced cell death (PubMed:7499268). Displays GTPase activity in vitro (PubMed:39701103). {ECO:0000269|PubMed:39701103, ECO:0000269|PubMed:7499268}. |
P52735 | VAV2 | S639 | ochoa | Guanine nucleotide exchange factor VAV2 (VAV-2) | Guanine nucleotide exchange factor for the Rho family of Ras-related GTPases. Plays an important role in angiogenesis. Its recruitment by phosphorylated EPHA2 is critical for EFNA1-induced RAC1 GTPase activation and vascular endothelial cell migration and assembly (By similarity). {ECO:0000250}. |
P52739 | ZNF131 | S579 | ochoa | Zinc finger protein 131 | Plays a role during development and organogenesis as well as in the function of the adult central nervous system (By similarity). May be involved in transcriptional regulation as a repressor of ESR1/ER-alpha signaling. {ECO:0000250, ECO:0000269|PubMed:18847501, ECO:0000269|PubMed:22467880}. |
P53814 | SMTN | S695 | ochoa | Smoothelin | Structural protein of the cytoskeleton. |
P55040 | GEM | S23 | ochoa|psp | GTP-binding protein GEM (GTP-binding mitogen-induced T-cell protein) (RAS-like protein KIR) | Could be a regulatory protein, possibly participating in receptor-mediated signal transduction at the plasma membrane. Has guanine nucleotide-binding activity but undetectable intrinsic GTPase activity. |
P56645 | PER3 | S922 | ochoa | Period circadian protein homolog 3 (hPER3) (Cell growth-inhibiting gene 13 protein) (Circadian clock protein PERIOD 3) | Originally described as a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1, NR1D2, RORA, RORB and RORG, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Has a redundant role with the other PER proteins PER1 and PER2 and is not essential for the circadian rhythms maintenance. In contrast, plays an important role in sleep-wake timing and sleep homeostasis probably through the transcriptional regulation of sleep homeostasis-related genes, without influencing circadian parameters. Can bind heme. {ECO:0000269|PubMed:17346965, ECO:0000269|PubMed:19716732, ECO:0000269|PubMed:24439663, ECO:0000269|PubMed:24577121, ECO:0000269|PubMed:26903630}. |
P56747 | CLDN6 | S201 | ochoa | Claudin-6 (Skullin) | Plays a major role in tight junction-specific obliteration of the intercellular space. {ECO:0000250}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) entry into hepatic cells. {ECO:0000269|PubMed:17804490, ECO:0000269|PubMed:20375010}. |
Q01955 | COL4A3 | S1452 | psp | Collagen alpha-3(IV) chain (Goodpasture antigen) [Cleaved into: Tumstatin] | Type IV collagen is the major structural component of glomerular basement membranes (GBM), forming a 'chicken-wire' meshwork together with laminins, proteoglycans and entactin/nidogen.; FUNCTION: Tumstatin, a cleavage fragment corresponding to the collagen alpha 3(IV) NC1 domain, possesses both anti-angiogenic and anti-tumor cell activity; these two anti-tumor properties may be regulated via RGD-independent ITGB3-mediated mechanisms. |
Q04637 | EIF4G1 | S1124 | ochoa | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q12778 | FOXO1 | S318 | ochoa | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q12802 | AKAP13 | S1362 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12802 | AKAP13 | S2566 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12888 | TP53BP1 | S118 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S1316 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12906 | ILF3 | S476 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q13480 | GAB1 | S418 | ochoa | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q13835 | PKP1 | S134 | ochoa | Plakophilin-1 (Band 6 protein) (B6P) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}. |
Q14517 | FAT1 | S4272 | ochoa | Protocadherin Fat 1 (Cadherin family member 7) (Cadherin-related tumor suppressor homolog) (Protein fat homolog) [Cleaved into: Protocadherin Fat 1, nuclear form] | [Protocadherin Fat 1]: Plays an essential role for cellular polarization, directed cell migration and modulating cell-cell contact. {ECO:0000250}. |
Q14566 | MCM6 | S219 | ochoa | DNA replication licensing factor MCM6 (EC 3.6.4.12) (p105MCM) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
Q14573 | ITPR3 | S916 | ochoa|psp | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR3 (IP3 receptor isoform 3) (IP3R-3) (InsP3R3) (Type 3 inositol 1,4,5-trisphosphate receptor) (Type 3 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that, upon 1D-myo-inositol 1,4,5-trisphosphate binding, transports calcium from the endoplasmic reticulum lumen to cytoplasm, thus releasing the intracellular calcium and therefore participates in cellular calcium ion homeostasis (PubMed:32949214, PubMed:37898605, PubMed:8081734, PubMed:8288584). 1D-myo-inositol 1,4,5-trisphosphate binds to the ligand-free channel without altering its global conformation, yielding the low-energy resting state, then progresses through resting-to preactivated transitions to the higher energy preactivated state, which increases affinity for calcium, promoting binding of the low basal cytosolic calcium at the juxtamembrane domain (JD) site, favoring the transition through the ensemble of high-energy intermediate states along the trajectory to the fully-open activated state (PubMed:30013099, PubMed:35301323, PubMed:37898605). Upon opening, releases calcium in the cytosol where it can bind to the low-affinity cytoplasmic domain (CD) site and stabilizes the inhibited state to terminate calcium release (PubMed:30013099, PubMed:35301323, PubMed:37898605). {ECO:0000269|PubMed:30013099, ECO:0000269|PubMed:32949214, ECO:0000269|PubMed:35301323, ECO:0000269|PubMed:37898605, ECO:0000269|PubMed:8081734, ECO:0000269|PubMed:8288584}. |
Q14767 | LTBP2 | S249 | ochoa | Latent-transforming growth factor beta-binding protein 2 (LTBP-2) | May play an integral structural role in elastic-fiber architectural organization and/or assembly. {ECO:0000303|PubMed:10743502, ECO:0000303|PubMed:11104663}. |
Q14980 | NUMA1 | S1887 | ochoa|psp | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q15032 | R3HDM1 | S141 | ochoa | R3H domain-containing protein 1 | None |
Q15124 | PGM5 | S510 | ochoa | Phosphoglucomutase-like protein 5 (Aciculin) (Phosphoglucomutase-related protein) (PGM-RP) | Component of adherens-type cell-cell and cell-matrix junctions (PubMed:8175905). Has no phosphoglucomutase activity in vitro (PubMed:8175905). {ECO:0000269|PubMed:8175905}. |
Q15139 | PRKD1 | S742 | ochoa|psp | Serine/threonine-protein kinase D1 (EC 2.7.11.13) (Protein kinase C mu type) (Protein kinase D) (nPKC-D1) (nPKC-mu) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response (PubMed:10764790, PubMed:12505989, PubMed:12637538, PubMed:17442957, PubMed:18509061, PubMed:19135240, PubMed:19211839). Phosphorylates the epidermal growth factor receptor (EGFR) on dual threonine residues, which leads to the suppression of epidermal growth factor (EGF)-induced MAPK8/JNK1 activation and subsequent JUN phosphorylation (PubMed:10523301). Phosphorylates RIN1, inducing RIN1 binding to 14-3-3 proteins YWHAB, YWHAE and YWHAZ and increased competition with RAF1 for binding to GTP-bound form of Ras proteins (NRAS, HRAS and KRAS). Acts downstream of the heterotrimeric G-protein beta/gamma-subunit complex to maintain the structural integrity of the Golgi membranes, and is required for protein transport along the secretory pathway. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane. May act by activating the lipid kinase phosphatidylinositol 4-kinase beta (PI4KB) at the TGN for the local synthesis of phosphorylated inositol lipids, which induces a sequential production of DAG, phosphatidic acid (PA) and lyso-PA (LPA) that are necessary for membrane fission and generation of specific transport carriers to the cell surface. Under oxidative stress, is phosphorylated at Tyr-463 via SRC-ABL1 and contributes to cell survival by activating IKK complex and subsequent nuclear translocation and activation of NFKB1 (PubMed:12505989). Involved in cell migration by regulating integrin alpha-5/beta-3 recycling and promoting its recruitment in newly forming focal adhesion. In osteoblast differentiation, mediates the bone morphogenetic protein 2 (BMP2)-induced nuclear export of HDAC7, which results in the inhibition of HDAC7 transcriptional repression of RUNX2 (PubMed:18509061). In neurons, plays an important role in neuronal polarity by regulating the biogenesis of TGN-derived dendritic vesicles, and is involved in the maintenance of dendritic arborization and Golgi structure in hippocampal cells. May potentiate mitogenesis induced by the neuropeptide bombesin or vasopressin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression. Plays an important role in the proliferative response induced by low calcium in keratinocytes, through sustained activation of MAPK1/3 (ERK1/2) pathway. Downstream of novel PKC signaling, plays a role in cardiac hypertrophy by phosphorylating HDAC5, which in turn triggers XPO1/CRM1-dependent nuclear export of HDAC5, MEF2A transcriptional activation and induction of downstream target genes that promote myocyte hypertrophy and pathological cardiac remodeling (PubMed:18332134). Mediates cardiac troponin I (TNNI3) phosphorylation at the PKA sites, which results in reduced myofilament calcium sensitivity, and accelerated crossbridge cycling kinetics. The PRKD1-HDAC5 pathway is also involved in angiogenesis by mediating VEGFA-induced specific subset of gene expression, cell migration, and tube formation (PubMed:19211839). In response to VEGFA, is necessary and required for HDAC7 phosphorylation which induces HDAC7 nuclear export and endothelial cell proliferation and migration. During apoptosis induced by cytarabine and other genotoxic agents, PRKD1 is cleaved by caspase-3 at Asp-378, resulting in activation of its kinase function and increased sensitivity of cells to the cytotoxic effects of genotoxic agents (PubMed:10764790). In epithelial cells, is required for transducing flagellin-stimulated inflammatory responses by binding and phosphorylating TLR5, which contributes to MAPK14/p38 activation and production of inflammatory cytokines (PubMed:17442957). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). May play a role in inflammatory response by mediating activation of NF-kappa-B. May be involved in pain transmission by directly modulating TRPV1 receptor (PubMed:15471852). Plays a role in activated KRAS-mediated stabilization of ZNF304 in colorectal cancer (CRC) cells (PubMed:24623306). Regulates nuclear translocation of transcription factor TFEB in macrophages upon live S.enterica infection (By similarity). {ECO:0000250|UniProtKB:Q62101, ECO:0000269|PubMed:10523301, ECO:0000269|PubMed:10764790, ECO:0000269|PubMed:12505989, ECO:0000269|PubMed:12637538, ECO:0000269|PubMed:15471852, ECO:0000269|PubMed:17442957, ECO:0000269|PubMed:18332134, ECO:0000269|PubMed:18509061, ECO:0000269|PubMed:19135240, ECO:0000269|PubMed:19211839, ECO:0000269|PubMed:24623306}. |
Q15334 | LLGL1 | S670 | psp | Lethal(2) giant larvae protein homolog 1 (LLGL) (DLG4) (Hugl-1) (Human homolog to the D-lgl gene protein) | Cortical cytoskeleton protein found in a complex involved in maintaining cell polarity and epithelial integrity. Involved in the regulation of mitotic spindle orientation, proliferation, differentiation and tissue organization of neuroepithelial cells. Involved in axonogenesis through RAB10 activation thereby regulating vesicular membrane trafficking toward the axonal plasma membrane. {ECO:0000269|PubMed:15735678, ECO:0000269|PubMed:16170365}. |
Q15345 | LRRC41 | S326 | ochoa | Leucine-rich repeat-containing protein 41 (Protein Muf1) | Probable substrate recognition component of an ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. {ECO:0000269|PubMed:15601820}. |
Q15646 | OASL | S396 | ochoa | 2'-5'-oligoadenylate synthase-like protein (2'-5'-OAS-related protein) (2'-5'-OAS-RP) (59 kDa 2'-5'-oligoadenylate synthase-like protein) (Thyroid receptor-interacting protein 14) (TR-interacting protein 14) (TRIP-14) (p59 OASL) (p59OASL) | Does not have 2'-5'-OAS activity, but can bind double-stranded RNA. Displays antiviral activity against encephalomyocarditis virus (EMCV) and hepatitis C virus (HCV) via an alternative antiviral pathway independent of RNase L. {ECO:0000269|PubMed:18931074, ECO:0000269|PubMed:20074559, ECO:0000269|PubMed:9826176}. |
Q15746 | MYLK | S1759 | ochoa | Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] | Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}. |
Q16659 | MAPK6 | S451 | ochoa | Mitogen-activated protein kinase 6 (MAP kinase 6) (MAPK 6) (EC 2.7.11.24) (Extracellular signal-regulated kinase 3) (ERK-3) (MAP kinase isoform p97) (p97-MAPK) | Atypical MAPK protein. Phosphorylates microtubule-associated protein 2 (MAP2) and MAPKAPK5. The precise role of the complex formed with MAPKAPK5 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPKAPK5, ERK3/MAPK6 is phosphorylated at Ser-189 and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK3/MAPK6. May promote entry in the cell cycle (By similarity). {ECO:0000250}. |
Q16891 | IMMT | Y33 | ochoa | MICOS complex subunit MIC60 (Cell proliferation-inducing gene 4/52 protein) (Mitochondrial inner membrane protein) (Mitofilin) (p87/89) | Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). {ECO:0000269|PubMed:22114354, ECO:0000269|PubMed:25781180, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824}. |
Q3KP66 | INAVA | S387 | ochoa | Innate immunity activator protein | Expressed in peripheral macrophages and intestinal myeloid-derived cells, is required for optimal PRR (pattern recognition receptor)-induced signaling, cytokine secretion, and bacterial clearance. Upon stimulation of a broad range of PRRs (pattern recognition receptor) such as NOD2 or TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9, associates with YWHAQ/14-3-3T, which in turn leads to the recruitment and activation of MAP kinases and NF-kappa-B signaling complexes that amplifies PRR-induced downstream signals and cytokine secretion (PubMed:28436939). In the intestine, regulates adherens junction stability by regulating the degradation of CYTH1 and CYTH2, probably acting as substrate cofactor for SCF E3 ubiquitin-protein ligase complexes. Stabilizes adherens junctions by limiting CYTH1-dependent ARF6 activation (PubMed:29420262). {ECO:0000269|PubMed:28436939, ECO:0000269|PubMed:29420262}. |
Q5HYK7 | SH3D19 | S65 | ochoa | SH3 domain-containing protein 19 (ADAM-binding protein Eve-1) (EEN-binding protein) (EBP) | May play a role in regulating A disintegrin and metalloproteases (ADAMs) in the signaling of EGFR-ligand shedding. May be involved in suppression of Ras-induced cellular transformation and Ras-mediated activation of ELK1. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:14551139, ECO:0000269|PubMed:15280379, ECO:0000269|PubMed:21834987}. |
Q5R372 | RABGAP1L | S71 | ochoa | Rab GTPase-activating protein 1-like | GTP-hydrolysis activating protein (GAP) for small GTPase RAB22A, converting active RAB22A-GTP to the inactive form RAB22A-GDP (PubMed:16923123). Plays a role in endocytosis and intracellular protein transport. Recruited by ANK2 to phosphatidylinositol 3-phosphate (PI3P)-positive early endosomes, where it inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:A6H6A9, ECO:0000269|PubMed:16923123}. |
Q5T0Z8 | C6orf132 | S575 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T2T1 | MPP7 | S409 | ochoa | MAGUK p55 subfamily member 7 | Acts as an important adapter that promotes epithelial cell polarity and tight junction formation via its interaction with DLG1. Involved in the assembly of protein complexes at sites of cell-cell contact. {ECO:0000269|PubMed:17332497}. |
Q5T5P2 | KIAA1217 | S352 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T7W0 | ZNF618 | S131 | ochoa | Zinc finger protein 618 | Regulates UHRF2 function as a specific 5-hydroxymethylcytosine (5hmC) reader by regulating its chromatin localization. {ECO:0000269|PubMed:27129234}. |
Q5TBA9 | FRY | S1939 | ochoa | Protein furry homolog | Plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting PLK1 activity at the spindle poles in early mitosis. May function as a scaffold promoting the interaction between AURKA and PLK1, thereby enhancing AURKA-mediated PLK1 phosphorylation. {ECO:0000269|PubMed:22753416}. |
Q5VT25 | CDC42BPA | S855 | ochoa | Serine/threonine-protein kinase MRCK alpha (EC 2.7.11.1) (CDC42-binding protein kinase alpha) (DMPK-like alpha) (Myotonic dystrophy kinase-related CDC42-binding kinase alpha) (MRCK alpha) (Myotonic dystrophy protein kinase-like alpha) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration (PubMed:15723050, PubMed:9092543, PubMed:9418861). Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates: PPP1R12A, LIMK1 and LIMK2 (PubMed:11340065, PubMed:11399775). May play a role in TFRC-mediated iron uptake (PubMed:20188707). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). Triggers the formation of an extrusion apical actin ring required for epithelial extrusion of apoptotic cells (PubMed:29162624). {ECO:0000250|UniProtKB:Q3UU96, ECO:0000269|PubMed:11340065, ECO:0000269|PubMed:11399775, ECO:0000269|PubMed:15723050, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:20188707, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:29162624, ECO:0000269|PubMed:9092543, ECO:0000269|PubMed:9418861}. |
Q5VUA4 | ZNF318 | S670 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VWQ0 | RSBN1 | S91 | ochoa | Lysine-specific demethylase 9 (KDM9) (EC 1.14.11.-) (Round spermatid basic protein 1) | Histone demethylase that specifically demethylates dimethylated 'Lys-20' of histone H4 (H4K20me2), thereby modulating chromosome architecture. {ECO:0000250|UniProtKB:Q80T69}. |
Q5VWQ8 | DAB2IP | S727 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q5VWQ8 | DAB2IP | S949 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q5VZ89 | DENND4C | S1277 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q69YQ0 | SPECC1L | S921 | ochoa | Cytospin-A (Renal carcinoma antigen NY-REN-22) (Sperm antigen with calponin homology and coiled-coil domains 1-like) (SPECC1-like protein) | Involved in cytokinesis and spindle organization. May play a role in actin cytoskeleton organization and microtubule stabilization and hence required for proper cell adhesion and migration. {ECO:0000269|PubMed:21703590}. |
Q6JBY9 | RCSD1 | S267 | ochoa | CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) | Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}. |
Q6P0N0 | MIS18BP1 | S134 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6PIW4 | FIGNL1 | S259 | ochoa | Fidgetin-like protein 1 (EC 3.6.4.-) | Involved in DNA double-strand break (DBS) repair via homologous recombination (HR). Recruited at DSB sites independently of BRCA2, RAD51 and RAD51 paralogs in a H2AX-dependent manner. May regulate osteoblast proliferation and differentiation (PubMed:23754376). May play a role in the control of male meiosis dynamic (By similarity). {ECO:0000250|UniProtKB:Q8BPY9, ECO:0000269|PubMed:23754376}. |
Q6UXT9 | ABHD15 | S434 | ochoa | Protein ABHD15 (Alpha/beta hydrolase domain-containing protein 15) (Abhydrolase domain-containing protein 15) | May regulate adipocyte lipolysis and liver lipid accumulation. {ECO:0000250|UniProtKB:Q5F2F2}. |
Q6Y2X3 | DNAJC14 | S187 | ochoa | DnaJ homolog subfamily C member 14 (DnaJ protein homolog 3) (Dopamine receptor-interacting protein of 78 kDa) (DRIP78) (Human DnaJ protein 3) (hDj-3) | Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000250}. |
Q6YP21 | KYAT3 | S189 | ochoa | Kynurenine--oxoglutarate transaminase 3 (EC 2.6.1.7) (Cysteine-S-conjugate beta-lyase 2) (EC 4.4.1.13) (Kynurenine aminotransferase 3) (Kynurenine aminotransferase III) (KATIII) (Kynurenine--glyoxylate transaminase) (EC 2.6.1.63) (Kynurenine--oxoglutarate transaminase III) | Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA), an intermediate in the tryptophan catabolic pathway which is also a broad spectrum antagonist of the three ionotropic excitatory amino acid receptors among others. May catalyze the beta-elimination of S-conjugates and Se-conjugates of L-(seleno)cysteine, resulting in the cleavage of the C-S or C-Se bond. Has transaminase activity towards L-kynurenine, tryptophan, phenylalanine, serine, cysteine, methionine, histidine, glutamine and asparagine with glyoxylate as an amino group acceptor (in vitro). Has lower activity with 2-oxoglutarate as amino group acceptor (in vitro). {ECO:0000250|UniProtKB:Q71RI9}. |
Q70CQ2 | USP34 | S3393 | ochoa | Ubiquitin carboxyl-terminal hydrolase 34 (EC 3.4.19.12) (Deubiquitinating enzyme 34) (Ubiquitin thioesterase 34) (Ubiquitin-specific-processing protease 34) | Ubiquitin hydrolase that can remove conjugated ubiquitin from AXIN1 and AXIN2, thereby acting as a regulator of Wnt signaling pathway. Acts as an activator of the Wnt signaling pathway downstream of the beta-catenin destruction complex by deubiquitinating and stabilizing AXIN1 and AXIN2, leading to promote nuclear accumulation of AXIN1 and AXIN2 and positively regulate beta-catenin (CTNBB1)-mediated transcription. Recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins. {ECO:0000269|PubMed:21383061}. |
Q7LG56 | RRM2B | S19 | ochoa | Ribonucleoside-diphosphate reductase subunit M2 B (EC 1.17.4.1) (TP53-inducible ribonucleotide reductase M2 B) (p53-inducible ribonucleotide reductase small subunit 2-like protein) (p53R2) | Plays a pivotal role in cell survival by repairing damaged DNA in a p53/TP53-dependent manner. Supplies deoxyribonucleotides for DNA repair in cells arrested at G1 or G2. Contains an iron-tyrosyl free radical center required for catalysis. Forms an active ribonucleotide reductase (RNR) complex with RRM1 which is expressed both in resting and proliferating cells in response to DNA damage. {ECO:0000269|PubMed:10716435, ECO:0000269|PubMed:11517226, ECO:0000269|PubMed:11719458}. |
Q7Z4S6 | KIF21A | S1228 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z569 | BRAP | S93 | ochoa | BRCA1-associated protein (EC 2.3.2.27) (BRAP2) (Impedes mitogenic signal propagation) (IMP) (RING finger protein 52) (RING-type E3 ubiquitin transferase BRAP2) (Renal carcinoma antigen NY-REN-63) | Negatively regulates MAP kinase activation by limiting the formation of Raf/MEK complexes probably by inactivation of the KSR1 scaffold protein. Also acts as a Ras responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination resulting in the release of inhibition of Raf/MEK complex formation. May also act as a cytoplasmic retention protein with a role in regulating nuclear transport. {ECO:0000269|PubMed:14724641, ECO:0000303|PubMed:10777491}. |
Q7Z6Z7 | HUWE1 | S1084 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86UX7 | FERMT3 | S217 | ochoa | Fermitin family homolog 3 (Kindlin-3) (MIG2-like protein) (Unc-112-related protein 2) | Plays a central role in cell adhesion in hematopoietic cells (PubMed:19234463, PubMed:26359933). Acts by activating the integrin beta-1-3 (ITGB1, ITGB2 and ITGB3) (By similarity). Required for integrin-mediated platelet adhesion and leukocyte adhesion to endothelial cells (PubMed:19234460). Required for activation of integrin beta-2 (ITGB2) in polymorphonuclear granulocytes (PMNs) (By similarity). {ECO:0000250|UniProtKB:Q8K1B8, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463, ECO:0000269|PubMed:26359933}.; FUNCTION: Isoform 2 may act as a repressor of NF-kappa-B and apoptosis. {ECO:0000269|PubMed:19064721, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463}. |
Q86V48 | LUZP1 | S878 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86XR8 | CEP57 | S32 | ochoa | Centrosomal protein of 57 kDa (Cep57) (FGF2-interacting protein) (Testis-specific protein 57) (Translokin) | Centrosomal protein which may be required for microtubule attachment to centrosomes. May act by forming ring-like structures around microtubules. Mediates nuclear translocation and mitogenic activity of the internalized growth factor FGF2, but that of FGF1. {ECO:0000269|PubMed:22321063}. |
Q86XS8 | RNF130 | S341 | ochoa | E3 ubiquitin-protein ligase RNF130 (EC 2.3.2.27) (Goliath homolog) (H-Goliath) (RING finger protein 130) (RING-type E3 ubiquitin transferase RNF130) | May have a role during the programmed cell death of hematopoietic cells (By similarity). Acts as an E3 ubiquitin-protein ligase. {ECO:0000250, ECO:0000269|PubMed:16549277}. |
Q86YN6 | PPARGC1B | S389 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) | Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}. |
Q8IVL1 | NAV2 | S1610 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IWC1 | MAP7D3 | S489 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IYJ3 | SYTL1 | S69 | psp | Synaptotagmin-like protein 1 (Exophilin-7) (Protein JFC1) | May play a role in vesicle trafficking (By similarity). Binds phosphatidylinositol 3,4,5-trisphosphate. Acts as a RAB27A effector protein and may play a role in cytotoxic granule exocytosis in lymphocytes (By similarity). {ECO:0000250, ECO:0000269|PubMed:11278853, ECO:0000269|PubMed:18266782}. |
Q8N1W1 | ARHGEF28 | S477 | ochoa | Rho guanine nucleotide exchange factor 28 (190 kDa guanine nucleotide exchange factor) (p190-RhoGEF) (p190RhoGEF) (Rho guanine nucleotide exchange factor) | Functions as a RHOA-specific guanine nucleotide exchange factor regulating signaling pathways downstream of integrins and growth factor receptors. Functions in axonal branching, synapse formation and dendritic morphogenesis. Also functions in focal adhesion formation, cell motility and B-lymphocytes activation. May regulate NEFL expression and aggregation and play a role in apoptosis (By similarity). {ECO:0000250}. |
Q8N3D4 | EHBP1L1 | S784 | ochoa | EH domain-binding protein 1-like protein 1 | May act as Rab effector protein and play a role in vesicle trafficking. {ECO:0000305|PubMed:27552051}. |
Q8N448 | LNX2 | S453 | ochoa | Ligand of Numb protein X 2 (Numb-binding protein 2) (PDZ domain-containing RING finger protein 1) | None |
Q8N488 | RYBP | S180 | ochoa | RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}. |
Q8N556 | AFAP1 | S282 | ochoa | Actin filament-associated protein 1 (110 kDa actin filament-associated protein) (AFAP-110) | Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. {ECO:0000250, ECO:0000269|PubMed:15485829}. |
Q8N5I9 | NOPCHAP1 | S20 | ochoa | NOP protein chaperone 1 | Client-loading PAQosome/R2TP complex cofactor that selects NOP58 to promote box C/D small nucleolar ribonucleoprotein (snoRNP) assembly. Acts as a bridge between NOP58 and the R2TP complex via RUVBL1:RUVBL2. {ECO:0000269|PubMed:33367824}. |
Q8N684 | CPSF7 | S47 | ochoa | Cleavage and polyadenylation specificity factor subunit 7 (Cleavage and polyadenylation specificity factor 59 kDa subunit) (CPSF 59 kDa subunit) (Cleavage factor Im complex 59 kDa subunit) (CFIm59) (Pre-mRNA cleavage factor Im 59 kDa subunit) | Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:17024186, PubMed:29276085, PubMed:8626397). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:17024186, PubMed:8626397). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF7 activates directly the mRNA 3'-processing machinery (PubMed:29276085). Binds to pA signals in RNA substrates (PubMed:17024186, PubMed:8626397). {ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397}. |
Q8TBN0 | RAB3IL1 | S67 | ochoa | Guanine nucleotide exchange factor for Rab-3A (Rab-3A-interacting-like protein 1) (Rab3A-interacting-like protein 1) (Rabin3-like 1) | Guanine nucleotide exchange factor (GEF) which may activate RAB3A, a GTPase that regulates synaptic vesicle exocytosis. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. May also activate RAB8A and RAB8B. {ECO:0000269|PubMed:20937701}. |
Q8TEU7 | RAPGEF6 | S1432 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8WUF5 | PPP1R13L | S291 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WYL5 | SSH1 | S936 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q96BN8 | OTULIN | S308 | ochoa | Ubiquitin thioesterase otulin (EC 3.4.19.12) (Deubiquitinating enzyme otulin) (OTU domain-containing deubiquitinase with linear linkage specificity) (Ubiquitin thioesterase Gumby) | Deubiquitinase that specifically removes linear ('Met-1'-linked) polyubiquitin chains to substrates and acts as a regulator of angiogenesis and innate immune response (PubMed:23708998, PubMed:23746843, PubMed:23806334, PubMed:23827681, PubMed:24726323, PubMed:24726327, PubMed:26997266, PubMed:27523608, PubMed:27559085, PubMed:28919039, PubMed:30804083, PubMed:35170849, PubMed:35587511, PubMed:38630025, PubMed:38652464). Required during angiogenesis, craniofacial and neuronal development by regulating the canonical Wnt signaling together with the LUBAC complex (PubMed:23708998). Acts as a negative regulator of NF-kappa-B by regulating the activity of the LUBAC complex (PubMed:23746843, PubMed:23806334). OTULIN function is mainly restricted to homeostasis of the LUBAC complex: acts by removing 'Met-1'-linked autoubiquitination of the LUBAC complex, thereby preventing inactivation of the LUBAC complex (PubMed:26670046). Acts as a key negative regulator of inflammation by restricting spontaneous inflammation and maintaining immune homeostasis (PubMed:27523608). In myeloid cell, required to prevent unwarranted secretion of cytokines leading to inflammation and autoimmunity by restricting linear polyubiquitin formation (PubMed:27523608). Plays a role in innate immune response by restricting linear polyubiquitin formation on LUBAC complex in response to NOD2 stimulation, probably to limit NOD2-dependent pro-inflammatory signaling (PubMed:23806334). {ECO:0000269|PubMed:23708998, ECO:0000269|PubMed:23746843, ECO:0000269|PubMed:23806334, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:24726323, ECO:0000269|PubMed:24726327, ECO:0000269|PubMed:26670046, ECO:0000269|PubMed:26997266, ECO:0000269|PubMed:27523608, ECO:0000269|PubMed:27559085, ECO:0000269|PubMed:28919039, ECO:0000269|PubMed:30804083, ECO:0000269|PubMed:35170849, ECO:0000269|PubMed:35587511, ECO:0000269|PubMed:38630025, ECO:0000269|PubMed:38652464}. |
Q96CF2 | CHMP4C | S210 | psp | Charged multivesicular body protein 4c (Chromatin-modifying protein 4c) (CHMP4c) (SNF7 homolog associated with Alix 3) (SNF7-3) (hSnf7-3) (Vacuolar protein sorting-associated protein 32-3) (Vps32-3) (hVps32-3) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). Key component of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage: upon phosphorylation by AURKB, together with ZFYVE19/ANCHR, retains abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis. Deactivation of AURKB results in dephosphorylation of CHMP4C followed by its dissociation from ANCHR and VPS4 and subsequent abscission (PubMed:22422861, PubMed:24814515). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. Involved in HIV-1 p6- and p9-dependent virus release. CHMP4A/B/C are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). {ECO:0000269|PubMed:14505569, ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844, ECO:0000269|PubMed:22422861, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:24814515}. |
Q96CP6 | GRAMD1A | S284 | ochoa | Protein Aster-A (GRAM domain-containing protein 1A) | Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). May play a role in tumor progression (By similarity). Plays a role in autophagy regulation and is required for biogenesis of the autophagosome (PubMed:31222192). This function in autophagy requires its cholesterol-transfer activity (PubMed:31222192). {ECO:0000250|UniProtKB:Q8VEF1, ECO:0000269|PubMed:31222192}. |
Q96EN8 | MOCOS | S682 | ochoa | Molybdenum cofactor sulfurase (MCS) (MOS) (MoCo sulfurase) (hMCS) (EC 2.8.1.9) (Molybdenum cofactor sulfurtransferase) | Sulfurates the molybdenum cofactor (PubMed:34356852). Sulfation of molybdenum is essential for xanthine dehydrogenase (XDH) and aldehyde oxidase (ADO) enzymes in which molybdenum cofactor is liganded by 1 oxygen and 1 sulfur atom in active form (PubMed:34356852). In vitro, the C-terminal domain is able to reduce N-hydroxylated prodrugs, such as benzamidoxime (PubMed:16973608). {ECO:0000255|HAMAP-Rule:MF_03050, ECO:0000269|PubMed:16973608, ECO:0000269|PubMed:34356852}. |
Q96HA1 | POM121 | S392 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96MF7 | NSMCE2 | S223 | ochoa | E3 SUMO-protein ligase NSE2 (EC 2.3.2.-) (E3 SUMO-protein transferase NSE2) (MMS21 homolog) (hMMS21) (Non-structural maintenance of chromosomes element 2 homolog) (Non-SMC element 2 homolog) | E3 SUMO-protein ligase component of the SMC5-SMC6 complex, a complex involved in DNA double-strand break repair by homologous recombination (PubMed:16055714, PubMed:16810316). Is not be required for the stability of the complex (PubMed:16055714, PubMed:16810316). The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks (PubMed:16055714, PubMed:16810316). The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs) (PubMed:17589526). Acts as an E3 ligase mediating SUMO attachment to various proteins such as SMC6L1 and TSNAX, the shelterin complex subunits TERF1, TERF2, TINF2 and TERF2IP, RAD51AP1, and maybe the cohesin components RAD21 and STAG2 (PubMed:16055714, PubMed:16810316, PubMed:17589526, PubMed:31400850). Required for recruitment of telomeres to PML nuclear bodies (PubMed:17589526). SUMO protein-ligase activity is required for the prevention of DNA damage-induced apoptosis by facilitating DNA repair, and for formation of APBs in ALT cell lines (PubMed:17589526). Required for sister chromatid cohesion during prometaphase and mitotic progression (PubMed:19502785). {ECO:0000269|PubMed:16055714, ECO:0000269|PubMed:16810316, ECO:0000269|PubMed:17589526, ECO:0000269|PubMed:19502785, ECO:0000269|PubMed:31400850}. |
Q96RT6 | CTAGE1 | S604 | ochoa | cTAGE family member 2 (Protein cTAGE-2) (Cancer/testis antigen 21.2) (CT21.2) | None |
Q96S21 | RAB40C | Y241 | ochoa | Ras-related protein Rab-40C (EC 3.6.5.2) (Rar-like protein) (Ras-like protein family member 8C) (SOCS box-containing protein RAR3) | RAB40C small GTPase acts as substrate-recognition component of the ECS(RAB40C) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15601820, PubMed:35512830). The Rab40 subfamily belongs to the Rab family that are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:29156729). As part of the ECS(RAB40C) complex, mediates ANKRD28 ubiquitination and degradation, thereby inhibiting protein phosphatase 6 (PP6) complex activity and focal adhesion assembly during cell migration (PubMed:35512830). Also negatively regulate lipid droplets accumulation in a GTP-dependent manner (PubMed:29156729). {ECO:0000269|PubMed:15601820, ECO:0000269|PubMed:29156729, ECO:0000269|PubMed:35512830}. |
Q99661 | KIF2C | S179 | ochoa | Kinesin-like protein KIF2C (Kinesin-like protein 6) (Mitotic centromere-associated kinesin) (MCAK) | In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells (PubMed:21820309). Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis (PubMed:19060894). Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment (PubMed:23891108). {ECO:0000269|PubMed:19060894, ECO:0000269|PubMed:21820309, ECO:0000269|PubMed:23891108}. |
Q99700 | ATXN2 | S478 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99700 | ATXN2 | S616 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q9BRR9 | ARHGAP9 | S499 | ochoa | Rho GTPase-activating protein 9 (Rho-type GTPase-activating protein 9) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has a substantial GAP activity toward CDC42 and RAC1 and less toward RHOA. Has a role in regulating adhesion of hematopoietic cells to the extracellular matrix. Binds phosphoinositides, and has the highest affinity for phosphatidylinositol 3,4,5-trisphosphate, followed by phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 4,5-bisphosphate. {ECO:0000269|PubMed:11396949}. |
Q9BW04 | SARG | S149 | ochoa | Specifically androgen-regulated gene protein | Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}. |
Q9BX66 | SORBS1 | S325 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BY89 | KIAA1671 | S1110 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYP7 | WNK3 | S62 | ochoa | Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) | Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}. |
Q9C004 | SPRY4 | S97 | ochoa | Protein sprouty homolog 4 (Spry-4) | Suppresses the insulin receptor and EGFR-transduced MAPK signaling pathway, but does not inhibit MAPK activation by a constitutively active mutant Ras (PubMed:12027893). Probably impairs the formation of GTP-Ras (PubMed:12027893). Inhibits Ras-independent, but not Ras-dependent, activation of RAF1 (PubMed:12717443). Represses integrin-mediated cell spreading via inhibition of TESK1-mediated phosphorylation of cofilin (PubMed:15584898). {ECO:0000269|PubMed:12027893, ECO:0000269|PubMed:12717443, ECO:0000269|PubMed:15584898}. |
Q9C0A6 | SETD5 | S590 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0D6 | FHDC1 | S499 | ochoa | FH2 domain-containing protein 1 (Inverted formin-1) | Microtubule-associated formin which regulates both actin and microtubule dynamics. Induces microtubule acetylation and stabilization and actin stress fiber formation (PubMed:18815276). Regulates Golgi ribbon formation (PubMed:26564798). Required for normal cilia assembly. Early in cilia assembly, may assist in the maturation and positioning of the centrosome/basal body, and once cilia assembly has initiated, may also promote cilia elongation by inhibiting disassembly (PubMed:29742020). {ECO:0000269|PubMed:18815276, ECO:0000269|PubMed:26564798, ECO:0000269|PubMed:29742020}. |
Q9GZV5 | WWTR1 | S65 | ochoa | WW domain-containing transcription regulator protein 1 (Transcriptional coactivator with PDZ-binding motif) | Transcriptional coactivator which acts as a downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:11118213, PubMed:18227151, PubMed:23911299). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18227151). WWTR1 enhances PAX8 and NKX2-1/TTF1-dependent gene activation (PubMed:19010321). In conjunction with YAP1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (PubMed:18568018). Plays a key role in coupling SMADs to the transcriptional machinery such as the mediator complex (PubMed:18568018). Regulates embryonic stem-cell self-renewal, promotes cell proliferation and epithelial-mesenchymal transition (PubMed:18227151, PubMed:18568018). {ECO:0000269|PubMed:11118213, ECO:0000269|PubMed:18227151, ECO:0000269|PubMed:18568018, ECO:0000269|PubMed:19010321, ECO:0000269|PubMed:23911299}. |
Q9H1A4 | ANAPC1 | S699 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9H1P3 | OSBPL2 | S52 | ochoa | Oxysterol-binding protein-related protein 2 (ORP-2) (OSBP-related protein 2) | Intracellular transport protein that binds sterols and phospholipids and mediates lipid transport between intracellular compartments. Increases plasma membrane cholesterol levels and decreases phosphatidylinositol-4,5-bisphosphate levels in the cell membrane (PubMed:30581148). Binds phosphoinositides, such as phosphatidylinositol-4,5-bisphosphate (PubMed:30581148). Exhibits strong binding to phosphatidic acid and weak binding to phosphatidylinositol 3-phosphate (PubMed:11279184). Binds cholesterol, dehydroergosterol, 22(R)-hydroxycholesterol and 25-hydroxycholesterol (in vitro) (PubMed:17428193, PubMed:19224871, PubMed:30581148). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:19224871, ECO:0000269|PubMed:30581148}. |
Q9H425 | C1orf198 | S174 | ochoa | Uncharacterized protein C1orf198 | None |
Q9H4A3 | WNK1 | S83 | ochoa | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H4E7 | DEF6 | S580 | ochoa | Differentially expressed in FDCP 6 homolog (DEF-6) (IRF4-binding protein) | Phosphatidylinositol 3,4,5-trisphosphate-dependent guanine nucleotide exchange factor (GEF) which plays a role in the activation of Rho GTPases RAC1, RhoA and CDC42 (PubMed:12651066, PubMed:15023524). Can regulate cell morphology in cooperation with activated RAC1 (By similarity). Involved in immune homeostasis by ensuring proper trafficking and availability of T-cell regulator CTLA-4 at T-cell surface (PubMed:31308374). Plays a role in Th2 (T helper cells) development and/or activation, perhaps by interfering with ZAP70 signaling (By similarity). {ECO:0000250|UniProtKB:Q8C2K1, ECO:0000269|PubMed:12651066, ECO:0000269|PubMed:15023524, ECO:0000269|PubMed:31308374}. |
Q9H4L5 | OSBPL3 | Y250 | ochoa | Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) | Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}. |
Q9H5I5 | PIEZO2 | S1718 | ochoa | Piezo-type mechanosensitive ion channel component 2 (Protein FAM38B) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Expressed in sensory neurons, is essential for diverse physiological processes, including respiratory control, systemic metabolism, urinary function, and proprioception (By similarity). Mediates airway stretch sensing, enabling efficient respiration at birth and maintaining normal breathing in adults (By similarity). It regulates brown and beige adipose tissue morphology and function, preventing systemic hypermetabolism (By similarity). In the lower urinary tract, acts as a sensor in both the bladder urothelium and innervating sensory neurons being required for bladder-stretch sensing and urethral micturition reflexes, ensuring proper urinary function (PubMed:33057202). Additionally, PIEZO2 serves as the principal mechanotransducer in proprioceptors, facilitating proprioception and coordinated body movements (By similarity). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). Required for Merkel-cell mechanotransduction (By similarity). Plays a major role in light-touch mechanosensation (By similarity). {ECO:0000250|UniProtKB:Q8CD54, ECO:0000269|PubMed:33057202, ECO:0000269|PubMed:37590348}. |
Q9H6K1 | ILRUN | S222 | ochoa | Protein ILRUN (Inflammation and lipid regulator with UBA-like and NBR1-like domains protein) | Negative regulator of innate antiviral response. Blocks IRF3-dependent cytokine production such as IFNA, IFNB and TNF (PubMed:29802199). Interacts with IRF3 and inhibits IRF3 recruitment to type I IFN promoter sequences while also reducing nuclear levels of the coactivators EP300 and CREBBP (PubMed:29802199). {ECO:0000269|PubMed:29802199}. |
Q9H7E2 | TDRD3 | S458 | ochoa | Tudor domain-containing protein 3 | Scaffolding protein that specifically recognizes and binds dimethylarginine-containing proteins (PubMed:15955813). Plays a role in the regulation of translation of target mRNAs by binding Arg/Gly-rich motifs (GAR) in dimethylarginine-containing proteins. In nucleus, acts as a coactivator: recognizes and binds asymmetric dimethylation on the core histone tails associated with transcriptional activation (H3R17me2a and H4R3me2a) and recruits proteins at these arginine-methylated loci (PubMed:21172665). In cytoplasm, acts as an antiviral factor that participates in the assembly of stress granules together with G3BP1 (PubMed:35085371). {ECO:0000269|PubMed:15955813, ECO:0000269|PubMed:18632687, ECO:0000269|PubMed:21172665, ECO:0000269|PubMed:35085371}. |
Q9HA77 | CARS2 | S545 | ochoa | Probable cysteine--tRNA ligase, mitochondrial (EC 6.1.1.16) (Cysteinyl-tRNA synthetase) (CysRS) | Mitochondrial cysteine-specific aminoacyl-tRNA synthetase that catalyzes the ATP-dependent ligation of cysteine to tRNA(Cys). {ECO:0000269|PubMed:29079736}.; FUNCTION: In addition to its role as an aminoacyl-tRNA synthetase, has also cysteine persulfide synthase activity. Produces reactive persulfide species such as cysteine persulfide (CysSSH) from substrate cysteine and mediate direct incorporation of CysSSH into proteins during translations, resulting in protein persulfides and polysulfides (PubMed:29079736). CysSSHs behave as potent antioxidants and cellular protectants (PubMed:29079736). {ECO:0000269|PubMed:29079736}. |
Q9HCD5 | NCOA5 | S151 | ochoa | Nuclear receptor coactivator 5 (NCoA-5) (Coactivator independent of AF-2) (CIA) | Nuclear receptor coregulator that can have both coactivator and corepressor functions. Interacts with nuclear receptors for steroids (ESR1 and ESR2) independently of the steroid binding domain (AF-2) of the ESR receptors, and with the orphan nuclear receptor NR1D2. Involved in the coactivation of nuclear steroid receptors (ER) as well as the corepression of MYC in response to 17-beta-estradiol (E2). {ECO:0000269|PubMed:15073177}. |
Q9HCG8 | CWC22 | S27 | ochoa | Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q9HCM4 | EPB41L5 | S348 | ochoa | Band 4.1-like protein 5 (Erythrocyte membrane protein band 4.1-like 5) | Plays a role in the formation and organization of tight junctions during the establishment of polarity in epithelial cells. {ECO:0000269|PubMed:17920587}. |
Q9HCP0 | CSNK1G1 | S361 | psp | Casein kinase I isoform gamma-1 (CKI-gamma 1) (EC 2.7.11.1) | Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling. Regulates fast synaptic transmission mediated by glutamate (By similarity). Phosphorylates CLSPN. {ECO:0000250, ECO:0000269|PubMed:21680713}. |
Q9HD67 | MYO10 | S1021 | ochoa | Unconventional myosin-X (Unconventional myosin-10) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as a plus end-directed motor. Moves with higher velocity and takes larger steps on actin bundles than on single actin filaments (PubMed:27580874). The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. {ECO:0000269|PubMed:16894163, ECO:0000269|PubMed:18570893, ECO:0000269|PubMed:27580874}.; FUNCTION: [Isoform Headless]: Functions as a dominant-negative regulator of isoform 1, suppressing its filopodia-inducing and axon outgrowth-promoting activities. In hippocampal neurons, it increases VASP retention in spine heads to induce spine formation and spine head expansion (By similarity). {ECO:0000250|UniProtKB:F8VQB6}. |
Q9NRA8 | EIF4ENIF1 | S352 | ochoa | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NRL2 | BAZ1A | S1363 | ochoa | Bromodomain adjacent to zinc finger domain protein 1A (ATP-dependent chromatin-remodeling protein) (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (CHRAC subunit ACF1) (Williams syndrome transcription factor-related chromatin-remodeling factor 180) (WCRF180) (hWALp1) | Regulatory subunit of the ATP-dependent ACF-1 and ACF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and slide edge- and center-positioned histone octamers away from their original location on the DNA template to facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:17099699, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:17099699, PubMed:28801535). The ACF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the ACF-5 ISWI chromatin remodeling complex (PubMed:28801535). Has a role in sensing the length of DNA which flank nucleosomes, which modulates the nucleosome spacing activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:17099699). Involved in DNA replication and together with SMARCA5/SNF2H is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). May have a role in nuclear receptor-mediated transcription repression (PubMed:17519354). {ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:17099699, ECO:0000269|PubMed:17519354, ECO:0000269|PubMed:28801535}. |
