Motif 405 (n=369)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A4D1P6 | WDR91 | S288 | ochoa | WD repeat-containing protein 91 | Functions as a negative regulator of the PI3 kinase/PI3K activity associated with endosomal membranes via BECN1, a core subunit of the PI3K complex. By modifying the phosphatidylinositol 3-phosphate/PtdInsP3 content of endosomal membranes may regulate endosome fusion, recycling, sorting and early to late endosome transport (PubMed:26783301). It is for instance, required for the delivery of cargos like BST2/tetherin from early to late endosome and thereby participates indirectly to their degradation by the lysosome (PubMed:27126989). May play a role in meiosis (By similarity). {ECO:0000250|UniProtKB:Q7TMQ7, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:27126989}. |
A6ND36 | FAM83G | S365 | ochoa | Protein FAM83G (Protein associated with SMAD1) | Substrate for type I BMP receptor kinase involved in regulation of some target genes of the BMP signaling pathway. Also regulates the expression of several non-BMP target genes, suggesting a role in other signaling pathways. {ECO:0000269|PubMed:24554596}. |
O00515 | LAD1 | S39 | ochoa|psp | Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) | Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}. |
O14513 | NCKAP5 | S1120 | ochoa | Nck-associated protein 5 (NAP-5) (Peripheral clock protein) | None |
O14639 | ABLIM1 | S353 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O14641 | DVL2 | S592 | psp | Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) | Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}. |
O14649 | KCNK3 | S373 | ochoa | Potassium channel subfamily K member 3 (Acid-sensitive potassium channel protein TASK-1) (TWIK-related acid-sensitive K(+) channel 1) (Two pore potassium channel KT3.1) (Two pore K(+) channel KT3.1) | K(+) channel that conducts voltage-dependent outward rectifying currents upon membrane depolarization. Voltage sensing is coupled to K(+) electrochemical gradient in an 'ion flux gating' mode where outward but not inward ion flow opens the gate (PubMed:23169818, PubMed:26919430, PubMed:32499642, PubMed:36195757, PubMed:9312005). Changes ion selectivity and becomes permeable to Na(+) ions in response to extracellular acidification. Protonation of the pH sensor His-98 stabilizes C-type inactivation conformation likely converting the channel from outward K(+)-conducting, to inward Na(+)-conducting to nonconductive state (PubMed:22948150). Homo- and heterodimerizes to form functional channels with distinct regulatory and gating properties (PubMed:23169818, PubMed:32499642). Allows K(+) currents with fast-gating kinetics important for the repolarization and hyperpolarization phases of action potentials (By similarity). In cerebellar granule cells, heteromeric KCNK3:KCNK9 channel may hyperpolarize the resting membrane potential to limit intrinsic neuronal excitability, but once the action potential threshold is reached, it may support high-frequency action potential firing and increased neuronal excitability (By similarity). Dispensable for central chemosensory respiration i.e. breathing controlled by brainstem CO2/pH, it rather conducts pH-sensitive currents and controls the firing rate of serotonergic raphe neurons involved in potentiation of the respiratory chemoreflex. Additionally, imparts chemosensitivity to type 1 cells in carotid bodies which respond to a decrease in arterial oxygen pressure or an increase in carbon dioxide pressure or pH to initiate adaptive changes in pulmonary ventilation (By similarity). In adrenal gland, contributes to the maintenance of a hyperpolarized resting membrane potential of aldosterone-producing cells at zona glomerulosa and limits aldosterone release as part of a regulatory mechanism that controls arterial blood pressure and electrolyte homeostasis (By similarity). In brown adipocytes, mediates K(+) efflux that counteracts norepinephrine-induced membrane depolarization, limits Ca(2+) efflux and downstream cAMP and PKA signaling, ultimately attenuating lipid oxidation and adaptive thermogenesis (By similarity). {ECO:0000250|UniProtKB:O35111, ECO:0000250|UniProtKB:O54912, ECO:0000269|PubMed:22948150, ECO:0000269|PubMed:23169818, ECO:0000269|PubMed:26919430, ECO:0000269|PubMed:32499642, ECO:0000269|PubMed:36195757, ECO:0000269|PubMed:9312005}. |
O14686 | KMT2D | S2655 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14974 | PPP1R12A | S478 | ochoa|psp | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O15047 | SETD1A | S222 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15061 | SYNM | S484 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15061 | SYNM | S1211 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15127 | SCAMP2 | S311 | ochoa | Secretory carrier-associated membrane protein 2 (Secretory carrier membrane protein 2) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O15344 | MID1 | S513 | ochoa | E3 ubiquitin-protein ligase Midline-1 (EC 2.3.2.27) (Midin) (Putative transcription factor XPRF) (RING finger protein 59) (RING finger protein Midline-1) (RING-type E3 ubiquitin transferase Midline-1) (Tripartite motif-containing protein 18) | Has E3 ubiquitin ligase activity towards IGBP1, promoting its monoubiquitination, which results in deprotection of the catalytic subunit of protein phosphatase PP2A, and its subsequent degradation by polyubiquitination. {ECO:0000269|PubMed:10400985, ECO:0000269|PubMed:11685209, ECO:0000269|PubMed:22613722}. |
O15409 | FOXP2 | S331 | ochoa | Forkhead box protein P2 (CAG repeat protein 44) (Trinucleotide repeat-containing gene 10 protein) | Transcriptional repressor that may play a role in the specification and differentiation of lung epithelium. May also play a role in developing neural, gastrointestinal and cardiovascular tissues. Can act with CTBP1 to synergistically repress transcription but CTPBP1 is not essential. Plays a role in synapse formation by regulating SRPX2 levels. Involved in neural mechanisms mediating the development of speech and language. |
O15527 | OGG1 | S232 | psp | N-glycosylase/DNA lyase [Includes: 8-oxoguanine DNA glycosylase (EC 3.2.2.-); DNA-(apurinic or apyrimidinic site) lyase (AP lyase) (EC 4.2.99.18)] | DNA repair enzyme that incises DNA at 8-oxoG residues. Excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (FAPY) from damaged DNA. Has a beta-lyase activity that nicks DNA 3' to the lesion. |
O15553 | MEFV | S209 | psp | Pyrin (Marenostrin) | Involved in the regulation of innate immunity and the inflammatory response in response to IFNG/IFN-gamma (PubMed:10807793, PubMed:11468188, PubMed:16037825, PubMed:16785446, PubMed:17431422, PubMed:17964261, PubMed:18577712, PubMed:19109554, PubMed:19584923, PubMed:26347139, PubMed:27030597, PubMed:28835462). Organizes autophagic machinery by serving as a platform for the assembly of ULK1, Beclin 1/BECN1, ATG16L1, and ATG8 family members and recognizes specific autophagy targets, thus coordinating target recognition with assembly of the autophagic apparatus and initiation of autophagy (PubMed:16785446, PubMed:17431422, PubMed:26347139). Acts as an autophagy receptor for the degradation of several inflammasome components, including CASP1, NLRP1 and NLRP3, hence preventing excessive IL1B- and IL18-mediated inflammation (PubMed:16785446, PubMed:17431422, PubMed:26347139). However, it can also have a positive effect in the inflammatory pathway, acting as an innate immune sensor that triggers PYCARD/ASC specks formation, caspase-1 activation, and IL1B and IL18 production (PubMed:16037825, PubMed:27030597, PubMed:28835462). Together with AIM2, also acts as a mediator of pyroptosis, necroptosis and apoptosis (PANoptosis), an integral part of host defense against pathogens, in response to bacterial infection (By similarity). It is required for PSTPIP1-induced PYCARD/ASC oligomerization and inflammasome formation (PubMed:10807793, PubMed:11468188, PubMed:17964261, PubMed:18577712, PubMed:19109554, PubMed:19584923). Recruits PSTPIP1 to inflammasomes, and is required for PSTPIP1 oligomerization (PubMed:10807793, PubMed:11468188, PubMed:17964261, PubMed:18577712, PubMed:19109554, PubMed:19584923). {ECO:0000250|UniProtKB:Q9JJ26, ECO:0000269|PubMed:10807793, ECO:0000269|PubMed:11468188, ECO:0000269|PubMed:16037825, ECO:0000269|PubMed:16785446, ECO:0000269|PubMed:17431422, ECO:0000269|PubMed:17964261, ECO:0000269|PubMed:18577712, ECO:0000269|PubMed:19109554, ECO:0000269|PubMed:19584923, ECO:0000269|PubMed:26347139, ECO:0000269|PubMed:27030597, ECO:0000269|PubMed:28835462}. |