Q9NSA2 | KCND1 | S568 | psp | A-type voltage-gated potassium channel KCND1 (Potassium voltage-gated channel subfamily D member 1) (Shal-type potassium channel KCND1) (Voltage-gated potassium channel subunit Kv4.1) | A-type voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes in the brain (PubMed:15454437). Mediates A-type current I(SA) in suprachiasmatic nucleus (SCN) neurons. Exhibits a low-threshold A-type current with a hyperpolarized steady-state inactivation midpoint and the recovery process was steeply voltage-dependent, with recovery being markedly faster at more negative potentials. May regulates repetitive firing rates in the suprachiasmatic nucleus (SCN) neurons and circadian rhythms in neuronal excitability and behavior. Contributes to the regulation of the circadian rhythm of action potential firing in suprachiasmatic nucleus neurons, which regulates the circadian rhythm of locomotor activity. The regulatory subunit KCNIP1 modulates the kinetics of channel inactivation, increases the current amplitudes and accelerates recovery from inactivation, shifts activation in a depolarizing direction (By similarity). The regulatory subunit DPP10 decreases the voltage sensitivity of the inactivation channel gating (PubMed:15454437). {ECO:0000250|UniProtKB:Q03719, ECO:0000269|PubMed:15454437}. |
Q9NSI8 | SAMSN1 | S22 | ochoa | SAM domain-containing protein SAMSN-1 (Hematopoietic adaptor containing SH3 and SAM domains 1) (Nash1) (SAM domain, SH3 domain and nuclear localization signals protein 1) (SH3-SAM adaptor protein) | Negative regulator of B-cell activation. Down-regulates cell proliferation (in vitro). Promotes RAC1-dependent membrane ruffle formation and reorganization of the actin cytoskeleton. Regulates cell spreading and cell polarization. Stimulates HDAC1 activity. Regulates LYN activity by modulating its tyrosine phosphorylation (By similarity). {ECO:0000250, ECO:0000269|PubMed:15381729}. |
Q9NVN8 | GNL3L | S214 | ochoa | Guanine nucleotide-binding protein-like 3-like protein | Stabilizes TERF1 telomeric association by preventing TERF1 recruitment by PML. Stabilizes TERF1 protein by preventing its ubiquitination and hence proteasomal degradation. Does so by interfering with TERF1-binding to FBXO4 E3 ubiquitin-protein ligase. Required for cell proliferation. By stabilizing TRF1 protein during mitosis, promotes metaphase-to-anaphase transition. Stabilizes MDM2 protein by preventing its ubiquitination, and hence proteasomal degradation. By acting on MDM2, may affect TP53 activity. Required for normal processing of ribosomal pre-rRNA. Binds GTP. {ECO:0000269|PubMed:16251348, ECO:0000269|PubMed:17034816, ECO:0000269|PubMed:19487455, ECO:0000269|PubMed:21132010}. |
Q9NWB6 | ARGLU1 | S76 | ochoa | Arginine and glutamate-rich protein 1 | Dual function regulator of gene expression; regulator of transcription and modulator of alternative splicing (PubMed:30698747). General coactivator of nuclear receptor-induced gene expression, including genes activated by the glucocorticoid receptor NR3C1 (PubMed:30698747). Binds to a subset of pre-mRNAs and to components of the spliceosome machinery to directly modulate basal alternative splicing; involved in simple and complex cassette exon splicing events (PubMed:30698747). Binds its own pre-mRNA and regulates its alternative splicing and degradation; one of the alternatively spliced products is a stable intronic sequence RNA (sisRNA) that binds the protein to regulate its ability to affect splicing (PubMed:27899669, PubMed:36533631). Binding of the sisRNA stimulates phase separation and localization to nuclear speckles, which may contribute to activation of nuclear receptor-induced gene expression (PubMed:36533631). May also indirectly modulate alternative splicing (PubMed:30698747). Regulates transcription of genes involved in heart development, neuronal cell function, protein localization and chromatin localization (By similarity). Regulates splicing of genes involved in neurogenesis and chromatin organization (By similarity). Essential for central nervous system development (By similarity). Required for the estrogen-dependent expression of ESR1 target genes (PubMed:21454576). Can act in cooperation with MED1 (PubMed:21454576). {ECO:0000250|UniProtKB:Q3UL36, ECO:0000269|PubMed:21454576, ECO:0000269|PubMed:27899669, ECO:0000269|PubMed:30698747, ECO:0000269|PubMed:36533631}. |
Q9NWH9 | SLTM | S550 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWZ8 | GEMIN8 | S185 | ochoa | Gem-associated protein 8 (Gemin-8) (Protein FAM51A1) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. {ECO:0000269|PubMed:17023415, ECO:0000269|PubMed:18984161}. |
Q9NYV4 | CDK12 | S1053 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NZT2 | OGFR | S54 | ochoa | Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) | Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation. |
Q9P0V3 | SH3BP4 | S117 | ochoa | SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) | May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}. |
Q9P206 | NHSL3 | S161 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P219 | CCDC88C | S1571 | ochoa | Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) | Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}. |
Q9P244 | LRFN1 | S580 | ochoa | Leucine-rich repeat and fibronectin type III domain-containing protein 1 (Synaptic adhesion-like molecule 2) | Promotes neurite outgrowth in hippocampal neurons. Involved in the regulation and maintenance of excitatory synapses. Induces the clustering of excitatory postsynaptic proteins, including DLG4, DLGAP1, GRIA1 and GRIN1 (By similarity). {ECO:0000250}. |
Q9UGU5 | HMGXB4 | S54 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UHB6 | LIMA1 | S263 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UHV5 | RAPGEFL1 | S313 | ochoa | Rap guanine nucleotide exchange factor-like 1 (Link guanine nucleotide exchange factor II) (Link GEFII) | Probable guanine nucleotide exchange factor (GEF). |
Q9UIG0 | BAZ1B | S1315 | ochoa | Tyrosine-protein kinase BAZ1B (EC 2.7.10.2) (Bromodomain adjacent to zinc finger domain protein 1B) (Williams syndrome transcription factor) (Williams-Beuren syndrome chromosomal region 10 protein) (Williams-Beuren syndrome chromosomal region 9 protein) (hWALp2) | Atypical tyrosine-protein kinase that plays a central role in chromatin remodeling and acts as a transcription regulator (PubMed:19092802). Involved in DNA damage response by phosphorylating 'Tyr-142' of histone H2AX (H2AXY142ph) (PubMed:19092802, PubMed:19234442). H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19092802, PubMed:19234442). Regulatory subunit of the ATP-dependent WICH-1 and WICH-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:11980720, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The WICH-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the WICH-5 ISWI chromatin remodeling complex (PubMed:28801535). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the recruitment of the WICH-5 ISWI chromatin remodeling complex to replication foci during DNA replication (PubMed:15543136). {ECO:0000250|UniProtKB:Q9Z277, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:19092802, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:28801535}. |
Q9UJY1 | HSPB8 | S57 | ochoa|psp | Heat shock protein beta-8 (HspB8) (Alpha-crystallin C chain) (E2-induced gene 1 protein) (Heat shock protein family B member 8) (Protein kinase H11) (Small stress protein-like protein HSP22) | Involved in the chaperone-assisted selective autophagy (CASA), a crucial process for protein quality control, particularly in mechanical strained cells and tissues such as muscle. Displays temperature-dependent chaperone activity. {ECO:0000250|UniProtKB:Q9JK92}. |
Q9UKE5 | TNIK | S951 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKV3 | ACIN1 | S664 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKV5 | AMFR | S522 | ochoa | E3 ubiquitin-protein ligase AMFR (EC 2.3.2.36) (Autocrine motility factor receptor) (AMF receptor) (RING finger protein 45) (gp78) | E3 ubiquitin-protein ligase that mediates the polyubiquitination of lysine and cysteine residues on target proteins, such as CD3D, CYP3A4, CFTR, INSIG1, SOAT2/ACAT2 and APOB for proteasomal degradation (PubMed:10456327, PubMed:11724934, PubMed:12670940, PubMed:19103148, PubMed:24424410, PubMed:28604676). Component of a VCP/p97-AMFR/gp78 complex that participates in the final step of endoplasmic reticulum-associated degradation (ERAD) (PubMed:10456327, PubMed:11724934, PubMed:19103148, PubMed:24424410). The VCP/p97-AMFR/gp78 complex is involved in the sterol-accelerated ERAD degradation of HMGCR through binding to the HMGCR-INSIG1 complex at the ER membrane (PubMed:16168377, PubMed:22143767). In addition, interaction of AMFR with AUP1 facilitates interaction of AMFR with ubiquitin-conjugating enzyme UBE2G2 and ubiquitin ligase RNF139, leading to sterol-induced HMGCR ubiquitination (PubMed:23223569). The ubiquitinated HMGCR is then released from the ER into the cytosol for subsequent destruction (PubMed:16168377, PubMed:22143767, PubMed:23223569). In addition to ubiquitination on lysine residues, catalyzes ubiquitination on cysteine residues: together with INSIG1, mediates polyubiquitination of SOAT2/ACAT2 at 'Cys-277', leading to its degradation when the lipid levels are low (PubMed:28604676). Catalyzes ubiquitination and subsequent degradation of INSIG1 when cells are depleted of sterols (PubMed:17043353). Mediates polyubiquitination of INSIG2 at 'Cys-215' in some tissues, leading to its degradation (PubMed:31953408). Also regulates ERAD through the ubiquitination of UBL4A a component of the BAG6/BAT3 complex (PubMed:21636303). Also acts as a scaffold protein to assemble a complex that couples ubiquitination, retranslocation and deglycosylation (PubMed:21636303). Mediates tumor invasion and metastasis as a receptor for the GPI/autocrine motility factor (PubMed:10456327). In association with LMBR1L and UBAC2, negatively regulates the canonical Wnt signaling pathway in the lymphocytes by promoting the ubiquitin-mediated degradation of CTNNB1 and Wnt receptors FZD6 and LRP6 (PubMed:31073040). Regulates NF-kappa-B and MAPK signaling pathways by mediating 'Lys-27'-linked polyubiquitination of TAB3 and promoting subsequent TAK1/MAP3K7 activation (PubMed:36593296). Required for proper lipid homeostasis (PubMed:37119330). {ECO:0000269|PubMed:10456327, ECO:0000269|PubMed:11724934, ECO:0000269|PubMed:12670940, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:17043353, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:22143767, ECO:0000269|PubMed:23223569, ECO:0000269|PubMed:24424410, ECO:0000269|PubMed:28604676, ECO:0000269|PubMed:31073040, ECO:0000269|PubMed:31953408, ECO:0000269|PubMed:36593296, ECO:0000269|PubMed:37119330}. |
Q9ULR3 | PPM1H | S123 | ochoa | Protein phosphatase 1H (EC 3.1.3.16) | Dephosphorylates CDKN1B at 'Thr-187', thus removing a signal for proteasomal degradation. {ECO:0000269|PubMed:22586611}. |
Q9UMS6 | SYNPO2 | S88 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UNN5 | FAF1 | S269 | ochoa | FAS-associated factor 1 (hFAF1) (UBX domain-containing protein 12) (UBX domain-containing protein 3A) | Ubiquitin-binding protein (PubMed:19722279). Required for the progression of DNA replication forks by targeting DNA replication licensing factor CDT1 for degradation (PubMed:26842564). Potentiates but cannot initiate FAS-induced apoptosis (By similarity). {ECO:0000250|UniProtKB:P54731, ECO:0000269|PubMed:19722279, ECO:0000269|PubMed:26842564}. |
Q9Y2K1 | ZBTB1 | S304 | ochoa | Zinc finger and BTB domain-containing protein 1 | Acts as a transcriptional repressor (PubMed:20797634). Represses cAMP-responsive element (CRE)-mediated transcriptional activation (PubMed:21706167). In addition, has a role in translesion DNA synthesis. Requires for UV-inducible RAD18 loading, PCNA monoubiquitination, POLH recruitment to replication factories and efficient translesion DNA synthesis (PubMed:24657165). Plays a key role in the transcriptional regulation of T lymphocyte development (By similarity). {ECO:0000250|UniProtKB:Q91VL9, ECO:0000269|PubMed:20797634, ECO:0000269|PubMed:21706167, ECO:0000269|PubMed:24657165}. |
Q9Y4F5 | CEP170B | S604 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4F9 | RIPOR2 | S33 | ochoa | Rho family-interacting cell polarization regulator 2 | Acts as an inhibitor of the small GTPase RHOA and plays several roles in the regulation of myoblast and hair cell differentiation, lymphocyte T proliferation and neutrophil polarization (PubMed:17150207, PubMed:23241886, PubMed:24687993, PubMed:24958875, PubMed:25588844, PubMed:27556504). Inhibits chemokine-induced T lymphocyte responses, such as cell adhesion, polarization and migration (PubMed:23241886). Involved also in the regulation of neutrophil polarization, chemotaxis and adhesion (By similarity). Required for normal development of inner and outer hair cell stereocilia within the cochlea of the inner ear (By similarity). Plays a role for maintaining the structural organization of the basal domain of stereocilia (By similarity). Involved in mechanosensory hair cell function (By similarity). Required for normal hearing (PubMed:24958875). {ECO:0000250|UniProtKB:Q80U16, ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:23241886, ECO:0000269|PubMed:24687993, ECO:0000269|PubMed:24958875, ECO:0000269|PubMed:27556504}.; FUNCTION: [Isoform 2]: Acts as an inhibitor of the small GTPase RHOA (PubMed:25588844). Plays a role in fetal mononuclear myoblast differentiation by promoting filopodia and myotube formation (PubMed:17150207). Maintains naive T lymphocytes in a quiescent state (PubMed:27556504). {ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:25588844, ECO:0000269|PubMed:27556504}. |
Q9Y4H2 | IRS2 | S342 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y4H2 | IRS2 | S1185 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y5S2 | CDC42BPB | S868 | ochoa|psp | Serine/threonine-protein kinase MRCK beta (EC 2.7.11.1) (CDC42-binding protein kinase beta) (CDC42BP-beta) (DMPK-like beta) (Myotonic dystrophy kinase-related CDC42-binding kinase beta) (MRCK beta) (Myotonic dystrophy protein kinase-like beta) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration. Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715, PubMed:21949762). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates PPP1R12A (PubMed:21457715). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). {ECO:0000250|UniProtKB:Q7TT50, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:21949762}. |
Q9Y5W9 | SNX11 | S191 | ochoa | Sorting nexin-11 | Phosphoinositide-binding protein involved in protein sorting and membrane trafficking in endosomes (PubMed:23615901). Regulates the levels of TRPV3 by promoting its trafficking from the cell membrane to lysosome for degradation (PubMed:26818531). {ECO:0000269|PubMed:23615901, ECO:0000269|PubMed:26818531}. |
P33316 | DUT | S120 | Sugiyama | Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial (dUTPase) (EC 3.6.1.23) (dUTP pyrophosphatase) | Catalyzes the cleavage of 2'-deoxyuridine 5'-triphosphate (dUTP) into 2'-deoxyuridine 5'-monophosphate (dUMP) and inorganic pyrophosphate and through its action efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis (PubMed:17880943, PubMed:8631816, PubMed:8805593). Inhibits peroxisome proliferator-activated receptor (PPAR) activity by binding of its N-terminal to PPAR, preventing the latter's dimerization with retinoid X receptor (By similarity). Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:P70583, ECO:0000250|UniProtKB:Q9CQ43, ECO:0000269|PubMed:17880943, ECO:0000269|PubMed:8631816, ECO:0000269|PubMed:8805593}. |
P14866 | HNRNPL | S543 | Sugiyama | Heterogeneous nuclear ribonucleoprotein L (hnRNP L) | Splicing factor binding to exonic or intronic sites and acting as either an activator or repressor of exon inclusion. Exhibits a binding preference for CA-rich elements (PubMed:11809897, PubMed:22570490, PubMed:24164894, PubMed:25623890, PubMed:26051023). Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and associated with most nascent transcripts (PubMed:2687284). Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter (PubMed:11809897). As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPK and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Regulates alternative splicing of a core group of genes involved in neuronal differentiation, likely by mediating H3K36me3-coupled transcription elongation and co-transcriptional RNA processing via interaction with CHD8. {ECO:0000269|PubMed:11809897, ECO:0000269|PubMed:22570490, ECO:0000269|PubMed:25623890, ECO:0000269|PubMed:26051023, ECO:0000269|PubMed:2687284, ECO:0000269|PubMed:33174841, ECO:0000269|PubMed:36537238}. |
Q9ULX3 | NOB1 | S390 | Sugiyama | RNA-binding protein NOB1 (EC 3.1.-.-) (Phosphorylation regulatory protein HP-10) (Protein ART-4) | May play a role in mRNA degradation (Probable). Endonuclease required for processing of 20S pre-rRNA precursor and biogenesis of 40S ribosomal subunits (By similarity). {ECO:0000250|UniProtKB:Q9FLL1, ECO:0000305}. |
O75676 | RPS6KA4 | S433 | Sugiyama | Ribosomal protein S6 kinase alpha-4 (S6K-alpha-4) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 4) (Nuclear mitogen- and stress-activated protein kinase 2) (Ribosomal protein kinase B) (RSKB) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factor RELA, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes. Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin. Plays an essential role in the control of RELA transcriptional activity in response to TNF. Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN. May also phosphorylate 'Ser-28' of histone H3. Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines. Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors. {ECO:0000269|PubMed:11035004, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:9792677}. |
P08253 | MMP2 | S160 | EPSD|PSP | 72 kDa type IV collagenase (EC 3.4.24.24) (72 kDa gelatinase) (Gelatinase A) (Matrix metalloproteinase-2) (MMP-2) (TBE-1) [Cleaved into: PEX] | Ubiquitinous metalloproteinase that is involved in diverse functions such as remodeling of the vasculature, angiogenesis, tissue repair, tumor invasion, inflammation, and atherosclerotic plaque rupture. As well as degrading extracellular matrix proteins, can also act on several nonmatrix proteins such as big endothelial 1 and beta-type CGRP promoting vasoconstriction. Also cleaves KISS at a Gly-|-Leu bond. Appears to have a role in myocardial cell death pathways. Contributes to myocardial oxidative stress by regulating the activity of GSK3beta. Cleaves GSK3beta in vitro. Involved in the formation of the fibrovascular tissues in association with MMP14.; FUNCTION: PEX, the C-terminal non-catalytic fragment of MMP2, possesses anti-angiogenic and anti-tumor properties and inhibits cell migration and cell adhesion to FGF2 and vitronectin. Ligand for integrinv/beta3 on the surface of blood vessels.; FUNCTION: [Isoform 2]: Mediates the proteolysis of CHUK/IKKA and initiates a primary innate immune response by inducing mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-kappaB, NFAT and IRF transcriptional pathways. |
P42262 | GRIA2 | S683 | SIGNOR|iPTMNet|EPSD | Glutamate receptor 2 (GluR-2) (AMPA-selective glutamate receptor 2) (GluR-B) (GluR-K2) (Glutamate receptor ionotropic, AMPA 2) | Ionotropic glutamate receptor that functions as a ligand-gated cation channel, gated by L-glutamate and glutamatergic agonists such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid, and kainic acid (PubMed:20614889, PubMed:31300657, PubMed:8003671). L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system and plays an important role in fast excitatory synaptic transmission (PubMed:14687553). Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse upon entry of monovalent and divalent cations such as sodium and calcium (PubMed:20614889, PubMed:8003671). The receptor then desensitizes rapidly and enters in a transient inactive state, characterized by the presence of bound agonist (By similarity). In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of L-glutamate (By similarity). Through complex formation with NSG1, GRIP1 and STX12 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting (By similarity). {ECO:0000250|UniProtKB:P19491, ECO:0000269|PubMed:14687553, ECO:0000269|PubMed:20614889, ECO:0000269|PubMed:31300657, ECO:0000269|PubMed:8003671}. |
Q8N983 | MRPL43 | S30 | Sugiyama | Large ribosomal subunit protein mL43 (39S ribosomal protein L43, mitochondrial) (L43mt) (MRP-L43) (Mitochondrial ribosomal protein bMRP36a) | None |
Q08499 | PDE4D | S125 | SIGNOR | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q9Y262 | EIF3L | S80 | Sugiyama | Eukaryotic translation initiation factor 3 subunit L (eIF3l) (Eukaryotic translation initiation factor 3 subunit 6-interacting protein) (Eukaryotic translation initiation factor 3 subunit E-interacting protein) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03011, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
Q9P0L2 | MARK1 | S624 | Sugiyama | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
O95263 | PDE8B | S428 | Sugiyama | High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8B (HsPDE8B) (EC 3.1.4.53) (Cell proliferation-inducing gene 22 protein) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. May be involved in specific signaling in the thyroid gland. |
A2RRP1 | NBAS | S564 | ochoa | NBAS subunit of NRZ tethering complex (Neuroblastoma-amplified gene protein) (Neuroblastoma-amplified sequence) | Involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport; the function is proposed to depend on its association in the NRZ complex which is believed to play a role in SNARE assembly at the ER (PubMed:19369418). Required for normal embryonic development (By similarity). May play a role in the nonsense-mediated decay pathway of mRNAs containing premature stop codons (By similarity). {ECO:0000250|UniProtKB:Q5TYW4, ECO:0000269|PubMed:19369418}. |
B2RTY4 | MYO9A | S1219 | ochoa | Unconventional myosin-IXa (Unconventional myosin-9a) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Regulates Rho by stimulating it's GTPase activity in neurons. Required for the regulation of neurite branching and motor neuron axon guidance (By similarity). {ECO:0000250|UniProtKB:Q8C170, ECO:0000250|UniProtKB:Q9Z1N3}. |
E9PAV3 | NACA | S1962 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
H3BN57 | BLOC1S5-TXNDC5 | S21 | ochoa | Biogenesis of lysosome-related organelles complex 1 subunit 5 (Protein Muted homolog) | None |
O00257 | CBX4 | S90 | ochoa | E3 SUMO-protein ligase CBX4 (EC 2.3.2.-) (Chromobox protein homolog 4) (Polycomb 2 homolog) (Pc2) (hPc2) | E3 SUMO-protein ligase that catalyzes sumoylation of target proteins by promoting the transfer of SUMO from the E2 enzyme to the substrate (PubMed:12679040, PubMed:22825850). Involved in the sumoylation of HNRNPK, a p53/TP53 transcriptional coactivator, hence indirectly regulates p53/TP53 transcriptional activation resulting in p21/CDKN1A expression. Monosumoylates ZNF131 (PubMed:22825850). {ECO:0000269|PubMed:12679040, ECO:0000269|PubMed:22825850}.; FUNCTION: Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:12167701, PubMed:19636380, PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167701, PubMed:19636380, PubMed:21282530). Binds to histone H3 trimethylated at 'Lys-9' (H3K9me3) (By similarity). Plays a role in the lineage differentiation of the germ layers in embryonic development (By similarity). {ECO:0000250|UniProtKB:O55187, ECO:0000269|PubMed:12167701, ECO:0000269|PubMed:19636380, ECO:0000269|PubMed:21282530}. |
O14497 | ARID1A | S1204 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14545 | TRAFD1 | S501 | ochoa | TRAF-type zinc finger domain-containing protein 1 (Protein FLN29) | Negative feedback regulator that controls excessive innate immune responses. Regulates both Toll-like receptor 4 (TLR4) and DDX58/RIG1-like helicases (RLH) pathways. May inhibit the LTR pathway by direct interaction with TRAF6 and attenuation of NF-kappa-B activation. May negatively regulate the RLH pathway downstream from MAVS and upstream of NF-kappa-B and IRF3 (By similarity). {ECO:0000250, ECO:0000269|PubMed:16221674}. |
O14917 | PCDH17 | S1108 | ochoa | Protocadherin-17 (Protocadherin-68) | Potential calcium-dependent cell-adhesion protein. |
O14974 | PPP1R12A | S852 | psp | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O15067 | PFAS | S128 | ochoa | Phosphoribosylformylglycinamidine synthase (FGAM synthase) (FGAMS) (EC 6.3.5.3) (Formylglycinamide ribonucleotide amidotransferase) (FGAR amidotransferase) (FGAR-AT) (Formylglycinamide ribotide amidotransferase) (Phosphoribosylformylglycineamide amidotransferase) | Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. {ECO:0000305|PubMed:10548741}. |
O15350 | TP73 | S235 | psp | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O43166 | SIPA1L1 | S1603 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43166 | SIPA1L1 | S1695 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43248 | HOXC11 | S88 | ochoa | Homeobox protein Hox-C11 (Homeobox protein Hox-3H) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds to a promoter element of the lactase-phlorizin hydrolase gene. |
O43379 | WDR62 | S1093 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43491 | EPB41L2 | S402 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O60237 | PPP1R12B | S618 | ochoa | Protein phosphatase 1 regulatory subunit 12B (Myosin phosphatase-targeting subunit 2) (Myosin phosphatase target subunit 2) | Regulates myosin phosphatase activity. Augments Ca(2+) sensitivity of the contractile apparatus. {ECO:0000269|PubMed:11067852, ECO:0000269|PubMed:9570949}. |
O60237 | PPP1R12B | S645 | ochoa | Protein phosphatase 1 regulatory subunit 12B (Myosin phosphatase-targeting subunit 2) (Myosin phosphatase target subunit 2) | Regulates myosin phosphatase activity. Augments Ca(2+) sensitivity of the contractile apparatus. {ECO:0000269|PubMed:11067852, ECO:0000269|PubMed:9570949}. |
O60237 | PPP1R12B | S855 | ochoa | Protein phosphatase 1 regulatory subunit 12B (Myosin phosphatase-targeting subunit 2) (Myosin phosphatase target subunit 2) | Regulates myosin phosphatase activity. Augments Ca(2+) sensitivity of the contractile apparatus. {ECO:0000269|PubMed:11067852, ECO:0000269|PubMed:9570949}. |
O60347 | TBC1D12 | S315 | ochoa | TBC1 domain family member 12 | RAB11A-binding protein that plays a role in neurite outgrowth. {ECO:0000250|UniProtKB:M0R7T9}. |
O60381 | HBP1 | S90 | ochoa | HMG box-containing protein 1 (HMG box transcription factor 1) (High mobility group box transcription factor 1) | Transcriptional repressor that binds to the promoter region of target genes. Plays a role in the regulation of the cell cycle and of the Wnt pathway. Binds preferentially to the sequence 5'-TTCATTCATTCA-3'. Binding to the histone H1.0 promoter is enhanced by interaction with RB1. Disrupts the interaction between DNA and TCF4. {ECO:0000269|PubMed:10562551, ECO:0000269|PubMed:10958660, ECO:0000269|PubMed:11500377}. |
O75037 | KIF21B | S510 | ochoa | Kinesin-like protein KIF21B | Plus-end directed microtubule-dependent motor protein which displays processive activity. Is involved in regulation of microtubule dynamics, synapse function and neuronal morphology, including dendritic tree branching and spine formation. Plays a role in lerning and memory. Involved in delivery of gamma-aminobutyric acid (GABA(A)) receptor to cell surface. {ECO:0000250|UniProtKB:Q9QXL1}. |
O75449 | KATNA1 | S117 | ochoa | Katanin p60 ATPase-containing subunit A1 (Katanin p60 subunit A1) (EC 5.6.1.1) (p60 katanin) | Catalytic subunit of a complex which severs microtubules in an ATP-dependent manner. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth. {ECO:0000255|HAMAP-Rule:MF_03023, ECO:0000269|PubMed:10751153, ECO:0000269|PubMed:11870226, ECO:0000269|PubMed:19287380}. |
O75534 | CSDE1 | S514 | ochoa | Cold shock domain-containing protein E1 (N-ras upstream gene protein) (Protein UNR) | RNA-binding protein involved in translationally coupled mRNA turnover (PubMed:11051545, PubMed:15314026). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545, PubMed:15314026). Required for efficient formation of stress granules (PubMed:29395067). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:15314026, ECO:0000269|PubMed:29395067}.; FUNCTION: (Microbial infection) Required for internal initiation of translation of human rhinovirus RNA. {ECO:0000269|PubMed:10049359}. |
O75962 | TRIO | S1809 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O94804 | STK10 | S485 | ochoa | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
O94832 | MYO1D | S93 | ochoa | Unconventional myosin-Id | Unconventional myosin that functions as actin-based motor protein with ATPase activity (By similarity). Plays a role in endosomal protein trafficking, and especially in the transfer of cargo proteins from early to recycling endosomes (By similarity). Required for normal planar cell polarity in ciliated tracheal cells, for normal rotational polarity of cilia, and for coordinated, unidirectional ciliary movement in the trachea. Required for normal, polarized cilia organization in brain ependymal epithelial cells (By similarity). {ECO:0000250|UniProtKB:F1PRN2, ECO:0000250|UniProtKB:Q63357}. |
O94913 | PCF11 | S645 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O95400 | CD2BP2 | S118 | ochoa | CD2 antigen cytoplasmic tail-binding protein 2 (CD2 cytoplasmic domain-binding protein 2) (CD2 tail-binding protein 2) (U5 snRNP 52K protein) (U5-52K) | Involved in pre-mRNA splicing as component of the U5 snRNP complex that is involved in spliceosome assembly. {ECO:0000269|PubMed:15840814}. |
P01833 | PIGR | S673 | ochoa | Polymeric immunoglobulin receptor (PIgR) (Poly-Ig receptor) (Hepatocellular carcinoma-associated protein TB6) [Cleaved into: Secretory component] | [Polymeric immunoglobulin receptor]: Mediates selective transcytosis of polymeric IgA and IgM across mucosal epithelial cells. Binds polymeric IgA and IgM at the basolateral surface of epithelial cells. The complex is then transported across the cell to be secreted at the apical surface. During this process, a cleavage occurs that separates the extracellular (known as the secretory component) from the transmembrane segment. {ECO:0000269|PubMed:10229845, ECO:0000269|PubMed:15530357, ECO:0000269|PubMed:9379029}.; FUNCTION: [Secretory component]: Through its N-linked glycans ensures anchoring of secretory IgA (sIgA) molecules to mucus lining the epithelial surface to neutralize extracellular pathogens (PubMed:12150896). On its own (free form) may act as a non-specific microbial scavenger to prevent pathogen interaction with epithelial cells (PubMed:16543244). {ECO:0000269|PubMed:12150896, ECO:0000269|PubMed:16543244}. |
P04792 | HSPB1 | S98 | ochoa | Heat shock protein beta-1 (HspB1) (28 kDa heat shock protein) (Estrogen-regulated 24 kDa protein) (Heat shock 27 kDa protein) (HSP 27) (Heat shock protein family B member 1) (Stress-responsive protein 27) (SRP27) | Small heat shock protein which functions as a molecular chaperone probably maintaining denatured proteins in a folding-competent state (PubMed:10383393, PubMed:20178975). Plays a role in stress resistance and actin organization (PubMed:19166925). Through its molecular chaperone activity may regulate numerous biological processes including the phosphorylation and the axonal transport of neurofilament proteins (PubMed:23728742). {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:20178975, ECO:0000269|PubMed:23728742}. |
P07305 | H1-0 | S49 | ochoa | Histone H1.0 (Histone H1') (Histone H1(0)) [Cleaved into: Histone H1.0, N-terminally processed] | Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures. The histones H1.0 are found in cells that are in terminal stages of differentiation or that have low rates of cell division. |
P09601 | HMOX1 | S241 | ochoa | Heme oxygenase 1 (HO-1) (EC 1.14.14.18) [Cleaved into: Heme oxygenase 1 soluble form] | [Heme oxygenase 1]: Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron (PubMed:11121422, PubMed:19556236, PubMed:7703255). Affords protection against programmed cell death and this cytoprotective effect relies on its ability to catabolize free heme and prevent it from sensitizing cells to undergo apoptosis (PubMed:20055707). {ECO:0000269|PubMed:11121422, ECO:0000269|PubMed:19556236, ECO:0000269|PubMed:7703255, ECO:0000303|PubMed:20055707}.; FUNCTION: [Heme oxygenase 1]: (Microbial infection) During SARS-COV-2 infection, promotes SARS-CoV-2 ORF3A-mediated autophagy but is unlikely to be required for ORF3A-mediated induction of reticulophagy. {ECO:0000269|PubMed:35239449}.; FUNCTION: [Heme oxygenase 1 soluble form]: Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron. {ECO:0000269|PubMed:7703255}. |
P09661 | SNRPA1 | S178 | ochoa | U2 small nuclear ribonucleoprotein A' (U2 snRNP A') | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:27035939, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:32494006). Associated with sn-RNP U2, where it contributes to the binding of stem loop IV of U2 snRNA (PubMed:27035939, PubMed:32494006, PubMed:9716128). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:27035939, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:9716128}. |
P0DMV8 | HSPA1A | S537 | ochoa | Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 1) (HSP70-1) (HSP70.1) (Heat shock protein family A member 1A) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). Required as a co-chaperone for optimal STUB1/CHIP ubiquitination of NFATC3 (By similarity). Negatively regulates heat shock-induced HSF1 transcriptional activity during the attenuation and recovery phase period of the heat shock response (PubMed:9499401). Involved in the clearance of misfolded PRDM1/Blimp-1 proteins. Sequesters them in the cytoplasm and promotes their association with SYNV1/HRD1, leading to proteasomal degradation (PubMed:28842558). {ECO:0000250|UniProtKB:P0DMW0, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28842558, ECO:0000269|PubMed:9499401, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}. |
P0DMV9 | HSPA1B | S537 | ochoa | Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 2) (HSP70-2) (HSP70.2) (Heat shock protein family A member 1B) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). {ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}. |
P11473 | VDR | S51 | psp | Vitamin D3 receptor (VDR) (1,25-dihydroxyvitamin D3 receptor) (Nuclear receptor subfamily 1 group I member 1) | Nuclear receptor for calcitriol, the active form of vitamin D3 which mediates the action of this vitamin on cells (PubMed:10678179, PubMed:15728261, PubMed:16913708, PubMed:28698609, PubMed:37478846). Enters the nucleus upon vitamin D3 binding where it forms heterodimers with the retinoid X receptor/RXR (PubMed:28698609). The VDR-RXR heterodimers bind to specific response elements on DNA and activate the transcription of vitamin D3-responsive target genes (PubMed:28698609). Plays a central role in calcium homeostasis (By similarity). Also functions as a receptor for the secondary bile acid lithocholic acid (LCA) and its metabolites (PubMed:12016314, PubMed:32354638). {ECO:0000250|UniProtKB:P13053, ECO:0000269|PubMed:10678179, ECO:0000269|PubMed:12016314, ECO:0000269|PubMed:15728261, ECO:0000269|PubMed:16913708, ECO:0000269|PubMed:28698609, ECO:0000269|PubMed:32354638, ECO:0000269|PubMed:37478846}. |
P12757 | SKIL | S490 | ochoa | Ski-like protein (Ski-related oncogene) (Ski-related protein) | May have regulatory role in cell division or differentiation in response to extracellular signals. |
P14416 | DRD2 | S229 | psp | D(2) dopamine receptor (Dopamine D2 receptor) | Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase (PubMed:21645528). Positively regulates postnatal regression of retinal hyaloid vessels via suppression of VEGFR2/KDR activity, downstream of OPN5 (By similarity). {ECO:0000250|UniProtKB:P61168, ECO:0000269|PubMed:21645528}. |
P15848 | ARSB | S409 | ochoa | Arylsulfatase B (ASB) (EC 3.1.6.12) (N-acetylgalactosamine-4-sulfatase) (G4S) | Removes sulfate groups from chondroitin-4-sulfate (C4S) and regulates its degradation (PubMed:19306108). Involved in the regulation of cell adhesion, cell migration and invasion in colonic epithelium (PubMed:19306108). In the central nervous system, is a regulator of neurite outgrowth and neuronal plasticity, acting through the control of sulfate glycosaminoglycans and neurocan levels (By similarity). {ECO:0000250|UniProtKB:P50430, ECO:0000269|PubMed:19306108}. |
P16615 | ATP2A2 | S507 | ochoa | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) (SR Ca(2+)-ATPase 2) (EC 7.2.2.10) (Calcium pump 2) (Calcium-transporting ATPase sarcoplasmic reticulum type, slow twitch skeletal muscle isoform) (Endoplasmic reticulum class 1/2 Ca(2+) ATPase) | This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (PubMed:12542527, PubMed:16402920). Involved in autophagy in response to starvation. Upon interaction with VMP1 and activation, controls ER-isolation membrane contacts for autophagosome formation (PubMed:28890335). Also modulates ER contacts with lipid droplets, mitochondria and endosomes (PubMed:28890335). In coordination with FLVCR2 mediates heme-stimulated switching from mitochondrial ATP synthesis to thermogenesis (By similarity). {ECO:0000250|UniProtKB:O55143, ECO:0000269|PubMed:12542527, ECO:0000269|PubMed:16402920, ECO:0000269|PubMed:28890335}.; FUNCTION: [Isoform 2]: Involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic Ca(2+) spiking for activation of NFATC1 and production of mitochondrial ROS, thereby triggering Ca(2+) signaling cascades that promote osteoclast differentiation and activation. {ECO:0000250|UniProtKB:O55143}. |
P17661 | DES | S72 | ochoa | Desmin | Muscle-specific type III intermediate filament essential for proper muscular structure and function. Plays a crucial role in maintaining the structure of sarcomeres, inter-connecting the Z-disks and forming the myofibrils, linking them not only to the sarcolemmal cytoskeleton, but also to the nucleus and mitochondria, thus providing strength for the muscle fiber during activity (PubMed:25358400). In adult striated muscle they form a fibrous network connecting myofibrils to each other and to the plasma membrane from the periphery of the Z-line structures (PubMed:24200904, PubMed:25394388, PubMed:26724190). May act as a sarcomeric microtubule-anchoring protein: specifically associates with detyrosinated tubulin-alpha chains, leading to buckled microtubules and mechanical resistance to contraction. Required for nuclear membrane integrity, via anchoring at the cell tip and nuclear envelope, resulting in maintenance of microtubule-derived intracellular mechanical forces (By similarity). Contributes to the transcriptional regulation of the NKX2-5 gene in cardiac progenitor cells during a short period of cardiomyogenesis and in cardiac side population stem cells in the adult. Plays a role in maintaining an optimal conformation of nebulette (NEB) on heart muscle sarcomeres to bind and recruit cardiac alpha-actin (By similarity). {ECO:0000250|UniProtKB:P31001, ECO:0000269|PubMed:24200904, ECO:0000269|PubMed:25394388, ECO:0000269|PubMed:26724190, ECO:0000303|PubMed:25358400}. |
P17931 | LGALS3 | S188 | ochoa | Galectin-3 (Gal-3) (35 kDa lectin) (Carbohydrate-binding protein 35) (CBP 35) (Galactose-specific lectin 3) (Galactoside-binding protein) (GALBP) (IgE-binding protein) (L-31) (Laminin-binding protein) (Lectin L-29) (Mac-2 antigen) | Galactose-specific lectin which binds IgE. May mediate with the alpha-3, beta-1 integrin the stimulation by CSPG4 of endothelial cells migration. Together with DMBT1, required for terminal differentiation of columnar epithelial cells during early embryogenesis (By similarity). In the nucleus: acts as a pre-mRNA splicing factor. Involved in acute inflammatory responses including neutrophil activation and adhesion, chemoattraction of monocytes macrophages, opsonization of apoptotic neutrophils, and activation of mast cells. Together with TRIM16, coordinates the recognition of membrane damage with mobilization of the core autophagy regulators ATG16L1 and BECN1 in response to damaged endomembranes. {ECO:0000250, ECO:0000269|PubMed:15181153, ECO:0000269|PubMed:19594635, ECO:0000269|PubMed:19616076, ECO:0000269|PubMed:27693506}. |
P20618 | PSMB1 | S162 | ochoa | Proteasome subunit beta type-1 (Macropain subunit C5) (Multicatalytic endopeptidase complex subunit C5) (Proteasome component C5) (Proteasome gamma chain) (Proteasome subunit beta-6) (beta-6) | Non-catalytic component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P22695 | UQCRC2 | S303 | ochoa | Cytochrome b-c1 complex subunit 2, mitochondrial (Complex III subunit 2) (Core protein II) (Ubiquinol-cytochrome-c reductase complex core protein 2) | Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. The cytochrome b-c1 complex catalyzes electron transfer from ubiquinol to cytochrome c, linking this redox reaction to translocation of protons across the mitochondrial inner membrane, with protons being carried across the membrane as hydrogens on the quinol. In the process called Q cycle, 2 protons are consumed from the matrix, 4 protons are released into the intermembrane space and 2 electrons are passed to cytochrome c (By similarity). The 2 core subunits UQCRC1/QCR1 and UQCRC2/QCR2 are homologous to the 2 mitochondrial-processing peptidase (MPP) subunits beta-MPP and alpha-MPP respectively, and they seem to have preserved their MPP processing properties (By similarity). May be involved in the in situ processing of UQCRFS1 into the mature Rieske protein and its mitochondrial targeting sequence (MTS)/subunit 9 when incorporated into complex III (Probable). {ECO:0000250|UniProtKB:P07257, ECO:0000250|UniProtKB:P23004, ECO:0000305|PubMed:29243944}. |
P29374 | ARID4A | S1076 | ochoa | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P30044 | PRDX5 | S182 | ochoa | Peroxiredoxin-5, mitochondrial (EC 1.11.1.24) (Alu corepressor 1) (Antioxidant enzyme B166) (AOEB166) (Liver tissue 2D-page spot 71B) (PLP) (Peroxiredoxin V) (Prx-V) (Peroxisomal antioxidant enzyme) (TPx type VI) (Thioredoxin peroxidase PMP20) (Thioredoxin-dependent peroxiredoxin 5) | Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides and as sensor of hydrogen peroxide-mediated signaling events. {ECO:0000269|PubMed:10514471, ECO:0000269|PubMed:10521424, ECO:0000269|PubMed:10751410, ECO:0000269|PubMed:31740833}. |
P30626 | SRI | S149 | psp | Sorcin (22 kDa protein) (CP-22) (CP22) (V19) | Calcium-binding protein that modulates excitation-contraction coupling in the heart. Contributes to calcium homeostasis in the heart sarcoplasmic reticulum. Modulates the activity of RYR2 calcium channels. {ECO:0000269|PubMed:17699613}. |
P32926 | DSG3 | S771 | ochoa | Desmoglein-3 (130 kDa pemphigus vulgaris antigen) (PVA) (Cadherin family member 6) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:31835537). Required for adherens and desmosome junction assembly in response to mechanical force in keratinocytes (PubMed:31835537). Required for desmosome-mediated cell-cell adhesion of cells surrounding the telogen hair club and the basal layer of the outer root sheath epithelium, consequently is essential for the anchoring of telogen hairs in the hair follicle (PubMed:9701552). Required for the maintenance of the epithelial barrier via promoting desmosome-mediated intercellular attachment of suprabasal epithelium to basal cells (By similarity). May play a role in the protein stability of the desmosome plaque components DSP, JUP, PKP1, PKP2 and PKP3 (PubMed:22294297). Required for YAP1 localization at the plasma membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, PKP1 and YWHAG (PubMed:31835537). May also be involved in the positive regulation of YAP1 target gene transcription and as a result cell proliferation (PubMed:31835537). Positively regulates cellular contractility and cell junction formation via organization of cortical F-actin bundles and anchoring of actin to tight junctions, in conjunction with RAC1 (PubMed:22796473). The cytoplasmic pool of DSG3 is required for the localization of CDH1 and CTNNB1 at developing adherens junctions, potentially via modulation of SRC activity (PubMed:22294297). Inhibits keratinocyte migration via suppression of p38MAPK signaling, may therefore play a role in moderating wound healing (PubMed:26763450). {ECO:0000250|UniProtKB:O35902, ECO:0000269|PubMed:22294297, ECO:0000269|PubMed:22796473, ECO:0000269|PubMed:26763450, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9701552}. |
P35498 | SCN1A | S550 | ochoa | Sodium channel protein type 1 subunit alpha (Sodium channel protein brain I subunit alpha) (Sodium channel protein type I subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.1) | Pore-forming subunit of Nav1.1, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:14672992). By regulating the excitability of neurons, ensures that they respond appropriately to synaptic inputs, maintaining the balance between excitation and inhibition in brain neural circuits (By similarity). Nav1.1 plays a role in controlling the excitability and action potential propagation from somatosensory neurons, thereby contributing to the sensory perception of mechanically-induced pain (By similarity). {ECO:0000250|UniProtKB:A2APX8, ECO:0000269|PubMed:14672992}. |
P35609 | ACTN2 | S574 | ochoa | Alpha-actinin-2 (Alpha-actinin skeletal muscle isoform 2) (F-actin cross-linking protein) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein. |
P38432 | COIL | S271 | ochoa|psp | Coilin (p80-coilin) | Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}. |
P41162 | ETV3 | S133 | ochoa | ETS translocation variant 3 (ETS domain transcriptional repressor PE1) (PE-1) (Mitogenic Ets transcriptional suppressor) | Transcriptional repressor that contribute to growth arrest during terminal macrophage differentiation by repressing target genes involved in Ras-dependent proliferation. Represses MMP1 promoter activity. {ECO:0000269|PubMed:12007404}. |
P41212 | ETV6 | S165 | ochoa | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P41231 | P2RY2 | S243 | psp | P2Y purinoceptor 2 (P2Y2) (ATP receptor) (P2U purinoceptor 1) (P2U1) (P2U receptor 1) (Purinergic receptor) | Receptor for ATP and UTP coupled to G-proteins that activate a phosphatidylinositol-calcium second messenger system. The affinity range is UTP = ATP > ATP-gamma-S >> 2-methylthio-ATP = ADP. |
P43681 | CHRNA4 | S362 | psp | Neuronal acetylcholine receptor subunit alpha-4 | Component of neuronal acetylcholine receptors (nAChRs) that function as pentameric, ligand-gated cation channels with high calcium permeability among other activities. nAChRs are excitatory neurotrasnmitter receptors formed by a collection of nAChR subunits known to mediate synaptic transmission in the nervous system and the neuromuscular junction. Each nAchR subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, cation permeability, and binding to allosteric modulators (PubMed:22361591, PubMed:27698419, PubMed:29720657, PubMed:38454578). CHRNA4 forms heteropentameric neuronal acetylcholine receptors with CHRNB2 and CHRNB4, as well as CHRNA5 and CHRNB3 as accesory subunits. Is the most abundant nAChR subtype expressed in the central nervous system (PubMed:16835356, PubMed:22361591, PubMed:27698419, PubMed:29720657, PubMed:38454578). Found in two major stoichiometric forms,(CHRNA4)3:(CHRNB2)2 and (CHRNA4)2:(CHRNB2)3, the two stoichiometric forms differ in their unitary conductance, calcium permeability, ACh sensitivity and potentiation by divalent cation (PubMed:27698419, PubMed:29720657, PubMed:38454578). Involved in the modulation of calcium-dependent signaling pathways, influences the release of neurotransmitters, including dopamine, glutamate and GABA (By similarity). {ECO:0000250|UniProtKB:O70174, ECO:0000269|PubMed:16835356, ECO:0000269|PubMed:22361591, ECO:0000269|PubMed:27698419, ECO:0000269|PubMed:29720657, ECO:0000269|PubMed:38454578}. |
P46013 | MKI67 | S648 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46939 | UTRN | S1866 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P46939 | UTRN | S2223 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P48163 | ME1 | S219 | ochoa | NADP-dependent malic enzyme (NADP-ME) (EC 1.1.1.40) (Malic enzyme 1) | Catalyzes the oxidative decarboxylation of (S)-malate in the presence of NADP(+) and divalent metal ions, and decarboxylation of oxaloacetate. {ECO:0000269|PubMed:7622060, ECO:0000269|PubMed:7757881, ECO:0000269|PubMed:8187880, ECO:0000269|PubMed:8804575}. |
P48552 | NRIP1 | S102 | ochoa | Nuclear receptor-interacting protein 1 (Nuclear factor RIP140) (Receptor-interacting protein 140) | Modulates transcriptional activation by steroid receptors such as NR3C1, NR3C2 and ESR1. Also modulates transcriptional repression by nuclear hormone receptors. Positive regulator of the circadian clock gene expression: stimulates transcription of BMAL1, CLOCK and CRY1 by acting as a coactivator for RORA and RORC. Involved in the regulation of ovarian function (By similarity). Plays a role in renal development (PubMed:28381549). {ECO:0000250|UniProtKB:Q8CBD1, ECO:0000269|PubMed:10364267, ECO:0000269|PubMed:11509661, ECO:0000269|PubMed:11518808, ECO:0000269|PubMed:12554755, ECO:0000269|PubMed:15060175, ECO:0000269|PubMed:21628546, ECO:0000269|PubMed:28381549, ECO:0000269|PubMed:7641693}. |
P50402 | EMD | S120 | ochoa | Emerin | Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}. |
P51116 | FXR2 | S192 | ochoa | RNA-binding protein FXR2 (FXR2P) (FMR1 autosomal homolog 2) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for adult hippocampal neurogenesis (By similarity). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (By similarity). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs: mRNAs storage into membraneless compartments regulates their translation and/or stability (By similarity). Acts as a regulator of adult hippocampal neurogenesis by regulating translation and/or stability of NOG mRNA, thereby preventing NOG protein expression in the dentate gyrus (By similarity). {ECO:0000250|UniProtKB:Q61584, ECO:0000250|UniProtKB:Q9WVR4}. |
P51812 | RPS6KA3 | S415 | ochoa | Ribosomal protein S6 kinase alpha-3 (S6K-alpha-3) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 3) (p90-RSK 3) (p90RSK3) (Insulin-stimulated protein kinase 1) (ISPK-1) (MAP kinase-activated protein kinase 1b) (MAPK-activated protein kinase 1b) (MAPKAP kinase 1b) (MAPKAPK-1b) (Ribosomal S6 kinase 2) (RSK-2) (pp90RSK2) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:16213824, PubMed:16223362, PubMed:17360704, PubMed:9770464). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:10436156, PubMed:9770464). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:8250835). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:18508509, PubMed:18813292). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:18722121). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (By similarity). In LPS-stimulated dendritic cells, is involved in TLR4-induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3 (By similarity). Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1 (By similarity). Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation (By similarity). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity (By similarity). {ECO:0000250|UniProtKB:P18654, ECO:0000269|PubMed:10436156, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:8250835, ECO:0000269|PubMed:9770464, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}. |
P51828 | ADCY7 | S505 | ochoa | Adenylate cyclase type 7 (EC 4.6.1.1) (ATP pyrophosphate-lyase 7) (Adenylate cyclase type VII) (Adenylyl cyclase 7) | Catalyzes the formation of cAMP in response to activation of G protein-coupled receptors (Probable). Functions in signaling cascades activated namely by thrombin and sphingosine 1-phosphate and mediates regulation of cAMP synthesis through synergistic action of the stimulatory G alpha protein with GNA13 (PubMed:18541530, PubMed:23229509). Also, during inflammation, mediates zymosan-induced increase intracellular cAMP, leading to protein kinase A pathway activation in order to modulate innate immune responses through heterotrimeric G proteins G(12/13) (By similarity). Functions in signaling cascades activated namely by dopamine and C5 alpha chain and mediates regulation of cAMP synthesis through synergistic action of the stimulatory G protein with G beta:gamma complex (PubMed:23229509, PubMed:23842570). Functions, through cAMP response regulation, to keep inflammation under control during bacterial infection by sensing the presence of serum factors, such as the bioactive lysophospholipid (LPA) that regulate LPS-induced TNF-alpha production. However, it is also required for the optimal functions of B and T cells during adaptive immune responses by regulating cAMP synthesis in both B and T cells (By similarity). {ECO:0000250|UniProtKB:P51829, ECO:0000269|PubMed:18541530, ECO:0000269|PubMed:23229509, ECO:0000269|PubMed:23842570, ECO:0000305|PubMed:18541530, ECO:0000305|PubMed:23229509}. |
P52948 | NUP98 | S1344 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P55201 | BRPF1 | S1187 | ochoa | Peregrin (Bromodomain and PHD finger-containing protein 1) (Protein Br140) | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:24065767, PubMed:27939640). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac) (PubMed:24065767). Some HAT complexes preferentially mediate histone H3 'Lys-23' (H3K23ac) acetylation (PubMed:27939640). Positively regulates the transcription of RUNX1 and RUNX2 (PubMed:18794358). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:27939640}. |
P55884 | EIF3B | S372 | ochoa | Eukaryotic translation initiation factor 3 subunit B (eIF3b) (Eukaryotic translation initiation factor 3 subunit 9) (Prt1 homolog) (hPrt1) (eIF-3-eta) (eIF3 p110) (eIF3 p116) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815, PubMed:9388245). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632, PubMed:9388245). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03001, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815, ECO:0000269|PubMed:9388245}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
P60484 | PTEN | S380 | psp | Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (EC 3.1.3.16) (EC 3.1.3.48) (EC 3.1.3.67) (Inositol polyphosphate 3-phosphatase) (EC 3.1.3.-) (Mutated in multiple advanced cancers 1) (Phosphatase and tensin homolog) | Dual-specificity protein phosphatase, dephosphorylating tyrosine-, serine- and threonine-phosphorylated proteins (PubMed:9187108, PubMed:9256433, PubMed:9616126). Also functions as a lipid phosphatase, removing the phosphate in the D3 position of the inositol ring of PtdIns(3,4,5)P3/phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4)P2/phosphatidylinositol 3,4-diphosphate and PtdIns3P/phosphatidylinositol 3-phosphate with a preference for PtdIns(3,4,5)P3 (PubMed:16824732, PubMed:26504226, PubMed:9593664, PubMed:9811831). Furthermore, this enzyme can also act as a cytosolic inositol 3-phosphatase acting on Ins(1,3,4,5,6)P5/inositol 1,3,4,5,6 pentakisphosphate and possibly Ins(1,3,4,5)P4/1D-myo-inositol 1,3,4,5-tetrakisphosphate (PubMed:11418101, PubMed:15979280). Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival (PubMed:31492966, PubMed:37279284). The unphosphorylated form cooperates with MAGI2 to suppress AKT1 activation (PubMed:11707428). In motile cells, suppresses the formation of lateral pseudopods and thereby promotes cell polarization and directed movement (PubMed:22279049). Dephosphorylates tyrosine-phosphorylated focal adhesion kinase and inhibits cell migration and integrin-mediated cell spreading and focal adhesion formation (PubMed:22279049). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces PTEN phosphorylation which changes its binding preference from the p85 regulatory subunit of the PI3K kinase complex to DLC1 and results in translocation of the PTEN-DLC1 complex to the posterior of migrating cells to promote RHOA activation (PubMed:26166433). Meanwhile, TNS3 switches binding preference from DLC1 to p85 and the TNS3-p85 complex translocates to the leading edge of migrating cells to activate RAC1 activation (PubMed:26166433). Plays a role as a key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Involved in the regulation of synaptic function in excitatory hippocampal synapses. Recruited to the postsynaptic membrane upon NMDA receptor activation, is required for the modulation of synaptic activity during plasticity. Enhancement of lipid phosphatase activity is able to drive depression of AMPA receptor-mediated synaptic responses, activity required for NMDA receptor-dependent long-term depression (LTD) (By similarity). May be a negative regulator of insulin signaling and glucose metabolism in adipose tissue. The nuclear monoubiquitinated form possesses greater apoptotic potential, whereas the cytoplasmic nonubiquitinated form induces less tumor suppressive ability (PubMed:10468583, PubMed:18716620). {ECO:0000250|UniProtKB:O08586, ECO:0000250|UniProtKB:O54857, ECO:0000269|PubMed:10468583, ECO:0000269|PubMed:11418101, ECO:0000269|PubMed:11707428, ECO:0000269|PubMed:15979280, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:18716620, ECO:0000269|PubMed:22279049, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26504226, ECO:0000269|PubMed:31492966, ECO:0000269|PubMed:37279284, ECO:0000269|PubMed:9187108, ECO:0000269|PubMed:9256433, ECO:0000269|PubMed:9593664, ECO:0000269|PubMed:9616126, ECO:0000269|PubMed:9811831}.; FUNCTION: [Isoform alpha]: Functional kinase, like isoform 1 it antagonizes the PI3K-AKT/PKB signaling pathway. Plays a role in mitochondrial energetic metabolism by promoting COX activity and ATP production, via collaboration with isoform 1 in increasing protein levels of PINK1. {ECO:0000269|PubMed:23744781}. |
P61106 | RAB14 | S97 | ochoa | Ras-related protein Rab-14 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:22595670). Involved in membrane trafficking between the Golgi complex and endosomes during early embryonic development (By similarity). Regulates the Golgi to endosome transport of FGFR-containing vesicles during early development, a key process for developing basement membrane and epiblast and primitive endoderm lineages during early postimplantation development. May act by modulating the kinesin KIF16B-cargo association to endosomes (By similarity). Regulates, together with its guanine nucleotide exchange factor DENND6A, the specific endocytic transport of ADAM10, N-cadherin/CDH2 shedding and cell-cell adhesion (PubMed:22595670). Mediates endosomal tethering and fusion through the interaction with RUFY1 and RAB4B (PubMed:20534812). Interaction with RAB11FIP1 may function in the process of neurite formation (PubMed:26032412). {ECO:0000250|UniProtKB:P61107, ECO:0000250|UniProtKB:Q91V41, ECO:0000269|PubMed:20534812, ECO:0000269|PubMed:22595670, ECO:0000269|PubMed:26032412}. |
P62495 | ETF1 | S70 | ochoa | Eukaryotic peptide chain release factor subunit 1 (Eukaryotic release factor 1) (eRF1) (Protein Cl1) (TB3-1) | Component of the eRF1-eRF3-GTP ternary complex, a ternary complex that mediates translation termination in response to the termination codons (PubMed:10676813, PubMed:16777602, PubMed:24486019, PubMed:26245381, PubMed:27863242, PubMed:36638793, PubMed:7990965). The eRF1-eRF3-GTP complex binds to a stop codon in the ribosomal A-site (PubMed:26245381, PubMed:27863242, PubMed:36638793). ETF1/ERF1 is responsible for stop codon recognition and inducing hydrolysis of peptidyl-tRNA (PubMed:26245381, PubMed:27863242, PubMed:36638793). Following GTP hydrolysis, eRF3 (GSPT1/ERF3A or GSPT2/ERF3B) dissociates, permitting ETF1/eRF1 to accommodate fully in the A-site and mediate hydrolysis of peptidyl-tRNA (PubMed:10676813, PubMed:16777602, PubMed:26245381, PubMed:27863242). Component of the transient SURF complex which recruits UPF1 to stalled ribosomes in the context of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (PubMed:19417104). Required for SHFL-mediated translation termination which inhibits programmed ribosomal frameshifting (-1PRF) of mRNA from viruses and cellular genes (PubMed:30682371). {ECO:0000269|PubMed:10676813, ECO:0000269|PubMed:16777602, ECO:0000269|PubMed:19417104, ECO:0000269|PubMed:24486019, ECO:0000269|PubMed:26245381, ECO:0000269|PubMed:27863242, ECO:0000269|PubMed:30682371, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:7990965}. |
P62701 | RPS4X | S223 | ochoa | Small ribosomal subunit protein eS4, X isoform (40S ribosomal protein S4) (SCR10) (Single copy abundant mRNA protein) | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P62937 | PPIA | S21 | ochoa | Peptidyl-prolyl cis-trans isomerase A (PPIase A) (EC 5.2.1.8) (Cyclophilin A) (Cyclosporin A-binding protein) (Rotamase A) [Cleaved into: Peptidyl-prolyl cis-trans isomerase A, N-terminally processed] | Catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (PubMed:2001362, PubMed:20676357, PubMed:21245143, PubMed:21593166, PubMed:25678563). Exerts a strong chemotactic effect on leukocytes partly through activation of one of its membrane receptors BSG/CD147, initiating a signaling cascade that culminates in MAPK/ERK activation (PubMed:11943775, PubMed:21245143). Activates endothelial cells (ECs) in a pro-inflammatory manner by stimulating activation of NF-kappa-B and ERK, JNK and p38 MAP-kinases and by inducing expression of adhesion molecules including SELE and VCAM1 (PubMed:15130913). Induces apoptosis in ECs by promoting the FOXO1-dependent expression of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). In response to oxidative stress, initiates proapoptotic and antiapoptotic signaling in ECs via activation of NF-kappa-B and AKT1 and up-regulation of antiapoptotic protein BCL2 (PubMed:23180369). Negatively regulates MAP3K5/ASK1 kinase activity, autophosphorylation and oxidative stress-induced apoptosis mediated by MAP3K5/ASK1 (PubMed:26095851). Necessary for the assembly of TARDBP in heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and regulates TARDBP binding to RNA UG repeats and TARDBP-dependent expression of HDAC6, ATG7 and VCP which are involved in clearance of protein aggregates (PubMed:25678563). Plays an important role in platelet activation and aggregation (By similarity). Regulates calcium mobilization and integrin ITGA2B:ITGB3 bidirectional signaling via increased ROS production as well as by facilitating the interaction between integrin and the cell cytoskeleton (By similarity). Binds heparan sulfate glycosaminoglycans (PubMed:11943775). Inhibits replication of influenza A virus (IAV) (PubMed:19207730). Inhibits ITCH/AIP4-mediated ubiquitination of matrix protein 1 (M1) of IAV by impairing the interaction of ITCH/AIP4 with M1, followed by the suppression of the nuclear export of M1, and finally reduction of the replication of IAV (PubMed:22347431, PubMed:30328013). {ECO:0000250|UniProtKB:P17742, ECO:0000269|PubMed:11943775, ECO:0000269|PubMed:15130913, ECO:0000269|PubMed:19207730, ECO:0000269|PubMed:2001362, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:21245143, ECO:0000269|PubMed:21593166, ECO:0000269|PubMed:22347431, ECO:0000269|PubMed:23180369, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:26095851, ECO:0000269|PubMed:30328013, ECO:0000269|PubMed:31063815}.; FUNCTION: (Microbial infection) May act as a mediator between human SARS coronavirus nucleoprotein and BSG/CD147 in the process of invasion of host cells by the virus (PubMed:15688292). {ECO:0000269|PubMed:15688292}.; FUNCTION: (Microbial infection) Stimulates RNA-binding ability of HCV NS5A in a peptidyl-prolyl cis-trans isomerase activity-dependent manner. {ECO:0000269|PubMed:21593166}. |
P82970 | HMGN5 | S20 | ochoa|psp | High mobility group nucleosome-binding domain-containing protein 5 (Nucleosome-binding protein 1) | Preferentially binds to euchromatin and modulates cellular transcription by counteracting linker histone-mediated chromatin compaction. {ECO:0000250}. |
P98161 | PKD1 | S4169 | psp | Polycystin-1 (PC1) (Autosomal dominant polycystic kidney disease 1 protein) | Component of a heteromeric calcium-permeable ion channel formed by PKD1 and PKD2 that is activated by interaction between PKD1 and a Wnt family member, such as WNT3A and WNT9B (PubMed:27214281). Both PKD1 and PKD2 are required for channel activity (PubMed:27214281). Involved in renal tubulogenesis (PubMed:12482949). Involved in fluid-flow mechanosensation by the primary cilium in renal epithelium (By similarity). Acts as a regulator of cilium length, together with PKD2 (By similarity). The dynamic control of cilium length is essential in the regulation of mechanotransductive signaling (By similarity). The cilium length response creates a negative feedback loop whereby fluid shear-mediated deflection of the primary cilium, which decreases intracellular cAMP, leads to cilium shortening and thus decreases flow-induced signaling (By similarity). May be an ion-channel regulator. Involved in adhesive protein-protein and protein-carbohydrate interactions. Likely to be involved with polycystin-1-interacting protein 1 in the detection, sequestration and exocytosis of senescent mitochondria (PubMed:37681898). {ECO:0000250|UniProtKB:O08852, ECO:0000269|PubMed:12482949, ECO:0000269|PubMed:27214281, ECO:0000269|PubMed:37681898}. |
Q00534 | CDK6 | S290 | ochoa | Cyclin-dependent kinase 6 (EC 2.7.11.22) (Cell division protein kinase 6) (Serine/threonine-protein kinase PLSTIRE) | Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and negatively regulates cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans. May play a role in the centrosome organization during the cell cycle phases (PubMed:23918663). {ECO:0000269|PubMed:12833137, ECO:0000269|PubMed:14985467, ECO:0000269|PubMed:15254224, ECO:0000269|PubMed:15809340, ECO:0000269|PubMed:17420273, ECO:0000269|PubMed:17431401, ECO:0000269|PubMed:20333249, ECO:0000269|PubMed:20668294, ECO:0000269|PubMed:23918663, ECO:0000269|PubMed:8114739}. |
Q00537 | CDK17 | S176 | ochoa | Cyclin-dependent kinase 17 (EC 2.7.11.22) (Cell division protein kinase 17) (PCTAIRE-motif protein kinase 2) (Serine/threonine-protein kinase PCTAIRE-2) | May play a role in terminally differentiated neurons. Has a Ser/Thr-phosphorylating activity for histone H1 (By similarity). {ECO:0000250}. |
Q02241 | KIF23 | S160 | ochoa | Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}. |
Q02878 | RPL6 | S143 | ochoa | Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}. |
Q03164 | KMT2A | S610 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03164 | KMT2A | S2412 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03164 | KMT2A | S3563 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q07157 | TJP1 | S175 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q07866 | KLC1 | S524 | ochoa | Kinesin light chain 1 (KLC 1) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport (PubMed:21385839). The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250|UniProtKB:P37285, ECO:0000269|PubMed:21385839}. |
Q12802 | AKAP13 | S1507 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12923 | PTPN13 | S345 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12929 | EPS8 | S502 | psp | Epidermal growth factor receptor kinase substrate 8 | Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}. |
Q13191 | CBLB | S846 | ochoa | E3 ubiquitin-protein ligase CBL-B (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene b) (RING finger protein 56) (RING-type E3 ubiquitin transferase CBL-B) (SH3-binding protein CBL-B) (Signal transduction protein CBL-B) | E3 ubiquitin-protein ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and transfers it to substrates, generally promoting their degradation by the proteasome. Negatively regulates TCR (T-cell receptor), BCR (B-cell receptor) and FCER1 (high affinity immunoglobulin epsilon receptor) signal transduction pathways. In naive T-cells, inhibits VAV1 activation upon TCR engagement and imposes a requirement for CD28 costimulation for proliferation and IL-2 production. Also acts by promoting PIK3R1/p85 ubiquitination, which impairs its recruitment to the TCR and subsequent activation. In activated T-cells, inhibits PLCG1 activation and calcium mobilization upon restimulation and promotes anergy. In B-cells, acts by ubiquitinating SYK and promoting its proteasomal degradation. Slightly promotes SRC ubiquitination. May be involved in EGFR ubiquitination and internalization. May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBL, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:Q3TTA7, ECO:0000269|PubMed:10022120, ECO:0000269|PubMed:10086340, ECO:0000269|PubMed:11087752, ECO:0000269|PubMed:11526404, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:20525694}. |
Q13191 | CBLB | S886 | ochoa | E3 ubiquitin-protein ligase CBL-B (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene b) (RING finger protein 56) (RING-type E3 ubiquitin transferase CBL-B) (SH3-binding protein CBL-B) (Signal transduction protein CBL-B) | E3 ubiquitin-protein ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and transfers it to substrates, generally promoting their degradation by the proteasome. Negatively regulates TCR (T-cell receptor), BCR (B-cell receptor) and FCER1 (high affinity immunoglobulin epsilon receptor) signal transduction pathways. In naive T-cells, inhibits VAV1 activation upon TCR engagement and imposes a requirement for CD28 costimulation for proliferation and IL-2 production. Also acts by promoting PIK3R1/p85 ubiquitination, which impairs its recruitment to the TCR and subsequent activation. In activated T-cells, inhibits PLCG1 activation and calcium mobilization upon restimulation and promotes anergy. In B-cells, acts by ubiquitinating SYK and promoting its proteasomal degradation. Slightly promotes SRC ubiquitination. May be involved in EGFR ubiquitination and internalization. May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBL, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:Q3TTA7, ECO:0000269|PubMed:10022120, ECO:0000269|PubMed:10086340, ECO:0000269|PubMed:11087752, ECO:0000269|PubMed:11526404, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:20525694}. |
Q13224 | GRIN2B | S940 | psp | Glutamate receptor ionotropic, NMDA 2B (GluN2B) (Glutamate [NMDA] receptor subunit epsilon-2) (N-methyl D-aspartate receptor subtype 2B) (NMDAR2B) (NR2B) (N-methyl-D-aspartate receptor subunit 3) (NR3) (hNR3) | Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). Participates in synaptic plasticity for learning and memory formation by contributing to the long-term depression (LTD) of hippocampus membrane currents (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity). {ECO:0000250|UniProtKB:P35438, ECO:0000250|UniProtKB:Q01097, ECO:0000269|PubMed:24272827, ECO:0000269|PubMed:24863970, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27839871, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:8768735}. |
Q13418 | ILK | S232 | ochoa | Scaffold protein ILK (ILK-1) (ILK-2) (Inactive integrin-linked kinase) (p59ILK) | Scaffold protein which mediates protein-protein interactions during a range of cellular events including focal adhesion assembly, cell adhesion and cell migration (PubMed:17420447, PubMed:20005845, PubMed:30367047, PubMed:32528174). Regulates integrin-mediated signal transduction by contributing to inside-out integrin activation (By similarity). Recruits PARVA and LIMS1/PITCH to form the heterotrimeric IPP (ILK-PINCH-PARVIN) complex which binds to F-actin via the C-terminal tail of LIMS1 and the N-terminal region of PARVA, promoting F-actin filament bundling, a process required to generate force for actin cytoskeleton reorganization and subsequent dynamic cell adhesion events such as cell spreading and migration (PubMed:30367047). Binding to PARVA promotes effective assembly of ILK into focal adhesions while PARVA-bound ILK can simultaneously engage integrin-beta cytoplasmic tails to mediate cell adhesion (PubMed:20005845). Plays a role with PARVG in promoting the cell adhesion and spreading of leukocytes (PubMed:16517730). Acts as an upstream effector of both AKT1/PKB and GSK3 (PubMed:9736715). Mediates trafficking of caveolae to the cell surface in an ITGB1-dependent manner by promoting the recruitment of IQGAP1 to the cell cortex which cooperates with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Required for the maintenance of mitotic spindle integrity by promoting phosphorylation of TACC3 by AURKA (PubMed:18283114). Associates with chromatin and may act as a negative regulator of transcription when located in the nucleus (PubMed:17420447). {ECO:0000250|UniProtKB:O55222, ECO:0000250|UniProtKB:Q99J82, ECO:0000269|PubMed:16517730, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:18283114, ECO:0000269|PubMed:20005845, ECO:0000269|PubMed:30367047, ECO:0000269|PubMed:32528174, ECO:0000269|PubMed:9736715}. |
Q13496 | MTM1 | S23 | ochoa | Myotubularin (EC 3.1.3.95) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Phosphatidylinositol-3-phosphate phosphatase) | Lipid phosphatase which dephosphorylates phosphatidylinositol 3-monophosphate (PI3P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) (PubMed:10900271, PubMed:11001925, PubMed:12646134, PubMed:14722070). Has also been shown to dephosphorylate phosphotyrosine- and phosphoserine-containing peptides (PubMed:9537414). Negatively regulates EGFR degradation through regulation of EGFR trafficking from the late endosome to the lysosome (PubMed:14722070). Plays a role in vacuolar formation and morphology. Regulates desmin intermediate filament assembly and architecture (PubMed:21135508). Plays a role in mitochondrial morphology and positioning (PubMed:21135508). Required for skeletal muscle maintenance but not for myogenesis (PubMed:21135508). In skeletal muscles, stabilizes MTMR12 protein levels (PubMed:23818870). {ECO:0000269|PubMed:10900271, ECO:0000269|PubMed:11001925, ECO:0000269|PubMed:12646134, ECO:0000269|PubMed:14722070, ECO:0000269|PubMed:21135508, ECO:0000269|PubMed:23818870, ECO:0000269|PubMed:9537414}. |
Q13573 | SNW1 | S402 | ochoa | SNW domain-containing protein 1 (Nuclear protein SkiP) (Nuclear receptor coactivator NCoA-62) (Ski-interacting protein) | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Required for the specific splicing of CDKN1A pre-mRNA; the function probably involves the recruitment of U2AF2 to the mRNA. May recruit PPIL1 to the spliceosome. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in transcriptional regulation. Modulates TGF-beta-mediated transcription via association with SMAD proteins, MYOD1-mediated transcription via association with PABPN1, RB1-mediated transcriptional repression, and retinoid-X receptor (RXR)- and vitamin D receptor (VDR)-dependent gene transcription in a cell line-specific manner probably involving coactivators NCOA1 and GRIP1. Is involved in NOTCH1-mediated transcriptional activation. Binds to multimerized forms of Notch intracellular domain (NICD) and is proposed to recruit transcriptional coactivators such as MAML1 to form an intermediate preactivation complex which associates with DNA-bound CBF-1/RBPJ to form a transcriptional activation complex by releasing SNW1 and redundant NOTCH1 NICD. {ECO:0000269|PubMed:10644367, ECO:0000269|PubMed:11278756, ECO:0000269|PubMed:11371506, ECO:0000269|PubMed:11514567, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12840015, ECO:0000269|PubMed:14985122, ECO:0000269|PubMed:15194481, ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:19818711, ECO:0000269|PubMed:21245387, ECO:0000269|PubMed:21460037, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:9632709, ECO:0000305|PubMed:33509932}.; FUNCTION: (Microbial infection) Is recruited by HIV-1 Tat to Tat:P-TEFb:TAR RNA complexes and is involved in Tat transcription by recruitment of MYC, MEN1 and TRRAP to the HIV promoter. {ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:19818711}.; FUNCTION: (Microbial infection) Proposed to be involved in transcriptional activation by EBV EBNA2 of CBF-1/RBPJ-repressed promoters. {ECO:0000269|PubMed:10644367}. |
Q13615 | MTMR3 | S647 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR3 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 1) (FYVE-DSP1) (Myotubularin-related protein 3) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Phosphatidylinositol-3-phosphate phosphatase) (Zinc finger FYVE domain-containing protein 10) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:10733931, PubMed:11302699, PubMed:11676921, PubMed:12646134). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic (PubMed:11302699, PubMed:11676921, PubMed:12646134). Could also have a molecular sequestering/adapter activity and regulate biological processes independently of its phosphatase activity. It includes the regulation of midbody abscission during mitotic cytokinesis (PubMed:25659891). {ECO:0000269|PubMed:10733931, ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:11676921, ECO:0000269|PubMed:12646134, ECO:0000269|PubMed:25659891}. |
Q13796 | SHROOM2 | S208 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q13905 | RAPGEF1 | S477 | ochoa | Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) | Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}. |
Q14162 | SCARF1 | S589 | ochoa | Scavenger receptor class F member 1 (Acetyl LDL receptor) (Scavenger receptor expressed by endothelial cells 1) (SREC-I) | Mediates the binding and degradation of acetylated low density lipoprotein (Ac-LDL). Mediates heterophilic interactions, suggesting a function as adhesion protein. Plays a role in the regulation of neurite-like outgrowth (By similarity). {ECO:0000250}. |
Q14571 | ITPR2 | S1855 | ochoa | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR2 (IP3 receptor isoform 2) (IP3R 2) (InsP3R2) (Inositol 1,4,5-trisphosphate receptor type 2) (Type 2 inositol 1,4,5-trisphosphate receptor) (Type 2 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that upon inositol 1,4,5-trisphosphate binding transports calcium from the endoplasmic reticulum lumen to cytoplasm. Exists in two states; a long-lived closed state where the channel is essentially 'parked' with only very rare visits to an open state and that ligands facilitate the transition from the 'parked' state into a 'drive' mode represented by periods of bursting activity (By similarity). {ECO:0000250|UniProtKB:Q9Z329}. |
Q14676 | MDC1 | S598 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14683 | SMC1A | S970 | ochoa | Structural maintenance of chromosomes protein 1A (SMC protein 1A) (SMC-1-alpha) (SMC-1A) (Sb1.8) | Involved in chromosome cohesion during cell cycle and in DNA repair. Central component of cohesin complex. The cohesin complex is required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. Involved in DNA repair via its interaction with BRCA1 and its related phosphorylation by ATM, or via its phosphorylation by ATR. Works as a downstream effector both in the ATM/NBS1 branch and in the ATR/MSH2 branch of S-phase checkpoint. {ECO:0000269|PubMed:11877377}. |
Q14697 | GANAB | S916 | ochoa | Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) | Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}. |
Q14980 | NUMA1 | S1901 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q14980 | NUMA1 | S1991 | ochoa|psp | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q15061 | WDR43 | S85 | ochoa | WD repeat-containing protein 43 (U3 small nucleolar RNA-associated protein 5 homolog) | Ribosome biogenesis factor that coordinates hyperactive transcription and ribogenesis (PubMed:17699751). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I (PubMed:17699751, PubMed:34516797). Essential for stem cell pluripotency and embryonic development. In the nucleoplasm, recruited by promoter-associated/nascent transcripts and transcription to active promoters where it facilitates releases of elongation factor P-TEFb and paused RNA polymerase II to allow transcription elongation and maintain high-level expression of its targets genes (By similarity). {ECO:0000250|UniProtKB:Q6ZQL4, ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797}. |
Q15111 | PLCL1 | S47 | ochoa | Inactive phospholipase C-like protein 1 (PLC-L1) (Phospholipase C-deleted in lung carcinoma) (Phospholipase C-related but catalytically inactive protein) (PRIP) | Involved in an inositol phospholipid-based intracellular signaling cascade. Shows no PLC activity to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol. Component in the phospho-dependent endocytosis process of GABA A receptor (By similarity). Regulates the turnover of receptors and thus contributes to the maintenance of GABA-mediated synaptic inhibition. Its aberrant expression could contribute to the genesis and progression of lung carcinoma. Acts as an inhibitor of PPP1C. {ECO:0000250, ECO:0000269|PubMed:17254016}. |
Q15233 | NONO | S209 | ochoa | Non-POU domain-containing octamer-binding protein (NonO protein) (54 kDa nuclear RNA- and DNA-binding protein) (p54(nrb)) (p54nrb) (55 kDa nuclear protein) (NMT55) (DNA-binding p52/p100 complex, 52 kDa subunit) | DNA- and RNA binding protein, involved in several nuclear processes (PubMed:11525732, PubMed:12403470, PubMed:26571461). Binds the conventional octamer sequence in double-stranded DNA (PubMed:11525732, PubMed:12403470, PubMed:26571461). Also binds single-stranded DNA and RNA at a site independent of the duplex site (PubMed:11525732, PubMed:12403470, PubMed:26571461). Involved in pre-mRNA splicing, probably as a heterodimer with SFPQ (PubMed:11525732, PubMed:12403470, PubMed:26571461). Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3' side of U5 snRNA stem 1b (PubMed:12403470). Together with PSPC1, required for the formation of nuclear paraspeckles (PubMed:22416126). The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs (PubMed:11525732). The SFPQ-NONO heteromer may be involved in DNA unwinding by modulating the function of topoisomerase I/TOP1 (PubMed:10858305). The SFPQ-NONO heteromer may be involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination and may stabilize paired DNA ends (PubMed:15590677). In vitro, the complex strongly stimulates DNA end joining, binds directly to the DNA substrates and cooperates with the Ku70/G22P1-Ku80/XRCC5 (Ku) dimer to establish a functional preligation complex (PubMed:15590677). NONO is involved in transcriptional regulation. The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional activity (PubMed:11897684). NONO binds to an enhancer element in long terminal repeats of endogenous intracisternal A particles (IAPs) and activates transcription (By similarity). Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer (By similarity). Important for the functional organization of GABAergic synapses (By similarity). Plays a specific and important role in the regulation of synaptic RNAs and GPHN/gephyrin scaffold structure, through the regulation of GABRA2 transcript (By similarity). Plays a key role during neuronal differentiation by recruiting TET1 to genomic loci and thereby regulating 5-hydroxymethylcytosine levels (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728, PubMed:30270045). Promotes activation of the cGAS-STING pathway in response to HIV-2 infection: acts by interacting with HIV-2 Capsid protein p24, thereby promoting detection of viral DNA by CGAS, leading to CGAS-mediated inmmune activation (PubMed:30270045). In contrast, the weak interaction with HIV-1 Capsid protein p24 does not allow activation of the cGAS-STING pathway (PubMed:30270045). {ECO:0000250|UniProtKB:Q99K48, ECO:0000269|PubMed:10858305, ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:11897684, ECO:0000269|PubMed:12403470, ECO:0000269|PubMed:15590677, ECO:0000269|PubMed:22416126, ECO:0000269|PubMed:26571461, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:30270045}. |
Q15746 | MYLK | S1772 | ochoa|psp | Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] | Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}. |
Q15746 | MYLK | S1852 | ochoa | Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] | Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}. |
Q16531 | DDB1 | S116 | ochoa | DNA damage-binding protein 1 (DDB p127 subunit) (DNA damage-binding protein a) (DDBa) (Damage-specific DNA-binding protein 1) (HBV X-associated protein 1) (XAP-1) (UV-damaged DNA-binding factor) (UV-damaged DNA-binding protein 1) (UV-DDB 1) (XPE-binding factor) (XPE-BF) (Xeroderma pigmentosum group E-complementing protein) (XPCe) | Protein, which is both involved in DNA repair and protein ubiquitination, as part of the UV-DDB complex and DCX (DDB1-CUL4-X-box) complexes, respectively (PubMed:14739464, PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16407252, PubMed:16482215, PubMed:16940174, PubMed:17079684). Core component of the UV-DDB complex (UV-damaged DNA-binding protein complex), a complex that recognizes UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). Also functions as a component of numerous distinct DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355, PubMed:28886238). The functional specificity of the DCX E3 ubiquitin-protein ligase complex is determined by the variable substrate recognition component recruited by DDB1 (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355). DCX(DDB2) (also known as DDB1-CUL4-ROC1, CUL4-DDB-ROC1 and CUL4-DDB-RBX1) may ubiquitinate histone H2A, histone H3 and histone H4 at sites of UV-induced DNA damage (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). The ubiquitination of histones may facilitate their removal from the nucleosome and promote subsequent DNA repair (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). DCX(DDB2) also ubiquitinates XPC, which may enhance DNA-binding by XPC and promote NER (PubMed:15882621). DCX(DTL) plays a role in PCNA-dependent polyubiquitination of CDT1 and MDM2-dependent ubiquitination of TP53 in response to radiation-induced DNA damage and during DNA replication (PubMed:17041588). DCX(ERCC8) (the CSA complex) plays a role in transcription-coupled repair (TCR) (PubMed:12732143, PubMed:32355176, PubMed:38316879). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). DDB1-mediated CRY1 degradation promotes FOXO1 protein stability and FOXO1-mediated gluconeogenesis in the liver (By similarity). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). Maternal factor required for proper zygotic genome activation and genome reprogramming (By similarity). {ECO:0000250|UniProtKB:Q3U1J4, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:14739464, ECO:0000269|PubMed:15448697, ECO:0000269|PubMed:15882621, ECO:0000269|PubMed:16260596, ECO:0000269|PubMed:16407242, ECO:0000269|PubMed:16407252, ECO:0000269|PubMed:16473935, ECO:0000269|PubMed:16482215, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:16940174, ECO:0000269|PubMed:17041588, ECO:0000269|PubMed:17079684, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18381890, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19966799, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:25043012, ECO:0000269|PubMed:25108355, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:28886238, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:38316879}. |
Q16584 | MAP3K11 | S548 | ochoa|psp | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q17RH5 | RAPGEF2 | S1164 | psp | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (Neural RAP guanine nucleotide exchange protein) (PDZ domain-containing guanine nucleotide exchange factor 1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | None |
Q18PE1 | DOK7 | S246 | ochoa | Protein Dok-7 (Downstream of tyrosine kinase 7) | Probable muscle-intrinsic activator of MUSK that plays an essential role in neuromuscular synaptogenesis. Acts in aneural activation of MUSK and subsequent acetylcholine receptor (AchR) clustering in myotubes. Induces autophosphorylation of MUSK. {ECO:0000269|PubMed:20603078}. |
Q3KQU3 | MAP7D1 | S232 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3L8U1 | CHD9 | S2286 | ochoa | Chromodomain-helicase-DNA-binding protein 9 (CHD-9) (EC 3.6.4.-) (ATP-dependent helicase CHD9) (Chromatin-related mesenchymal modulator) (CReMM) (Chromatin-remodeling factor CHROM1) (Kismet homolog 2) (PPAR-alpha-interacting complex protein 320 kDa) (Peroxisomal proliferator-activated receptor A-interacting complex 320 kDa protein) | Probable ATP-dependent chromatin-remodeling factor. Acts as a transcriptional coactivator for PPARA and possibly other nuclear receptors. Has DNA-dependent ATPase activity and binds to A/T-rich DNA. Associates with A/T-rich regulatory regions in promoters of genes that participate in the differentiation of progenitors during osteogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:16095617, ECO:0000269|PubMed:16554032}. |
Q3T8J9 | GON4L | S999 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q52WX2 | SBK1 | S209 | ochoa | Serine/threonine-protein kinase SBK1 (EC 2.7.11.1) (SH3 domain-binding kinase 1) | May be involved in signal-transduction pathways related to the control of brain development. {ECO:0000250}. |
Q53ET0 | CRTC2 | S65 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q58WW2 | DCAF6 | S649 | ochoa | DDB1- and CUL4-associated factor 6 (Androgen receptor complex-associated protein) (ARCAP) (IQ motif and WD repeat-containing protein 1) (Nuclear receptor interaction protein) (NRIP) | Ligand-dependent coactivator of nuclear receptors. Enhance transcriptional activity of the nuclear receptors NR3C1 and AR. May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:15784617, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240}. |
Q5BJF6 | ODF2 | S106 | ochoa | Outer dense fiber protein 2 (Cenexin) (Outer dense fiber of sperm tails protein 2) | Seems to be a major component of sperm tail outer dense fibers (ODF). ODFs are filamentous structures located on the outside of the axoneme in the midpiece and principal piece of the mammalian sperm tail and may help to maintain the passive elastic structures and elastic recoil of the sperm tail. May have a modulating influence on sperm motility. Functions as a general scaffold protein that is specifically localized at the distal/subdistal appendages of mother centrioles. Component of the centrosome matrix required for the localization of PLK1 and NIN to the centrosomes. Required for the formation and/or maintenance of normal CETN1 assembly. {ECO:0000269|PubMed:16966375}. |
Q5JWF2 | GNAS | S992 | ochoa | Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas (EC 3.6.5.-) (Adenylate cyclase-stimulating G alpha protein) (Extra large alphas protein) (XLalphas) | Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs). The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modulated by numerous regulatory proteins. Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP. GNAS functions downstream of several GPCRs, including beta-adrenergic receptors. XLas isoforms interact with the same set of receptors as Gnas isoforms. {ECO:0000250|UniProtKB:Q6R0H7}. |
Q5R3F8 | ELFN2 | S741 | ochoa | Protein phosphatase 1 regulatory subunit 29 (Extracellular leucine-rich repeat and fibronectin type III domain-containing protein 2) (Leucine-rich repeat and fibronectin type-III domain-containing protein 6) (Leucine-rich repeat-containing protein 62) | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. {ECO:0000269|PubMed:19389623}. |
Q5SW79 | CEP170 | S1101 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SYE7 | NHSL1 | S639 | ochoa | NHS-like protein 1 | None |
Q5T0W9 | FAM83B | S388 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T0W9 | FAM83B | S466 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5VUA4 | ZNF318 | S653 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VWQ8 | DAB2IP | S289 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q63HQ0 | AP1AR | S171 | ochoa | AP-1 complex-associated regulatory protein (2c18) (Adaptor-related protein complex 1-associated regulatory protein) (Gamma-1-adaptin brefeldin A resistance protein) (GBAR) (Gamma-BAR) (Gamma-A1-adaptin and kinesin interactor) (Gadkin) | Necessary for adaptor protein complex 1 (AP-1)-dependent transport between the trans-Golgi network and endosomes. Regulates the membrane association of AP1G1/gamma1-adaptin, one of the subunits of the AP-1 adaptor complex. The direct interaction with AP1G1/gamma1-adaptin attenuates the release of the AP-1 complex from membranes. Regulates endosomal membrane traffic via association with AP-1 and KIF5B thus linking kinesin-based plus-end-directed microtubular transport to AP-1-dependent membrane traffic. May act as effector of AP-1 in calcium-induced endo-lysosome secretion. Inhibits Arp2/3 complex function; negatively regulates cell spreading, size and motility via intracellular sequestration of the Arp2/3 complex. {ECO:0000269|PubMed:15775984, ECO:0000269|PubMed:19706427, ECO:0000269|PubMed:21525240, ECO:0000269|PubMed:22689987}. |