O43148 | RNMT | S29 | ochoa | mRNA cap guanine-N(7) methyltransferase (EC 2.1.1.56) (RG7MT1) (mRNA (guanine-N(7))-methyltransferase) (mRNA cap methyltransferase) (hCMT1) (hMet) (hcm1p) | Catalytic subunit of the mRNA-capping methyltransferase RNMT:RAMAC complex that methylates the N7 position of the added guanosine to the 5'-cap structure of mRNAs (PubMed:10347220, PubMed:11114884, PubMed:22099306, PubMed:27422871, PubMed:9705270, PubMed:9790902). Binds RNA containing 5'-terminal GpppC (PubMed:11114884). {ECO:0000269|PubMed:10347220, ECO:0000269|PubMed:11114884, ECO:0000269|PubMed:22099306, ECO:0000269|PubMed:27422871, ECO:0000269|PubMed:9705270, ECO:0000269|PubMed:9790902}. |
O43149 | ZZEF1 | S1971 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43248 | HOXC11 | S211 | ochoa | Homeobox protein Hox-C11 (Homeobox protein Hox-3H) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds to a promoter element of the lactase-phlorizin hydrolase gene. |
O43314 | PPIP5K2 | S983 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O60293 | ZFC3H1 | S804 | ochoa | Zinc finger C3H1 domain-containing protein (Coiled-coil domain-containing protein 131) (Proline/serine-rich coiled-coil protein 2) | Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters. {ECO:0000269|PubMed:27871484}. |
O60503 | ADCY9 | S56 | ochoa | Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) | Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}. |
O60503 | ADCY9 | S57 | ochoa | Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) | Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}. |
O60814 | H2BC12 | S92 | ochoa | Histone H2B type 1-K (H2B K) (HIRA-interacting protein 1) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
O60825 | PFKFB2 | S472 | ochoa | 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (6PF-2-K/Fru-2,6-P2ase 2) (PFK/FBPase 2) (6PF-2-K/Fru-2,6-P2ase heart-type isozyme) [Includes: 6-phosphofructo-2-kinase (EC 2.7.1.105); Fructose-2,6-bisphosphatase (EC 3.1.3.46)] | Synthesis and degradation of fructose 2,6-bisphosphate. {ECO:0000269|PubMed:11069105}. |
O60927 | PPP1R11 | S58 | ochoa | E3 ubiquitin-protein ligase PPP1R11 (EC 2.3.2.27) (Hemochromatosis candidate gene V protein) (HCG V) (Protein phosphatase 1 regulatory subunit 11) (Protein phosphatase inhibitor 3) | Atypical E3 ubiquitin-protein ligase which ubiquitinates TLR2 at 'Lys-754' leading to its degradation by the proteasome. Plays a role in regulating inflammatory cytokine release and gram-positive bacterial clearance by functioning, in part, through the ubiquitination and degradation of TLR2 (PubMed:27805901). Inhibitor of protein phosphatase 1 (PubMed:9843442). {ECO:0000269|PubMed:27805901, ECO:0000269|PubMed:9843442}. |
O75061 | DNAJC6 | S625 | ochoa | Auxilin (EC 3.1.3.-) (DnaJ homolog subfamily C member 6) | May act as a protein phosphatase and/or a lipid phosphatase. Co-chaperone that recruits HSPA8/HSC70 to clathrin-coated vesicles (CCVs) and promotes the ATP-dependent dissociation of clathrin from CCVs and participates in clathrin-mediated endocytosis of synaptic vesicles and their recycling and also in intracellular trafficking (PubMed:18489706). Firstly, binds tightly to the clathrin cages, at a ratio of one DNAJC6 per clathrin triskelion. The HSPA8:ATP complex then binds to the clathrin-auxilin cage, initially at a ratio of one HSPA8 per triskelion leading to ATP hydrolysis stimulation and causing a conformational change in the HSPA8. This cycle is repeated three times to drive to a complex containing the clathrin-auxilin cage associated to three HSPA8:ADP complex. The ATP hydrolysis of the third HSPA8:ATP complex leads to a concerted dismantling of the cage into component triskelia. Then, dissociates from the released triskelia and be recycled to initiate another cycle of HSPA8's recruitment. Also acts during the early steps of clathrin-coated vesicle (CCV) formation through its interaction with the GTP bound form of DNM1 (By similarity). {ECO:0000250|UniProtKB:Q27974, ECO:0000269|PubMed:18489706}. |