Q6FIF0 | ZFAND6 | S176 | ochoa | AN1-type zinc finger protein 6 (Associated with PRK1 protein) (Zinc finger A20 domain-containing protein 3) | Involved in regulation of TNF-alpha induced NF-kappa-B activation and apoptosis. Involved in modulation of 'Lys-48'-linked polyubiquitination status of TRAF2 and decreases association of TRAF2 with RIPK1. Required for PTS1 target sequence-dependent protein import into peroxisomes and PEX5 stability; may cooperate with PEX6. In vitro involved in PEX5 export from the cytosol to peroxisomes (By similarity). {ECO:0000250, ECO:0000269|PubMed:19285159, ECO:0000269|PubMed:21810480}. |
Q6IQ23 | PLEKHA7 | S430 | ochoa | Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) | Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}. |
Q6PL18 | ATAD2 | S1302 | ochoa | ATPase family AAA domain-containing protein 2 (EC 3.6.1.-) (AAA nuclear coregulator cancer-associated protein) (ANCCA) | May be a transcriptional coactivator of the nuclear receptor ESR1 required to induce the expression of a subset of estradiol target genes, such as CCND1, MYC and E2F1. May play a role in the recruitment or occupancy of CREBBP at some ESR1 target gene promoters. May be required for histone hyperacetylation. Involved in the estrogen-induced cell proliferation and cell cycle progression of breast cancer cells. {ECO:0000269|PubMed:17998543}. |
Q6T4P5 | PLPPR3 | S353 | ochoa | Phospholipid phosphatase-related protein type 3 (Inactive phospholipid phosphatase PLPPR3) (Lipid phosphate phosphatase-related protein type 3) (PAP-2-like protein 2) (Plasticity-related gene 2 protein) (PRG-2) | None |
Q6XZF7 | DNMBP | S495 | ochoa | Dynamin-binding protein (Scaffold protein Tuba) | Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}. |
Q6ZRV2 | FAM83H | S411 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZRV2 | FAM83H | S785 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q71F23 | CENPU | S108 | ochoa | Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}. |
Q7KZ85 | SUPT6H | S91 | ochoa | Transcription elongation factor SPT6 (hSPT6) (Histone chaperone suppressor of Ty6) (Tat-cotransactivator 2 protein) (Tat-CT2 protein) | Histone H3-H4 chaperone that plays a key role in the regulation of transcription elongation and mRNA processing. Enhances the transcription elongation by RNA polymerase II (RNAPII) and is also required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat. Besides chaperoning histones in transcription, acts to transport and splice mRNA by forming a complex with IWS1 and the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2), to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. SUPT6H via its association with SETD1A, regulates both class-switch recombination and somatic hypermutation through formation of H3K4me3 epigenetic marks on activation-induced cytidine deaminase (AICDA) target loci. Promotes the activation of the myogenic gene program by entailing erasure of the repressive H3K27me3 epigenetic mark through stabilization of the chromatin interaction of the H3K27 demethylase KDM6A. {ECO:0000269|PubMed:15060154, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:22316138, ECO:0000269|PubMed:23503590, ECO:0000269|PubMed:9514752}. |
Q86SQ0 | PHLDB2 | S468 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86UX7 | FERMT3 | S115 | ochoa | Fermitin family homolog 3 (Kindlin-3) (MIG2-like protein) (Unc-112-related protein 2) | Plays a central role in cell adhesion in hematopoietic cells (PubMed:19234463, PubMed:26359933). Acts by activating the integrin beta-1-3 (ITGB1, ITGB2 and ITGB3) (By similarity). Required for integrin-mediated platelet adhesion and leukocyte adhesion to endothelial cells (PubMed:19234460). Required for activation of integrin beta-2 (ITGB2) in polymorphonuclear granulocytes (PMNs) (By similarity). {ECO:0000250|UniProtKB:Q8K1B8, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463, ECO:0000269|PubMed:26359933}.; FUNCTION: Isoform 2 may act as a repressor of NF-kappa-B and apoptosis. {ECO:0000269|PubMed:19064721, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463}. |
Q86V48 | LUZP1 | S724 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86X55 | CARM1 | S447 | psp | Histone-arginine methyltransferase CARM1 (EC 2.1.1.319) (Coactivator-associated arginine methyltransferase 1) (Protein arginine N-methyltransferase 4) | Methylates (mono- and asymmetric dimethylation) the guanidino nitrogens of arginyl residues in several proteins involved in DNA packaging, transcription regulation, pre-mRNA splicing, and mRNA stability (PubMed:12237300, PubMed:16497732, PubMed:19405910). Recruited to promoters upon gene activation together with histone acetyltransferases from EP300/P300 and p160 families, methylates histone H3 at 'Arg-17' (H3R17me), forming mainly asymmetric dimethylarginine (H3R17me2a), leading to activation of transcription via chromatin remodeling (PubMed:12237300, PubMed:16497732, PubMed:19405910). During nuclear hormone receptor activation and TCF7L2/TCF4 activation, acts synergically with EP300/P300 and either one of the p160 histone acetyltransferases NCOA1/SRC1, NCOA2/GRIP1 and NCOA3/ACTR or CTNNB1/beta-catenin to activate transcription (By similarity). During myogenic transcriptional activation, acts together with NCOA3/ACTR as a coactivator for MEF2C (By similarity). During monocyte inflammatory stimulation, acts together with EP300/P300 as a coactivator for NF-kappa-B (By similarity). Acts as a coactivator for PPARG, promotes adipocyte differentiation and the accumulation of brown fat tissue (By similarity). Plays a role in the regulation of pre-mRNA alternative splicing by methylation of splicing factors (By similarity). Also seems to be involved in p53/TP53 transcriptional activation (By similarity). Methylates EP300/P300, both at 'Arg-2142', which may loosen its interaction with NCOA2/GRIP1, and at 'Arg-580' and 'Arg-604' in the KIX domain, which impairs its interaction with CREB and inhibits CREB-dependent transcriptional activation (PubMed:15731352). Also methylates arginine residues in RNA-binding proteins PABPC1, ELAVL1 and ELAV4, which may affect their mRNA-stabilizing properties and the half-life of their target mRNAs (By similarity). Acts as a transcriptional coactivator of ACACA/acetyl-CoA carboxylase by enriching H3R17 methylation at its promoter, thereby positively regulating fatty acid synthesis (By similarity). Independently of its methyltransferase activity, involved in replication fork progression: promotes PARP1 recruitment to replication forks, leading to poly-ADP-ribosylation of chromatin at replication forks and reduced fork speed (PubMed:33412112). {ECO:0000250|UniProtKB:Q9WVG6, ECO:0000269|PubMed:12237300, ECO:0000269|PubMed:15731352, ECO:0000269|PubMed:16497732, ECO:0000269|PubMed:19405910, ECO:0000269|PubMed:33412112}. |
Q86XD5 | FAM131B | S47 | ochoa | Protein FAM131B | None |
Q86YC2 | PALB2 | S518 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YR5 | GPSM1 | S413 | ochoa | G-protein-signaling modulator 1 (Activator of G-protein signaling 3) | Guanine nucleotide dissociation inhibitor (GDI) which functions as a receptor-independent activator of heterotrimeric G-protein signaling. Keeps G(i/o) alpha subunit in its GDP-bound form thus uncoupling heterotrimeric G-proteins signaling from G protein-coupled receptors. Controls spindle orientation and asymmetric cell fate of cerebral cortical progenitors. May also be involved in macroautophagy in intestinal cells. May play a role in drug addiction. {ECO:0000269|PubMed:11024022, ECO:0000269|PubMed:12642577}. |
Q8IVT2 | MISP | S348 | ochoa | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8IWC1 | MAP7D3 | S165 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IWV7 | UBR1 | S1593 | ochoa | E3 ubiquitin-protein ligase UBR1 (EC 2.3.2.27) (N-recognin-1) (Ubiquitin-protein ligase E3-alpha-1) (Ubiquitin-protein ligase E3-alpha-I) | E3 ubiquitin-protein ligase which is a component of the N-end rule pathway (PubMed:15548684, PubMed:16311597, PubMed:18162545, PubMed:20835242, PubMed:28392261). Recognizes and binds proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation (PubMed:18162545, PubMed:20835242, PubMed:28392261). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:18162545). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:20835242). In contrast, it strongly binds methylated N-degrons (PubMed:28392261). Binds leucine and is a negative regulator of the leucine-mTOR signaling pathway, thereby controlling cell growth (PubMed:20298436). {ECO:0000269|PubMed:15548684, ECO:0000269|PubMed:16311597, ECO:0000269|PubMed:18162545, ECO:0000269|PubMed:20298436, ECO:0000269|PubMed:20835242, ECO:0000269|PubMed:28392261}. |
Q8IXJ9 | ASXL1 | S526 | ochoa | Polycomb group protein ASXL1 (Additional sex combs-like protein 1) | Probable Polycomb group (PcG) protein involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor gamma (PPARG) (PubMed:16606617). Acts as a coactivator of RARA and RXRA through association with NCOA1 (PubMed:16606617). Acts as a corepressor for PPARG and suppresses its adipocyte differentiation-inducing activity (By similarity). Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:20436459, PubMed:30664650, PubMed:36180891). Acts as a sensor of N(6)-methyladenine methylation on DNA (6mA): recognizes and binds 6mA DNA, leading to its ubiquitination and degradation by TRIP12, thereby inactivating the PR-DUB complex and regulating Polycomb silencing (PubMed:30982744). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). Together with BAP1, negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000250|UniProtKB:P59598, ECO:0000269|PubMed:16606617, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:30982744, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:36180891}. |
Q8IZH2 | XRN1 | S844 | ochoa | 5'-3' exoribonuclease 1 (EC 3.1.13.-) (Strand-exchange protein 1 homolog) | Major 5'-3' exoribonuclease involved in mRNA decay. Required for the 5'-3'-processing of the G4 tetraplex-containing DNA and RNA substrates. The kinetic of hydrolysis is faster for G4 RNA tetraplex than for G4 DNA tetraplex and monomeric RNA tetraplex. Binds to RNA and DNA (By similarity). Plays a role in replication-dependent histone mRNA degradation. May act as a tumor suppressor protein in osteogenic sarcoma (OGS). {ECO:0000250|UniProtKB:P97789, ECO:0000269|PubMed:18172165}. |
Q8IZT6 | ASPM | S244 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8N1G4 | LRRC47 | S431 | ochoa | Leucine-rich repeat-containing protein 47 | None |
Q8N2G8 | GHDC | S87 | ochoa | GH3 domain-containing protein | None |
Q8N4C6 | NIN | S1837 | ochoa | Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) | Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}. |
Q8N668 | COMMD1 | S135 | ochoa | COMM domain-containing protein 1 (Protein Murr1) | Scaffold protein in the commander complex that is essential for endosomal recycling of transmembrane cargos; the commander complex is composed of the CCC subcomplex and the retriever subcomplex (PubMed:37172566, PubMed:38459129). Can modulate activity of cullin-RING E3 ubiquitin ligase (CRL) complexes by displacing CAND1; in vitro promotes CRL E3 activity and dissociates CAND1 from CUL1 and CUL2 (PubMed:21778237). Promotes ubiquitination of NF-kappa-B subunit RELA and its subsequent proteasomal degradation. Down-regulates NF-kappa-B activity (PubMed:15799966, PubMed:17183367, PubMed:20048074). Involved in the regulation of membrane expression and ubiquitination of SLC12A2 (PubMed:23515529). Modulates Na(+) transport in epithelial cells by regulation of apical cell surface expression of amiloride-sensitive sodium channel (ENaC) subunits and by promoting their ubiquitination presumably involving NEDD4L. Promotes the localization of SCNN1D to recycling endosomes (PubMed:14645214, PubMed:20237237, PubMed:21741370). Promotes CFTR cell surface expression through regulation of its ubiquitination (PubMed:21483833). Down-regulates SOD1 activity by interfering with its homodimerization (PubMed:20595380). Plays a role in copper ion homeostasis. Involved in copper-dependent ATP7A trafficking between the trans-Golgi network and vesicles in the cell periphery; the function is proposed to depend on its association within the CCC complex and cooperation with the WASH complex on early endosomes (PubMed:25355947). Can bind one copper ion per monomer (PubMed:17309234). May function to facilitate biliary copper excretion within hepatocytes. Binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) (PubMed:18940794). Involved in the regulation of HIF1A-mediated transcription; competes with ARNT/Hif-1-beta for binding to HIF1A resulting in decreased DNA binding and impaired transcriptional activation by HIF-1 (PubMed:20458141). Negatively regulates neuroblastoma G1/S phase cell cycle progression and cell proliferation by stimulating ubiquitination of NF-kappa-B subunit RELA and NF-kappa-B degradation in a FAM107A- and actin-dependent manner (PubMed:28604741). {ECO:0000269|PubMed:14645214, ECO:0000269|PubMed:14685266, ECO:0000269|PubMed:15799966, ECO:0000269|PubMed:16573520, ECO:0000269|PubMed:17183367, ECO:0000269|PubMed:17309234, ECO:0000269|PubMed:20048074, ECO:0000269|PubMed:20237237, ECO:0000269|PubMed:20458141, ECO:0000269|PubMed:20595380, ECO:0000269|PubMed:21483833, ECO:0000269|PubMed:21741370, ECO:0000269|PubMed:21778237, ECO:0000269|PubMed:23515529, ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28604741, ECO:0000269|PubMed:37172566, ECO:0000269|PubMed:38459129}. |
Q8N6H7 | ARFGAP2 | S414 | ochoa | ADP-ribosylation factor GTPase-activating protein 2 (ARF GAP 2) (GTPase-activating protein ZNF289) (Zinc finger protein 289) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:17760859}. |
Q8NC24 | RELL2 | S49 | ochoa | RELT-like protein 2 | Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}. |
Q8NCD3 | HJURP | S649 | ochoa | Holliday junction recognition protein (14-3-3-associated AKT substrate) (Fetal liver-expressing gene 1 protein) (Up-regulated in lung cancer 9) | Centromeric protein that plays a central role in the incorporation and maintenance of histone H3-like variant CENPA at centromeres. Acts as a specific chaperone for CENPA and is required for the incorporation of newly synthesized CENPA molecules into nucleosomes at replicated centromeres. Prevents CENPA-H4 tetramerization and prevents premature DNA binding by the CENPA-H4 tetramer. Directly binds Holliday junctions. {ECO:0000269|PubMed:19410544, ECO:0000269|PubMed:19410545}. |
Q8NDT2 | RBM15B | S598 | ochoa | Putative RNA-binding protein 15B (One-twenty two protein 3) (HsOTT3) (HuOTT3) (RNA-binding motif protein 15B) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:16129689, PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:27602518). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Functions in the regulation of alternative or illicit splicing, possibly by regulating m6A methylation (PubMed:16129689). Inhibits pre-mRNA splicing (PubMed:21044963). Also functions as a mRNA export factor by acting as a cofactor for the nuclear export receptor NXF1 (PubMed:19586903). {ECO:0000269|PubMed:19586903, ECO:0000269|PubMed:21044963, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:16129689}. |
Q8NEZ5 | FBXO22 | S128 | ochoa | F-box only protein 22 (F-box protein FBX22p44) | Substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex that is implicated in the control of various cellular processes such as cell cycle control, transcriptional regulation, DNA damage repair, and apoptosis. Promotes the proteasome-dependent degradation of key sarcomeric proteins, such as alpha-actinin (ACTN2) and filamin-C (FLNC), essential for maintenance of normal contractile function. Acts as a key regulator of histone methylation marks namely H3K9 and H3K36 methylation through the regulation of histone demethylase KDM4A protein levels (PubMed:21768309). In complex with KDM4A, also regulates the abundance of TP53 by targeting methylated TP53 for degradation at the late senescent stage (PubMed:26868148). Under oxidative stress, promotes the ubiquitination and degradation of BACH1. Mechanistically, reactive oxygen species (ROS) covalently modify cysteine residues on the bZIP domain of BACH1, leading to its release from chromatin and making it accessible to FBXO22 (PubMed:39504958). Upon amino acid depletion, mediates 'Lys-27'-linked ubiquitination of MTOR and thereby inhibits substrate recruitment to mTORC1 (PubMed:37979583). Also inhibits SARS-CoV-2 replication by inducing NSP5 degradation (PubMed:39223933). {ECO:0000269|PubMed:21768309, ECO:0000269|PubMed:22972877, ECO:0000269|PubMed:26868148, ECO:0000269|PubMed:37979583, ECO:0000269|PubMed:39223933, ECO:0000269|PubMed:39504958}. |
Q8NF91 | SYNE1 | S6376 | ochoa | Nesprin-1 (Enaptin) (KASH domain-containing protein 1) (KASH1) (Myocyte nuclear envelope protein 1) (Myne-1) (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope protein 1) (Syne-1) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. May be involved in nucleus-centrosome attachment and nuclear migration in neural progenitors implicating LINC complex association with SUN1/2 and probably association with cytoplasmic dynein-dynactin motor complexes; SYNE1 and SYNE2 may act redundantly. Required for centrosome migration to the apical cell surface during early ciliogenesis. May be involved in nuclear remodeling during sperm head formation in spermatogenesis; a probable SUN3:SYNE1/KASH1 LINC complex may tether spermatid nuclei to posterior cytoskeletal structures such as the manchette. {ECO:0000250|UniProtKB:Q6ZWR6, ECO:0000269|PubMed:11792814, ECO:0000269|PubMed:18396275}. |
Q8TAF3 | WDR48 | S335 | ochoa | WD repeat-containing protein 48 (USP1-associated factor 1) (WD repeat endosomal protein) (p80) | Regulator of deubiquitinating complexes, which acts as a strong activator of USP1, USP12 and USP46 (PubMed:18082604, PubMed:19075014, PubMed:26388029, PubMed:31253762). Enhances the USP1-mediated deubiquitination of FANCD2; USP1 being almost inactive by itself (PubMed:18082604, PubMed:31253762). Activates deubiquitination by increasing the catalytic turnover without increasing the affinity of deubiquitinating enzymes for the substrate (PubMed:19075014, PubMed:27373336). Also activates deubiquitinating activity of complexes containing USP12 (PubMed:19075014, PubMed:27373336, PubMed:27650958). In complex with USP12, acts as a potential tumor suppressor by positively regulating PHLPP1 stability (PubMed:24145035). Docks at the distal end of the USP12 fingers domain and induces a cascade of structural changes leading to the activation of the enzyme (PubMed:27373336, PubMed:27650958). Together with RAD51AP1, promotes DNA repair by stimulating RAD51-mediated homologous recombination (PubMed:27239033, PubMed:27463890, PubMed:32350107). Binds single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) (PubMed:27239033, PubMed:31253762, PubMed:32350107). DNA-binding is required both for USP1-mediated deubiquitination of FANCD2 and stimulation of RAD51-mediated homologous recombination: both WDR48/UAF1 and RAD51AP1 have coordinated role in DNA-binding during these processes (PubMed:31253762, PubMed:32350107). Together with ATAD5 and by regulating USP1 activity, has a role in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:20147293). Together with ATAD5, has a role in recruiting RAD51 to stalled forks during replication stress (PubMed:31844045). {ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:19075014, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:24145035, ECO:0000269|PubMed:26388029, ECO:0000269|PubMed:27239033, ECO:0000269|PubMed:27373336, ECO:0000269|PubMed:27463890, ECO:0000269|PubMed:27650958, ECO:0000269|PubMed:31253762, ECO:0000269|PubMed:31844045, ECO:0000269|PubMed:32350107}.; FUNCTION: (Microbial infection) In case of infection by Herpesvirus saimiri, may play a role in vesicular transport or membrane fusion events necessary for transport to lysosomes. Induces lysosomal vesicle formation via interaction with Herpesvirus saimiri tyrosine kinase-interacting protein (TIP). Subsequently, TIP recruits tyrosine-protein kinase LCK, resulting in down-regulation of T-cell antigen receptor TCR. May play a role in generation of enlarged endosomal vesicles via interaction with TIP (PubMed:12196293). In case of infection by papillomavirus HPV11, promotes the maintenance of the viral genome via its interaction with HPV11 helicase E1 (PubMed:18032488). {ECO:0000269|PubMed:12196293, ECO:0000269|PubMed:18032488}. |
Q8TBZ3 | WDR20 | S353 | ochoa | WD repeat-containing protein 20 (Protein DMR) | Regulator of deubiquitinating complexes. Activates deubiquitinating activity of complexes containing USP12 (PubMed:20147737, PubMed:27373336). Anchors at the base of the ubiquitin-contacting loop of USP12 and remotely modulates the catalytic center of the enzyme (PubMed:27373336). Regulates shuttling of the USP12 deubiquitinase complex between the plasma membrane, cytoplasm and nucleus (PubMed:30466959). {ECO:0000269|PubMed:20147737, ECO:0000269|PubMed:27373336, ECO:0000269|PubMed:30466959}. |
Q8TD10 | MIPOL1 | S42 | ochoa | Mirror-image polydactyly gene 1 protein | None |
Q8TD19 | NEK9 | S332 | ochoa | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q8TDH9 | BLOC1S5 | S25 | ochoa | Biogenesis of lysosome-related organelles complex 1 subunit 5 (BLOC-1 subunit 5) (Protein Muted homolog) | Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes (PubMed:32565547). In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Plays a role in intracellular vesicle trafficking. {ECO:0000269|PubMed:17182842, ECO:0000269|PubMed:32565547}. |
Q8TEK3 | DOT1L | S1093 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEW0 | PARD3 | S174 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8WUA4 | GTF3C2 | S597 | ochoa | General transcription factor 3C polypeptide 2 (TF3C-beta) (Transcription factor IIIC 110 kDa subunit) (TFIIIC 110 kDa subunit) (TFIIIC110) (Transcription factor IIIC subunit beta) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. May play a direct role in stabilizing interactions of TFIIIC2 with TFIIIC1. |
Q8WUY9 | DEPDC1B | S160 | ochoa | DEP domain-containing protein 1B (HBV X-transactivated gene 8 protein) (HBV XAg-transactivated protein 8) | None |
Q8WWI1 | LMO7 | S221 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWI1 | LMO7 | S1044 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWK9 | CKAP2 | S628 | psp | Cytoskeleton-associated protein 2 (CTCL tumor antigen se20-10) (Tumor- and microtubule-associated protein) | Possesses microtubule stabilizing properties. Involved in regulating aneuploidy, cell cycling, and cell death in a p53/TP53-dependent manner (By similarity). {ECO:0000250}. |
Q8WY36 | BBX | S643 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q8WYJ6 | SEPTIN1 | S312 | psp | Septin-1 (LARP) (Peanut-like protein 3) (Serologically defined breast cancer antigen NY-BR-24) | Filament-forming cytoskeletal GTPase (By similarity). May play a role in cytokinesis (Potential). {ECO:0000250, ECO:0000305}. |
Q92521 | PIGB | S39 | ochoa | GPI alpha-1,2-mannosyltransferase 3 (EC 2.4.1.-) (GPI mannosyltransferase III) (GPI-MT-III) (Phosphatidylinositol-glycan biosynthesis class B protein) (PIG-B) | Alpha-1,2-mannosyltransferase that catalyzes the transfer of the third mannose, via an alpha-1,2 bond, from a dolichol-phosphate-mannose (Dol-P-Man) to an alpha-D-Man-(1->6)-2-PEtn-alpha-D-Man-(1->4)-alpha-D-GlcN-(1->6)-(1-radyl,2-acyl-sn-glycero-3-phospho)-2-acyl-inositol intermediate to generate an alpha-D-Man-(1->2)-alpha-D-Man-(1->6)-2-PEtn-alpha-D-Man-(1->4)-alpha-D-GlcN-(1->6)-(1-radyl,2-acyl-sn-glycero-3-phospho)-2-acyl-inositol (also termed H6) and participates in the nineth step of the glycosylphosphatidylinositol-anchor biosynthesis (PubMed:8861954). May also add the third mannose to an alpha-D-Man-(1->6)-alpha-D-Man-(1->4)-alpha-D-GlcN-(1->6)-(1-radyl,2-acyl-sn-glycero-3-phospho)-2-acyl-inositol (also termed H3) intermediate generating an alpha-D-Man-(1->2)-alpha-D-Man-(1->6)-alpha-D-Man-(1->4)-alpha-D-GlcN-(1->6)-(1-radyl,2-acyl-sn-glycero-3-phospho)-2-acyl-inositol (also termed H4) (Probable). {ECO:0000269|PubMed:8861954, ECO:0000305|PubMed:17311586}. |
Q92547 | TOPBP1 | S853 | ochoa|psp | DNA topoisomerase 2-binding protein 1 (DNA topoisomerase II-beta-binding protein 1) (TopBP1) (DNA topoisomerase II-binding protein 1) | Scaffold protein that acts as a key protein-protein adapter in DNA replication and DNA repair (PubMed:10498869, PubMed:11395493, PubMed:11714696, PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:33592542, PubMed:35597237, PubMed:37674080). Composed of multiple BRCT domains, which specifically recognize and bind phosphorylated proteins, bringing proteins together into functional combinations (PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:35597237, PubMed:37674080). Required for DNA replication initiation but not for the formation of pre-replicative complexes or the elongation stages (By similarity). Necessary for the loading of replication factors onto chromatin, including GMNC, CDC45, DNA polymerases and components of the GINS complex (By similarity). Plays a central role in DNA repair by bridging proteins and promoting recruitment of proteins to DNA damage sites (PubMed:30898438, PubMed:35597237, PubMed:37674080). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the exchange between the DNA replication factor A (RPA) complex and RAD51 (PubMed:26811421, PubMed:35597237). Mechanistically, TOPBP1 is recruited to DNA damage sites in S-phase via interaction with phosphorylated HTATSF1, and promotes the loading of RAD51, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). Involved in microhomology-mediated end-joining (MMEJ) DNA repair by promoting recruitment of polymerase theta (POLQ) to DNA damage sites during mitosis (PubMed:37674080). MMEJ is an alternative non-homologous end-joining (NHEJ) machinery that takes place during mitosis to repair DSBs in DNA that originate in S-phase (PubMed:37674080). Recognizes and binds POLQ phosphorylated by PLK1, enabling its recruitment to DSBs for subsequent repair (PubMed:37674080). Involved in G1 DNA damage checkpoint by acting as a molecular adapter that couples TP53BP1 and the 9-1-1 complex (PubMed:31135337). In response to DNA damage, triggers the recruitment of checkpoint signaling proteins on chromatin, which activate the CHEK1 signaling pathway and block S-phase progression (PubMed:16530042, PubMed:21777809). Acts as an activator of the kinase activity of ATR (PubMed:16530042, PubMed:21777809). Also required for chromosomal stability when DSBs occur during mitosis by forming filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Together with CIP2A, plays an essential role in the response to genome instability generated by the presence of acentric chromosome fragments derived from shattered chromosomes within micronuclei (PubMed:35121901, PubMed:35842428, PubMed:37165191, PubMed:37316668). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, the CIP2A-TOPBP1 complex tethers chromosome fragments during mitosis to ensure clustered segregation of the fragments to a single daughter cell nucleus, facilitating re-ligation with limited chromosome scattering and loss (PubMed:37165191, PubMed:37316668). Recruits the SWI/SNF chromatin remodeling complex to E2F1-responsive promoters, thereby down-regulating E2F1 activity and inhibiting E2F1-dependent apoptosis during G1/S transition and after DNA damage (PubMed:12697828, PubMed:15075294). {ECO:0000250|UniProtKB:Q800K6, ECO:0000269|PubMed:10498869, ECO:0000269|PubMed:11395493, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:12697828, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:16530042, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21777809, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:30898438, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:33592542, ECO:0000269|PubMed:35121901, ECO:0000269|PubMed:35597237, ECO:0000269|PubMed:35842428, ECO:0000269|PubMed:37165191, ECO:0000269|PubMed:37316668, ECO:0000269|PubMed:37674080}. |
Q92608 | DOCK2 | S1706 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q92738 | USP6NL | S546 | ochoa | USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) | Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}. |
Q92870 | APBB2 | S300 | ochoa | Amyloid beta precursor protein binding family B member 2 (Amyloid-beta (A4) precursor protein-binding family B member 2) (Protein Fe65-like 1) | Plays a role in the maintenance of lens transparency, and may also play a role in muscle cell strength (By similarity). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Activates transcription of APP (PubMed:14527950). {ECO:0000250|UniProtKB:Q9DBR4, ECO:0000269|PubMed:14527950}. |
Q92993 | KAT5 | S190 | ochoa | Histone acetyltransferase KAT5 (EC 2.3.1.48) (60 kDa Tat-interactive protein) (Tip60) (Histone acetyltransferase HTATIP) (HIV-1 Tat interactive protein) (Lysine acetyltransferase 5) (Protein 2-hydroxyisobutyryltransferase KAT5) (EC 2.3.1.-) (Protein acetyltransferase KAT5) (EC 2.3.1.-) (Protein crotonyltransferase KAT5) (EC 2.3.1.-) (Protein lactyltransferase KAT5) (EC 2.3.1.-) (cPLA(2)-interacting protein) | Catalytic subunit of the NuA4 histone acetyltransferase complex, a multiprotein complex involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H2A and H4 (PubMed:12776177, PubMed:14966270, PubMed:15042092, PubMed:15121871, PubMed:15310756, PubMed:16387653, PubMed:19909775, PubMed:25865756, PubMed:27153538, PubMed:29174981, PubMed:29335245, PubMed:32822602, PubMed:33076429). Histone acetylation alters nucleosome-DNA interactions and promotes interaction of the modified histones with other proteins which positively regulate transcription (PubMed:12776177, PubMed:14966270, PubMed:15042092, PubMed:15121871, PubMed:15310756). The NuA4 histone acetyltransferase complex is required for the activation of transcriptional programs associated with proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair (PubMed:17709392, PubMed:19783983, PubMed:32832608). The NuA4 complex plays a direct role in repair of DNA double-strand breaks (DSBs) by promoting homologous recombination (HR): the complex inhibits TP53BP1 binding to chromatin via MBTD1, which recognizes and binds histone H4 trimethylated at 'Lys-20' (H4K20me), and KAT5 that catalyzes acetylation of 'Lys-15' of histone H2A (H2AK15ac), thereby blocking the ubiquitination mark required for TP53BP1 localization at DNA breaks (PubMed:27153538, PubMed:32832608). Also involved in DSB repair by mediating acetylation of 'Lys-5' of histone H2AX (H2AXK5ac), promoting NBN/NBS1 assembly at the sites of DNA damage (PubMed:17709392, PubMed:26438602). The NuA4 complex plays a key role in hematopoietic stem cell maintenance and is required to maintain acetylated H2A.Z/H2AZ1 at MYC target genes (By similarity). The NuA4 complex is also required for spermatid development by promoting acetylation of histones: histone hyperacetylation is required for histone replacement during the transition from round to elongating spermatids (By similarity). Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome (PubMed:24463511). Also acetylates non-histone proteins, such as BMAL1, ATM, AURKB, CHKA, CGAS, ERCC4/XPF, LPIN1, TP53/p53, NDC80/HEC1, NR1D2, RAN, SOX4, FOXP3, SQSTM1, ULK1 and RUBCNL/Pacer (PubMed:16141325, PubMed:17189187, PubMed:17360565, PubMed:17996965, PubMed:24835996, PubMed:26829474, PubMed:29040603, PubMed:30409912, PubMed:30704899, PubMed:31857589, PubMed:32034146, PubMed:32817552, PubMed:34077757). Directly acetylates and activates ATM (PubMed:16141325). Promotes nucleotide excision repair (NER) by mediating acetylation of ERCC4/XPF, thereby promoting formation of the ERCC4-ERCC1 complex (PubMed:32034146). Relieves NR1D2-mediated inhibition of APOC3 expression by acetylating NR1D2 (PubMed:17996965). Acts as a regulator of regulatory T-cells (Treg) by catalyzing FOXP3 acetylation, thereby promoting FOXP3 transcriptional repressor activity (PubMed:17360565, PubMed:24835996). Involved in skeletal myoblast differentiation by mediating acetylation of SOX4 (PubMed:26291311). Catalyzes acetylation of APBB1/FE65, increasing its transcription activator activity (PubMed:33938178). Promotes transcription elongation during the activation phase of the circadian cycle by catalyzing acetylation of BMAL1, promoting elongation of circadian transcripts (By similarity). Together with GSK3 (GSK3A or GSK3B), acts as a regulator of autophagy: phosphorylated at Ser-86 by GSK3 under starvation conditions, leading to activate acetyltransferase activity and promote acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Acts as a regulator of the cGAS-STING innate antiviral response by catalyzing acetylation the N-terminus of CGAS, thereby promoting CGAS DNA-binding and activation (PubMed:32817552). Also regulates lipid metabolism by mediating acetylation of CHKA or LPIN1 (PubMed:34077757). Promotes lipolysis of lipid droplets following glucose deprivation by mediating acetylation of isoform 1 of CHKA, thereby promoting monomerization of CHKA and its conversion into a tyrosine-protein kinase (PubMed:34077757). Acts as a regulator of fatty-acid-induced triacylglycerol synthesis by catalyzing acetylation of LPIN1, thereby promoting the synthesis of diacylglycerol (PubMed:29765047). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), S-lactoyl-CoA (lactyl-CoA) and 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), and is able to mediate protein crotonylation, lactylation and 2-hydroxyisobutyrylation, respectively (PubMed:29192674, PubMed:34608293, PubMed:38961290). Acts as a key regulator of chromosome segregation and kinetochore-microtubule attachment during mitosis by mediating acetylation or crotonylation of target proteins (PubMed:26829474, PubMed:29040603, PubMed:30409912, PubMed:34608293). Catalyzes acetylation of AURKB at kinetochores, increasing AURKB activity and promoting accurate chromosome segregation in mitosis (PubMed:26829474). Acetylates RAN during mitosis, promoting microtubule assembly at mitotic chromosomes (PubMed:29040603). Acetylates NDC80/HEC1 during mitosis, promoting robust kinetochore-microtubule attachment (PubMed:30409912). Catalyzes crotonylation of MAPRE1/EB1, thereby ensuring accurate spindle positioning in mitosis (PubMed:34608293). Catalyzes lactylation of NBN/NBS1 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38961290). {ECO:0000250|UniProtKB:Q8CHK4, ECO:0000269|PubMed:12776177, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15121871, ECO:0000269|PubMed:15310756, ECO:0000269|PubMed:16141325, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17360565, ECO:0000269|PubMed:17709392, ECO:0000269|PubMed:17996965, ECO:0000269|PubMed:19783983, ECO:0000269|PubMed:19909775, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:24835996, ECO:0000269|PubMed:25865756, ECO:0000269|PubMed:26291311, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:26829474, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:29040603, ECO:0000269|PubMed:29174981, ECO:0000269|PubMed:29192674, ECO:0000269|PubMed:29335245, ECO:0000269|PubMed:29765047, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:32034146, ECO:0000269|PubMed:32817552, ECO:0000269|PubMed:32822602, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:33076429, ECO:0000269|PubMed:33938178, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:34608293, ECO:0000269|PubMed:38961290}.; FUNCTION: (Microbial infection) Catalyzes the acetylation of flavivirus NS3 protein to modulate their RNA-binding and -unwinding activities leading to facilitate viral replication. {ECO:0000269|PubMed:37478852}. |
Q93100 | PHKB | S700 | ochoa | Phosphorylase b kinase regulatory subunit beta (Phosphorylase kinase subunit beta) | Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The beta chain acts as a regulatory unit and modulates the activity of the holoenzyme in response to phosphorylation. |
Q969F2 | NKD2 | S299 | ochoa | Protein naked cuticle homolog 2 (Naked-2) (hNkd2) | Cell autonomous antagonist of the canonical Wnt signaling pathway. May activate a second Wnt signaling pathway that controls planar cell polarity (By similarity). Required for processing of TGFA and for targeting of TGFA to the basolateral membrane of polarized epithelial cells. {ECO:0000250, ECO:0000269|PubMed:15064403, ECO:0000269|PubMed:17553928}. |
Q96BT3 | CENPT | S160 | ochoa | Centromere protein T (CENP-T) (Interphase centromere complex protein 22) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Part of a nucleosome-associated complex that binds specifically to histone H3-containing nucleosomes at the centromere, as opposed to nucleosomes containing CENPA. Component of the heterotetrameric CENP-T-W-S-X complex that binds and supercoils DNA, and plays an important role in kinetochore assembly. CENPT has a fundamental role in kinetochore assembly and function. It is one of the inner kinetochore proteins, with most further proteins binding downstream. Required for normal chromosome organization and normal progress through mitosis. {ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:21529714, ECO:0000269|PubMed:21695110}. |
Q96D71 | REPS1 | S429 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96E09 | PABIR1 | S197 | ochoa | PPP2R1A-PPP2R2A-interacting phosphatase regulator 1 (PABIR family member 1) | Acts as an inhibitor of serine/threonine-protein phosphatase 2A (PP2A) activity (PubMed:27588481, PubMed:33108758, PubMed:38123684). Inhibits PP2A activity by blocking the substrate binding site on PPP2R2A and the active site of PPP2CA (PubMed:38123684). Potentiates ubiquitin-mediated proteasomal degradation of serine/threonine-protein phosphatase 2A catalytic subunit alpha (PPP2CA) (PubMed:27588481). Inhibits PP2A-mediated dephosphorylation of WEE1, promoting ubiquitin-mediated proteolysis of WEE1, thereby releasing G2/M checkpoint (PubMed:33108758). {ECO:0000269|PubMed:27588481, ECO:0000269|PubMed:33108758, ECO:0000269|PubMed:38123684}. |
Q96F07 | CYFIP2 | S607 | ochoa | Cytoplasmic FMR1-interacting protein 2 (p53-inducible protein 121) | Involved in T-cell adhesion and p53/TP53-dependent induction of apoptosis. Does not bind RNA. As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). {ECO:0000250|UniProtKB:Q5SQX6, ECO:0000269|PubMed:10449408, ECO:0000269|PubMed:15048733, ECO:0000269|PubMed:17245118}. |
Q96FF9 | CDCA5 | S33 | ochoa|psp | Sororin (Cell division cycle-associated protein 5) (p35) | Regulator of sister chromatid cohesion in mitosis stabilizing cohesin complex association with chromatin. May antagonize the action of WAPL which stimulates cohesin dissociation from chromatin. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Required for efficient DNA double-stranded break repair. {ECO:0000269|PubMed:15837422, ECO:0000269|PubMed:17349791, ECO:0000269|PubMed:21111234}. |
Q96J02 | ITCH | S217 | ochoa | E3 ubiquitin-protein ligase Itchy homolog (Itch) (EC 2.3.2.26) (Atrophin-1-interacting protein 4) (AIP4) (HECT-type E3 ubiquitin transferase Itchy homolog) (NFE2-associated polypeptide 1) (NAPP1) | Acts as an Acts as an E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:11046148, PubMed:14602072, PubMed:15051726, PubMed:16387660, PubMed:17028573, PubMed:18718448, PubMed:18718449, PubMed:19116316, PubMed:19592251, PubMed:19881509, PubMed:20068034, PubMed:20392206, PubMed:20491914, PubMed:23146885, PubMed:24790097, PubMed:25631046). Catalyzes 'Lys-29'-, 'Lys-48'- and 'Lys-63'-linked ubiquitin conjugation (PubMed:17028573, PubMed:18718448, PubMed:19131965, PubMed:19881509). Involved in the control of inflammatory signaling pathways (PubMed:19131965). Essential component of a ubiquitin-editing protein complex, comprising also TNFAIP3, TAX1BP1 and RNF11, that ensures the transient nature of inflammatory signaling pathways (PubMed:19131965). Promotes the association of the complex after TNF stimulation (PubMed:19131965). Once the complex is formed, TNFAIP3 deubiquitinates 'Lys-63' polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:19131965). This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NFKB1 (PubMed:19131965). Ubiquitinates RIPK2 by 'Lys-63'-linked conjugation and influences NOD2-dependent signal transduction pathways (PubMed:19592251). Regulates the transcriptional activity of several transcription factors, and probably plays an important role in the regulation of immune response (PubMed:18718448, PubMed:20491914). Ubiquitinates NFE2 by 'Lys-63' linkages and is implicated in the control of the development of hematopoietic lineages (PubMed:18718448). Mediates JUN ubiquitination and degradation (By similarity). Mediates JUNB ubiquitination and degradation (PubMed:16387660). Critical regulator of type 2 helper T (Th2) cell cytokine production by inducing JUNB ubiquitination and degradation (By similarity). Involved in the negative regulation of MAVS-dependent cellular antiviral responses (PubMed:19881509). Ubiquitinates MAVS through 'Lys-48'-linked conjugation resulting in MAVS proteasomal degradation (PubMed:19881509). Following ligand stimulation, regulates sorting of Wnt receptor FZD4 to the degradative endocytic pathway probably by modulating PI42KA activity (PubMed:23146885). Ubiquitinates PI4K2A and negatively regulates its catalytic activity (PubMed:23146885). Ubiquitinates chemokine receptor CXCR4 and regulates sorting of CXCR4 to the degradative endocytic pathway following ligand stimulation by ubiquitinating endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:14602072, PubMed:23146885, PubMed:34927784). Targets DTX1 for lysosomal degradation and controls NOTCH1 degradation, in the absence of ligand, through 'Lys-29'-linked polyubiquitination (PubMed:17028573, PubMed:18628966, PubMed:23886940). Ubiquitinates SNX9 (PubMed:20491914). Ubiquitinates MAP3K7 through 'Lys-48'-linked conjugation (By similarity). Together with UBR5, involved in the regulation of apoptosis and reactive oxygen species levels through the ubiquitination and proteasomal degradation of TXNIP: catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP (PubMed:20068034, PubMed:29378950). ITCH synthesizes 'Lys-63'-linked chains, while UBR5 is branching multiple 'Lys-48'-linked chains of substrate initially modified (PubMed:29378950). Mediates the antiapoptotic activity of epidermal growth factor through the ubiquitination and proteasomal degradation of p15 BID (PubMed:20392206). Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Inhibits the replication of influenza A virus (IAV) via ubiquitination of IAV matrix protein 1 (M1) through 'Lys-48'-linked conjugation resulting in M1 proteasomal degradation (PubMed:30328013). Ubiquitinates NEDD9/HEF1, resulting in proteasomal degradation of NEDD9/HEF1 (PubMed:15051726). {ECO:0000250|UniProtKB:Q8C863, ECO:0000269|PubMed:14602072, ECO:0000269|PubMed:15051726, ECO:0000269|PubMed:16387660, ECO:0000269|PubMed:17028573, ECO:0000269|PubMed:18628966, ECO:0000269|PubMed:18718448, ECO:0000269|PubMed:18718449, ECO:0000269|PubMed:19116316, ECO:0000269|PubMed:19131965, ECO:0000269|PubMed:19592251, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:20068034, ECO:0000269|PubMed:20392206, ECO:0000269|PubMed:20491914, ECO:0000269|PubMed:23146885, ECO:0000269|PubMed:23886940, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:30328013}. |
Q96LC7 | SIGLEC10 | S592 | ochoa | Sialic acid-binding Ig-like lectin 10 (Siglec-10) (Siglec-like protein 2) | Putative adhesion molecule that mediates sialic-acid dependent binding to cells. Preferentially binds to alpha-2,3- or alpha-2,6-linked sialic acid (By similarity). The sialic acid recognition site may be masked by cis interactions with sialic acids on the same cell surface. In the immune response, seems to act as an inhibitory receptor upon ligand induced tyrosine phosphorylation by recruiting cytoplasmic phosphatase(s) via their SH2 domain(s) that block signal transduction through dephosphorylation of signaling molecules (PubMed:11284738, PubMed:12163025). Involved in negative regulation of B-cell antigen receptor signaling. The inhibition of B cell activation is dependent on PTPN6/SHP-1 (By similarity). In association with CD24 may be involved in the selective suppression of the immune response to danger-associated molecular patterns (DAMPs) such as HMGB1, HSP70 and HSP90 (By similarity). In association with CD24 may regulate the immune repsonse of natural killer (NK) cells (PubMed:25450598). Plays a role in the control of autoimmunity (By similarity). During initiation of adaptive immune responses by CD8-alpha(+) dendritic cells inhibits cross-presentation by impairing the formation of MHC class I-peptide complexes. The function seems to implicate recruitment of PTPN6/SHP-1, which dephosphorylates NCF1 of the NADPH oxidase complex consequently promoting phagosomal acidification (By similarity). {ECO:0000250|UniProtKB:Q80ZE3, ECO:0000269|PubMed:11284738, ECO:0000269|PubMed:25450598, ECO:0000305|PubMed:12163025}. |
Q96MT3 | PRICKLE1 | S681 | ochoa | Prickle-like protein 1 (REST/NRSF-interacting LIM domain protein 1) | Involved in the planar cell polarity pathway that controls convergent extension during gastrulation and neural tube closure. Convergent extension is a complex morphogenetic process during which cells elongate, move mediolaterally, and intercalate between neighboring cells, leading to convergence toward the mediolateral axis and extension along the anteroposterior axis. Necessary for nuclear localization of REST. May serve as nuclear receptor. {ECO:0000269|PubMed:21901791}. |
Q96MU7 | YTHDC1 | S118 | ochoa | YTH domain-containing protein 1 (Splicing factor YT521) (YT521-B) | Regulator of alternative splicing that specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs (PubMed:25242552, PubMed:26318451, PubMed:26876937, PubMed:28984244). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability (PubMed:25242552, PubMed:26318451). Acts as a key regulator of exon-inclusion or exon-skipping during alternative splicing via interaction with mRNA splicing factors SRSF3 and SRSF10 (PubMed:26876937). Specifically binds m6A-containing mRNAs and promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing (PubMed:26876937). In contrast, interaction with SRSF3 prevents interaction with SRSF10, a splicing factor that promotes exon skipping: this prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May also regulate alternative splice site selection (PubMed:20167602). Also involved in nuclear export of m6A-containing mRNAs via interaction with SRSF3: interaction with SRSF3 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). Involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts, probably by binding m6A-containing MAT2A mRNAs (By similarity). Also recognizes and binds m6A on other RNA molecules (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: recognizes and binds m6A-containing Xist and promotes transcription repression activity of Xist (PubMed:27602518). Also recognizes and binds m6A-containing single-stranded DNA (PubMed:32663306). Involved in germline development: required for spermatogonial development in males and oocyte growth and maturation in females, probably via its role in alternative splicing (By similarity). {ECO:0000250|UniProtKB:E9Q5K9, ECO:0000269|PubMed:20167602, ECO:0000269|PubMed:25242552, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26876937, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:32663306}. |
Q96PD2 | DCBLD2 | S598 | ochoa|psp | Discoidin, CUB and LCCL domain-containing protein 2 (CUB, LCCL and coagulation factor V/VIII-homology domains protein 1) (Endothelial and smooth muscle cell-derived neuropilin-like protein) | None |
Q96PE2 | ARHGEF17 | S461 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96QD5 | DEPDC7 | S240 | ochoa | DEP domain-containing protein 7 (Protein TR2/D15) | None |
Q96S38 | RPS6KC1 | S866 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96T17 | MAP7D2 | S703 | ochoa | MAP7 domain-containing protein 2 | Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}. |
Q96T88 | UHRF1 | S88 | ochoa | E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) | Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}. |
Q99569 | PKP4 | S389 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99661 | KIF2C | S95 | ochoa|psp | Kinesin-like protein KIF2C (Kinesin-like protein 6) (Mitotic centromere-associated kinesin) (MCAK) | In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells (PubMed:21820309). Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis (PubMed:19060894). Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment (PubMed:23891108). {ECO:0000269|PubMed:19060894, ECO:0000269|PubMed:21820309, ECO:0000269|PubMed:23891108}. |
Q99661 | KIF2C | S115 | ochoa|psp | Kinesin-like protein KIF2C (Kinesin-like protein 6) (Mitotic centromere-associated kinesin) (MCAK) | In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells (PubMed:21820309). Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis (PubMed:19060894). Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment (PubMed:23891108). {ECO:0000269|PubMed:19060894, ECO:0000269|PubMed:21820309, ECO:0000269|PubMed:23891108}. |
Q9BQ67 | GRWD1 | S158 | ochoa | Glutamate-rich WD repeat-containing protein 1 | Histone binding-protein that regulates chromatin dynamics and minichromosome maintenance (MCM) loading at replication origins, possibly by promoting chromatin openness (PubMed:25990725). {ECO:0000269|PubMed:25990725}. |
Q9BT25 | HAUS8 | S69 | psp | HAUS augmin-like complex subunit 8 (HEC1/NDC80-interacting centrosome-associated protein 1) (Sarcoma antigen NY-SAR-48) | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. {ECO:0000269|PubMed:18362163, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q9BW04 | SARG | S560 | ochoa | Specifically androgen-regulated gene protein | Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}. |
Q9BWT3 | PAPOLG | S684 | ochoa | Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) | Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}. |
Q9BX66 | SORBS1 | S665 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BXL7 | CARD11 | S893 | psp | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BY41 | HDAC8 | S39 | psp | Histone deacetylase 8 (HD8) (EC 3.5.1.98) (Protein deacetylase HDAC8) (EC 3.5.1.-) (Protein decrotonylase HDAC8) (EC 3.5.1.-) | Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:10748112, PubMed:10922473, PubMed:10926844, PubMed:14701748, PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (PubMed:10748112, PubMed:10922473, PubMed:10926844, PubMed:14701748). Histone deacetylases act via the formation of large multiprotein complexes (PubMed:10748112, PubMed:10922473, PubMed:10926844, PubMed:14701748). Also involved in the deacetylation of cohesin complex protein SMC3 regulating release of cohesin complexes from chromatin (PubMed:22885700). May play a role in smooth muscle cell contractility (PubMed:15772115). In addition to protein deacetylase activity, also has protein-lysine deacylase activity: acts as a protein decrotonylase by mediating decrotonylation ((2E)-butenoyl) of histones (PubMed:28497810). {ECO:0000269|PubMed:10748112, ECO:0000269|PubMed:10922473, ECO:0000269|PubMed:10926844, ECO:0000269|PubMed:14701748, ECO:0000269|PubMed:15772115, ECO:0000269|PubMed:22885700, ECO:0000269|PubMed:28497810}. |
Q9BY84 | DUSP16 | S627 | ochoa | Dual specificity protein phosphatase 16 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 7) (MAP kinase phosphatase 7) (MKP-7) | Dual specificity protein phosphatase involved in the inactivation of MAP kinases. Dephosphorylates MAPK10 bound to ARRB2. {ECO:0000269|PubMed:11489891, ECO:0000269|PubMed:15888437}. |
Q9BZ71 | PITPNM3 | S319 | ochoa | Membrane-associated phosphatidylinositol transfer protein 3 (Phosphatidylinositol transfer protein, membrane-associated 3) (PITPnm 3) (Pyk2 N-terminal domain-interacting receptor 1) (NIR-1) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro) (By similarity). Binds calcium ions. {ECO:0000250}. |
Q9BZE2 | PUS3 | S142 | ochoa | tRNA pseudouridine(38/39) synthase (EC 5.4.99.45) (tRNA pseudouridine synthase 3) (tRNA pseudouridylate synthase 3) (tRNA-uridine isomerase 3) | Formation of pseudouridine at position 39 in the anticodon stem and loop of transfer RNAs. {ECO:0000269|PubMed:27055666}. |
Q9BZF9 | UACA | S1353 | ochoa | Uveal autoantigen with coiled-coil domains and ankyrin repeats | Regulates APAF1 expression and plays an important role in the regulation of stress-induced apoptosis. Promotes apoptosis by regulating three pathways, apoptosome up-regulation, LGALS3/galectin-3 down-regulation and NF-kappa-B inactivation. Regulates the redistribution of APAF1 into the nucleus after proapoptotic stress. Down-regulates the expression of LGALS3 by inhibiting NFKB1 (By similarity). {ECO:0000250}.; FUNCTION: Modulates isoactin dynamics to regulate the morphological alterations required for cell growth and motility. Interaction with ARF6 may modulate cell shape and motility after injury. May be involved in multiple neurite formation (By similarity). {ECO:0000250|UniProtKB:Q8CGB3, ECO:0000250|UniProtKB:Q8HYY4}. |
Q9BZK3 | NACA4P | S98 | ochoa | Putative nascent polypeptide-associated complex subunit alpha-like protein (Alpha-NAC pseudogene 1) (NAC-alpha pseudogene 1) (NACA family member 4, pseudogene) | None |
Q9BZL4 | PPP1R12C | S559 | ochoa | Protein phosphatase 1 regulatory subunit 12C (Protein phosphatase 1 myosin-binding subunit of 85 kDa) (Protein phosphatase 1 myosin-binding subunit p85) | Regulates myosin phosphatase activity. {ECO:0000269|PubMed:11399775}. |
Q9C0C2 | TNKS1BP1 | S1637 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C9 | UBE2O | S73 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0H5 | ARHGAP39 | S496 | ochoa | Rho GTPase-activating protein 39 | None |
Q9H147 | DNTTIP1 | S54 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 1 (Terminal deoxynucleotidyltransferase-interacting factor 1) (TdIF1) (TdT-interacting factor 1) | Increases DNTT terminal deoxynucleotidyltransferase activity (in vitro) (PubMed:11473582). Also acts as a transcriptional regulator, binding to the consensus sequence 5'-GNTGCATG-3' following an AT-tract. Associates with RAB20 promoter and positively regulates its transcription. Binds DNA and nucleosomes; may recruit HDAC1 complexes to nucleosomes or naked DNA. {ECO:0000269|PubMed:11473582, ECO:0000269|PubMed:23874396, ECO:0000305|PubMed:25653165}. |
Q9H2S1 | KCNN2 | S135 | psp | Small conductance calcium-activated potassium channel protein 2 (SK2) (SKCa 2) (SKCa2) (KCa2.2) | Small conductance calcium-activated potassium channel that mediates the voltage-independent transmembrane transfer of potassium across the cell membrane through a constitutive interaction with calmodulin which binds the intracellular calcium allowing its opening (PubMed:10991935, PubMed:33242881, PubMed:9287325). The current is characterized by a voltage-independent activation, an intracellular calcium concentration increase-dependent activation and a single-channel conductance of about 3 picosiemens (PubMed:10991935). Also presents an inwardly rectifying current, thus reducing its already small outward conductance of potassium ions, which is particularly the case when the membrane potential displays positive values, above + 20 mV (PubMed:10991935). The inward rectification could be due to a blockade of the outward current by intracellular divalent cations such as calcium and magnesium and could also be due to an intrinsic property of the channel pore, independent of intracellular divalent ions. There are three positively charged amino acids in the S6 transmembrane domain, close to the pore, that collectively control the conductance and rectification through an electrostatic mechanism. Additionally, electrostatic contributions from these residues also play an important role in determining the intrinsic open probability of the channel in the absence of calcium, affecting the apparent calcium affinity for activation. Forms an heteromeric complex with calmodulin, which is constitutively associated in a calcium-independent manner. Channel opening is triggered when calcium binds the calmodulin resulting in a rotary movement leading to the formation of the dimeric complex to open the gate (By similarity). Plays a role in the repolarization phase of cardiac action potential (PubMed:13679367). {ECO:0000250|UniProtKB:P70604, ECO:0000269|PubMed:10991935, ECO:0000269|PubMed:13679367, ECO:0000269|PubMed:33242881, ECO:0000269|PubMed:9287325}. |
Q9H329 | EPB41L4B | S390 | ochoa | Band 4.1-like protein 4B (Erythrocyte membrane protein band 4.1-like 4B) (FERM-containing protein CG1) (Protein EHM2) | Up-regulates the activity of the Rho guanine nucleotide exchange factor ARHGEF18 (By similarity). Involved in the regulation of the circumferential actomyosin belt in epithelial cells (PubMed:22006950). Promotes cellular adhesion, migration and motility in vitro and may play a role in wound healing (PubMed:23664528). May have a role in mediating cytoskeletal changes associated with steroid-induced cell differentiation (PubMed:14521927). {ECO:0000250|UniProtKB:Q9JMC8, ECO:0000269|PubMed:14521927, ECO:0000269|PubMed:22006950, ECO:0000269|PubMed:23664528}. |
Q9H4I2 | ZHX3 | S604 | ochoa | Zinc fingers and homeoboxes protein 3 (Triple homeobox protein 1) (Zinc finger and homeodomain protein 3) | Acts as a transcriptional repressor. Involved in the early stages of mesenchymal stem cell (MSC) osteogenic differentiation. Is a regulator of podocyte gene expression during primary glomerula disease. Binds to promoter DNA. {ECO:0000269|PubMed:12659632, ECO:0000269|PubMed:21174497}. |
Q9H4X1 | RGCC | S64 | ochoa | Regulator of cell cycle RGCC (Response gene to complement 32 protein) (RGC-32) | Modulates the activity of cell cycle-specific kinases. Enhances CDK1 activity. May contribute to the regulation of the cell cycle. May inhibit growth of glioma cells by promoting arrest of mitotic progression at the G2/M transition. Fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation. {ECO:0000269|PubMed:11687586, ECO:0000269|PubMed:17146433, ECO:0000269|PubMed:19158077, ECO:0000269|PubMed:22163048}. |
Q9H7E2 | TDRD3 | S445 | ochoa | Tudor domain-containing protein 3 | Scaffolding protein that specifically recognizes and binds dimethylarginine-containing proteins (PubMed:15955813). Plays a role in the regulation of translation of target mRNAs by binding Arg/Gly-rich motifs (GAR) in dimethylarginine-containing proteins. In nucleus, acts as a coactivator: recognizes and binds asymmetric dimethylation on the core histone tails associated with transcriptional activation (H3R17me2a and H4R3me2a) and recruits proteins at these arginine-methylated loci (PubMed:21172665). In cytoplasm, acts as an antiviral factor that participates in the assembly of stress granules together with G3BP1 (PubMed:35085371). {ECO:0000269|PubMed:15955813, ECO:0000269|PubMed:18632687, ECO:0000269|PubMed:21172665, ECO:0000269|PubMed:35085371}. |
Q9H869 | YY1AP1 | S456 | ochoa | YY1-associated protein 1 (Hepatocellular carcinoma susceptibility protein) (Hepatocellular carcinoma-associated protein 2) | Associates with the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication (PubMed:27939641). Enhances transcription activation by YY1 (PubMed:14744866). Plays a role in cell cycle regulation (PubMed:17541814, PubMed:27939641). {ECO:0000269|PubMed:14744866, ECO:0000269|PubMed:17541814, ECO:0000269|PubMed:27939641}. |
Q9H9J4 | USP42 | S1133 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9HBA9 | FOLH1B | S72 | ochoa | Putative N-acetylated-alpha-linked acidic dipeptidase (NAALADase) (EC 3.4.-.-) (Cell growth-inhibiting gene 26 protein) (Prostate-specific membrane antigen-like protein) (Putative folate hydrolase 1B) | Has both folate hydrolase and N-acetylated-alpha-linked-acidic dipeptidase (NAALADase) activity. {ECO:0000250}.; FUNCTION: Exhibits a dipeptidyl-peptidase IV type activity. {ECO:0000250}. |
Q9NRL2 | BAZ1A | S961 | ochoa | Bromodomain adjacent to zinc finger domain protein 1A (ATP-dependent chromatin-remodeling protein) (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (CHRAC subunit ACF1) (Williams syndrome transcription factor-related chromatin-remodeling factor 180) (WCRF180) (hWALp1) | Regulatory subunit of the ATP-dependent ACF-1 and ACF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and slide edge- and center-positioned histone octamers away from their original location on the DNA template to facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:17099699, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:17099699, PubMed:28801535). The ACF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the ACF-5 ISWI chromatin remodeling complex (PubMed:28801535). Has a role in sensing the length of DNA which flank nucleosomes, which modulates the nucleosome spacing activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:17099699). Involved in DNA replication and together with SMARCA5/SNF2H is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). May have a role in nuclear receptor-mediated transcription repression (PubMed:17519354). {ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:17099699, ECO:0000269|PubMed:17519354, ECO:0000269|PubMed:28801535}. |
Q9NRM7 | LATS2 | S83 | psp | Serine/threonine-protein kinase LATS2 (EC 2.7.11.1) (Kinase phosphorylated during mitosis protein) (Large tumor suppressor homolog 2) (Serine/threonine-protein kinase kpm) (Warts-like kinase) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:18158288, PubMed:26437443, PubMed:26598551, PubMed:34404733). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:26437443, PubMed:26598551, PubMed:34404733). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:26598551, PubMed:34404733). Also phosphorylates YAP1 in response to cell contact inhibition-driven WWP1 ubiquitination of AMOTL2, which results in LATS2 activation (PubMed:34404733). Acts as a tumor suppressor which plays a critical role in centrosome duplication, maintenance of mitotic fidelity and genomic stability (PubMed:10871863). Negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity (PubMed:12853976). Negative regulator of the androgen receptor (PubMed:15131260). Phosphorylates SNAI1 in the nucleus leading to its nuclear retention and stabilization, which enhances its epithelial-mesenchymal transition and tumor cell invasion/migration activities (PubMed:21952048). This tumor-promoting activity is independent of its effects upon YAP1 or WWTR1/TAZ (PubMed:21952048). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10871863, ECO:0000269|PubMed:12853976, ECO:0000269|PubMed:15131260, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:34404733, ECO:0000269|PubMed:39173637}. |
Q9NRZ9 | HELLS | S515 | ochoa | Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) | Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}. |
Q9NUQ6 | SPATS2L | S338 | ochoa | SPATS2-like protein (DNA polymerase-transactivated protein 6) (Stress granule and nucleolar protein) (SGNP) | None |
Q9NX94 | WBP1L | S168 | ochoa | WW domain binding protein 1-like (Outcome predictor in acute leukemia 1) | None |
Q9NXD2 | MTMR10 | S751 | ochoa | Myotubularin-related protein 10 (Inactive phosphatidylinositol 3-phosphatase 10) | None |
Q9NYL2 | MAP3K20 | S718 | ochoa | Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) | Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}. |
Q9NZ63 | C9orf78 | S156 | ochoa | Splicing factor C9orf78 (Hepatocellular carcinoma-associated antigen 59) | Plays a role in pre-mRNA splicing by promoting usage of the upstream 3'-splice site at alternative NAGNAG splice sites; these are sites featuring alternative acceptor motifs separated by only a few nucleotides (PubMed:35241646). May also modulate exon inclusion events (PubMed:35241646). Plays a role in spliceosomal remodeling by displacing WBP4 from SNRNP200 and may act to inhibit SNRNP200 helicase activity (PubMed:35241646). Binds U5 snRNA (PubMed:35241646). Required for proper chromosome segregation (PubMed:35167828). Not required for splicing of shelterin components (PubMed:35167828). {ECO:0000269|PubMed:35167828, ECO:0000269|PubMed:35241646}. |
Q9P0L2 | MARK1 | S46 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P260 | RELCH | S193 | ochoa | RAB11-binding protein RELCH (LisH domain and HEAT repeat-containing protein KIAA1468) (RAB11 binding and LisH domain, coiled-coil and HEAT repeat-containing) (RAB11-binding protein containing LisH, coiled-coil, and HEAT repeats) | Regulates intracellular cholesterol distribution from recycling endosomes to the trans-Golgi network through interactions with RAB11 and OSBP (PubMed:29514919). Functions in membrane tethering and promotes OSBP-mediated cholesterol transfer between RAB11-bound recycling endosomes and OSBP-bound Golgi-like membranes (PubMed:29514919). {ECO:0000269|PubMed:29514919}. |
Q9P2G1 | ANKIB1 | S744 | ochoa | Ankyrin repeat and IBR domain-containing protein 1 (EC 2.3.2.31) | Might act as an E3 ubiquitin-protein ligase, or as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. {ECO:0000250}. |
Q9P2R6 | RERE | S40 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9P2R6 | RERE | S580 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9UDY4 | DNAJB4 | S148 | ochoa | DnaJ homolog subfamily B member 4 (Heat shock 40 kDa protein 1 homolog) (HSP40 homolog) (Heat shock protein 40 homolog) (Human liver DnaJ-like protein) | Probable chaperone. Stimulates ATP hydrolysis and the folding of unfolded proteins mediated by HSPA1A/B (in vitro) (PubMed:24318877). {ECO:0000269|PubMed:24318877}. |
Q9UJ78 | ZMYM5 | S49 | ochoa | Zinc finger MYM-type protein 5 (Zinc finger protein 198-like 1) (Zinc finger protein 237) | Functions as a transcriptional regulator. {ECO:0000269|PubMed:17126306}. |
Q9UKB1 | FBXW11 | S65 | ochoa | F-box/WD repeat-containing protein 11 (F-box and WD repeats protein beta-TrCP2) (F-box/WD repeat-containing protein 1B) (Homologous to Slimb protein) (HOS) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:10437795, PubMed:10648623, PubMed:11158290, PubMed:19966869, PubMed:20347421, PubMed:22017875, PubMed:22017876, PubMed:36608670). Probably recognizes and binds to phosphorylated target proteins: the interaction with substrates requires the phosphorylation of the two serine residues in the substrates' destruction motif D-S-G-X(2,3,4)-S (PubMed:10437795, PubMed:10648623, PubMed:19966869, PubMed:20347421, PubMed:22017875, PubMed:22017876, PubMed:36608670). SCF(FBXW11) mediates the ubiquitination of phosphorylated CTNNB1 and participates in Wnt signaling regulation (PubMed:10321728). SCF(FBXW11) plays a key role in NF-kappa-B activation by mediating ubiquitination of phosphorylated NFKBIA, leading to its degradation by the proteasome, thereby allowing the associated NF-kappa-B complex to translocate into the nucleus and to activate transcription (PubMed:10321728, PubMed:10437795, PubMed:10644755, PubMed:20347421). The SCF(FBXW11) complex also regulates NF-kappa-B by mediating ubiquitination of phosphorylated NFKB1: specifically ubiquitinates the p105 form of NFKB1, leading to its degradation (PubMed:11158290). SCF(FBXW11) mediates the ubiquitination of IFNAR1 (PubMed:14532120, PubMed:15337770). SCF(FBXW11) mediates the ubiquitination of CEP68; this is required for centriole separation during mitosis (PubMed:25503564). Involved in the oxidative stress-induced a ubiquitin-mediated decrease in RCAN1 (PubMed:18575781). Mediates the degradation of CDC25A induced by ionizing radiation in cells progressing through S phase and thus may function in the intra-S-phase checkpoint (PubMed:14603323). Has an essential role in the control of the clock-dependent transcription via degradation of phosphorylated PER1 and phosphorylated PER2 (PubMed:15917222). SCF(FBXW11) mediates the ubiquitination of CYTH1, and probably CYTH2 (PubMed:29420262). SCF(FBXW11) acts as a regulator of mTORC1 signaling pathway by catalyzing ubiquitination and subsequent proteasomal degradation of phosphorylated DEPTOR, TFE3 and MITF (PubMed:22017875, PubMed:22017876, PubMed:36608670). {ECO:0000269|PubMed:10321728, ECO:0000269|PubMed:10437795, ECO:0000269|PubMed:10644755, ECO:0000269|PubMed:10648623, ECO:0000269|PubMed:11158290, ECO:0000269|PubMed:14532120, ECO:0000269|PubMed:14603323, ECO:0000269|PubMed:15337770, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:18575781, ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:20347421, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:29420262, ECO:0000269|PubMed:36608670}.; FUNCTION: (Microbial infection) Target of human immunodeficiency virus type 1 (HIV-1) protein VPU to polyubiquitinate and deplete BST2 from cells and antagonize its antiviral action. {ECO:0000269|PubMed:19730691}. |
Q9UL51 | HCN2 | S80 | ochoa | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2 (Brain cyclic nucleotide-gated channel 2) (BCNG-2) | Hyperpolarization-activated ion channel that is permeable to sodium and potassium ions. Displays lower selectivity for K(+) over Na(+) ions (PubMed:10228147, PubMed:22006928). Contributes to the native pacemaker currents in heart (If) and in neurons (Ih) (PubMed:10228147, PubMed:10524219). Can also transport ammonium in the distal nephron (By similarity). Involved in the initiation of neuropathic pain in sensory neurons (By similarity). {ECO:0000250|UniProtKB:Q9JKA9, ECO:0000269|PubMed:10228147, ECO:0000269|PubMed:10524219, ECO:0000269|PubMed:22006928}. |
Q9ULH0 | KIDINS220 | S1741 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULI3 | HEG1 | S1359 | ochoa | Protein HEG homolog 1 | Receptor component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions. {ECO:0000250}. |
Q9UMN6 | KMT2B | S1085 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UMS6 | SYNPO2 | S691 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UQC2 | GAB2 | S218 | ochoa | GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) | Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}. |
Q9Y2U5 | MAP3K2 | S153 | ochoa | Mitogen-activated protein kinase kinase kinase 2 (EC 2.7.11.25) (MAPK/ERK kinase kinase 2) (MEK kinase 2) (MEKK 2) | Component of a protein kinase signal transduction cascade. Regulates the JNK and ERK5 pathways by phosphorylating and activating MAP2K5 and MAP2K7 (By similarity). Plays a role in caveolae kiss-and-run dynamics. {ECO:0000250, ECO:0000269|PubMed:10713157, ECO:0000269|PubMed:16001074}. |
Q9Y314 | NOSIP | S36 | ochoa | Nitric oxide synthase-interacting protein (E3 ubiquitin-protein ligase NOSIP) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase NOSIP) (eNOS-interacting protein) | E3 ubiquitin-protein ligase that is essential for proper development of the forebrain, the eye, and the face. Catalyzes monoubiquitination of serine/threonine-protein phosphatase 2A (PP2A) catalytic subunit PPP2CA/PPP2CB (By similarity). Negatively regulates nitric oxide production by inducing NOS1 and NOS3 translocation to actin cytoskeleton and inhibiting their enzymatic activity (PubMed:11149895, PubMed:15548660, PubMed:16135813). {ECO:0000250|UniProtKB:Q9D6T0, ECO:0000269|PubMed:11149895, ECO:0000269|PubMed:15548660, ECO:0000269|PubMed:16135813}. |
Q9Y3Y2 | CHTOP | S40 | ochoa | Chromatin target of PRMT1 protein (Friend of PRMT1 protein) (Small arginine- and glycine-rich protein) (SRAG) | Plays an important role in the ligand-dependent activation of estrogen receptor target genes (PubMed:19858291). May play a role in the silencing of fetal globin genes (PubMed:20688955). Recruits the 5FMC complex to ZNF148, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (By similarity). Plays an important role in the tumorigenicity of glioblastoma cells. Binds to 5-hydroxymethylcytosine (5hmC) and associates with the methylosome complex containing PRMT1, PRMT5, MEP50 and ERH. The CHTOP-methylosome complex associated with 5hmC is recruited to selective sites on the chromosome, where it methylates H4R3 and activates the transcription of genes involved in glioblastomagenesis (PubMed:25284789). {ECO:0000250|UniProtKB:Q9CY57, ECO:0000269|PubMed:19858291, ECO:0000269|PubMed:20688955, ECO:0000269|PubMed:25284789}.; FUNCTION: Required for effective mRNA nuclear export and is a component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NFX1 pathway. The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. Stimulates DDX39B ATPase and helicase activities. In cooperation with ALYREF/THOC4 enhances NXF1 RNA binding activity (PubMed:23299939). {ECO:0000269|PubMed:23299939}. |
Q9Y4F5 | CEP170B | S1040 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4G8 | RAPGEF2 | S1325 | ochoa | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}. |
Q9Y4H2 | IRS2 | S643 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y4W6 | AFG3L2 | S53 | ochoa | Mitochondrial inner membrane m-AAA protease component AFG3L2 (EC 3.4.24.-) (EC 3.6.-.-) (AFG3-like protein 2) (Paraplegin-like protein) | Catalytic component of the m-AAA protease, a protease that plays a key role in proteostasis of inner mitochondrial membrane proteins, and which is essential for axonal and neuron development (PubMed:19748354, PubMed:28396416, PubMed:29932645, PubMed:30683687, PubMed:31327635, PubMed:37917749, PubMed:38157846). AFG3L2 possesses both ATPase and protease activities: the ATPase activity is required to unfold substrates, threading them into the internal proteolytic cavity for hydrolysis into small peptide fragments (PubMed:19748354, PubMed:31327635). The m-AAA protease carries out quality control in the inner membrane of the mitochondria by mediating degradation of mistranslated or misfolded polypeptides (PubMed:26504172, PubMed:30683687, PubMed:34718584). The m-AAA protease complex also promotes the processing and maturation of mitochondrial proteins, such as MRPL32/bL32m, PINK1 and SP7 (PubMed:22354088, PubMed:29932645, PubMed:30252181). Mediates protein maturation of the mitochondrial ribosomal subunit MRPL32/bL32m by catalyzing the cleavage of the presequence of MRPL32/bL32m prior to assembly into the mitochondrial ribosome (PubMed:29932645). Required for SPG7 maturation into its active mature form after SPG7 cleavage by mitochondrial-processing peptidase (MPP) (PubMed:30252181). Required for the maturation of PINK1 into its 52kDa mature form after its cleavage by mitochondrial-processing peptidase (MPP) (PubMed:22354088). Acts as a regulator of calcium in neurons by mediating degradation of SMDT1/EMRE before its assembly with the uniporter complex, limiting the availability of SMDT1/EMRE for MCU assembly and promoting efficient assembly of gatekeeper subunits with MCU (PubMed:27642048, PubMed:28396416). Promotes the proteolytic degradation of GHITM upon hyperpolarization of mitochondria: progressive GHITM degradation leads to respiratory complex I degradation and broad reshaping of the mitochondrial proteome by AFG3L2 (PubMed:35912435). Also acts as a regulator of mitochondrial glutathione homeostasis by mediating cleavage and degradation of SLC25A39 (PubMed:37917749, PubMed:38157846). SLC25A39 cleavage is prevented when SLC25A39 binds iron-sulfur (PubMed:37917749, PubMed:38157846). Involved in the regulation of OMA1-dependent processing of OPA1 (PubMed:17615298, PubMed:29545505, PubMed:30252181, PubMed:30683687, PubMed:32600459). May act by mediating processing of OMA1 precursor, participating in OMA1 maturation (PubMed:29545505). {ECO:0000269|PubMed:17615298, ECO:0000269|PubMed:19748354, ECO:0000269|PubMed:22354088, ECO:0000269|PubMed:26504172, ECO:0000269|PubMed:27642048, ECO:0000269|PubMed:28396416, ECO:0000269|PubMed:29545505, ECO:0000269|PubMed:29932645, ECO:0000269|PubMed:30252181, ECO:0000269|PubMed:30683687, ECO:0000269|PubMed:31327635, ECO:0000269|PubMed:32600459, ECO:0000269|PubMed:34718584, ECO:0000269|PubMed:35912435, ECO:0000269|PubMed:37917749, ECO:0000269|PubMed:38157846}. |
Q9Y561 | LRP12 | S615 | ochoa | Low-density lipoprotein receptor-related protein 12 (LDLR-related protein 12) (LRP-12) (Suppressor of tumorigenicity 7 protein) | Probable receptor, which may be involved in the internalization of lipophilic molecules and/or signal transduction. May act as a tumor suppressor. {ECO:0000269|PubMed:12809483}. |
Q9Y657 | SPIN1 | S124 | ochoa|psp | Spindlin-1 (Ovarian cancer-related protein) (Spindlin1) | Chromatin reader that specifically recognizes and binds histone H3 both trimethylated at 'Lys-4' and 'Lys-9' (H3K4me3K9me3) and is involved in piRNA-mediated retrotransposon silencing during spermatogenesis (PubMed:33574238). Plays a key role in the initiation of the PIWIL4-piRNA pathway, a pathway that directs transposon DNA methylation and silencing in the male embryonic germ cells, by promoting recruitment of DNA methylation machinery to transposons: binds young, but not old, LINE1 transposons, which are specifically marked with H3K4me3K9me3, and promotes the recruitment of PIWIL4 and SPOCD1 to transposons, leading to piRNA-directed DNA methylation (By similarity). Also recognizes and binds histone H3 both trimethylated at 'Lys-4' and asymmetrically dimethylated at 'Arg-8' (H3K4me3 and H3R8me2a) and acts as an activator of Wnt signaling pathway downstream of PRMT2 (PubMed:22258766, PubMed:29061846). In case of cancer, promotes cell cancer proliferation via activation of the Wnt signaling pathway (PubMed:24589551). Overexpression induces metaphase arrest and chromosomal instability. Localizes to active rDNA loci and promotes the expression of rRNA genes (PubMed:21960006). May play a role in cell-cycle regulation during the transition from gamete to embryo (By similarity). Involved in oocyte meiotic resumption, a process that takes place before ovulation to resume meiosis of oocytes blocked in prophase I: may act by regulating maternal transcripts to control meiotic resumption (By similarity). {ECO:0000250|UniProtKB:Q61142, ECO:0000269|PubMed:21960006, ECO:0000269|PubMed:22258766, ECO:0000269|PubMed:24589551, ECO:0000269|PubMed:29061846, ECO:0000269|PubMed:33574238}. |
Q9Y698 | CACNG2 | S240 | psp | Voltage-dependent calcium channel gamma-2 subunit (Neuronal voltage-gated calcium channel gamma-2 subunit) (Transmembrane AMPAR regulatory protein gamma-2) (TARP gamma-2) | Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state. {ECO:0000269|PubMed:20805473}. |
Q9Y6A5 | TACC3 | S402 | ochoa | Transforming acidic coiled-coil-containing protein 3 (ERIC-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:21297582, PubMed:23532825). May be involved in the control of cell growth and differentiation. May contribute to cancer (PubMed:14767476). {ECO:0000250|UniProtKB:Q9JJ11, ECO:0000269|PubMed:14767476, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
P14314 | PRKCSH | S126 | Sugiyama | Glucosidase 2 subunit beta (80K-H protein) (Glucosidase II subunit beta) (Protein kinase C substrate 60.1 kDa protein heavy chain) (PKCSH) | Regulatory subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:O08795, ECO:0000269|PubMed:10929008}. |
P49327 | FASN | S519 | Sugiyama | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P52907 | CAPZA1 | S123 | Sugiyama | F-actin-capping protein subunit alpha-1 (CapZ alpha-1) | F-actin-capping proteins bind in a Ca(2+)-independent manner to the fast growing ends of actin filaments (barbed end) thereby blocking the exchange of subunits at these ends. Unlike other capping proteins (such as gelsolin and severin), these proteins do not sever actin filaments. May play a role in the formation of epithelial cell junctions (PubMed:22891260). Forms, with CAPZB, the barbed end of the fast growing ends of actin filaments in the dynactin complex and stabilizes dynactin structure. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:A0PFK5, ECO:0000269|PubMed:22891260}. |
Q13085 | ACACA | S1762 | Sugiyama | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q8WW59 | SPRYD4 | S113 | Sugiyama | SPRY domain-containing protein 4 | None |
Q9NRX4 | PHPT1 | S80 | Sugiyama | 14 kDa phosphohistidine phosphatase (EC 3.9.1.3) (Phosphohistidine phosphatase 1) (PHPT1) (Protein histidine phosphatase) (PHP) (Protein janus-A homolog) | Exhibits phosphohistidine phosphatase activity. {ECO:0000269|PubMed:19836471, ECO:0000269|PubMed:25574816}. |
P33992 | MCM5 | S483 | Sugiyama | DNA replication licensing factor MCM5 (EC 3.6.4.12) (CDC46 homolog) (P1-CDC46) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232}. |
O14974 | PPP1R12A | S692 | Sugiyama | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
Q14566 | MCM6 | S498 | Sugiyama | DNA replication licensing factor MCM6 (EC 3.6.4.12) (p105MCM) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
O14732 | IMPA2 | S160 | Sugiyama | Inositol monophosphatase 2 (IMP 2) (IMPase 2) (EC 3.1.3.25) (Inositol-1(or 4)-monophosphatase 2) (Myo-inositol monophosphatase A2) | Phosphatase that can use myo-inositol monophosphates, myo-inositol 1,4-diphosphate, scyllo-inositol-1,4-diphosphate, glucose-1-phosphate, beta-glycerophosphate and 2'-AMP as substrates in vitro (PubMed:17068342). It is likely that IMPA2 has an as yet unidentified in vivo substrate(s) (PubMed:17068342). Has been implicated as the pharmacological target for lithium (Li(+)) action in brain (PubMed:17068342). {ECO:0000269|PubMed:17068342}. |
Q01860 | POU5F1 | S289 | PSP | POU domain, class 5, transcription factor 1 (Octamer-binding protein 3) (Oct-3) (Octamer-binding protein 4) (Oct-4) (Octamer-binding transcription factor 3) (OTF-3) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3'). Forms a trimeric complex with SOX2 or SOX15 on DNA and controls the expression of a number of genes involved in embryonic development such as YES1, FGF4, UTF1 and ZFP206. Critical for early embryogenesis and for embryonic stem cell pluripotency. {ECO:0000269|PubMed:18035408}. |
P02686 | MBP | S141 | SIGNOR|EPSD | Myelin basic protein (MBP) (Myelin A1 protein) (Myelin membrane encephalitogenic protein) | The classic group of MBP isoforms (isoform 4-isoform 14) are with PLP the most abundant protein components of the myelin membrane in the CNS. They have a role in both its formation and stabilization. The smaller isoforms might have an important role in remyelination of denuded axons in multiple sclerosis. The non-classic group of MBP isoforms (isoform 1-isoform 3/Golli-MBPs) may preferentially have a role in the early developing brain long before myelination, maybe as components of transcriptional complexes, and may also be involved in signaling pathways in T-cells and neural cells. Differential splicing events combined with optional post-translational modifications give a wide spectrum of isomers, with each of them potentially having a specialized function. Induces T-cell proliferation. {ECO:0000269|PubMed:8544862}. |
P42262 | GRIA2 | S717 | SIGNOR|iPTMNet|EPSD | Glutamate receptor 2 (GluR-2) (AMPA-selective glutamate receptor 2) (GluR-B) (GluR-K2) (Glutamate receptor ionotropic, AMPA 2) | Ionotropic glutamate receptor that functions as a ligand-gated cation channel, gated by L-glutamate and glutamatergic agonists such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid, and kainic acid (PubMed:20614889, PubMed:31300657, PubMed:8003671). L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system and plays an important role in fast excitatory synaptic transmission (PubMed:14687553). Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse upon entry of monovalent and divalent cations such as sodium and calcium (PubMed:20614889, PubMed:8003671). The receptor then desensitizes rapidly and enters in a transient inactive state, characterized by the presence of bound agonist (By similarity). In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of L-glutamate (By similarity). Through complex formation with NSG1, GRIP1 and STX12 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting (By similarity). {ECO:0000250|UniProtKB:P19491, ECO:0000269|PubMed:14687553, ECO:0000269|PubMed:20614889, ECO:0000269|PubMed:31300657, ECO:0000269|PubMed:8003671}. |
P0DN86 | CGB3 | S116 | ELM | Choriogonadotropin subunit beta 3 (Choriogonadotropin subunit beta) (CG-beta) (Chorionic gonadotropin chain beta) | Beta subunit of the human chorionic gonadotropin (hCG). hCG is a complex glycoprotein composed of two glycosylated subunits alpha and beta which are non-covalently associated. The alpha subunit is identical to those in the pituitary gonadotropin hormones (LH, FSH and TSH). The beta subunits are distinct in each of the hormones and confer receptor and biological specificity. Has an essential role in pregnancy and maternal adaptation. Stimulates the ovaries to synthesize the steroids that are essential for the maintenance of pregnancy. {ECO:0000305}. |
P30153 | PPP2R1A | S146 | Sugiyama | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform (PP2Aa) (Medium tumor antigen-associated 61 kDa protein) (PP2A subunit A isoform PR65-alpha) (PP2A subunit A isoform R1-alpha) | The PR65 subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit (PubMed:15525651, PubMed:16580887, PubMed:33243860, PubMed:33633399, PubMed:34004147, PubMed:8694763). Upon interaction with GNA12 promotes dephosphorylation of microtubule associated protein TAU/MAPT (PubMed:15525651). Required for proper chromosome segregation and for centromeric localization of SGO1 in mitosis (PubMed:16580887). Together with RACK1 adapter, mediates dephosphorylation of AKT1 at 'Ser-473', preventing AKT1 activation and AKT-mTOR signaling pathway (By similarity). Dephosphorylation of AKT1 is essential for regulatory T-cells (Treg) homeostasis and stability (By similarity). Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:18782753, PubMed:33633399). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753, PubMed:33633399). Key mediator of a quality checkpoint during transcription elongation as part of the Integrator-PP2A (INTAC) complex (PubMed:33243860, PubMed:34004147). The INTAC complex drives premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: within the INTAC complex, acts as a scaffolding subunit for PPP2CA, which catalyzes dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, thereby preventing transcriptional elongation (PubMed:33243860, PubMed:34004147). Regulates the recruitment of the SKA complex to kinetochores (PubMed:28982702). {ECO:0000250|UniProtKB:Q76MZ3, ECO:0000269|PubMed:15525651, ECO:0000269|PubMed:16580887, ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:28982702, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:33633399, ECO:0000269|PubMed:34004147, ECO:0000269|PubMed:8694763}. |
P30154 | PPP2R1B | S158 | Sugiyama | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform (PP2A subunit A isoform PR65-beta) (PP2A subunit A isoform R1-beta) | The PR65 subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit. |
Q9BXS5 | AP1M1 | S305 | Sugiyama | AP-1 complex subunit mu-1 (AP-mu chain family member mu1A) (Adaptor protein complex AP-1 subunit mu-1) (Adaptor-related protein complex 1 subunit mu-1) (Clathrin assembly protein complex 1 mu-1 medium chain 1) (Clathrin coat assembly protein AP47) (Clathrin coat-associated protein AP47) (Golgi adaptor HA1/AP1 adaptin mu-1 subunit) (Mu-adaptin 1) (Mu1A-adaptin) | Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the trans-Golgi network (TGN) and endosomes. The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. |
Q96CN4 | EVI5L | S493 | Sugiyama | EVI5-like protein (Ecotropic viral integration site 5-like protein) | Functions as a GTPase-activating protein (GAP) with a broad specificity. {ECO:0000269|PubMed:16923123}. |
O15156 | ZBTB7B | S342 | Sugiyama | Zinc finger and BTB domain-containing protein 7B (Krueppel-related zinc finger protein cKrox) (hcKrox) (T-helper-inducing POZ/Krueppel-like factor) (Zinc finger and BTB domain-containing protein 15) (Zinc finger protein 67 homolog) (Zfp-67) (Zinc finger protein 857B) (Zinc finger protein Th-POK) | Transcription regulator that acts as a key regulator of lineage commitment of immature T-cell precursors. Exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Necessary and sufficient for commitment of CD4 lineage, while its absence causes CD8 commitment. Development of immature T-cell precursors (thymocytes) to either the CD4 helper or CD8 killer T-cell lineages correlates precisely with their T-cell receptor specificity for major histocompatibility complex class II or class I molecules, respectively. Cross-antagonism between ZBTB7B and CBF complexes are determinative to CD4 versus CD8 cell fate decision. Suppresses RUNX3 expression and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. induces, as a transcriptional activator, SOCS genes expression which represses RUNX3 expression and promotes the CD4+ lineage fate. During CD4 lineage commitment, associates with multiple sites at the CD8 locus, acting as a negative regulator of the CD8 promoter and enhancers by epigenetic silencing through the recruitment of class II histone deacetylases, such as HDAC4 and HDAC5, to these loci. Regulates the development of IL17-producing CD1d-restricted naural killer (NK) T cells. Also functions as an important metabolic regulator in the lactating mammary glands. Critical feed-forward regulator of insulin signaling in mammary gland lactation, directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling (By similarity). Transcriptional repressor of the collagen COL1A1 and COL1A2 genes. May also function as a repressor of fibronectin and possibly other extracellular matrix genes (PubMed:9370309). Potent driver of brown fat development, thermogenesis and cold-induced beige fat formation. Recruits the brown fat lncRNA 1 (Blnc1):HNRNPU ribonucleoprotein complex to activate thermogenic gene expression in brown and beige adipocytes (By similarity). {ECO:0000250|UniProtKB:Q64321, ECO:0000269|PubMed:9370309}. |
Q8IY84 | NIM1K | S382 | Sugiyama | Serine/threonine-protein kinase NIM1 (EC 2.7.11.1) (NIM1 serine/threonine-protein kinase) | None |
P51659 | HSD17B4 | S185 | Sugiyama | Peroxisomal multifunctional enzyme type 2 (MFE-2) (17-beta-hydroxysteroid dehydrogenase 4) (17-beta-HSD 4) (D-bifunctional protein) (DBP) (Multifunctional protein 2) (MFP-2) (Short chain dehydrogenase/reductase family 8C member 1) [Cleaved into: (3R)-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.n12); Enoyl-CoA hydratase 2 (EC 4.2.1.107) (EC 4.2.1.119) (3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholest-24-enoyl-CoA hydratase)] | Bifunctional enzyme acting on the peroxisomal fatty acid beta-oxidation pathway. Catalyzes two of the four reactions in fatty acid degradation: hydration of 2-enoyl-CoA (trans-2-enoyl-CoA) to produce (3R)-3-hydroxyacyl-CoA, and dehydrogenation of (3R)-3-hydroxyacyl-CoA to produce 3-ketoacyl-CoA (3-oxoacyl-CoA), which is further metabolized by SCPx. Can use straight-chain and branched-chain fatty acids, as well as bile acid intermediates as substrates. {ECO:0000269|PubMed:10671535, ECO:0000269|PubMed:15060085, ECO:0000269|PubMed:8902629, ECO:0000269|PubMed:9089413}. |
Q53SF7 | COBLL1 | S876 | PSP | Cordon-bleu protein-like 1 | None |
Q9NRA0 | SPHK2 | S377 | Sugiyama | Sphingosine kinase 2 (SK 2) (SPK 2) (EC 2.7.1.91) | Catalyzes the phosphorylation of sphingosine to form sphingosine-1-phosphate (SPP), a lipid mediator with both intra- and extracellular functions. Also acts on D-erythro-dihydrosphingosine, D-erythro-sphingosine and L-threo-dihydrosphingosine. Binds phosphoinositides (PubMed:12954646, PubMed:19168031). In contrast to prosurvival SPHK1, has a positive effect on intracellular ceramide levels, inhibits cells growth and enhances apoptosis (PubMed:16118219). In mitochondria, is important for cytochrome-c oxidase assembly and mitochondrial respiration. The SPP produced in mitochondria binds PHB2 and modulates the regulation via PHB2 of complex IV assembly and respiration (PubMed:20959514). In nucleus, plays a role in epigenetic regulation of gene expression. Interacts with HDAC1 and HDAC2 and, through SPP production, inhibits their enzymatic activity, preventing the removal of acetyl groups from lysine residues with histones. Up-regulates acetylation of histone H3-K9, histone H4-K5 and histone H2B-K12 (PubMed:19729656). In nucleus, may have an inhibitory effect on DNA synthesis and cell cycle (PubMed:12954646, PubMed:16103110). In mast cells, is the main regulator of SPP production which mediates calcium influx, NF-kappa-B activation, cytokine production, such as TNF and IL6, and degranulation of mast cells (By similarity). In dopaminergic neurons, is involved in promoting mitochondrial functions regulating ATP and ROS levels (By similarity). Also involved in the regulation of glucose and lipid metabolism (By similarity). {ECO:0000250|UniProtKB:Q9JIA7, ECO:0000269|PubMed:12954646, ECO:0000269|PubMed:16103110, ECO:0000269|PubMed:16118219, ECO:0000269|PubMed:19168031, ECO:0000269|PubMed:19729656, ECO:0000269|PubMed:20959514}. |