O75116 | ROCK2 | S1134 | ochoa | Rho-associated protein kinase 2 (EC 2.7.11.1) (Rho kinase 2) (Rho-associated, coiled-coil-containing protein kinase 2) (Rho-associated, coiled-coil-containing protein kinase II) (ROCK-II) (p164 ROCK-2) | Protein kinase which is a key regulator of actin cytoskeleton and cell polarity. Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of ADD1, BRCA2, CNN1, EZR, DPYSL2, EP300, MSN, MYL9/MLC2, NPM1, RDX, PPP1R12A and VIM. Phosphorylates SORL1 and IRF4. Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation. Positively regulates the activation of p42/MAPK1-p44/MAPK3 and of p90RSK/RPS6KA1 during myogenic differentiation. Plays an important role in the timely initiation of centrosome duplication. Inhibits keratinocyte terminal differentiation. May regulate closure of the eyelids and ventral body wall through organization of actomyosin bundles. Plays a critical role in the regulation of spine and synaptic properties in the hippocampus. Plays an important role in generating the circadian rhythm of the aortic myofilament Ca(2+) sensitivity and vascular contractility by modulating the myosin light chain phosphorylation. {ECO:0000269|PubMed:10579722, ECO:0000269|PubMed:15699075, ECO:0000269|PubMed:16574662, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21147781}. |
O75157 | TSC22D2 | S206 | ochoa | TSC22 domain family protein 2 (TSC22-related-inducible leucine zipper protein 4) | Reduces the level of nuclear PKM isoform M2 which results in repression of cyclin CCND1 transcription and reduced cell growth. {ECO:0000269|PubMed:27573352}. |
O75175 | CNOT3 | S542 | ochoa | CCR4-NOT transcription complex subunit 3 (CCR4-associated factor 3) (Leukocyte receptor cluster member 2) | Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. May be involved in metabolic regulation; may be involved in recruitment of the CCR4-NOT complex to deadenylation target mRNAs involved in energy metabolism. Involved in mitotic progression and regulation of the spindle assembly checkpoint by regulating the stability of MAD1L1 mRNA. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may involve histone deacetylases. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:22342980, ECO:0000269|PubMed:22367759}. |
O75410 | TACC1 | S316 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75832 | PSMD10 | S115 | ochoa | 26S proteasome non-ATPase regulatory subunit 10 (26S proteasome regulatory subunit p28) (Gankyrin) (p28(GANK)) | Acts as a chaperone during the assembly of the 26S proteasome, specifically of the PA700/19S regulatory complex (RC). In the initial step of the base subcomplex assembly is part of an intermediate PSMD10:PSMC4:PSMC5:PAAF1 module which probably assembles with a PSMD5:PSMC2:PSMC1:PSMD2 module. Independently of the proteasome, regulates EGF-induced AKT activation through inhibition of the RHOA/ROCK/PTEN pathway, leading to prolonged AKT activation. Plays an important role in RAS-induced tumorigenesis.; FUNCTION: Acts as an proto-oncoprotein by being involved in negative regulation of tumor suppressors RB1 and p53/TP53. Overexpression is leading to phosphorylation of RB1 and proteasomal degradation of RB1. Regulates CDK4-mediated phosphorylation of RB1 by competing with CDKN2A for binding with CDK4. Facilitates binding of MDM2 to p53/TP53 and the mono- and polyubiquitination of p53/TP53 by MDM2 suggesting a function in targeting the TP53:MDM2 complex to the 26S proteasome. Involved in p53-independent apoptosis. Involved in regulation of NF-kappa-B by retaining it in the cytoplasm. Binds to the NF-kappa-B component RELA and accelerates its XPO1/CRM1-mediated nuclear export. |
O94804 | STK10 | S455 | ochoa | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
O95613 | PCNT | S2486 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
P02671 | FGA | S378 | ochoa | Fibrinogen alpha chain [Cleaved into: Fibrinopeptide A; Fibrinogen alpha chain] | Cleaved by the protease thrombin to yield monomers which, together with fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of the primary components of blood clots. In addition, functions during the early stages of wound repair to stabilize the lesion and guide cell migration during re-epithelialization. Was originally thought to be essential for platelet aggregation, based on in vitro studies using anticoagulated blood. However, subsequent studies have shown that it is not absolutely required for thrombus formation in vivo. Enhances expression of SELP in activated platelets via an ITGB3-dependent pathway. Maternal fibrinogen is essential for successful pregnancy. Fibrin deposition is also associated with infection, where it protects against IFNG-mediated hemorrhage. May also facilitate the immune response via both innate and T-cell mediated pathways. {ECO:0000250|UniProtKB:E9PV24}. |