P61764 | STXBP1 | S469 | Sugiyama | Syntaxin-binding protein 1 (MUNC18-1) (N-Sec1) (Protein unc-18 homolog 1) (Unc18-1) (Protein unc-18 homolog A) (Unc-18A) (p67) | Participates in the regulation of synaptic vesicle docking and fusion through interaction with GTP-binding proteins (By similarity). Essential for neurotransmission and binds syntaxin, a component of the synaptic vesicle fusion machinery probably in a 1:1 ratio. Can interact with syntaxins 1, 2, and 3 but not syntaxin 4. Involved in the release of neurotransmitters from neurons through interacting with SNARE complex component STX1A and mediating the assembly of the SNARE complex at synaptic membranes (By similarity). May play a role in determining the specificity of intracellular fusion reactions. {ECO:0000250|UniProtKB:O08599, ECO:0000250|UniProtKB:P61765}. |
Q13162 | PRDX4 | S68 | Sugiyama | Peroxiredoxin-4 (EC 1.11.1.24) (Antioxidant enzyme AOE372) (AOE37-2) (Peroxiredoxin IV) (Prx-IV) (Thioredoxin peroxidase AO372) (Thioredoxin-dependent peroxide reductase A0372) (Thioredoxin-dependent peroxiredoxin 4) | Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides and as sensor of hydrogen peroxide-mediated signaling events. Regulates the activation of NF-kappa-B in the cytosol by a modulation of I-kappa-B-alpha phosphorylation. {ECO:0000269|PubMed:9388242}. |
Q14524 | SCN5A | S20 | PSP | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
A8CG34 | POM121C | S392 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
O14639 | ABLIM1 | S352 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O60307 | MAST3 | S934 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O94929 | ABLIM3 | S372 | ochoa | Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
O94929 | ABLIM3 | S503 | ochoa | Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
O94979 | SEC31A | S351 | ochoa | Protein transport protein Sec31A (ABP125) (ABP130) (SEC31-like protein 1) (SEC31-related protein A) (Web1-like protein) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER) (PubMed:10788476). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules (By similarity). {ECO:0000250|UniProtKB:Q9Z2Q1, ECO:0000269|PubMed:10788476}. |
O95980 | RECK | S620 | ochoa | Reversion-inducing cysteine-rich protein with Kazal motifs (hRECK) (Suppressor of tumorigenicity 15 protein) | Functions together with ADGRA2 to enable brain endothelial cells to selectively respond to Wnt7 signals (WNT7A or WNT7B) (PubMed:28289266, PubMed:30026314). Plays a key role in Wnt7-specific responses: required for central nervous system (CNS) angiogenesis and blood-brain barrier regulation (By similarity). Acts as a Wnt7-specific coactivator of canonical Wnt signaling by decoding Wnt ligands: acts by interacting specifically with the disordered linker region of Wnt7, thereby conferring ligand selectivity for Wnt7 (PubMed:30026314). ADGRA2 is then required to deliver RECK-bound Wnt7 to frizzled by assembling a higher-order RECK-ADGRA2-Fzd-LRP5-LRP6 complex (PubMed:30026314). Also acts as a serine protease inhibitor: negatively regulates matrix metalloproteinase-9 (MMP9) by suppressing MMP9 secretion and by direct inhibition of its enzymatic activity (PubMed:18194466, PubMed:9789069). Also inhibits metalloproteinase activity of MMP2 and MMP14 (MT1-MMP) (PubMed:9789069). {ECO:0000250|UniProtKB:Q9Z0J1, ECO:0000269|PubMed:18194466, ECO:0000269|PubMed:28289266, ECO:0000269|PubMed:30026314, ECO:0000269|PubMed:9789069}. |
P09629 | HOXB7 | S132 | psp | Homeobox protein Hox-B7 (Homeobox protein HHO.C1) (Homeobox protein Hox-2C) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P35670 | ATP7B | S340 | psp | Copper-transporting ATPase 2 (EC 7.2.2.8) (Copper pump 2) (Wilson disease-associated protein) [Cleaved into: WND/140 kDa] | Copper ion transmembrane transporter involved in the export of copper out of the cells. It is involved in copper homeostasis in the liver, where it ensures the efflux of copper from hepatocytes into the bile in response to copper overload. {ECO:0000269|PubMed:18203200, ECO:0000269|PubMed:22240481, ECO:0000269|PubMed:24706876, ECO:0000269|PubMed:26004889}. |
P57768 | SNX16 | S28 | ochoa | Sorting nexin-16 | May be involved in several stages of intracellular trafficking. Plays a role in protein transport from early to late endosomes. Plays a role in protein transport to the lysosome. Promotes degradation of EGFR after EGF signaling. Plays a role in intracellular transport of vesicular stomatitis virus nucleocapsids from the endosome to the cytoplasm. {ECO:0000269|PubMed:12813048, ECO:0000269|PubMed:15951806}. |
P98082 | DAB2 | S368 | ochoa | Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) | Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}. |
Q01118 | SCN7A | S905 | ochoa | Sodium channel protein type 7 subunit alpha (Atypical sodium channel Nav2.1) (Nax channel) (Sodium channel protein type VII subunit alpha) | Sodium leak channel functioning as an osmosensor regulating sodium ion levels in various tissues and organs. While most sodium channels are voltage-gated, SCN7A is not and lets sodium flow through membrane along its concentration gradient (PubMed:26537257, PubMed:35301303). In glial cells of the central nervous system, senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake through activation of nearby neurons to maintain appropriate sodium levels in the body (By similarity). By mediating sodium influx into keratinocytes, also plays a role in skin barrier homeostasis (PubMed:26537257). {ECO:0000250|UniProtKB:B1AYL1, ECO:0000269|PubMed:26537257, ECO:0000269|PubMed:35301303}. |
Q07157 | TJP1 | S1399 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08495 | DMTN | S288 | ochoa | Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) | Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}. |
Q09666 | AHNAK | S282 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q10713 | PMPCA | S34 | ochoa | Mitochondrial-processing peptidase subunit alpha (Alpha-MPP) (Inactive zinc metalloprotease alpha) (P-55) | Substrate recognition and binding subunit of the essential mitochondrial processing protease (MPP), which cleaves the mitochondrial sequence off newly imported precursors proteins. {ECO:0000269|PubMed:25808372}. |
Q12830 | BPTF | S2239 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q13023 | AKAP6 | S1566 | ochoa | A-kinase anchor protein 6 (AKAP-6) (A-kinase anchor protein 100 kDa) (AKAP 100) (Protein kinase A-anchoring protein 6) (PRKA6) (mAKAP) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the nuclear membrane or sarcoplasmic reticulum. May act as an adapter for assembling multiprotein complexes. |
Q13085 | ACACA | S77 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q14154 | DELE1 | S473 | ochoa | DAP3-binding cell death enhancer 1 (DAP3-binding cell death enhancer 1, long form) (DELE1(L)) (Death ligand signal enhancer) [Cleaved into: DAP3-binding cell death enhancer 1 short form (DELE1(S)) (S-DELE1) (cDELE1)] | Protein kinase activator that acts as a key activator of the integrated stress response (ISR) following various stresses, such as iron deficiency, mitochondrial stress or mitochondrial DNA breaks (PubMed:32132706, PubMed:32132707, PubMed:35388015, PubMed:37327776, PubMed:37550454, PubMed:37832546, PubMed:38340717). Detects impaired protein import and processing in mitochondria, activating the ISR (PubMed:35388015). May also required for the induction of death receptor-mediated apoptosis through the regulation of caspase activation (PubMed:20563667). {ECO:0000269|PubMed:20563667, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:35388015, ECO:0000269|PubMed:37327776, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:37832546, ECO:0000269|PubMed:38340717}.; FUNCTION: [DAP3-binding cell death enhancer 1]: Protein kinase activator that activates the ISR in response to iron deficiency: iron deficiency impairs mitochondrial import, promoting DELE1 localization at the mitochondrial surface, where it binds and activates EIF2AK1/HRI to trigger the ISR. {ECO:0000269|PubMed:37327776}.; FUNCTION: [DAP3-binding cell death enhancer 1 short form]: Protein kinase activator generated by protein cleavage in response to mitochondrial stress, which accumulates in the cytosol and specifically binds to and activates the protein kinase activity of EIF2AK1/HRI (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:37832546, PubMed:38340717). It thereby activates the integrated stress response (ISR): EIF2AK1/HRI activation promotes eIF-2-alpha (EIF2S1) phosphorylation, leading to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, the master transcriptional regulator of the ISR (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:37832546). Also acts as an activator of PRKN-independent mitophagy: activates the protein kinase activity of EIF2AK1/HRI in response to mitochondrial damage, promoting eIF-2-alpha (EIF2S1) phosphorylation, leading to mitochondrial localization of EIF2S1 followed by induction of mitophagy (PubMed:38340717). {ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:37327776, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:37832546, ECO:0000269|PubMed:38340717}. |
Q5JWR5 | DOP1A | S1236 | ochoa | Protein DOP1A | May be involved in protein traffic between late Golgi and early endosomes. {ECO:0000250|UniProtKB:Q03921}. |
Q684P5 | RAP1GAP2 | S588 | ochoa | Rap1 GTPase-activating protein 2 (Rap1GAP2) (GTPase-activating Rap/Ran-GAP domain-like protein 4) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15632203}. |
Q6P1L5 | FAM117B | S219 | ochoa | Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) | None |
Q6ZU80 | CEP128 | S1042 | ochoa | Centrosomal protein of 128 kDa (Cep128) | None |
Q7Z460 | CLASP1 | S687 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q7Z6Z7 | HUWE1 | S2594 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86TV6 | TTC7B | S629 | ochoa | Tetratricopeptide repeat protein 7B (TPR repeat protein 7B) (Tetratricopeptide repeat protein 7-like-1) (TPR repeat protein 7-like-1) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (PubMed:26571211). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:26571211}. |
Q86V48 | LUZP1 | S574 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q8IWU2 | LMTK2 | S671 | ochoa | Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) | Phosphorylates PPP1C, phosphorylase b and CFTR. |
Q8N1G0 | ZNF687 | S1117 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N5Y2 | MSL3 | S399 | ochoa | MSL complex subunit 3 (Male-specific lethal 3 homolog) (Male-specific lethal-3 homolog 1) (Male-specific lethal-3 protein-like 1) (MSL3-like 1) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16227571, PubMed:16543150, PubMed:20018852, PubMed:20657587, PubMed:20943666, PubMed:21217699, PubMed:30224647, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). Acts as a histone reader that specifically recognizes and binds histone H4 monomethylated at 'Lys-20' (H4K20Me1) in a DNA-dependent manner and is proposed to be involved in chromosomal targeting of the MSL complex (PubMed:20657587, PubMed:20943666). May play a role X inactivation in females (PubMed:21217699). {ECO:0000250|UniProtKB:Q9D1P2, ECO:0000250|UniProtKB:Q9WVG9, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20657587, ECO:0000269|PubMed:20943666, ECO:0000269|PubMed:21217699, ECO:0000269|PubMed:30224647, ECO:0000269|PubMed:33837287}. |
Q8NF50 | DOCK8 | S903 | ochoa | Dedicator of cytokinesis protein 8 | Guanine nucleotide exchange factor (GEF) which specifically activates small GTPase CDC42 by exchanging bound GDP for free GTP (PubMed:22461490, PubMed:28028151). During immune responses, required for interstitial dendritic cell (DC) migration by locally activating CDC42 at the leading edge membrane of DC (By similarity). Required for CD4(+) T-cell migration in response to chemokine stimulation by promoting CDC42 activation at T cell leading edge membrane (PubMed:28028151). Is involved in NK cell cytotoxicity by controlling polarization of microtubule-organizing center (MTOC), and possibly regulating CCDC88B-mediated lytic granule transport to MTOC during cell killing (PubMed:25762780). {ECO:0000250|UniProtKB:Q8C147, ECO:0000269|PubMed:22461490, ECO:0000269|PubMed:25762780, ECO:0000269|PubMed:28028151}. |
Q8TE67 | EPS8L3 | S230 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 3 (EPS8-like protein 3) (Epidermal growth factor receptor pathway substrate 8-related protein 3) (EPS8-related protein 3) | None |
Q92609 | TBC1D5 | S43 | ochoa | TBC1 domain family member 5 | May act as a GTPase-activating protein (GAP) for Rab family protein(s). May act as a GAP for RAB7A. Can displace RAB7A and retromer CSC subcomplex from the endosomal membrane to the cytosol; at least retromer displacement seems to require its catalytic activity (PubMed:19531583, PubMed:20923837). Required for retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN); the function seems to require its catalytic activity. Involved in regulation of autophagy (PubMed:22354992). May act as a molecular switch between endosomal and autophagosomal transport and is involved in reprogramming vesicle trafficking upon autophagy induction. Involved in the trafficking of ATG9A upon activation of autophagy. May regulate the recruitment of ATG9A-AP2-containing vesicles to autophagic membranes (PubMed:24603492). {ECO:0000269|PubMed:19531583, ECO:0000269|PubMed:20923837, ECO:0000269|PubMed:22354992, ECO:0000269|PubMed:24603492, ECO:0000305|PubMed:19531583, ECO:0000305|PubMed:22354992, ECO:0000305|PubMed:24603492}. |
Q96HA1 | POM121 | S415 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96J84 | KIRREL1 | S638 | ochoa | Kin of IRRE-like protein 1 (Kin of irregular chiasm-like protein 1) (Nephrin-like protein 1) | Required for proper function of the glomerular filtration barrier. It is involved in the maintenance of a stable podocyte architecture with interdigitating foot processes connected by specialized cell-cell junctions, known as the slit diaphragm (PubMed:31472902). It is a signaling protein that needs the presence of TEC kinases to fully trans-activate the transcription factor AP-1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:31472902}. |
Q9BZH6 | WDR11 | S397 | ochoa | WD repeat-containing protein 11 (Bromodomain and WD repeat-containing protein 2) (WD repeat-containing protein 15) | Involved in the Hedgehog (Hh) signaling pathway, is essential for normal ciliogenesis (PubMed:29263200). Regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotropin-releasing hormone production (PubMed:29263200). WDR11 complex facilitates the tethering of Adaptor protein-1 complex (AP-1)-derived vesicles. WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). {ECO:0000269|PubMed:29263200, ECO:0000269|PubMed:29426865}. |
Q9C0J8 | WDR33 | S1278 | ochoa | pre-mRNA 3' end processing protein WDR33 (WD repeat-containing protein 33) (WD repeat-containing protein of 146 kDa) | Essential for both cleavage and polyadenylation of pre-mRNA 3' ends. {ECO:0000269|PubMed:19217410}. |
Q9H8V3 | ECT2 | S879 | ochoa | Protein ECT2 (Epithelial cell-transforming sequence 2 oncogene) | Guanine nucleotide exchange factor (GEF) that catalyzes the exchange of GDP for GTP. Promotes guanine nucleotide exchange on the Rho family members of small GTPases, like RHOA, RHOC, RAC1 and CDC42. Required for signal transduction pathways involved in the regulation of cytokinesis. Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Regulates the translocation of RHOA from the central spindle to the equatorial region. Plays a role in the control of mitotic spindle assembly; regulates the activation of CDC42 in metaphase for the process of spindle fibers attachment to kinetochores before chromosome congression. Involved in the regulation of epithelial cell polarity; participates in the formation of epithelial tight junctions in a polarity complex PARD3-PARD6-protein kinase PRKCQ-dependent manner. Plays a role in the regulation of neurite outgrowth. Inhibits phenobarbital (PB)-induced NR1I3 nuclear translocation. Stimulates the activity of RAC1 through its association with the oncogenic PARD6A-PRKCI complex in cancer cells, thereby acting to coordinately drive tumor cell proliferation and invasion. Also stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:10579713, ECO:0000269|PubMed:14645260, ECO:0000269|PubMed:15254234, ECO:0000269|PubMed:15545273, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16170345, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16495035, ECO:0000269|PubMed:19129481, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19617897, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21373644, ECO:0000269|PubMed:25068414, ECO:0000269|PubMed:31888991}. |
Q9NQG7 | HPS4 | S354 | ochoa | BLOC-3 complex member HPS4 (Hermansky-Pudlak syndrome 4 protein) (Light-ear protein homolog) | Component of the BLOC-3 complex, a complex that acts as a guanine exchange factor (GEF) for RAB32 and RAB38, promotes the exchange of GDP to GTP, converting them from an inactive GDP-bound form into an active GTP-bound form. The BLOC-3 complex plays an important role in the control of melanin production and melanosome biogenesis and promotes the membrane localization of RAB32 and RAB38 (PubMed:23084991). {ECO:0000269|PubMed:23084991}. |
Q9NRH2 | SNRK | S569 | ochoa | SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) | May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}. |
Q9P0U3 | SENP1 | S107 | ochoa | Sentrin-specific protease 1 (EC 3.4.22.-) (Sentrin/SUMO-specific protease SENP1) | Protease that catalyzes two essential functions in the SUMO pathway (PubMed:10652325, PubMed:15199155, PubMed:15487983, PubMed:16253240, PubMed:16553580, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). The first is the hydrolysis of an alpha-linked peptide bond at the C-terminal end of the small ubiquitin-like modifier (SUMO) propeptides, SUMO1, SUMO2 and SUMO3 leading to the mature form of the proteins (PubMed:15487983). The second is the deconjugation of SUMO1, SUMO2 and SUMO3 from targeted proteins, by cleaving an epsilon-linked peptide bond between the C-terminal glycine of the mature SUMO and the lysine epsilon-amino group of the target protein (PubMed:15199155, PubMed:16253240, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). Deconjugates SUMO1 from HIPK2 (PubMed:16253240). Deconjugates SUMO1 from HDAC1 and BHLHE40/DEC1, which decreases its transcriptional repression activity (PubMed:15199155, PubMed:21829689). Deconjugates SUMO1 from CLOCK, which decreases its transcriptional activation activity (PubMed:23160374). Deconjugates SUMO2 from MTA1 (PubMed:21965678). Inhibits N(6)-methyladenosine (m6A) RNA methylation by mediating SUMO1 deconjugation from METTL3 and ALKBH5: METTL3 inhibits the m6A RNA methyltransferase activity, while ALKBH5 desumoylation promotes m6A demethylation (PubMed:29506078, PubMed:34048572, PubMed:37257451). Desumoylates CCAR2 which decreases its interaction with SIRT1 (PubMed:25406032). Deconjugates SUMO1 from GPS2 (PubMed:24943844). {ECO:0000269|PubMed:10652325, ECO:0000269|PubMed:15199155, ECO:0000269|PubMed:15487983, ECO:0000269|PubMed:16253240, ECO:0000269|PubMed:16553580, ECO:0000269|PubMed:21829689, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:23160374, ECO:0000269|PubMed:24943844, ECO:0000269|PubMed:25406032, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:37257451}. |
Q9UPQ9 | TNRC6B | S562 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9Y2H9 | MAST1 | S1424 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2K5 | R3HDM2 | S142 | ochoa | R3H domain-containing protein 2 | None |
Q9Y478 | PRKAB1 | S24 | ochoa|psp | 5'-AMP-activated protein kinase subunit beta-1 (AMPK subunit beta-1) (AMPKb) | Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3). |
Q9Y5X1 | SNX9 | S199 | ochoa | Sorting nexin-9 (SH3 and PX domain-containing protein 1) (Protein SDP1) (SH3 and PX domain-containing protein 3A) | Involved in endocytosis and intracellular vesicle trafficking, both during interphase and at the end of mitosis. Required for efficient progress through mitosis and cytokinesis. Required for normal formation of the cleavage furrow at the end of mitosis. Plays a role in endocytosis via clathrin-coated pits, but also clathrin-independent, actin-dependent fluid-phase endocytosis. Plays a role in macropinocytosis. Promotes internalization of TNFR. Promotes degradation of EGFR after EGF signaling. Stimulates the GTPase activity of DNM1. Promotes DNM1 oligomerization. Promotes activation of the Arp2/3 complex by WASL, and thereby plays a role in the reorganization of the F-actin cytoskeleton. Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate and promotes membrane tubulation. Has lower affinity for membranes enriched in phosphatidylinositol 3-phosphate. {ECO:0000269|PubMed:11799118, ECO:0000269|PubMed:12952949, ECO:0000269|PubMed:15703209, ECO:0000269|PubMed:17609109, ECO:0000269|PubMed:17948057, ECO:0000269|PubMed:18388313, ECO:0000269|PubMed:20427313, ECO:0000269|PubMed:21048941, ECO:0000269|PubMed:22718350}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-416482 | G alpha (12/13) signalling events | 0.000012 | 4.911 |
R-HSA-193648 | NRAGE signals death through JNK | 0.000014 | 4.867 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.000019 | 4.716 |
R-HSA-3371568 | Attenuation phase | 0.000031 | 4.510 |
R-HSA-75153 | Apoptotic execution phase | 0.000031 | 4.506 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.000053 | 4.273 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.000079 | 4.102 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.000083 | 4.081 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.000131 | 3.884 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.000212 | 3.674 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.000204 | 3.691 |
R-HSA-3371556 | Cellular response to heat stress | 0.000226 | 3.646 |
R-HSA-3371511 | HSF1 activation | 0.000239 | 3.622 |
R-HSA-73887 | Death Receptor Signaling | 0.000473 | 3.326 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.000535 | 3.272 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.000700 | 3.155 |
R-HSA-162582 | Signal Transduction | 0.000736 | 3.133 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.000769 | 3.114 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.001516 | 2.819 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.001516 | 2.819 |
R-HSA-1640170 | Cell Cycle | 0.001429 | 2.845 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.001770 | 2.752 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.002400 | 2.620 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.002200 | 2.657 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.002561 | 2.592 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.002561 | 2.592 |
R-HSA-68882 | Mitotic Anaphase | 0.002253 | 2.647 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.002400 | 2.620 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.002391 | 2.621 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.002559 | 2.592 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.003013 | 2.521 |
R-HSA-9675108 | Nervous system development | 0.002936 | 2.532 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 0.003016 | 2.521 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.003572 | 2.447 |
R-HSA-68877 | Mitotic Prometaphase | 0.003776 | 2.423 |
R-HSA-9707616 | Heme signaling | 0.003791 | 2.421 |
R-HSA-2028269 | Signaling by Hippo | 0.004462 | 2.350 |
R-HSA-422475 | Axon guidance | 0.004447 | 2.352 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.004938 | 2.306 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.004918 | 2.308 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.005228 | 2.282 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.005506 | 2.259 |
R-HSA-68886 | M Phase | 0.005542 | 2.256 |
R-HSA-8875656 | MET receptor recycling | 0.007314 | 2.136 |
R-HSA-199991 | Membrane Trafficking | 0.007534 | 2.123 |
R-HSA-983189 | Kinesins | 0.008181 | 2.087 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.008449 | 2.073 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.009217 | 2.035 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.009987 | 2.001 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.010409 | 1.983 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.010654 | 1.973 |
R-HSA-210745 | Regulation of gene expression in beta cells | 0.011282 | 1.948 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.011120 | 1.954 |
R-HSA-74713 | IRS activation | 0.012763 | 1.894 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.012763 | 1.894 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.011505 | 1.939 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.012979 | 1.887 |
R-HSA-169893 | Prolonged ERK activation events | 0.012900 | 1.889 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.012096 | 1.917 |
R-HSA-9008059 | Interleukin-37 signaling | 0.012979 | 1.887 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.011505 | 1.939 |
R-HSA-68875 | Mitotic Prophase | 0.012539 | 1.902 |
R-HSA-1483255 | PI Metabolism | 0.012683 | 1.897 |
R-HSA-5357801 | Programmed Cell Death | 0.013976 | 1.855 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.014852 | 1.828 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.014852 | 1.828 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.015137 | 1.820 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.015589 | 1.807 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.015885 | 1.799 |
R-HSA-9656249 | Defective Base Excision Repair Associated with OGG1 | 0.018326 | 1.737 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.019160 | 1.718 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.019160 | 1.718 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.019160 | 1.718 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.017468 | 1.758 |
R-HSA-352238 | Breakdown of the nuclear lamina | 0.018326 | 1.737 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.018303 | 1.737 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.016959 | 1.771 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.019160 | 1.718 |
R-HSA-186712 | Regulation of beta-cell development | 0.018711 | 1.728 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.018303 | 1.737 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.018303 | 1.737 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.020038 | 1.698 |
R-HSA-109704 | PI3K Cascade | 0.020045 | 1.698 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.020478 | 1.689 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.021612 | 1.665 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.021612 | 1.665 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.021612 | 1.665 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.022034 | 1.657 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.022324 | 1.651 |
R-HSA-166520 | Signaling by NTRKs | 0.022555 | 1.647 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.024115 | 1.618 |
R-HSA-72187 | mRNA 3'-end processing | 0.024208 | 1.616 |
R-HSA-180746 | Nuclear import of Rev protein | 0.024274 | 1.615 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.024308 | 1.614 |
R-HSA-109581 | Apoptosis | 0.025766 | 1.589 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 0.031160 | 1.506 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 0.031160 | 1.506 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 0.031160 | 1.506 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 0.031160 | 1.506 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 0.031160 | 1.506 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 0.031160 | 1.506 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 0.031160 | 1.506 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 0.031160 | 1.506 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 0.031160 | 1.506 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 0.031160 | 1.506 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 0.031160 | 1.506 |
R-HSA-9708296 | tRNA-derived small RNA (tsRNA or tRNA-related fragment, tRF) biogenesis | 0.031160 | 1.506 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.028653 | 1.543 |
R-HSA-2428924 | IGF1R signaling cascade | 0.028653 | 1.543 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.029403 | 1.532 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.029542 | 1.530 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.031020 | 1.508 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.027437 | 1.562 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.031020 | 1.508 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.033587 | 1.474 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.034464 | 1.463 |
R-HSA-418360 | Platelet calcium homeostasis | 0.034956 | 1.456 |
R-HSA-8875878 | MET promotes cell motility | 0.037154 | 1.430 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.037154 | 1.430 |
R-HSA-112399 | IRS-mediated signalling | 0.037232 | 1.429 |
R-HSA-196025 | Formation of annular gap junctions | 0.040637 | 1.391 |
R-HSA-418885 | DCC mediated attractive signaling | 0.042786 | 1.369 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.039167 | 1.407 |
R-HSA-390696 | Adrenoceptors | 0.040637 | 1.391 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.042786 | 1.369 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.040440 | 1.393 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.044759 | 1.349 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.044969 | 1.347 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.045015 | 1.347 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.045015 | 1.347 |
R-HSA-1839120 | Signaling by FGFR1 amplification mutants | 0.046579 | 1.332 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.046579 | 1.332 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.046579 | 1.332 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 0.046579 | 1.332 |
R-HSA-170984 | ARMS-mediated activation | 0.050235 | 1.299 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.050235 | 1.299 |
R-HSA-190873 | Gap junction degradation | 0.050235 | 1.299 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.050235 | 1.299 |
R-HSA-5683057 | MAPK family signaling cascades | 0.049301 | 1.307 |
R-HSA-176974 | Unwinding of DNA | 0.050235 | 1.299 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.049317 | 1.307 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.048870 | 1.311 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.049317 | 1.307 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.050597 | 1.296 |
R-HSA-9669937 | Drug resistance of KIT mutants | 0.066031 | 1.180 |
R-HSA-9674415 | Drug resistance of PDGFR mutants | 0.066031 | 1.180 |
R-HSA-9669921 | KIT mutants bind TKIs | 0.066031 | 1.180 |
R-HSA-9674428 | PDGFR mutants bind TKIs | 0.066031 | 1.180 |
R-HSA-9669917 | Imatinib-resistant KIT mutants | 0.066031 | 1.180 |
R-HSA-9674404 | Sorafenib-resistant PDGFR mutants | 0.066031 | 1.180 |
R-HSA-9656255 | Defective OGG1 Substrate Binding | 0.066031 | 1.180 |
R-HSA-9674396 | Imatinib-resistant PDGFR mutants | 0.066031 | 1.180 |
R-HSA-9669924 | Masitinib-resistant KIT mutants | 0.066031 | 1.180 |
R-HSA-9669929 | Regorafenib-resistant KIT mutants | 0.066031 | 1.180 |
R-HSA-9669914 | Dasatinib-resistant KIT mutants | 0.066031 | 1.180 |
R-HSA-9669926 | Nilotinib-resistant KIT mutants | 0.066031 | 1.180 |
R-HSA-9674403 | Regorafenib-resistant PDGFR mutants | 0.066031 | 1.180 |
R-HSA-9657050 | Defective OGG1 Localization | 0.066031 | 1.180 |
R-HSA-9669936 | Sorafenib-resistant KIT mutants | 0.066031 | 1.180 |
R-HSA-9669934 | Sunitinib-resistant KIT mutants | 0.066031 | 1.180 |
R-HSA-9674401 | Sunitinib-resistant PDGFR mutants | 0.066031 | 1.180 |
R-HSA-191650 | Regulation of gap junction activity | 0.064186 | 1.193 |
R-HSA-9707587 | Regulation of HMOX1 expression and activity | 0.064186 | 1.193 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 0.064186 | 1.193 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 0.064186 | 1.193 |
R-HSA-8941333 | RUNX2 regulates genes involved in differentiation of myeloid cells | 0.064186 | 1.193 |
R-HSA-198203 | PI3K/AKT activation | 0.060828 | 1.216 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 0.060828 | 1.216 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.055051 | 1.259 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.053871 | 1.269 |
R-HSA-9909396 | Circadian clock | 0.051837 | 1.285 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.053670 | 1.270 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.053871 | 1.269 |
R-HSA-5673000 | RAF activation | 0.064929 | 1.188 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.053491 | 1.272 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.058731 | 1.231 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.054987 | 1.260 |
R-HSA-6794361 | Neurexins and neuroligins | 0.056877 | 1.245 |
R-HSA-74749 | Signal attenuation | 0.060828 | 1.216 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.063705 | 1.196 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.056438 | 1.248 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.058679 | 1.232 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.063997 | 1.194 |
R-HSA-9827857 | Specification of primordial germ cells | 0.065869 | 1.181 |
R-HSA-9020591 | Interleukin-12 signaling | 0.066561 | 1.177 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.069066 | 1.161 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.071038 | 1.149 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.074645 | 1.127 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.074748 | 1.126 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.075028 | 1.125 |
R-HSA-9656256 | Defective OGG1 Substrate Processing | 0.127706 | 0.894 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.127706 | 0.894 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.127706 | 0.894 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.127706 | 0.894 |
R-HSA-211728 | Regulation of PAK-2p34 activity by PS-GAP/RHG10 | 0.127706 | 0.894 |
R-HSA-3642279 | TGFBR2 MSI Frameshift Mutants in Cancer | 0.127706 | 0.894 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.127706 | 0.894 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.127706 | 0.894 |
R-HSA-9680187 | Signaling by extracellular domain mutants of KIT | 0.185312 | 0.732 |
R-HSA-9669935 | Signaling by juxtamembrane domain KIT mutants | 0.185312 | 0.732 |
R-HSA-2033515 | t(4;14) translocations of FGFR3 | 0.185312 | 0.732 |
R-HSA-8853334 | Signaling by FGFR3 fusions in cancer | 0.185312 | 0.732 |
R-HSA-5619109 | Defective SLC6A2 causes orthostatic intolerance (OI) | 0.185312 | 0.732 |
R-HSA-9632700 | Evasion of Oxidative Stress Induced Senescence Due to Defective p16INK4A binding... | 0.185312 | 0.732 |
R-HSA-3560792 | Defective SLC26A2 causes chondrodysplasias | 0.185312 | 0.732 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 0.185312 | 0.732 |
R-HSA-9669933 | Signaling by kinase domain mutants of KIT | 0.185312 | 0.732 |
R-HSA-5674404 | PTEN Loss of Function in Cancer | 0.185312 | 0.732 |
R-HSA-9630794 | Evasion of Oncogene Induced Senescence Due to Defective p16INK4A binding to CDK4... | 0.185312 | 0.732 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 0.104577 | 0.981 |
R-HSA-211736 | Stimulation of the cell death response by PAK-2p34 | 0.239116 | 0.621 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 0.239116 | 0.621 |
R-HSA-3642278 | Loss of Function of TGFBR2 in Cancer | 0.239116 | 0.621 |
R-HSA-3645790 | TGFBR2 Kinase Domain Mutants in Cancer | 0.239116 | 0.621 |
R-HSA-3656535 | TGFBR1 LBD Mutants in Cancer | 0.239116 | 0.621 |
R-HSA-5658034 | HHAT G278V doesn't palmitoylate Hh-Np | 0.239116 | 0.621 |
R-HSA-5619089 | Defective SLC6A5 causes hyperekplexia 3 (HKPX3) | 0.239116 | 0.621 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.126760 | 0.897 |
R-HSA-163767 | PP2A-mediated dephosphorylation of key metabolic factors | 0.149919 | 0.824 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.149919 | 0.824 |
R-HSA-112412 | SOS-mediated signalling | 0.149919 | 0.824 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.149919 | 0.824 |
R-HSA-8853336 | Signaling by plasma membrane FGFR1 fusions | 0.289371 | 0.539 |
R-HSA-209563 | Axonal growth stimulation | 0.289371 | 0.539 |
R-HSA-111446 | Activation of BIM and translocation to mitochondria | 0.289371 | 0.539 |
R-HSA-8865999 | MET activates PTPN11 | 0.289371 | 0.539 |
R-HSA-9909438 | 3-Methylcrotonyl-CoA carboxylase deficiency | 0.289371 | 0.539 |
R-HSA-8941237 | Invadopodia formation | 0.289371 | 0.539 |
R-HSA-164940 | Nef mediated downregulation of MHC class I complex cell surface expression | 0.173829 | 0.760 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.173829 | 0.760 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.173829 | 0.760 |
R-HSA-2033514 | FGFR3 mutant receptor activation | 0.112132 | 0.950 |
R-HSA-1839130 | Signaling by activated point mutants of FGFR3 | 0.112132 | 0.950 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.084199 | 1.075 |
R-HSA-1296061 | HCN channels | 0.336309 | 0.473 |
R-HSA-211163 | AKT-mediated inactivation of FOXO1A | 0.336309 | 0.473 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.336309 | 0.473 |
R-HSA-2206285 | MPS VI - Maroteaux-Lamy syndrome | 0.336309 | 0.473 |
R-HSA-3656532 | TGFBR1 KD Mutants in Cancer | 0.336309 | 0.473 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 0.336309 | 0.473 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.094202 | 1.026 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 0.094202 | 1.026 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.094202 | 1.026 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.094202 | 1.026 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.094202 | 1.026 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.094202 | 1.026 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.142308 | 0.847 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.142308 | 0.847 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.142308 | 0.847 |
R-HSA-173107 | Binding and entry of HIV virion | 0.223125 | 0.651 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.115782 | 0.936 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 0.086198 | 1.065 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.248179 | 0.605 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.248179 | 0.605 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.248179 | 0.605 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.248179 | 0.605 |
R-HSA-112308 | Presynaptic depolarization and calcium channel opening | 0.248179 | 0.605 |
R-HSA-203754 | NOSIP mediated eNOS trafficking | 0.380149 | 0.420 |
R-HSA-190374 | FGFR1c and Klotho ligand binding and activation | 0.380149 | 0.420 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 0.380149 | 0.420 |
R-HSA-3304356 | SMAD2/3 Phosphorylation Motif Mutants in Cancer | 0.380149 | 0.420 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.191777 | 0.717 |
R-HSA-428540 | Activation of RAC1 | 0.273314 | 0.563 |
R-HSA-1839122 | Signaling by activated point mutants of FGFR1 | 0.273314 | 0.563 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.273314 | 0.563 |
R-HSA-420029 | Tight junction interactions | 0.164538 | 0.784 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.164538 | 0.784 |
R-HSA-5654710 | PI-3K cascade:FGFR3 | 0.226814 | 0.644 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.298411 | 0.525 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.298411 | 0.525 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.298411 | 0.525 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.298411 | 0.525 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.298411 | 0.525 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.298411 | 0.525 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.298411 | 0.525 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.298411 | 0.525 |
R-HSA-164525 | Plus-strand DNA synthesis | 0.421096 | 0.376 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 0.421096 | 0.376 |
R-HSA-111957 | Cam-PDE 1 activation | 0.421096 | 0.376 |
R-HSA-165160 | PDE3B signalling | 0.421096 | 0.376 |
R-HSA-109703 | PKB-mediated events | 0.421096 | 0.376 |
R-HSA-5638302 | Signaling by Overexpressed Wild-Type EGFR in Cancer | 0.421096 | 0.376 |
R-HSA-5638303 | Inhibition of Signaling by Overexpressed EGFR | 0.421096 | 0.376 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.421096 | 0.376 |
R-HSA-9652817 | Signaling by MAPK mutants | 0.421096 | 0.376 |
R-HSA-5576894 | Phase 1 - inactivation of fast Na+ channels | 0.421096 | 0.376 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 0.191262 | 0.718 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.244766 | 0.611 |
R-HSA-191859 | snRNP Assembly | 0.092612 | 1.033 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.092612 | 1.033 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.219230 | 0.659 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.219230 | 0.659 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.219230 | 0.659 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.219230 | 0.659 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.219230 | 0.659 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.117718 | 0.929 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.117718 | 0.929 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.233604 | 0.632 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.281254 | 0.551 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.348084 | 0.458 |
R-HSA-1433559 | Regulation of KIT signaling | 0.348084 | 0.458 |
R-HSA-5654227 | Phospholipase C-mediated cascade; FGFR3 | 0.348084 | 0.458 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 0.348084 | 0.458 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.459340 | 0.338 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 0.459340 | 0.338 |
R-HSA-9645135 | STAT5 Activation | 0.459340 | 0.338 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.459340 | 0.338 |
R-HSA-629587 | Highly sodium permeable postsynaptic acetylcholine nicotinic receptors | 0.459340 | 0.338 |
R-HSA-162585 | Uncoating of the HIV Virion | 0.459340 | 0.338 |
R-HSA-5579026 | Defective CYP11A1 causes AICSR | 0.459340 | 0.338 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.138696 | 0.858 |
R-HSA-5654689 | PI-3K cascade:FGFR1 | 0.299685 | 0.523 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.299685 | 0.523 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 0.372493 | 0.429 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.372493 | 0.429 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.318176 | 0.497 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.133051 | 0.876 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.277920 | 0.556 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.277920 | 0.556 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.336679 | 0.473 |
R-HSA-429947 | Deadenylation of mRNA | 0.336679 | 0.473 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 0.396524 | 0.402 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 0.495060 | 0.305 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.495060 | 0.305 |
R-HSA-8851907 | MET activates PI3K/AKT signaling | 0.495060 | 0.305 |
R-HSA-8948747 | Regulation of PTEN localization | 0.495060 | 0.305 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.495060 | 0.305 |
R-HSA-418886 | Netrin mediated repulsion signals | 0.495060 | 0.305 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 0.495060 | 0.305 |
R-HSA-190371 | FGFR3b ligand binding and activation | 0.495060 | 0.305 |
R-HSA-9632974 | NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis | 0.495060 | 0.305 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.194162 | 0.712 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.308166 | 0.511 |
R-HSA-380287 | Centrosome maturation | 0.211496 | 0.675 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.420120 | 0.377 |
R-HSA-774815 | Nucleosome assembly | 0.297355 | 0.527 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.297355 | 0.527 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.310509 | 0.508 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.310509 | 0.508 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.310509 | 0.508 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.391861 | 0.407 |
R-HSA-5654219 | Phospholipase C-mediated cascade: FGFR1 | 0.443235 | 0.353 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.443235 | 0.353 |
R-HSA-190840 | Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane | 0.443235 | 0.353 |
R-HSA-162589 | Reverse Transcription of HIV RNA | 0.528421 | 0.277 |
R-HSA-164516 | Minus-strand DNA synthesis | 0.528421 | 0.277 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.528421 | 0.277 |
R-HSA-444257 | RSK activation | 0.528421 | 0.277 |
R-HSA-212718 | EGFR interacts with phospholipase C-gamma | 0.528421 | 0.277 |
R-HSA-9028335 | Activated NTRK2 signals through PI3K | 0.528421 | 0.277 |
R-HSA-629597 | Highly calcium permeable nicotinic acetylcholine receptors | 0.528421 | 0.277 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.528421 | 0.277 |
R-HSA-190370 | FGFR1b ligand binding and activation | 0.528421 | 0.277 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.295741 | 0.529 |
R-HSA-180292 | GAB1 signalosome | 0.465828 | 0.332 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 0.428012 | 0.369 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.381691 | 0.418 |
R-HSA-1221632 | Meiotic synapsis | 0.403799 | 0.394 |
R-HSA-1989781 | PPARA activates gene expression | 0.298705 | 0.525 |
R-HSA-72649 | Translation initiation complex formation | 0.417105 | 0.380 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.443555 | 0.353 |
R-HSA-390522 | Striated Muscle Contraction | 0.514502 | 0.289 |
R-HSA-6798695 | Neutrophil degranulation | 0.429440 | 0.367 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.430182 | 0.366 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.313045 | 0.504 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.443235 | 0.353 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.443235 | 0.353 |
R-HSA-186763 | Downstream signal transduction | 0.248197 | 0.605 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.460038 | 0.337 |
R-HSA-177929 | Signaling by EGFR | 0.275138 | 0.560 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.190701 | 0.720 |
R-HSA-182971 | EGFR downregulation | 0.248197 | 0.605 |
R-HSA-5654741 | Signaling by FGFR3 | 0.297355 | 0.527 |
R-HSA-5610787 | Hedgehog 'off' state | 0.083440 | 1.079 |
R-HSA-5654736 | Signaling by FGFR1 | 0.443555 | 0.353 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.145629 | 0.837 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.323741 | 0.490 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.445804 | 0.351 |
R-HSA-69236 | G1 Phase | 0.284296 | 0.546 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.284296 | 0.546 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.406518 | 0.391 |
R-HSA-354192 | Integrin signaling | 0.497740 | 0.303 |
R-HSA-1227986 | Signaling by ERBB2 | 0.321905 | 0.492 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.277920 | 0.556 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.495452 | 0.305 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.209131 | 0.680 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.205106 | 0.688 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.241216 | 0.618 |
R-HSA-190242 | FGFR1 ligand binding and activation | 0.465828 | 0.332 |
R-HSA-373753 | Nephrin family interactions | 0.244766 | 0.611 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.131559 | 0.881 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.469703 | 0.328 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.179408 | 0.746 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.281254 | 0.551 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.372493 | 0.429 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 0.198290 | 0.703 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 0.396524 | 0.402 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.377094 | 0.424 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.509330 | 0.293 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.480690 | 0.318 |
R-HSA-9614085 | FOXO-mediated transcription | 0.477688 | 0.321 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.310087 | 0.509 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.159788 | 0.796 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.233604 | 0.632 |
R-HSA-6802949 | Signaling by RAS mutants | 0.310509 | 0.508 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.497190 | 0.303 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.084806 | 1.072 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 0.112132 | 0.950 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 0.223125 | 0.651 |
R-HSA-9931529 | Phosphorylation and nuclear translocation of BMAL1 (ARNTL) and CLOCK | 0.380149 | 0.420 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.112293 | 0.950 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.209131 | 0.680 |
R-HSA-9839394 | TGFBR3 expression | 0.164538 | 0.784 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.338714 | 0.470 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.465241 | 0.332 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.310526 | 0.508 |
R-HSA-186797 | Signaling by PDGF | 0.520719 | 0.283 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.107940 | 0.967 |
R-HSA-5693538 | Homology Directed Repair | 0.124565 | 0.905 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.139856 | 0.854 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.350365 | 0.455 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.098081 | 1.008 |
R-HSA-912631 | Regulation of signaling by CBL | 0.084199 | 1.075 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.191262 | 0.718 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 0.459340 | 0.338 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.233376 | 0.632 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 0.509330 | 0.293 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.146080 | 0.835 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.350365 | 0.455 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.405708 | 0.392 |
R-HSA-373752 | Netrin-1 signaling | 0.149036 | 0.827 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.190701 | 0.720 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.310087 | 0.509 |
R-HSA-170968 | Frs2-mediated activation | 0.112132 | 0.950 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.338714 | 0.470 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.284565 | 0.546 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 0.104577 | 0.981 |
R-HSA-418359 | Reduction of cytosolic Ca++ levels | 0.084806 | 1.072 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.126896 | 0.897 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 0.198290 | 0.703 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.198290 | 0.703 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 0.380149 | 0.420 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 0.380149 | 0.420 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 0.421096 | 0.376 |
R-HSA-190239 | FGFR3 ligand binding and activation | 0.372493 | 0.429 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.420120 | 0.377 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 0.528421 | 0.277 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.286955 | 0.542 |
R-HSA-190872 | Transport of connexons to the plasma membrane | 0.465828 | 0.332 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.445172 | 0.351 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.514502 | 0.289 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.185725 | 0.731 |
R-HSA-190828 | Gap junction trafficking | 0.474765 | 0.324 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.185725 | 0.731 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 0.298411 | 0.525 |
R-HSA-400685 | Sema4D in semaphorin signaling | 0.164538 | 0.784 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.177729 | 0.750 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.088333 | 1.054 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.507550 | 0.295 |
R-HSA-8949664 | Processing of SMDT1 | 0.112132 | 0.950 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.142308 | 0.847 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.380149 | 0.420 |
R-HSA-174577 | Activation of C3 and C5 | 0.380149 | 0.420 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 0.191777 | 0.717 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 0.323364 | 0.490 |
R-HSA-426486 | Small interfering RNA (siRNA) biogenesis | 0.459340 | 0.338 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.323416 | 0.490 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.373560 | 0.428 |
R-HSA-392851 | Prostacyclin signalling through prostacyclin receptor | 0.487868 | 0.312 |
R-HSA-5617833 | Cilium Assembly | 0.267485 | 0.573 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.122115 | 0.913 |
R-HSA-5578775 | Ion homeostasis | 0.076008 | 1.119 |
R-HSA-5358351 | Signaling by Hedgehog | 0.266471 | 0.574 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.445172 | 0.351 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.514611 | 0.289 |
R-HSA-392517 | Rap1 signalling | 0.084199 | 1.075 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.198607 | 0.702 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.495452 | 0.305 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.495452 | 0.305 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.495452 | 0.305 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.495452 | 0.305 |
R-HSA-376176 | Signaling by ROBO receptors | 0.132623 | 0.877 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.480690 | 0.318 |
R-HSA-1500620 | Meiosis | 0.450346 | 0.346 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.198290 | 0.703 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.152198 | 0.818 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 0.487868 | 0.312 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.297555 | 0.526 |
R-HSA-5653656 | Vesicle-mediated transport | 0.173502 | 0.761 |
R-HSA-3928664 | Ephrin signaling | 0.209131 | 0.680 |
R-HSA-1266695 | Interleukin-7 signaling | 0.355154 | 0.450 |
R-HSA-3214847 | HATs acetylate histones | 0.477688 | 0.321 |
R-HSA-195721 | Signaling by WNT | 0.505340 | 0.296 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.240506 | 0.619 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.121034 | 0.917 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.190701 | 0.720 |
R-HSA-5632684 | Hedgehog 'on' state | 0.297555 | 0.526 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.166209 | 0.779 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.445061 | 0.352 |
R-HSA-168315 | Inhibition of Host mRNA Processing and RNA Silencing | 0.185312 | 0.732 |
R-HSA-9632693 | Evasion of Oxidative Stress Induced Senescence Due to p16INK4A Defects | 0.185312 | 0.732 |
R-HSA-9630750 | Evasion of Oncogene Induced Senescence Due to p16INK4A Defects | 0.185312 | 0.732 |
R-HSA-190827 | Transport of connexins along the secretory pathway | 0.185312 | 0.732 |
R-HSA-9818025 | NFE2L2 regulating TCA cycle genes | 0.083624 | 1.078 |
R-HSA-427975 | Proton/oligopeptide cotransporters | 0.104577 | 0.981 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 0.239116 | 0.621 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 0.149919 | 0.824 |
R-HSA-3249367 | STAT6-mediated induction of chemokines | 0.289371 | 0.539 |
R-HSA-844623 | The IPAF inflammasome | 0.289371 | 0.539 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 0.098081 | 1.008 |
R-HSA-390651 | Dopamine receptors | 0.336309 | 0.473 |
R-HSA-9754119 | Drug-mediated inhibition of CDK4/CDK6 activity | 0.336309 | 0.473 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.223125 | 0.651 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.158302 | 0.801 |
R-HSA-4839744 | Signaling by APC mutants | 0.248179 | 0.605 |
R-HSA-5624138 | Trafficking of myristoylated proteins to the cilium | 0.380149 | 0.420 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.380149 | 0.420 |
R-HSA-9636569 | Suppression of autophagy | 0.380149 | 0.420 |
R-HSA-202670 | ERKs are inactivated | 0.273314 | 0.563 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.273314 | 0.563 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.273314 | 0.563 |
R-HSA-164378 | PKA activation in glucagon signalling | 0.209131 | 0.680 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 0.421096 | 0.376 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.152198 | 0.818 |
R-HSA-187687 | Signalling to ERKs | 0.162994 | 0.788 |
R-HSA-174490 | Membrane binding and targetting of GAG proteins | 0.323364 | 0.490 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.323364 | 0.490 |
R-HSA-69478 | G2/M DNA replication checkpoint | 0.459340 | 0.338 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.113907 | 0.943 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.372493 | 0.429 |
R-HSA-9839389 | TGFBR3 regulates TGF-beta signaling | 0.495060 | 0.305 |
R-HSA-9032845 | Activated NTRK2 signals through CDK5 | 0.495060 | 0.305 |
R-HSA-2395516 | Electron transport from NADPH to Ferredoxin | 0.495060 | 0.305 |
R-HSA-437239 | Recycling pathway of L1 | 0.323741 | 0.490 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.354036 | 0.451 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 0.528421 | 0.277 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.465828 | 0.332 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.473523 | 0.325 |
R-HSA-114452 | Activation of BH3-only proteins | 0.233604 | 0.632 |
R-HSA-397014 | Muscle contraction | 0.175722 | 0.755 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.369681 | 0.432 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.169316 | 0.771 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.194536 | 0.711 |
R-HSA-196780 | Biotin transport and metabolism | 0.142308 | 0.847 |
R-HSA-5576891 | Cardiac conduction | 0.084683 | 1.072 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.465828 | 0.332 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.487868 | 0.312 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.487868 | 0.312 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.395517 | 0.403 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.511708 | 0.291 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.310509 | 0.508 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 0.191777 | 0.717 |
R-HSA-9620244 | Long-term potentiation | 0.164538 | 0.784 |
R-HSA-525793 | Myogenesis | 0.373560 | 0.428 |
R-HSA-9007101 | Rab regulation of trafficking | 0.191232 | 0.718 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.086198 | 1.065 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.405797 | 0.392 |
R-HSA-74752 | Signaling by Insulin receptor | 0.165589 | 0.781 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.378731 | 0.422 |
R-HSA-69275 | G2/M Transition | 0.116135 | 0.935 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.266695 | 0.574 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.104577 | 0.981 |
R-HSA-164944 | Nef and signal transduction | 0.126760 | 0.897 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 0.173829 | 0.760 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 0.198290 | 0.703 |
R-HSA-399710 | Activation of AMPA receptors | 0.380149 | 0.420 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.197091 | 0.705 |
R-HSA-174495 | Synthesis And Processing Of GAG, GAGPOL Polyproteins | 0.348084 | 0.458 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.348084 | 0.458 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 0.372493 | 0.429 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.277920 | 0.556 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.495060 | 0.305 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.495060 | 0.305 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.355154 | 0.450 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.355154 | 0.450 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.123846 | 0.907 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.391861 | 0.407 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 0.528421 | 0.277 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 0.480690 | 0.318 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.489337 | 0.310 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.085421 | 1.068 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.209140 | 0.680 |
R-HSA-2132295 | MHC class II antigen presentation | 0.092451 | 1.034 |
R-HSA-9682385 | FLT3 signaling in disease | 0.338714 | 0.470 |
R-HSA-438064 | Post NMDA receptor activation events | 0.335515 | 0.474 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.201569 | 0.696 |
R-HSA-69481 | G2/M Checkpoints | 0.179994 | 0.745 |
R-HSA-5689880 | Ub-specific processing proteases | 0.336168 | 0.473 |
R-HSA-4839726 | Chromatin organization | 0.116529 | 0.934 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.523093 | 0.281 |
R-HSA-373755 | Semaphorin interactions | 0.357686 | 0.446 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.157217 | 0.804 |
R-HSA-445144 | Signal transduction by L1 | 0.244766 | 0.611 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.420120 | 0.377 |
R-HSA-6806834 | Signaling by MET | 0.084137 | 1.075 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.517959 | 0.286 |
R-HSA-9607240 | FLT3 Signaling | 0.114292 | 0.942 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.297355 | 0.527 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.077467 | 1.111 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.321000 | 0.493 |
R-HSA-9006936 | Signaling by TGFB family members | 0.334878 | 0.475 |
R-HSA-74160 | Gene expression (Transcription) | 0.474880 | 0.323 |
R-HSA-190704 | Oligomerization of connexins into connexons | 0.185312 | 0.732 |
R-HSA-9675132 | Diseases of cellular response to stress | 0.239116 | 0.621 |
R-HSA-376172 | DSCAM interactions | 0.239116 | 0.621 |
R-HSA-9630747 | Diseases of Cellular Senescence | 0.239116 | 0.621 |
R-HSA-9959399 | SLC-mediated transport of oligopeptides | 0.149919 | 0.824 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 0.198290 | 0.703 |
R-HSA-113501 | Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 0.273314 | 0.563 |
R-HSA-9930044 | Nuclear RNA decay | 0.131559 | 0.881 |
R-HSA-187706 | Signalling to p38 via RIT and RIN | 0.421096 | 0.376 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.262930 | 0.580 |
R-HSA-9615710 | Late endosomal microautophagy | 0.219230 | 0.659 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.196846 | 0.706 |
R-HSA-8964046 | VLDL clearance | 0.495060 | 0.305 |
R-HSA-1296052 | Ca2+ activated K+ channels | 0.495060 | 0.305 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.308166 | 0.511 |
R-HSA-163685 | Integration of energy metabolism | 0.169623 | 0.771 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.321905 | 0.492 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.503739 | 0.298 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.133509 | 0.874 |
R-HSA-418346 | Platelet homeostasis | 0.189456 | 0.722 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.211289 | 0.675 |
R-HSA-5688426 | Deubiquitination | 0.333454 | 0.477 |
R-HSA-9823730 | Formation of definitive endoderm | 0.244766 | 0.611 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.495452 | 0.305 |
R-HSA-194138 | Signaling by VEGF | 0.104876 | 0.979 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.442621 | 0.354 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.139300 | 0.856 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.281254 | 0.551 |
R-HSA-211000 | Gene Silencing by RNA | 0.299087 | 0.524 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.488644 | 0.311 |
R-HSA-162906 | HIV Infection | 0.423618 | 0.373 |
R-HSA-162587 | HIV Life Cycle | 0.418778 | 0.378 |
R-HSA-1474165 | Reproduction | 0.413603 | 0.383 |
R-HSA-9675135 | Diseases of DNA repair | 0.080482 | 1.094 |
R-HSA-8853659 | RET signaling | 0.174086 | 0.759 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.454124 | 0.343 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.173829 | 0.760 |
R-HSA-198753 | ERK/MAPK targets | 0.262930 | 0.580 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.120649 | 0.918 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.323416 | 0.490 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 0.528421 | 0.277 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.497740 | 0.303 |
R-HSA-446652 | Interleukin-1 family signaling | 0.379603 | 0.421 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.454124 | 0.343 |
R-HSA-1500931 | Cell-Cell communication | 0.524607 | 0.280 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.391861 | 0.407 |
R-HSA-69206 | G1/S Transition | 0.486725 | 0.313 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.406373 | 0.391 |
R-HSA-162909 | Host Interactions of HIV factors | 0.156532 | 0.805 |
R-HSA-375280 | Amine ligand-binding receptors | 0.474765 | 0.324 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.445804 | 0.351 |
R-HSA-111885 | Opioid Signalling | 0.527154 | 0.278 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.120649 | 0.918 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 0.443235 | 0.353 |
R-HSA-2559583 | Cellular Senescence | 0.386322 | 0.413 |
R-HSA-9605308 | Diseases of Base Excision Repair | 0.104577 | 0.981 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.121748 | 0.915 |
R-HSA-844615 | The AIM2 inflammasome | 0.239116 | 0.621 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.149919 | 0.824 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 0.198290 | 0.703 |
R-HSA-9706374 | FLT3 signaling through SRC family kinases | 0.336309 | 0.473 |
R-HSA-9683686 | Maturation of spike protein | 0.223125 | 0.651 |
R-HSA-9927353 | Co-inhibition by BTLA | 0.380149 | 0.420 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.380149 | 0.420 |
R-HSA-425561 | Sodium/Calcium exchangers | 0.273314 | 0.563 |
R-HSA-9667769 | Acetylcholine inhibits contraction of outer hair cells | 0.421096 | 0.376 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.191262 | 0.718 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.281254 | 0.551 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.281254 | 0.551 |
R-HSA-199920 | CREB phosphorylation | 0.459340 | 0.338 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.120051 | 0.921 |
R-HSA-9634600 | Regulation of glycolysis by fructose 2,6-bisphosphate metabolism | 0.396524 | 0.402 |
R-HSA-209822 | Glycoprotein hormones | 0.495060 | 0.305 |
R-HSA-1462054 | Alpha-defensins | 0.528421 | 0.277 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 0.528421 | 0.277 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.308236 | 0.511 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 0.487868 | 0.312 |
R-HSA-6807004 | Negative regulation of MET activity | 0.509330 | 0.293 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.303713 | 0.518 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.430362 | 0.366 |
R-HSA-373760 | L1CAM interactions | 0.114810 | 0.940 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.373523 | 0.428 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.248648 | 0.604 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.482509 | 0.316 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.139300 | 0.856 |
R-HSA-432142 | Platelet sensitization by LDL | 0.209131 | 0.680 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.298411 | 0.525 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.298411 | 0.525 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.262930 | 0.580 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.497740 | 0.303 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.510534 | 0.292 |
R-HSA-450294 | MAP kinase activation | 0.333786 | 0.477 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.443555 | 0.353 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.299685 | 0.523 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.514502 | 0.289 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.467633 | 0.330 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.342928 | 0.465 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.467633 | 0.330 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.467633 | 0.330 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.075512 | 1.122 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 0.173829 | 0.760 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 0.248179 | 0.605 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.421096 | 0.376 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.323364 | 0.490 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.308236 | 0.511 |
R-HSA-448424 | Interleukin-17 signaling | 0.441566 | 0.355 |
R-HSA-8953897 | Cellular responses to stimuli | 0.245241 | 0.610 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.146367 | 0.835 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.117718 | 0.929 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.443555 | 0.353 |
R-HSA-175474 | Assembly Of The HIV Virion | 0.281254 | 0.551 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.428012 | 0.369 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.391861 | 0.407 |
R-HSA-1489509 | DAG and IP3 signaling | 0.489337 | 0.310 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.364040 | 0.439 |
R-HSA-2262752 | Cellular responses to stress | 0.516115 | 0.287 |
R-HSA-180024 | DARPP-32 events | 0.219230 | 0.659 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.230197 | 0.638 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.456673 | 0.340 |
R-HSA-75893 | TNF signaling | 0.152493 | 0.817 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.177729 | 0.750 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.292992 | 0.533 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.415943 | 0.381 |
R-HSA-9033500 | TYSND1 cleaves peroxisomal proteins | 0.421096 | 0.376 |
R-HSA-447043 | Neurofascin interactions | 0.459340 | 0.338 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.376047 | 0.425 |
R-HSA-449147 | Signaling by Interleukins | 0.350221 | 0.456 |
R-HSA-69190 | DNA strand elongation | 0.480690 | 0.318 |
R-HSA-70171 | Glycolysis | 0.349183 | 0.457 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.136832 | 0.864 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.120051 | 0.921 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.385747 | 0.414 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.310509 | 0.508 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.158302 | 0.801 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.262930 | 0.580 |
R-HSA-9831926 | Nephron development | 0.465828 | 0.332 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.442339 | 0.354 |
R-HSA-844456 | The NLRP3 inflammasome | 0.487868 | 0.312 |
R-HSA-982772 | Growth hormone receptor signaling | 0.318176 | 0.497 |
R-HSA-2586552 | Signaling by Leptin | 0.223125 | 0.651 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.412291 | 0.385 |
R-HSA-5620971 | Pyroptosis | 0.410022 | 0.387 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.454825 | 0.342 |
R-HSA-447115 | Interleukin-12 family signaling | 0.126988 | 0.896 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.209131 | 0.680 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.299685 | 0.523 |
R-HSA-5654704 | SHC-mediated cascade:FGFR3 | 0.530193 | 0.276 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.530193 | 0.276 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.530193 | 0.276 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.530193 | 0.276 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.530193 | 0.276 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.530193 | 0.276 |
R-HSA-210991 | Basigin interactions | 0.530193 | 0.276 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.530961 | 0.275 |
R-HSA-901042 | Calnexin/calreticulin cycle | 0.530961 | 0.275 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.531985 | 0.274 |
R-HSA-9031628 | NGF-stimulated transcription | 0.531985 | 0.274 |
R-HSA-389356 | Co-stimulation by CD28 | 0.531985 | 0.274 |
R-HSA-212436 | Generic Transcription Pathway | 0.533135 | 0.273 |
R-HSA-8848021 | Signaling by PTK6 | 0.533148 | 0.273 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.533148 | 0.273 |
R-HSA-9610379 | HCMV Late Events | 0.533765 | 0.273 |
R-HSA-4086400 | PCP/CE pathway | 0.534371 | 0.272 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.535219 | 0.271 |
R-HSA-70326 | Glucose metabolism | 0.538075 | 0.269 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.541627 | 0.266 |
R-HSA-9679506 | SARS-CoV Infections | 0.544843 | 0.264 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.545430 | 0.263 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 0.547102 | 0.262 |
R-HSA-5654706 | FRS-mediated FGFR3 signaling | 0.550443 | 0.259 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.550443 | 0.259 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.550443 | 0.259 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.556114 | 0.255 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.556114 | 0.255 |
R-HSA-9833482 | PKR-mediated signaling | 0.556578 | 0.254 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 0.559581 | 0.252 |
R-HSA-201688 | WNT mediated activation of DVL | 0.559581 | 0.252 |
R-HSA-448706 | Interleukin-1 processing | 0.559581 | 0.252 |
R-HSA-193697 | p75NTR regulates axonogenesis | 0.559581 | 0.252 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 0.559581 | 0.252 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.559581 | 0.252 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.559581 | 0.252 |
R-HSA-9613354 | Lipophagy | 0.559581 | 0.252 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 0.559581 | 0.252 |
R-HSA-8851680 | Butyrophilin (BTN) family interactions | 0.559581 | 0.252 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 0.559581 | 0.252 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.562913 | 0.250 |
R-HSA-69205 | G1/S-Specific Transcription | 0.562913 | 0.250 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.562913 | 0.250 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 0.570070 | 0.244 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.570070 | 0.244 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.570070 | 0.244 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.570070 | 0.244 |
R-HSA-8964038 | LDL clearance | 0.570070 | 0.244 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.570070 | 0.244 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.574823 | 0.240 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.574823 | 0.240 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.578382 | 0.238 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.578382 | 0.238 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.578382 | 0.238 |
R-HSA-69242 | S Phase | 0.580760 | 0.236 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.582617 | 0.235 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.582617 | 0.235 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.584093 | 0.234 |
R-HSA-68949 | Orc1 removal from chromatin | 0.585945 | 0.232 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.588683 | 0.230 |
R-HSA-629594 | Highly calcium permeable postsynaptic nicotinic acetylcholine receptors | 0.588683 | 0.230 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 0.588683 | 0.230 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 0.588683 | 0.230 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.588683 | 0.230 |
R-HSA-1236973 | Cross-presentation of particulate exogenous antigens (phagosomes) | 0.588683 | 0.230 |
R-HSA-209952 | Peptide hormone biosynthesis | 0.588683 | 0.230 |
R-HSA-9627069 | Regulation of the apoptosome activity | 0.588683 | 0.230 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.588683 | 0.230 |
R-HSA-111458 | Formation of apoptosome | 0.588683 | 0.230 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.588931 | 0.230 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.589068 | 0.230 |
R-HSA-3000170 | Syndecan interactions | 0.589068 | 0.230 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 0.589068 | 0.230 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.591290 | 0.228 |
R-HSA-5218859 | Regulated Necrosis | 0.592930 | 0.227 |
R-HSA-202403 | TCR signaling | 0.593267 | 0.227 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 0.593503 | 0.227 |
R-HSA-168255 | Influenza Infection | 0.594318 | 0.226 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.602329 | 0.220 |
R-HSA-5654688 | SHC-mediated cascade:FGFR1 | 0.607434 | 0.217 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.607434 | 0.217 |
R-HSA-9865881 | Complex III assembly | 0.607434 | 0.217 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.607434 | 0.217 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.608267 | 0.216 |
R-HSA-190236 | Signaling by FGFR | 0.615076 | 0.211 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.615864 | 0.211 |
R-HSA-1483226 | Synthesis of PI | 0.615864 | 0.211 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 0.615864 | 0.211 |
R-HSA-9754560 | SARS-CoV-2 modulates autophagy | 0.615864 | 0.211 |
R-HSA-427601 | Inorganic anion exchange by SLC26 transporters | 0.615864 | 0.211 |
R-HSA-5682910 | LGI-ADAM interactions | 0.615864 | 0.211 |
R-HSA-210990 | PECAM1 interactions | 0.615864 | 0.211 |
R-HSA-9020558 | Interleukin-2 signaling | 0.615864 | 0.211 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.622668 | 0.206 |
R-HSA-451927 | Interleukin-2 family signaling | 0.622668 | 0.206 |
R-HSA-3214815 | HDACs deacetylate histones | 0.623942 | 0.205 |
R-HSA-5654693 | FRS-mediated FGFR1 signaling | 0.625169 | 0.204 |
R-HSA-3000157 | Laminin interactions | 0.625169 | 0.204 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.625169 | 0.204 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.625960 | 0.203 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.626983 | 0.203 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.629845 | 0.201 |
R-HSA-9664407 | Parasite infection | 0.629845 | 0.201 |
R-HSA-9664417 | Leishmania phagocytosis | 0.629845 | 0.201 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.636703 | 0.196 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.636703 | 0.196 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 0.636703 | 0.196 |
R-HSA-9694548 | Maturation of spike protein | 0.636703 | 0.196 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.637606 | 0.195 |
R-HSA-72306 | tRNA processing | 0.638866 | 0.195 |
R-HSA-622323 | Presynaptic nicotinic acetylcholine receptors | 0.641251 | 0.193 |
R-HSA-1236977 | Endosomal/Vacuolar pathway | 0.641251 | 0.193 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 0.641251 | 0.193 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 0.641251 | 0.193 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.641251 | 0.193 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 0.641251 | 0.193 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 0.641251 | 0.193 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.641251 | 0.193 |
R-HSA-168330 | Viral RNP Complexes in the Host Cell Nucleus | 0.641251 | 0.193 |
R-HSA-2214320 | Anchoring fibril formation | 0.641251 | 0.193 |
R-HSA-416550 | Sema4D mediated inhibition of cell attachment and migration | 0.641251 | 0.193 |
R-HSA-162592 | Integration of provirus | 0.641251 | 0.193 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 0.641251 | 0.193 |
R-HSA-9612973 | Autophagy | 0.641800 | 0.193 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.642276 | 0.192 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.642276 | 0.192 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 0.642276 | 0.192 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.642276 | 0.192 |
R-HSA-3295583 | TRP channels | 0.642276 | 0.192 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.647438 | 0.189 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.648218 | 0.188 |
R-HSA-4086398 | Ca2+ pathway | 0.648218 | 0.188 |
R-HSA-9645723 | Diseases of programmed cell death | 0.649713 | 0.187 |
R-HSA-446728 | Cell junction organization | 0.649894 | 0.187 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.650370 | 0.187 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.650370 | 0.187 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.650370 | 0.187 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.650370 | 0.187 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.650370 | 0.187 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.653776 | 0.185 |
R-HSA-1236394 | Signaling by ERBB4 | 0.658688 | 0.181 |
R-HSA-264876 | Insulin processing | 0.658761 | 0.181 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.658761 | 0.181 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.659653 | 0.181 |
R-HSA-165159 | MTOR signalling | 0.663665 | 0.178 |
R-HSA-3000484 | Scavenging by Class F Receptors | 0.664961 | 0.177 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 0.664961 | 0.177 |
R-HSA-4641265 | Repression of WNT target genes | 0.664961 | 0.177 |
R-HSA-179812 | GRB2 events in EGFR signaling | 0.664961 | 0.177 |
R-HSA-418890 | Role of second messengers in netrin-1 signaling | 0.664961 | 0.177 |
R-HSA-8866427 | VLDLR internalisation and degradation | 0.664961 | 0.177 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 0.664961 | 0.177 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.664961 | 0.177 |
R-HSA-9842663 | Signaling by LTK | 0.664961 | 0.177 |
R-HSA-877312 | Regulation of IFNG signaling | 0.664961 | 0.177 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.664961 | 0.177 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.664961 | 0.177 |
R-HSA-9005895 | Pervasive developmental disorders | 0.664961 | 0.177 |
R-HSA-8983432 | Interleukin-15 signaling | 0.664961 | 0.177 |
R-HSA-8983711 | OAS antiviral response | 0.664961 | 0.177 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.666526 | 0.176 |
R-HSA-202424 | Downstream TCR signaling | 0.668708 | 0.175 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.668954 | 0.175 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.674631 | 0.171 |
R-HSA-622312 | Inflammasomes | 0.674631 | 0.171 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.676589 | 0.170 |
R-HSA-5654743 | Signaling by FGFR4 | 0.676589 | 0.170 |
R-HSA-8854214 | TBC/RABGAPs | 0.676589 | 0.170 |
R-HSA-5689603 | UCH proteinases | 0.679016 | 0.168 |
R-HSA-181431 | Acetylcholine binding and downstream events | 0.687105 | 0.163 |
R-HSA-622327 | Postsynaptic nicotinic acetylcholine receptors | 0.687105 | 0.163 |
R-HSA-170660 | Adenylate cyclase activating pathway | 0.687105 | 0.163 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 0.687105 | 0.163 |
R-HSA-9796292 | Formation of axial mesoderm | 0.687105 | 0.163 |
R-HSA-190373 | FGFR1c ligand binding and activation | 0.687105 | 0.163 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 0.687105 | 0.163 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.687105 | 0.163 |
R-HSA-8963901 | Chylomicron remodeling | 0.687105 | 0.163 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.687105 | 0.163 |
R-HSA-2172127 | DAP12 interactions | 0.689142 | 0.162 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.689895 | 0.161 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.689895 | 0.161 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.689895 | 0.161 |
R-HSA-420092 | Glucagon-type ligand receptors | 0.689895 | 0.161 |
R-HSA-445717 | Aquaporin-mediated transport | 0.692998 | 0.159 |
R-HSA-112043 | PLC beta mediated events | 0.692998 | 0.159 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.696403 | 0.157 |
R-HSA-1280218 | Adaptive Immune System | 0.698155 | 0.156 |
R-HSA-8953854 | Metabolism of RNA | 0.698322 | 0.156 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.701325 | 0.154 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.701325 | 0.154 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.701325 | 0.154 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 0.701325 | 0.154 |
R-HSA-9758941 | Gastrulation | 0.703320 | 0.153 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.704564 | 0.152 |
R-HSA-2424491 | DAP12 signaling | 0.704564 | 0.152 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.704564 | 0.152 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.704564 | 0.152 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.704564 | 0.152 |
R-HSA-177504 | Retrograde neurotrophin signalling | 0.707787 | 0.150 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.707787 | 0.150 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.707787 | 0.150 |
R-HSA-190372 | FGFR3c ligand binding and activation | 0.707787 | 0.150 |
R-HSA-1663150 | The activation of arylsulfatases | 0.707787 | 0.150 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.707787 | 0.150 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 0.707787 | 0.150 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 0.707787 | 0.150 |
R-HSA-5578768 | Physiological factors | 0.707787 | 0.150 |
R-HSA-8963896 | HDL assembly | 0.707787 | 0.150 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.707787 | 0.150 |
R-HSA-417957 | P2Y receptors | 0.707787 | 0.150 |
R-HSA-9659379 | Sensory processing of sound | 0.707958 | 0.150 |
R-HSA-913531 | Interferon Signaling | 0.718117 | 0.144 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.718650 | 0.143 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.718650 | 0.143 |
R-HSA-2129379 | Molecules associated with elastic fibres | 0.718650 | 0.143 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.718650 | 0.143 |
R-HSA-8963693 | Aspartate and asparagine metabolism | 0.718650 | 0.143 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.724593 | 0.140 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.727103 | 0.138 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 0.727103 | 0.138 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 0.727103 | 0.138 |
R-HSA-170670 | Adenylate cyclase inhibitory pathway | 0.727103 | 0.138 |
R-HSA-180336 | SHC1 events in EGFR signaling | 0.727103 | 0.138 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.727103 | 0.138 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 0.727103 | 0.138 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 0.727103 | 0.138 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.727103 | 0.138 |
R-HSA-9857492 | Protein lipoylation | 0.727103 | 0.138 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.727103 | 0.138 |
R-HSA-174362 | Transport and metabolism of PAPS | 0.727103 | 0.138 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 0.727103 | 0.138 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.727103 | 0.138 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.727103 | 0.138 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.727103 | 0.138 |
R-HSA-9823739 | Formation of the anterior neural plate | 0.727103 | 0.138 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.732166 | 0.135 |
R-HSA-9634597 | GPER1 signaling | 0.735684 | 0.133 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.737924 | 0.132 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.737924 | 0.132 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.742706 | 0.129 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.743254 | 0.129 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.745126 | 0.128 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.745126 | 0.128 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.745126 | 0.128 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.745126 | 0.128 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.745126 | 0.128 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.745143 | 0.128 |
R-HSA-176412 | Phosphorylation of the APC/C | 0.745143 | 0.128 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.745143 | 0.128 |
R-HSA-168275 | Entry of Influenza Virion into Host Cell via Endocytosis | 0.745143 | 0.128 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 0.745143 | 0.128 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 0.745143 | 0.128 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 0.745143 | 0.128 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.745143 | 0.128 |
R-HSA-9664420 | Killing mechanisms | 0.745143 | 0.128 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.745143 | 0.128 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.745143 | 0.128 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.745143 | 0.128 |
R-HSA-9658195 | Leishmania infection | 0.746110 | 0.127 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.746110 | 0.127 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.746420 | 0.127 |
R-HSA-9609646 | HCMV Infection | 0.749025 | 0.126 |
R-HSA-1632852 | Macroautophagy | 0.750409 | 0.125 |
R-HSA-112040 | G-protein mediated events | 0.752515 | 0.123 |
R-HSA-422356 | Regulation of insulin secretion | 0.753509 | 0.123 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.757544 | 0.121 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.757544 | 0.121 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.757544 | 0.121 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.757544 | 0.121 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.761516 | 0.118 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.761516 | 0.118 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.761516 | 0.118 |
R-HSA-2892247 | POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation | 0.761992 | 0.118 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 0.761992 | 0.118 |
R-HSA-5576893 | Phase 2 - plateau phase | 0.761992 | 0.118 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 0.761992 | 0.118 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 0.761992 | 0.118 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.761992 | 0.118 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.761992 | 0.118 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 0.761992 | 0.118 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 0.761992 | 0.118 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 0.761992 | 0.118 |
R-HSA-1566977 | Fibronectin matrix formation | 0.761992 | 0.118 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.761992 | 0.118 |
R-HSA-877300 | Interferon gamma signaling | 0.766919 | 0.115 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.769435 | 0.114 |
R-HSA-190861 | Gap junction assembly | 0.769435 | 0.114 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.769435 | 0.114 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 0.769435 | 0.114 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.769435 | 0.114 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.769435 | 0.114 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.769435 | 0.114 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.775017 | 0.111 |
R-HSA-9020702 | Interleukin-1 signaling | 0.775600 | 0.110 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.775975 | 0.110 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.776539 | 0.110 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 0.777728 | 0.109 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 0.777728 | 0.109 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.777728 | 0.109 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 0.777728 | 0.109 |
R-HSA-6787639 | GDP-fucose biosynthesis | 0.777728 | 0.109 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.778753 | 0.109 |
R-HSA-169911 | Regulation of Apoptosis | 0.780815 | 0.107 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.780815 | 0.107 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 0.780815 | 0.107 |
R-HSA-9843745 | Adipogenesis | 0.784744 | 0.105 |
R-HSA-445355 | Smooth Muscle Contraction | 0.785903 | 0.105 |
R-HSA-8956320 | Nucleotide biosynthesis | 0.785903 | 0.105 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.786641 | 0.104 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.791698 | 0.101 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.791698 | 0.101 |
R-HSA-111933 | Calmodulin induced events | 0.791698 | 0.101 |