P02671 | FGA | S561 | ochoa | Fibrinogen alpha chain [Cleaved into: Fibrinopeptide A; Fibrinogen alpha chain] | Cleaved by the protease thrombin to yield monomers which, together with fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of the primary components of blood clots. In addition, functions during the early stages of wound repair to stabilize the lesion and guide cell migration during re-epithelialization. Was originally thought to be essential for platelet aggregation, based on in vitro studies using anticoagulated blood. However, subsequent studies have shown that it is not absolutely required for thrombus formation in vivo. Enhances expression of SELP in activated platelets via an ITGB3-dependent pathway. Maternal fibrinogen is essential for successful pregnancy. Fibrin deposition is also associated with infection, where it protects against IFNG-mediated hemorrhage. May also facilitate the immune response via both innate and T-cell mediated pathways. {ECO:0000250|UniProtKB:E9PV24}. |
P02686 | MBP | S285 | ochoa | Myelin basic protein (MBP) (Myelin A1 protein) (Myelin membrane encephalitogenic protein) | The classic group of MBP isoforms (isoform 4-isoform 14) are with PLP the most abundant protein components of the myelin membrane in the CNS. They have a role in both its formation and stabilization. The smaller isoforms might have an important role in remyelination of denuded axons in multiple sclerosis. The non-classic group of MBP isoforms (isoform 1-isoform 3/Golli-MBPs) may preferentially have a role in the early developing brain long before myelination, maybe as components of transcriptional complexes, and may also be involved in signaling pathways in T-cells and neural cells. Differential splicing events combined with optional post-translational modifications give a wide spectrum of isomers, with each of them potentially having a specialized function. Induces T-cell proliferation. {ECO:0000269|PubMed:8544862}. |
P04083 | ANXA1 | S46 | ochoa | Annexin A1 (Annexin I) (Annexin-1) (Calpactin II) (Calpactin-2) (Chromobindin-9) (Lipocortin I) (Phospholipase A2 inhibitory protein) (p35) [Cleaved into: Annexin Ac2-26] | Plays important roles in the innate immune response as effector of glucocorticoid-mediated responses and regulator of the inflammatory process. Has anti-inflammatory activity (PubMed:8425544). Plays a role in glucocorticoid-mediated down-regulation of the early phase of the inflammatory response (By similarity). Contributes to the adaptive immune response by enhancing signaling cascades that are triggered by T-cell activation, regulates differentiation and proliferation of activated T-cells (PubMed:17008549). Promotes the differentiation of T-cells into Th1 cells and negatively regulates differentiation into Th2 cells (PubMed:17008549). Has no effect on unstimulated T cells (PubMed:17008549). Negatively regulates hormone exocytosis via activation of the formyl peptide receptors and reorganization of the actin cytoskeleton (PubMed:19625660). Has high affinity for Ca(2+) and can bind up to eight Ca(2+) ions (By similarity). Displays Ca(2+)-dependent binding to phospholipid membranes (PubMed:2532504, PubMed:8557678). Plays a role in the formation of phagocytic cups and phagosomes. Plays a role in phagocytosis by mediating the Ca(2+)-dependent interaction between phagosomes and the actin cytoskeleton (By similarity). {ECO:0000250|UniProtKB:P10107, ECO:0000250|UniProtKB:P19619, ECO:0000269|PubMed:17008549, ECO:0000269|PubMed:19625660, ECO:0000269|PubMed:2532504, ECO:0000269|PubMed:2936963, ECO:0000269|PubMed:8425544, ECO:0000269|PubMed:8557678}.; FUNCTION: [Annexin Ac2-26]: Functions at least in part by activating the formyl peptide receptors and downstream signaling cascades (PubMed:15187149, PubMed:22879591, PubMed:25664854). Promotes chemotaxis of granulocytes and monocytes via activation of the formyl peptide receptors (PubMed:15187149). Promotes rearrangement of the actin cytoskeleton, cell polarization and cell migration (PubMed:15187149). Promotes resolution of inflammation and wound healing (PubMed:25664854). Acts via neutrophil N-formyl peptide receptors to enhance the release of CXCL2 (PubMed:22879591). {ECO:0000269|PubMed:15187149, ECO:0000269|PubMed:22879591, ECO:0000269|PubMed:25664854}. |
P04279 | SEMG1 | S291 | ochoa | Semenogelin-1 (Cancer/testis antigen 103) (Semenogelin I) (SGI) [Cleaved into: Alpha-inhibin-92; Alpha-inhibin-31; Seminal basic protein] | Predominant protein in semen. It participates in the formation of a gel matrix entrapping the accessory gland secretions and ejaculated spermatozoa. Fragments of semenogelin and/or fragments of the related proteins may contribute to the activation of progressive sperm movements as the gel-forming proteins are fragmented by KLK3/PSA. {ECO:0000269|PubMed:19889947}.; FUNCTION: Alpha-inhibin-92 and alpha-inhibin-31, derived from the proteolytic degradation of semenogelin, inhibit the secretion of pituitary follicle-stimulating hormone. {ECO:0000269|PubMed:19889947}. |
P08183 | ABCB1 | S661 | ochoa|psp | ATP-dependent translocase ABCB1 (ATP-binding cassette sub-family B member 1) (Multidrug resistance protein 1) (EC 7.6.2.2) (P-glycoprotein 1) (Phospholipid transporter ABCB1) (EC 7.6.2.1) (CD antigen CD243) | Translocates drugs and phospholipids across the membrane (PubMed:2897240, PubMed:35970996, PubMed:8898203, PubMed:9038218, PubMed:35507548). Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D-glucosylceramides and sphingomyelins (PubMed:8898203). Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:2897240, PubMed:35970996, PubMed:9038218). {ECO:0000269|PubMed:2897240, ECO:0000269|PubMed:35507548, ECO:0000269|PubMed:35970996, ECO:0000269|PubMed:8898203, ECO:0000269|PubMed:9038218}. |
P11474 | ESRRA | S27 | ochoa | Steroid hormone receptor ERR1 (Estrogen receptor-like 1) (Estrogen-related receptor alpha) (ERR-alpha) (Nuclear receptor subfamily 3 group B member 1) | Binds to an ERR-alpha response element (ERRE) containing a single consensus half-site, 5'-TNAAGGTCA-3'. Can bind to the medium-chain acyl coenzyme A dehydrogenase (MCAD) response element NRRE-1 and may act as an important regulator of MCAD promoter. Binds to the C1 region of the lactoferrin gene promoter. Requires dimerization and the coactivator, PGC-1A, for full activity. The ERRalpha/PGC1alpha complex is a regulator of energy metabolism. Induces the expression of PERM1 in the skeletal muscle. {ECO:0000269|PubMed:12522104, ECO:0000269|PubMed:16150865, ECO:0000269|PubMed:17676930, ECO:0000269|PubMed:18063693, ECO:0000269|PubMed:23836911, ECO:0000269|PubMed:9271417}. |
P11940 | PABPC1 | S342 | ochoa | Polyadenylate-binding protein 1 (PABP-1) (Poly(A)-binding protein 1) | Binds the poly(A) tail of mRNA, including that of its own transcript, and regulates processes of mRNA metabolism such as pre-mRNA splicing and mRNA stability (PubMed:11051545, PubMed:17212783, PubMed:25480299). Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2 (PubMed:11051545, PubMed:20573744). Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Involved in translationally coupled mRNA turnover (PubMed:11051545). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545). Involved in regulation of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons; for the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed (PubMed:18447585). By binding to long poly(A) tails, may protect them from uridylation by ZCCHC6/ZCCHC11 and hence contribute to mRNA stability (PubMed:25480299). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:17212783, ECO:0000269|PubMed:18447585, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:32245947}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
P12109 | COL6A1 | S388 | ochoa | Collagen alpha-1(VI) chain | Collagen VI acts as a cell-binding protein. |
P14416 | DRD2 | S229 | psp | D(2) dopamine receptor (Dopamine D2 receptor) | Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase (PubMed:21645528). Positively regulates postnatal regression of retinal hyaloid vessels via suppression of VEGFR2/KDR activity, downstream of OPN5 (By similarity). {ECO:0000250|UniProtKB:P61168, ECO:0000269|PubMed:21645528}. |