R-HSA-111997 | CaM pathway | 0.791698 | 0.101 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 0.792424 | 0.101 |
R-HSA-163615 | PKA activation | 0.792424 | 0.101 |
R-HSA-8963684 | Tyrosine catabolism | 0.792424 | 0.101 |
R-HSA-196791 | Vitamin D (calciferol) metabolism | 0.792424 | 0.101 |
R-HSA-418038 | Nucleotide-like (purinergic) receptors | 0.792424 | 0.101 |
R-HSA-156711 | Polo-like kinase mediated events | 0.792424 | 0.101 |
R-HSA-111471 | Apoptotic factor-mediated response | 0.792424 | 0.101 |
R-HSA-1266738 | Developmental Biology | 0.793542 | 0.100 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.794939 | 0.100 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.794939 | 0.100 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.794989 | 0.100 |
R-HSA-9609690 | HCMV Early Events | 0.795387 | 0.099 |
R-HSA-4641258 | Degradation of DVL | 0.802102 | 0.096 |
R-HSA-419037 | NCAM1 interactions | 0.802102 | 0.096 |
R-HSA-418597 | G alpha (z) signalling events | 0.803655 | 0.095 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 0.806150 | 0.094 |
R-HSA-429958 | mRNA decay by 3' to 5' exoribonuclease | 0.806150 | 0.094 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.806150 | 0.094 |
R-HSA-9834899 | Specification of the neural plate border | 0.806150 | 0.094 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 0.806150 | 0.094 |
R-HSA-2243919 | Crosslinking of collagen fibrils | 0.806150 | 0.094 |
R-HSA-73894 | DNA Repair | 0.810416 | 0.091 |
R-HSA-5619102 | SLC transporter disorders | 0.810426 | 0.091 |
R-HSA-1566948 | Elastic fibre formation | 0.812042 | 0.090 |
R-HSA-73927 | Depurination | 0.812042 | 0.090 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.812042 | 0.090 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.812057 | 0.090 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 0.812057 | 0.090 |
R-HSA-73886 | Chromosome Maintenance | 0.813834 | 0.089 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.818493 | 0.087 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.818968 | 0.087 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.818968 | 0.087 |
R-HSA-5654720 | PI-3K cascade:FGFR4 | 0.818968 | 0.087 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 0.818968 | 0.087 |
R-HSA-196108 | Pregnenolone biosynthesis | 0.818968 | 0.087 |
R-HSA-1362409 | Mitochondrial iron-sulfur cluster biogenesis | 0.818968 | 0.087 |
R-HSA-9629569 | Protein hydroxylation | 0.818968 | 0.087 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.821533 | 0.085 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.821533 | 0.085 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.821533 | 0.085 |
R-HSA-201556 | Signaling by ALK | 0.821533 | 0.085 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.821533 | 0.085 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.827185 | 0.082 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.827185 | 0.082 |
R-HSA-2672351 | Stimuli-sensing channels | 0.827185 | 0.082 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.827949 | 0.082 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.827949 | 0.082 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.830592 | 0.081 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.830592 | 0.081 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.830592 | 0.081 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.830592 | 0.081 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.830592 | 0.081 |
R-HSA-202433 | Generation of second messenger molecules | 0.830592 | 0.081 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.830940 | 0.080 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.830940 | 0.080 |
R-HSA-140837 | Intrinsic Pathway of Fibrin Clot Formation | 0.830940 | 0.080 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 0.830940 | 0.080 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.831137 | 0.080 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.831137 | 0.080 |
R-HSA-6807070 | PTEN Regulation | 0.834498 | 0.079 |
R-HSA-8951664 | Neddylation | 0.837700 | 0.077 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.839234 | 0.076 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.839234 | 0.076 |
R-HSA-983712 | Ion channel transport | 0.839436 | 0.076 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.841002 | 0.075 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.841002 | 0.075 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.841002 | 0.075 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 0.842121 | 0.075 |
R-HSA-947581 | Molybdenum cofactor biosynthesis | 0.842121 | 0.075 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.842121 | 0.075 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.842121 | 0.075 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.847475 | 0.072 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.847475 | 0.072 |
R-HSA-6811438 | Intra-Golgi traffic | 0.847475 | 0.072 |
R-HSA-9683701 | Translation of Structural Proteins | 0.847475 | 0.072 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.847788 | 0.072 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.848749 | 0.071 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.849188 | 0.071 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.849188 | 0.071 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.849622 | 0.071 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.849622 | 0.071 |
R-HSA-109582 | Hemostasis | 0.850493 | 0.070 |
R-HSA-114608 | Platelet degranulation | 0.850943 | 0.070 |
R-HSA-112316 | Neuronal System | 0.851019 | 0.070 |
R-HSA-9669938 | Signaling by KIT in disease | 0.852563 | 0.069 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.852563 | 0.069 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 0.852563 | 0.069 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.852563 | 0.069 |
R-HSA-166208 | mTORC1-mediated signalling | 0.852563 | 0.069 |
R-HSA-1296071 | Potassium Channels | 0.854271 | 0.068 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.855329 | 0.068 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.855329 | 0.068 |
R-HSA-73928 | Depyrimidination | 0.855329 | 0.068 |
R-HSA-111996 | Ca-dependent events | 0.855329 | 0.068 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.856298 | 0.067 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.856298 | 0.067 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 0.862315 | 0.064 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 0.862315 | 0.064 |
R-HSA-9830674 | Formation of the ureteric bud | 0.862315 | 0.064 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 0.862315 | 0.064 |
R-HSA-200425 | Carnitine shuttle | 0.862315 | 0.064 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 0.862315 | 0.064 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.862813 | 0.064 |
R-HSA-1483257 | Phospholipid metabolism | 0.864773 | 0.063 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.867111 | 0.062 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.869940 | 0.061 |
R-HSA-5683826 | Surfactant metabolism | 0.869940 | 0.061 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 0.871422 | 0.060 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 0.871422 | 0.060 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.871422 | 0.060 |
R-HSA-8963889 | Assembly of active LPL and LIPC lipase complexes | 0.871422 | 0.060 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.871422 | 0.060 |
R-HSA-8963898 | Plasma lipoprotein assembly | 0.871422 | 0.060 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.874756 | 0.058 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.876725 | 0.057 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.876725 | 0.057 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.876725 | 0.057 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.877852 | 0.057 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.877852 | 0.057 |
R-HSA-5654695 | PI-3K cascade:FGFR2 | 0.879927 | 0.056 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 0.879927 | 0.056 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 0.879927 | 0.056 |
R-HSA-389887 | Beta-oxidation of pristanoyl-CoA | 0.879927 | 0.056 |
R-HSA-3214842 | HDMs demethylate histones | 0.879927 | 0.056 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.881839 | 0.055 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.883182 | 0.054 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.883182 | 0.054 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.883182 | 0.054 |
R-HSA-421270 | Cell-cell junction organization | 0.883720 | 0.054 |
R-HSA-9830369 | Kidney development | 0.885923 | 0.053 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.886246 | 0.052 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.887871 | 0.052 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.887871 | 0.052 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 0.887871 | 0.052 |
R-HSA-9638630 | Attachment of bacteria to epithelial cells | 0.887871 | 0.052 |
R-HSA-9865118 | Diseases of branched-chain amino acid catabolism | 0.887871 | 0.052 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.888137 | 0.052 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.889325 | 0.051 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.893410 | 0.049 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.895167 | 0.048 |
R-HSA-425410 | Metal ion SLC transporters | 0.895167 | 0.048 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.895289 | 0.048 |
R-HSA-8949613 | Cristae formation | 0.895289 | 0.048 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.895289 | 0.048 |
R-HSA-75109 | Triglyceride biosynthesis | 0.895289 | 0.048 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 0.895289 | 0.048 |
R-HSA-901032 | ER Quality Control Compartment (ERQC) | 0.895289 | 0.048 |
R-HSA-1483213 | Synthesis of PE | 0.895289 | 0.048 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.895289 | 0.048 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 0.895289 | 0.048 |
R-HSA-201451 | Signaling by BMP | 0.895289 | 0.048 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.896159 | 0.048 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.896963 | 0.047 |
R-HSA-418555 | G alpha (s) signalling events | 0.900633 | 0.045 |
R-HSA-73893 | DNA Damage Bypass | 0.900721 | 0.045 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.900961 | 0.045 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.900961 | 0.045 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.902217 | 0.045 |
R-HSA-8850843 | Phosphate bond hydrolysis by NTPDase proteins | 0.902217 | 0.045 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 0.902217 | 0.045 |
R-HSA-73614 | Pyrimidine salvage | 0.902217 | 0.045 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.905562 | 0.043 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.906000 | 0.043 |
R-HSA-9748787 | Azathioprine ADME | 0.906000 | 0.043 |
R-HSA-69239 | Synthesis of DNA | 0.908334 | 0.042 |
R-HSA-5334118 | DNA methylation | 0.908687 | 0.042 |
R-HSA-1592389 | Activation of Matrix Metalloproteinases | 0.908687 | 0.042 |
R-HSA-6809371 | Formation of the cornified envelope | 0.908827 | 0.042 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 0.909969 | 0.041 |
R-HSA-912446 | Meiotic recombination | 0.911015 | 0.040 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.911015 | 0.040 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.913509 | 0.039 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 0.914729 | 0.039 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 0.914729 | 0.039 |
R-HSA-112311 | Neurotransmitter clearance | 0.914729 | 0.039 |
R-HSA-2206281 | Mucopolysaccharidoses | 0.914729 | 0.039 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.915397 | 0.038 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.915616 | 0.038 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.915778 | 0.038 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.915778 | 0.038 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.915778 | 0.038 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.915778 | 0.038 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.917200 | 0.038 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.920301 | 0.036 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.920301 | 0.036 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.920301 | 0.036 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.920301 | 0.036 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 0.920372 | 0.036 |
R-HSA-5694530 | Cargo concentration in the ER | 0.920372 | 0.036 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.920372 | 0.036 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 0.920372 | 0.036 |
R-HSA-162710 | Synthesis of glycosylphosphatidylinositol (GPI) | 0.920372 | 0.036 |
R-HSA-8852135 | Protein ubiquitination | 0.922091 | 0.035 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.924595 | 0.034 |
R-HSA-1538133 | G0 and Early G1 | 0.925641 | 0.034 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.925641 | 0.034 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.928669 | 0.032 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.928669 | 0.032 |
R-HSA-9694635 | Translation of Structural Proteins | 0.929323 | 0.032 |
R-HSA-159418 | Recycling of bile acids and salts | 0.930563 | 0.031 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.930563 | 0.031 |
R-HSA-9733709 | Cardiogenesis | 0.930563 | 0.031 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.930593 | 0.031 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.932134 | 0.031 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.932535 | 0.030 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.935158 | 0.029 |
R-HSA-2024101 | CS/DS degradation | 0.935158 | 0.029 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.935158 | 0.029 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 0.935158 | 0.029 |
R-HSA-189483 | Heme degradation | 0.935158 | 0.029 |
R-HSA-5621480 | Dectin-2 family | 0.936202 | 0.029 |
R-HSA-5654738 | Signaling by FGFR2 | 0.939019 | 0.027 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.939075 | 0.027 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.939075 | 0.027 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.939450 | 0.027 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.939450 | 0.027 |
R-HSA-5205647 | Mitophagy | 0.939450 | 0.027 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.939450 | 0.027 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.939450 | 0.027 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.939450 | 0.027 |
R-HSA-2393930 | Phosphate bond hydrolysis by NUDT proteins | 0.939450 | 0.027 |
R-HSA-157118 | Signaling by NOTCH | 0.940433 | 0.027 |
R-HSA-72172 | mRNA Splicing | 0.940603 | 0.027 |
R-HSA-977225 | Amyloid fiber formation | 0.941967 | 0.026 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.941996 | 0.026 |
R-HSA-8979227 | Triglyceride metabolism | 0.942977 | 0.025 |
R-HSA-9033241 | Peroxisomal protein import | 0.942977 | 0.025 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.942977 | 0.025 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.943458 | 0.025 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.943458 | 0.025 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 0.943458 | 0.025 |
R-HSA-381042 | PERK regulates gene expression | 0.943458 | 0.025 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.944783 | 0.025 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.946102 | 0.024 |
R-HSA-977443 | GABA receptor activation | 0.946102 | 0.024 |
R-HSA-8873719 | RAB geranylgeranylation | 0.946102 | 0.024 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.946102 | 0.024 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.947033 | 0.024 |
R-HSA-163560 | Triglyceride catabolism | 0.947201 | 0.024 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.947201 | 0.024 |
R-HSA-9845576 | Glycosphingolipid transport | 0.947201 | 0.024 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 0.947201 | 0.024 |
R-HSA-9734767 | Developmental Cell Lineages | 0.948993 | 0.023 |
R-HSA-1442490 | Collagen degradation | 0.949063 | 0.023 |
R-HSA-211976 | Endogenous sterols | 0.949063 | 0.023 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.950038 | 0.022 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.950111 | 0.022 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.950111 | 0.022 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.950697 | 0.022 |
R-HSA-4641257 | Degradation of AXIN | 0.950697 | 0.022 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.950697 | 0.022 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.950697 | 0.022 |
R-HSA-390247 | Beta-oxidation of very long chain fatty acids | 0.950697 | 0.022 |
R-HSA-110331 | Cleavage of the damaged purine | 0.950697 | 0.022 |
R-HSA-8963691 | Phenylalanine and tyrosine metabolism | 0.950697 | 0.022 |
R-HSA-8948216 | Collagen chain trimerization | 0.950697 | 0.022 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.951869 | 0.021 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.951869 | 0.021 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.952728 | 0.021 |
R-HSA-6785470 | tRNA processing in the mitochondrion | 0.953961 | 0.020 |
R-HSA-2046106 | alpha-linolenic acid (ALA) metabolism | 0.953961 | 0.020 |
R-HSA-9931953 | Biofilm formation | 0.953961 | 0.020 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.953961 | 0.020 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.953961 | 0.020 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.954527 | 0.020 |
R-HSA-9711123 | Cellular response to chemical stress | 0.956216 | 0.019 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.957000 | 0.019 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.957009 | 0.019 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.957009 | 0.019 |
R-HSA-69541 | Stabilization of p53 | 0.957009 | 0.019 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.957970 | 0.019 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.959177 | 0.018 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.959856 | 0.018 |
R-HSA-9646399 | Aggrephagy | 0.959856 | 0.018 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.959856 | 0.018 |
R-HSA-5260271 | Diseases of Immune System | 0.959856 | 0.018 |
R-HSA-8868766 | rRNA processing in the mitochondrion | 0.959856 | 0.018 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.959856 | 0.018 |
R-HSA-8982491 | Glycogen metabolism | 0.959856 | 0.018 |
R-HSA-71240 | Tryptophan catabolism | 0.959856 | 0.018 |
R-HSA-379726 | Mitochondrial tRNA aminoacylation | 0.959856 | 0.018 |
R-HSA-156902 | Peptide chain elongation | 0.961204 | 0.017 |
R-HSA-9663891 | Selective autophagy | 0.961204 | 0.017 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 0.961684 | 0.017 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.962514 | 0.017 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.962514 | 0.017 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.962514 | 0.017 |
R-HSA-418990 | Adherens junctions interactions | 0.962914 | 0.016 |
R-HSA-8939211 | ESR-mediated signaling | 0.963377 | 0.016 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.963419 | 0.016 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 0.963819 | 0.016 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.964027 | 0.016 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.964598 | 0.016 |
R-HSA-73884 | Base Excision Repair | 0.964976 | 0.015 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.964996 | 0.015 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.964996 | 0.015 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.966706 | 0.015 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.966730 | 0.015 |
R-HSA-991365 | Activation of GABAB receptors | 0.967315 | 0.014 |
R-HSA-977444 | GABA B receptor activation | 0.967315 | 0.014 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.967315 | 0.014 |
R-HSA-1461973 | Defensins | 0.969479 | 0.013 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 0.969479 | 0.013 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.969561 | 0.013 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.969561 | 0.013 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.969561 | 0.013 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.969561 | 0.013 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.969992 | 0.013 |
R-HSA-391251 | Protein folding | 0.969992 | 0.013 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.969992 | 0.013 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.971272 | 0.013 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.971272 | 0.013 |
R-HSA-3000178 | ECM proteoglycans | 0.971272 | 0.013 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.971272 | 0.013 |
R-HSA-975634 | Retinoid metabolism and transport | 0.971272 | 0.013 |
R-HSA-9907900 | Proteasome assembly | 0.971501 | 0.013 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.971501 | 0.013 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.972950 | 0.012 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.973369 | 0.012 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.973389 | 0.012 |
R-HSA-9824272 | Somitogenesis | 0.973389 | 0.012 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 0.973389 | 0.012 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.973586 | 0.012 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.973758 | 0.012 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.973944 | 0.011 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.974323 | 0.011 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.974323 | 0.011 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.974683 | 0.011 |
R-HSA-168256 | Immune System | 0.974990 | 0.011 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.975151 | 0.011 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.975151 | 0.011 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.975436 | 0.011 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.975866 | 0.011 |
R-HSA-8957322 | Metabolism of steroids | 0.976231 | 0.010 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 0.976797 | 0.010 |
R-HSA-2046104 | alpha-linolenic (omega3) and linoleic (omega6) acid metabolism | 0.976797 | 0.010 |
R-HSA-1483191 | Synthesis of PC | 0.976797 | 0.010 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.976873 | 0.010 |
R-HSA-917937 | Iron uptake and transport | 0.977233 | 0.010 |
R-HSA-5620924 | Intraflagellar transport | 0.978335 | 0.010 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 0.978335 | 0.010 |
R-HSA-2980736 | Peptide hormone metabolism | 0.978365 | 0.009 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.978525 | 0.009 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.979181 | 0.009 |
R-HSA-9766229 | Degradation of CDH1 | 0.979770 | 0.009 |
R-HSA-380108 | Chemokine receptors bind chemokines | 0.979770 | 0.009 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.979770 | 0.009 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.979770 | 0.009 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.980899 | 0.008 |
R-HSA-216083 | Integrin cell surface interactions | 0.980899 | 0.008 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.981110 | 0.008 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.981392 | 0.008 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.982149 | 0.008 |
R-HSA-2408557 | Selenocysteine synthesis | 0.982236 | 0.008 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.982362 | 0.008 |
R-HSA-70895 | Branched-chain amino acid catabolism | 0.982362 | 0.008 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.983155 | 0.007 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.983518 | 0.007 |
R-HSA-388396 | GPCR downstream signalling | 0.983800 | 0.007 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 0.983989 | 0.007 |
R-HSA-192823 | Viral mRNA Translation | 0.984029 | 0.007 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.984622 | 0.007 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.984622 | 0.007 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.984859 | 0.007 |
R-HSA-163125 | Post-translational modification: synthesis of GPI-anchored proteins | 0.985648 | 0.006 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.985773 | 0.006 |
R-HSA-168249 | Innate Immune System | 0.986313 | 0.006 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.986397 | 0.006 |
R-HSA-1793185 | Chondroitin sulfate/dermatan sulfate metabolism | 0.986593 | 0.006 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.986770 | 0.006 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.987361 | 0.006 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.987482 | 0.005 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.987785 | 0.005 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.988092 | 0.005 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.988312 | 0.005 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.988780 | 0.005 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.988780 | 0.005 |
R-HSA-6782135 | Dual incision in TC-NER | 0.989086 | 0.005 |
R-HSA-180786 | Extension of Telomeres | 0.989810 | 0.004 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.989810 | 0.004 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.990359 | 0.004 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.990359 | 0.004 |
R-HSA-351202 | Metabolism of polyamines | 0.990485 | 0.004 |
R-HSA-379724 | tRNA Aminoacylation | 0.990485 | 0.004 |
R-HSA-1236974 | ER-Phagosome pathway | 0.990619 | 0.004 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.990684 | 0.004 |
R-HSA-69306 | DNA Replication | 0.990780 | 0.004 |
R-HSA-9609507 | Protein localization | 0.990780 | 0.004 |
R-HSA-15869 | Metabolism of nucleotides | 0.990890 | 0.004 |
R-HSA-8956321 | Nucleotide salvage | 0.991116 | 0.004 |
R-HSA-112310 | Neurotransmitter release cycle | 0.991164 | 0.004 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 0.991164 | 0.004 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.991178 | 0.004 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.991678 | 0.004 |
R-HSA-1268020 | Mitochondrial protein import | 0.991705 | 0.004 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.991705 | 0.004 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.992255 | 0.003 |
R-HSA-5690714 | CD22 mediated BCR regulation | 0.992769 | 0.003 |
R-HSA-428157 | Sphingolipid metabolism | 0.992794 | 0.003 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.992913 | 0.003 |
R-HSA-1234174 | Cellular response to hypoxia | 0.993248 | 0.003 |
R-HSA-416476 | G alpha (q) signalling events | 0.993306 | 0.003 |
R-HSA-1474290 | Collagen formation | 0.993456 | 0.003 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.993475 | 0.003 |
R-HSA-9948299 | Ribosome-associated quality control | 0.993487 | 0.003 |
R-HSA-196071 | Metabolism of steroid hormones | 0.994114 | 0.003 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.994114 | 0.003 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.994200 | 0.003 |
R-HSA-913709 | O-linked glycosylation of mucins | 0.994505 | 0.002 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 0.994505 | 0.002 |
R-HSA-5389840 | Mitochondrial translation elongation | 0.994540 | 0.002 |
R-HSA-157579 | Telomere Maintenance | 0.994861 | 0.002 |
R-HSA-372790 | Signaling by GPCR | 0.994915 | 0.002 |
R-HSA-5368286 | Mitochondrial translation initiation | 0.995163 | 0.002 |
R-HSA-9840310 | Glycosphingolipid catabolism | 0.995210 | 0.002 |
R-HSA-72312 | rRNA processing | 0.995479 | 0.002 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.995527 | 0.002 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.995527 | 0.002 |
R-HSA-189445 | Metabolism of porphyrins | 0.995527 | 0.002 |
R-HSA-74259 | Purine catabolism | 0.995824 | 0.002 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 0.996101 | 0.002 |
R-HSA-9824446 | Viral Infection Pathways | 0.996284 | 0.002 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 0.996360 | 0.002 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 0.996431 | 0.002 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.996601 | 0.001 |
R-HSA-9833110 | RSV-host interactions | 0.996841 | 0.001 |
R-HSA-5619084 | ABC transporter disorders | 0.997234 | 0.001 |
R-HSA-5579029 | Metabolic disorders of biological oxidation enzymes | 0.997418 | 0.001 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.997589 | 0.001 |
R-HSA-5419276 | Mitochondrial translation termination | 0.997674 | 0.001 |
R-HSA-9711097 | Cellular response to starvation | 0.997833 | 0.001 |
R-HSA-6803157 | Antimicrobial peptides | 0.997943 | 0.001 |
R-HSA-6805567 | Keratinization | 0.998047 | 0.001 |
R-HSA-390918 | Peroxisomal lipid metabolism | 0.998168 | 0.001 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.998255 | 0.001 |
R-HSA-70268 | Pyruvate metabolism | 0.998609 | 0.001 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 0.999135 | 0.000 |
R-HSA-2029481 | FCGR activation | 0.999140 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 0.999440 | 0.000 |
R-HSA-8956319 | Nucleotide catabolism | 0.999441 | 0.000 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.999504 | 0.000 |
R-HSA-9717189 | Sensory perception of taste | 0.999537 | 0.000 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.999565 | 0.000 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.999583 | 0.000 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.999648 | 0.000 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.999648 | 0.000 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.999656 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.999712 | 0.000 |
R-HSA-5368287 | Mitochondrial translation | 0.999720 | 0.000 |
R-HSA-597592 | Post-translational protein modification | 0.999798 | 0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.999831 | 0.000 |
R-HSA-166663 | Initial triggering of complement | 0.999835 | 0.000 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.999840 | 0.000 |
R-HSA-2187338 | Visual phototransduction | 0.999851 | 0.000 |
R-HSA-1474244 | Extracellular matrix organization | 0.999864 | 0.000 |
R-HSA-1643685 | Disease | 0.999894 | 0.000 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 0.999905 | 0.000 |
R-HSA-1660662 | Glycosphingolipid metabolism | 0.999917 | 0.000 |
R-HSA-977606 | Regulation of Complement cascade | 0.999928 | 0.000 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.999955 | 0.000 |
R-HSA-446219 | Synthesis of substrates in N-glycan biosythesis | 0.999958 | 0.000 |
R-HSA-5173105 | O-linked glycosylation | 0.999974 | 0.000 |
R-HSA-611105 | Respiratory electron transport | 0.999981 | 0.000 |
R-HSA-166658 | Complement cascade | 0.999986 | 0.000 |
R-HSA-3781865 | Diseases of glycosylation | 0.999987 | 0.000 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.999989 | 0.000 |
R-HSA-72766 | Translation | 0.999989 | 0.000 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 0.999990 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999990 | 0.000 |
R-HSA-5663205 | Infectious disease | 0.999991 | 0.000 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 0.999993 | 0.000 |
R-HSA-446193 | Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... | 0.999994 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999994 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999995 | 0.000 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.999996 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999998 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999998 | 0.000 |
R-HSA-9748784 | Drug ADME | 0.999999 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 1.000000 | 0.000 |
R-HSA-9640148 | Infection with Enterobacteria | 1.000000 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 1.000000 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 1.000000 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 1.000000 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 1.000000 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 1.000000 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
AURC |
0.872 | 0.721 | -2 | 0.782 |
AURB |
0.862 | 0.732 | -2 | 0.787 |
AURA |
0.860 | 0.747 | -2 | 0.838 |
PKACB |
0.855 | 0.605 | -2 | 0.728 |
PKACA |
0.849 | 0.578 | -2 | 0.755 |
PRKX |
0.848 | 0.517 | -3 | 0.757 |
PAK6 |
0.846 | 0.616 | -2 | 0.716 |
MSK1 |
0.846 | 0.561 | -3 | 0.797 |
PKG2 |
0.845 | 0.582 | -2 | 0.677 |
PKACG |
0.844 | 0.528 | -2 | 0.589 |
PAK4 |
0.841 | 0.641 | -2 | 0.782 |
RSK2 |
0.839 | 0.394 | -3 | 0.824 |
PAK5 |
0.839 | 0.633 | -2 | 0.744 |
PAK1 |
0.838 | 0.600 | -2 | 0.633 |
MYLK4 |
0.836 | 0.607 | -2 | 0.646 |
RSK4 |
0.832 | 0.418 | -3 | 0.792 |
PAK3 |
0.832 | 0.586 | -2 | 0.604 |
MNK2 |
0.831 | 0.542 | -2 | 0.596 |
MSK2 |
0.830 | 0.444 | -3 | 0.785 |
SKMLCK |
0.829 | 0.548 | -2 | 0.491 |
PAK2 |
0.829 | 0.625 | -2 | 0.637 |
RSK3 |
0.828 | 0.349 | -3 | 0.813 |
CLK4 |
0.824 | 0.439 | -3 | 0.821 |
P90RSK |
0.824 | 0.293 | -3 | 0.818 |
MNK1 |
0.823 | 0.485 | -2 | 0.564 |
NDR1 |
0.821 | 0.299 | -3 | 0.888 |
CAMLCK |
0.821 | 0.609 | -2 | 0.508 |
P70S6KB |
0.820 | 0.357 | -3 | 0.851 |
PKG1 |
0.820 | 0.505 | -2 | 0.715 |
SGK3 |
0.818 | 0.395 | -3 | 0.825 |
PIM3 |
0.818 | 0.213 | -3 | 0.878 |
AKT1 |
0.818 | 0.456 | -3 | 0.774 |
PRKD2 |
0.817 | 0.200 | -3 | 0.838 |
DAPK1 |
0.817 | 0.597 | -3 | 0.833 |
NDR2 |
0.817 | 0.178 | -3 | 0.889 |
AKT2 |
0.816 | 0.374 | -3 | 0.746 |
CAMK4 |
0.816 | 0.381 | -3 | 0.883 |
CLK2 |
0.815 | 0.349 | -3 | 0.807 |
DAPK2 |
0.815 | 0.567 | -3 | 0.902 |
CAMK1B |
0.814 | 0.339 | -3 | 0.900 |
CLK3 |
0.812 | 0.231 | 1 | 0.567 |
CLK1 |
0.812 | 0.325 | -3 | 0.808 |
DAPK3 |
0.810 | 0.569 | -3 | 0.858 |
COT |
0.810 | 0.064 | 2 | 0.904 |
AKT3 |
0.810 | 0.397 | -3 | 0.684 |
CDC7 |
0.809 | 0.125 | 1 | 0.692 |
PKN2 |
0.809 | 0.264 | -3 | 0.888 |
PIM1 |
0.808 | 0.202 | -3 | 0.837 |
DYRK3 |
0.807 | 0.348 | 1 | 0.470 |
WNK1 |
0.807 | 0.214 | -2 | 0.345 |
PRKD1 |
0.807 | 0.100 | -3 | 0.872 |
MAPKAPK3 |
0.807 | 0.133 | -3 | 0.844 |
LATS2 |
0.806 | 0.104 | -5 | 0.812 |
SMMLCK |
0.806 | 0.519 | -3 | 0.860 |
MRCKA |
0.805 | 0.463 | -3 | 0.824 |
MAPKAPK2 |
0.804 | 0.112 | -3 | 0.798 |
MRCKB |
0.804 | 0.466 | -3 | 0.804 |
PKCD |
0.804 | 0.265 | 2 | 0.810 |
RIPK3 |
0.802 | 0.184 | 3 | 0.766 |
PKN3 |
0.802 | 0.160 | -3 | 0.865 |
SGK1 |
0.801 | 0.338 | -3 | 0.669 |
AMPKA1 |
0.801 | 0.160 | -3 | 0.908 |
PRKD3 |
0.800 | 0.174 | -3 | 0.802 |
PIM2 |
0.800 | 0.245 | -3 | 0.803 |
CAMK2D |
0.800 | 0.069 | -3 | 0.889 |
IKKB |
0.800 | -0.079 | -2 | 0.170 |
MST4 |
0.800 | 0.138 | 2 | 0.843 |
RAF1 |
0.800 | 0.075 | 1 | 0.648 |
P70S6K |
0.799 | 0.252 | -3 | 0.762 |
MOS |
0.799 | 0.063 | 1 | 0.653 |
GRK1 |
0.798 | 0.080 | -2 | 0.198 |
AMPKA2 |
0.798 | 0.146 | -3 | 0.883 |
NIK |
0.798 | 0.262 | -3 | 0.916 |
ICK |
0.797 | 0.149 | -3 | 0.867 |
TSSK1 |
0.797 | 0.147 | -3 | 0.924 |
TSSK2 |
0.797 | 0.160 | -5 | 0.876 |
CAMK2A |
0.797 | 0.144 | 2 | 0.829 |
DMPK1 |
0.797 | 0.512 | -3 | 0.827 |
MELK |
0.797 | 0.140 | -3 | 0.873 |
DYRK2 |
0.796 | 0.103 | 1 | 0.459 |
CAMK1G |
0.796 | 0.215 | -3 | 0.814 |
CAMK1D |
0.796 | 0.253 | -3 | 0.766 |
HIPK4 |
0.795 | 0.049 | 1 | 0.518 |
ROCK2 |
0.795 | 0.447 | -3 | 0.853 |
LATS1 |
0.795 | 0.185 | -3 | 0.897 |
TGFBR2 |
0.795 | 0.003 | -2 | 0.208 |
CAMK2B |
0.794 | 0.100 | 2 | 0.820 |
PKCG |
0.794 | 0.217 | 2 | 0.759 |
NUAK2 |
0.794 | 0.078 | -3 | 0.890 |
MARK4 |
0.794 | 0.033 | 4 | 0.869 |
CAMK2G |
0.794 | 0.017 | 2 | 0.858 |
HUNK |
0.794 | 0.077 | 2 | 0.870 |
TBK1 |
0.793 | -0.097 | 1 | 0.562 |
DRAK1 |
0.793 | 0.294 | 1 | 0.775 |
NLK |
0.793 | 0.047 | 1 | 0.583 |
WNK3 |
0.792 | 0.101 | 1 | 0.592 |
PDHK4 |
0.792 | -0.069 | 1 | 0.631 |
PRPK |
0.792 | -0.092 | -1 | 0.838 |
GRK6 |
0.792 | 0.131 | 1 | 0.712 |
MTOR |
0.792 | -0.055 | 1 | 0.576 |
CDKL1 |
0.792 | 0.049 | -3 | 0.830 |
ATR |
0.791 | 0.050 | 1 | 0.591 |
GRK5 |
0.791 | 0.049 | -3 | 0.858 |
HIPK1 |
0.791 | 0.156 | 1 | 0.471 |
RIPK1 |
0.791 | 0.123 | 1 | 0.613 |
BRSK1 |
0.791 | 0.127 | -3 | 0.853 |
SRPK1 |
0.791 | 0.068 | -3 | 0.788 |
PKCA |
0.791 | 0.220 | 2 | 0.744 |
QSK |
0.791 | 0.092 | 4 | 0.839 |
ROCK1 |
0.790 | 0.469 | -3 | 0.823 |
PKCH |
0.790 | 0.233 | 2 | 0.754 |
IKKE |
0.790 | -0.108 | 1 | 0.558 |
GCN2 |
0.790 | -0.122 | 2 | 0.848 |
QIK |
0.789 | 0.082 | -3 | 0.883 |
DYRK1B |
0.789 | 0.138 | 1 | 0.436 |
HIPK2 |
0.789 | 0.102 | 1 | 0.391 |
PKCZ |
0.789 | 0.204 | 2 | 0.804 |
CDKL5 |
0.789 | 0.025 | -3 | 0.826 |
DYRK4 |
0.788 | 0.111 | 1 | 0.409 |
BMPR1B |
0.788 | 0.131 | 1 | 0.769 |
PKCI |
0.788 | 0.299 | 2 | 0.768 |
NIM1 |
0.788 | 0.036 | 3 | 0.797 |
PLK1 |
0.788 | 0.064 | -2 | 0.186 |
PKCB |
0.787 | 0.143 | 2 | 0.750 |
PKCT |
0.787 | 0.274 | 2 | 0.760 |
ULK2 |
0.787 | -0.118 | 2 | 0.840 |
TGFBR1 |
0.787 | 0.057 | -2 | 0.157 |
CAMK1A |
0.787 | 0.258 | -3 | 0.721 |
PDHK1 |
0.786 | -0.108 | 1 | 0.606 |
DCAMKL1 |
0.786 | 0.143 | -3 | 0.857 |
GRK2 |
0.786 | 0.121 | -2 | 0.165 |
CHAK2 |
0.786 | -0.034 | -1 | 0.892 |
SIK |
0.785 | 0.064 | -3 | 0.825 |
MASTL |
0.785 | -0.069 | -2 | 0.208 |
SRPK2 |
0.785 | 0.066 | -3 | 0.717 |
SNRK |
0.785 | 0.130 | 2 | 0.766 |
MARK3 |
0.785 | 0.066 | 4 | 0.800 |
PKCE |
0.785 | 0.292 | 2 | 0.743 |
IKKA |
0.784 | -0.091 | -2 | 0.120 |
DYRK1A |
0.784 | 0.103 | 1 | 0.485 |
BMPR2 |
0.784 | -0.138 | -2 | 0.210 |
ALK4 |
0.784 | 0.046 | -2 | 0.183 |
ERK5 |
0.783 | -0.065 | 1 | 0.545 |
DSTYK |
0.783 | -0.115 | 2 | 0.901 |
BRSK2 |
0.783 | 0.059 | -3 | 0.883 |
HIPK3 |
0.783 | 0.141 | 1 | 0.461 |
SSTK |
0.782 | 0.149 | 4 | 0.829 |
NUAK1 |
0.781 | 0.017 | -3 | 0.854 |
MARK1 |
0.781 | 0.071 | 4 | 0.824 |
DLK |
0.781 | 0.017 | 1 | 0.676 |
BCKDK |
0.780 | -0.090 | -1 | 0.786 |
MAPKAPK5 |
0.780 | 0.033 | -3 | 0.765 |
CRIK |
0.779 | 0.305 | -3 | 0.763 |
PHKG2 |
0.779 | 0.141 | -3 | 0.868 |
ULK1 |
0.779 | -0.111 | -3 | 0.802 |
PHKG1 |
0.779 | 0.047 | -3 | 0.888 |
ACVR2A |
0.779 | 0.072 | -2 | 0.164 |
CHK1 |
0.779 | 0.034 | -3 | 0.889 |
ACVR2B |
0.778 | 0.070 | -2 | 0.157 |
CDK7 |
0.778 | -0.013 | 1 | 0.450 |
MARK2 |
0.778 | 0.038 | 4 | 0.769 |
PKN1 |
0.777 | 0.181 | -3 | 0.788 |
DCAMKL2 |
0.776 | 0.100 | -3 | 0.878 |
NEK7 |
0.775 | -0.160 | -3 | 0.831 |
ANKRD3 |
0.775 | -0.047 | 1 | 0.641 |
MLK1 |
0.775 | -0.095 | 2 | 0.836 |
GRK4 |
0.775 | -0.074 | -2 | 0.181 |
NEK2 |
0.775 | 0.049 | 2 | 0.833 |
CDK10 |
0.774 | 0.096 | 1 | 0.425 |
CDK14 |
0.774 | 0.084 | 1 | 0.436 |
WNK4 |
0.774 | 0.098 | -2 | 0.310 |
GRK3 |
0.774 | 0.087 | -2 | 0.160 |
NEK6 |
0.774 | -0.118 | -2 | 0.193 |
PASK |
0.774 | 0.169 | -3 | 0.880 |
KIS |
0.774 | -0.065 | 1 | 0.449 |
MEK1 |
0.773 | 0.015 | 2 | 0.882 |
ALK2 |
0.773 | 0.007 | -2 | 0.169 |
CHK2 |
0.773 | 0.166 | -3 | 0.705 |
GRK7 |
0.772 | 0.020 | 1 | 0.640 |
BMPR1A |
0.772 | 0.083 | 1 | 0.743 |
MLK2 |
0.772 | -0.119 | 2 | 0.842 |
SRPK3 |
0.772 | 0.027 | -3 | 0.751 |
IRE1 |
0.772 | -0.027 | 1 | 0.559 |
MAK |
0.771 | 0.106 | -2 | 0.351 |
CDK8 |
0.771 | -0.073 | 1 | 0.446 |
NEK9 |
0.771 | -0.147 | 2 | 0.861 |
JNK2 |
0.770 | -0.022 | 1 | 0.420 |
PKR |
0.770 | 0.003 | 1 | 0.598 |
ATM |
0.769 | -0.042 | 1 | 0.548 |
YSK4 |
0.769 | -0.102 | 1 | 0.608 |
CDK19 |
0.769 | -0.064 | 1 | 0.416 |
PLK3 |
0.769 | -0.041 | 2 | 0.833 |
TTBK2 |
0.769 | -0.128 | 2 | 0.758 |
CDK18 |
0.768 | -0.020 | 1 | 0.396 |
DNAPK |
0.768 | -0.022 | 1 | 0.478 |
PLK4 |
0.767 | -0.056 | 2 | 0.726 |
CDK13 |
0.767 | -0.030 | 1 | 0.425 |
CDK12 |
0.767 | -0.000 | 1 | 0.407 |
MST3 |
0.767 | 0.090 | 2 | 0.843 |
VRK2 |
0.766 | -0.058 | 1 | 0.619 |
CDK9 |
0.766 | -0.022 | 1 | 0.429 |
FAM20C |
0.765 | -0.011 | 2 | 0.646 |
IRE2 |
0.765 | -0.010 | 2 | 0.809 |
P38A |
0.765 | -0.041 | 1 | 0.462 |
SBK |
0.765 | 0.126 | -3 | 0.636 |
CHAK1 |
0.765 | -0.065 | 2 | 0.802 |
MLK3 |
0.764 | -0.071 | 2 | 0.759 |
SMG1 |
0.763 | -0.077 | 1 | 0.537 |
IRAK4 |
0.762 | 0.009 | 1 | 0.559 |
JNK3 |
0.762 | -0.046 | 1 | 0.436 |
CDK17 |
0.761 | -0.031 | 1 | 0.370 |
CK2A2 |
0.761 | 0.092 | 1 | 0.682 |
P38B |
0.760 | -0.052 | 1 | 0.411 |
MEK5 |
0.760 | -0.021 | 2 | 0.864 |
CDK1 |
0.760 | -0.036 | 1 | 0.449 |
BRAF |
0.759 | -0.041 | -4 | 0.831 |
MEKK3 |
0.759 | -0.061 | 1 | 0.642 |
MOK |
0.759 | 0.087 | 1 | 0.466 |
BUB1 |
0.759 | 0.144 | -5 | 0.832 |
TLK2 |
0.759 | -0.135 | 1 | 0.578 |
P38G |
0.759 | -0.037 | 1 | 0.368 |
GSK3B |
0.758 | 0.063 | 4 | 0.540 |
LOK |
0.758 | 0.095 | -2 | 0.304 |
ERK1 |
0.757 | -0.058 | 1 | 0.402 |
CAMKK2 |
0.757 | -0.021 | -2 | 0.224 |
CDK5 |
0.757 | -0.040 | 1 | 0.461 |
ERK2 |
0.757 | -0.049 | 1 | 0.442 |
MLK4 |
0.757 | -0.087 | 2 | 0.752 |
HPK1 |
0.757 | 0.115 | 1 | 0.634 |
CK2A1 |
0.756 | 0.104 | 1 | 0.689 |
CK1E |
0.756 | -0.008 | -3 | 0.535 |
CDK2 |
0.755 | -0.043 | 1 | 0.525 |
MPSK1 |
0.754 | -0.036 | 1 | 0.537 |
ZAK |
0.754 | -0.105 | 1 | 0.618 |
GAK |
0.754 | 0.049 | 1 | 0.618 |
PERK |
0.754 | -0.151 | -2 | 0.179 |
TAO3 |
0.753 | -0.023 | 1 | 0.616 |
CAMKK1 |
0.753 | -0.097 | -2 | 0.195 |
NEK5 |
0.752 | -0.095 | 1 | 0.596 |
GCK |
0.752 | 0.051 | 1 | 0.650 |
PRP4 |
0.752 | -0.036 | -3 | 0.772 |
LKB1 |
0.752 | -0.000 | -3 | 0.857 |
NEK11 |
0.752 | -0.035 | 1 | 0.626 |
CK1A2 |
0.751 | 0.045 | -3 | 0.486 |
MEKK1 |
0.751 | -0.125 | 1 | 0.599 |
PDK1 |
0.751 | 0.024 | 1 | 0.582 |
IRAK1 |
0.751 | -0.076 | -1 | 0.780 |
HRI |
0.751 | -0.161 | -2 | 0.197 |
SLK |
0.751 | 0.009 | -2 | 0.241 |
CDK3 |
0.751 | -0.024 | 1 | 0.382 |
TLK1 |
0.750 | -0.150 | -2 | 0.159 |
NEK8 |
0.749 | -0.003 | 2 | 0.852 |
CDK16 |
0.749 | -0.036 | 1 | 0.374 |
GSK3A |
0.748 | 0.041 | 4 | 0.548 |
STK33 |
0.748 | -0.005 | 2 | 0.677 |
RIPK2 |
0.747 | -0.004 | 1 | 0.583 |
TAO2 |
0.747 | -0.027 | 2 | 0.866 |
P38D |
0.747 | -0.062 | 1 | 0.341 |
MEKK6 |
0.747 | 0.012 | 1 | 0.594 |
MEKK2 |
0.747 | -0.132 | 2 | 0.844 |
TTBK1 |
0.747 | -0.106 | 2 | 0.684 |
PBK |
0.747 | 0.025 | 1 | 0.528 |
CDK4 |
0.745 | -0.007 | 1 | 0.393 |
PINK1 |
0.744 | -0.131 | 1 | 0.553 |
NEK4 |
0.744 | -0.059 | 1 | 0.576 |
LRRK2 |
0.744 | -0.029 | 2 | 0.879 |
KHS1 |
0.743 | 0.036 | 1 | 0.583 |
KHS2 |
0.743 | 0.067 | 1 | 0.609 |
HASPIN |
0.743 | 0.097 | -1 | 0.829 |
MAP3K15 |
0.743 | -0.062 | 1 | 0.589 |
TAK1 |
0.742 | -0.036 | 1 | 0.628 |
CK1D |
0.742 | -0.020 | -3 | 0.485 |
VRK1 |
0.742 | -0.023 | 2 | 0.894 |
NEK1 |
0.741 | -0.010 | 1 | 0.582 |
TNIK |
0.741 | -0.006 | 3 | 0.842 |
MINK |
0.741 | -0.060 | 1 | 0.604 |
MST2 |
0.741 | -0.103 | 1 | 0.633 |
HGK |
0.740 | -0.055 | 3 | 0.842 |
JNK1 |
0.740 | -0.055 | 1 | 0.417 |
PDHK3_TYR |
0.738 | 0.153 | 4 | 0.939 |
PLK2 |
0.738 | -0.042 | -3 | 0.766 |
MEK2 |
0.738 | -0.068 | 2 | 0.856 |
YSK1 |
0.737 | -0.013 | 2 | 0.821 |
CK1G1 |
0.737 | -0.065 | -3 | 0.524 |
CDK6 |
0.737 | -0.040 | 1 | 0.406 |
MST1 |
0.736 | -0.090 | 1 | 0.611 |
EEF2K |
0.734 | -0.077 | 3 | 0.805 |
ERK7 |
0.732 | -0.041 | 2 | 0.538 |
LIMK2_TYR |
0.731 | 0.151 | -3 | 0.926 |
TESK1_TYR |
0.730 | 0.102 | 3 | 0.893 |
NEK3 |
0.729 | -0.090 | 1 | 0.542 |
PDHK4_TYR |
0.729 | 0.088 | 2 | 0.914 |
BMPR2_TYR |
0.728 | 0.119 | -1 | 0.870 |
YANK3 |
0.728 | 0.032 | 2 | 0.450 |
MAP2K7_TYR |
0.726 | 0.053 | 2 | 0.904 |
BIKE |
0.726 | -0.010 | 1 | 0.507 |
PKMYT1_TYR |
0.724 | 0.000 | 3 | 0.875 |
MYO3B |
0.724 | 0.032 | 2 | 0.836 |
MAP2K6_TYR |
0.724 | 0.023 | -1 | 0.856 |
MAP2K4_TYR |
0.724 | -0.021 | -1 | 0.846 |
PINK1_TYR |
0.723 | 0.061 | 1 | 0.628 |
TTK |
0.722 | -0.065 | -2 | 0.204 |
EPHA6 |
0.722 | 0.090 | -1 | 0.853 |
ASK1 |
0.721 | -0.074 | 1 | 0.582 |
DDR1 |
0.721 | 0.091 | 4 | 0.852 |
TAO1 |
0.720 | -0.050 | 1 | 0.546 |
RET |
0.719 | 0.029 | 1 | 0.583 |
PDHK1_TYR |
0.719 | -0.032 | -1 | 0.866 |
OSR1 |
0.719 | -0.084 | 2 | 0.822 |
LIMK1_TYR |
0.717 | 0.010 | 2 | 0.890 |
MYO3A |
0.716 | -0.045 | 1 | 0.575 |
EPHB4 |
0.715 | 0.020 | -1 | 0.813 |
TNK1 |
0.715 | 0.097 | 3 | 0.790 |
TXK |
0.714 | 0.095 | 1 | 0.743 |
DDR2 |
0.713 | 0.133 | 3 | 0.754 |
TNK2 |
0.713 | 0.003 | 3 | 0.779 |
MST1R |
0.713 | -0.042 | 3 | 0.823 |
AAK1 |
0.712 | -0.001 | 1 | 0.418 |
TYRO3 |
0.711 | -0.037 | 3 | 0.801 |
CK1A |
0.711 | -0.006 | -3 | 0.390 |
JAK3 |
0.708 | -0.049 | 1 | 0.593 |
SRMS |
0.708 | -0.006 | 1 | 0.698 |
EPHB1 |
0.708 | 0.018 | 1 | 0.685 |
TYK2 |
0.708 | -0.140 | 1 | 0.571 |
INSRR |
0.708 | -0.004 | 3 | 0.758 |
ROS1 |
0.707 | -0.057 | 3 | 0.777 |
AXL |
0.707 | 0.006 | 3 | 0.790 |
YES1 |
0.707 | -0.031 | -1 | 0.819 |
EPHA4 |
0.707 | -0.000 | 2 | 0.825 |
NEK10_TYR |
0.707 | -0.047 | 1 | 0.501 |
ALPHAK3 |
0.707 | -0.096 | -1 | 0.758 |
STLK3 |
0.707 | -0.135 | 1 | 0.589 |
MERTK |
0.706 | 0.033 | 3 | 0.793 |
FGR |
0.706 | -0.072 | 1 | 0.658 |
FGFR2 |
0.705 | -0.037 | 3 | 0.814 |
JAK2 |
0.705 | -0.142 | 1 | 0.567 |
ITK |
0.705 | 0.001 | -1 | 0.789 |
PDGFRB |
0.704 | -0.044 | 3 | 0.810 |
ABL2 |
0.704 | -0.057 | -1 | 0.781 |
KDR |
0.704 | -0.001 | 3 | 0.766 |
FER |
0.703 | -0.060 | 1 | 0.665 |
EPHB3 |
0.703 | -0.027 | -1 | 0.795 |
CSF1R |
0.703 | -0.113 | 3 | 0.801 |
PTK2B |
0.703 | 0.070 | -1 | 0.750 |
EPHB2 |
0.702 | -0.024 | -1 | 0.789 |
BMX |
0.701 | 0.014 | -1 | 0.715 |
ABL1 |
0.700 | -0.076 | -1 | 0.772 |
EPHA7 |
0.700 | 0.018 | 2 | 0.831 |
EPHA1 |
0.699 | 0.012 | 3 | 0.771 |
LTK |
0.698 | -0.013 | 3 | 0.765 |
TNNI3K_TYR |
0.697 | -0.038 | 1 | 0.560 |
WEE1_TYR |
0.697 | -0.007 | -1 | 0.748 |
TEK |
0.697 | -0.080 | 3 | 0.744 |
HCK |
0.697 | -0.107 | -1 | 0.813 |
NTRK1 |
0.696 | -0.066 | -1 | 0.785 |
KIT |
0.696 | -0.102 | 3 | 0.804 |
PTK2 |
0.696 | 0.094 | -1 | 0.813 |
FGFR1 |
0.696 | -0.108 | 3 | 0.782 |
ALK |
0.695 | -0.027 | 3 | 0.735 |
JAK1 |
0.695 | -0.091 | 1 | 0.550 |
TEC |
0.695 | -0.023 | -1 | 0.717 |
EPHA3 |
0.695 | -0.040 | 2 | 0.807 |
FLT1 |
0.694 | -0.053 | -1 | 0.816 |
FLT3 |
0.694 | -0.126 | 3 | 0.794 |
LCK |
0.694 | -0.085 | -1 | 0.822 |
FYN |
0.694 | -0.027 | -1 | 0.809 |
MET |
0.694 | -0.074 | 3 | 0.799 |
PDGFRA |
0.694 | -0.123 | 3 | 0.806 |
FGFR3 |
0.693 | -0.067 | 3 | 0.783 |
BTK |
0.691 | -0.117 | -1 | 0.752 |
FLT4 |
0.691 | -0.070 | 3 | 0.771 |
EPHA5 |
0.691 | -0.016 | 2 | 0.820 |
BLK |
0.690 | -0.078 | -1 | 0.820 |
ERBB2 |
0.689 | -0.106 | 1 | 0.600 |
NTRK2 |
0.689 | -0.102 | 3 | 0.767 |
INSR |
0.688 | -0.081 | 3 | 0.737 |
NTRK3 |
0.688 | -0.079 | -1 | 0.734 |
EPHA8 |
0.687 | -0.030 | -1 | 0.794 |
PTK6 |
0.686 | -0.164 | -1 | 0.709 |
SYK |
0.686 | 0.006 | -1 | 0.773 |
YANK2 |
0.685 | -0.043 | 2 | 0.464 |
FRK |
0.685 | -0.105 | -1 | 0.812 |
EGFR |
0.683 | -0.085 | 1 | 0.552 |
SRC |
0.683 | -0.074 | -1 | 0.790 |
EPHA2 |
0.682 | -0.010 | -1 | 0.763 |
MATK |
0.681 | -0.073 | -1 | 0.714 |
CSK |
0.681 | -0.098 | 2 | 0.835 |
LYN |
0.679 | -0.130 | 3 | 0.734 |
MUSK |
0.678 | -0.075 | 1 | 0.538 |
IGF1R |
0.677 | -0.050 | 3 | 0.682 |
CK1G3 |
0.677 | -0.047 | -3 | 0.339 |
ERBB4 |
0.675 | -0.048 | 1 | 0.594 |
FGFR4 |
0.674 | -0.115 | -1 | 0.735 |
FES |
0.669 | -0.018 | -1 | 0.689 |
CK1G2 |
0.668 | -0.057 | -3 | 0.438 |
ZAP70 |
0.659 | -0.060 | -1 | 0.709 |