P15056 | BRAF | S447 | ochoa | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P15924 | DSP | S166 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P16471 | PRLR | S429 | ochoa | Prolactin receptor (PRL-R) | This is a receptor for the anterior pituitary hormone prolactin (PRL). Acts as a prosurvival factor for spermatozoa by inhibiting sperm capacitation through suppression of SRC kinase activation and stimulation of AKT. Isoform 4 is unable to transduce prolactin signaling. Isoform 6 is unable to transduce prolactin signaling. {ECO:0000269|PubMed:12580759, ECO:0000269|PubMed:20032052}. |
P17844 | DDX5 | S520 | ochoa | Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) | Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}. |
P18206 | VCL | S346 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18887 | XRCC1 | S409 | ochoa|psp | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P21796 | VDAC1 | S241 | ochoa | Non-selective voltage-gated ion channel VDAC1 (Outer mitochondrial membrane protein porin 1) (Plasmalemmal porin) (Porin 31HL) (Porin 31HM) (Voltage-dependent anion-selective channel protein 1) (VDAC-1) (hVDAC1) | Non-selective voltage-gated ion channel that mediates the transport of anions and cations through the mitochondrion outer membrane and plasma membrane (PubMed:10661876, PubMed:11845315, PubMed:18755977, PubMed:30061676, PubMed:8420959). The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; in the plasma membrane it is involved in cell volume regulation and apoptosis (PubMed:10661876, PubMed:11845315, PubMed:18755977, PubMed:8420959). It adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV (PubMed:10661876, PubMed:18755977, PubMed:8420959). The open state has a weak anion selectivity whereas the closed state is cation-selective (PubMed:18755977, PubMed:8420959). Binds various signaling molecules, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterols cholesterol and oxysterol (PubMed:18755977, PubMed:31015432). In depolarized mitochondria, acts downstream of PRKN and PINK1 to promote mitophagy or prevent apoptosis; polyubiquitination by PRKN promotes mitophagy, while monoubiquitination by PRKN decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed:32047033). May participate in the formation of the permeability transition pore complex (PTPC) responsible for the release of mitochondrial products that triggers apoptosis (PubMed:15033708, PubMed:25296756). May mediate ATP export from cells (PubMed:30061676). Part of a complex composed of HSPA9, ITPR1 and VDAC1 that regulates mitochondrial calcium-dependent apoptosis by facilitating calcium transport from the ER lumen to the mitochondria intermembrane space thus providing calcium for the downstream calcium channel MCU that directly releases it into mitochondria matrix (By similarity). Mediates cytochrome c efflux (PubMed:20230784). {ECO:0000250|UniProtKB:Q60932, ECO:0000269|PubMed:10661876, ECO:0000269|PubMed:11845315, ECO:0000269|PubMed:15033708, ECO:0000269|PubMed:18755977, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:25296756, ECO:0000269|PubMed:30061676, ECO:0000269|PubMed:31015432, ECO:0000269|PubMed:32047033, ECO:0000269|PubMed:8420959}.; FUNCTION: Catalyzes the scrambling of phospholipids across the outer mitochondrial membrane; the mechanism is unrelated to channel activity and is capable of translocating both anionic and zwitterionic phospholipids. {ECO:0000269|PubMed:38065946}. |
P23327 | HRC | S171 | ochoa | Sarcoplasmic reticulum histidine-rich calcium-binding protein | May play a role in the regulation of calcium sequestration or release in the SR of skeletal and cardiac muscle. |
P25054 | APC | S1344 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P28715 | ERCC5 | S424 | ochoa | DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) | Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}. |
P29692 | EEF1D | S65 | ochoa | Elongation factor 1-delta (EF-1-delta) (Antigen NY-CO-4) | [Isoform 1]: EF-1-beta and EF-1-delta stimulate the exchange of GDP bound to EF-1-alpha to GTP, regenerating EF-1-alpha for another round of transfer of aminoacyl-tRNAs to the ribosome.; FUNCTION: [Isoform 2]: Regulates induction of heat-shock-responsive genes through association with heat shock transcription factors and direct DNA-binding at heat shock promoter elements (HSE). |
P30622 | CLIP1 | S48 | ochoa | CAP-Gly domain-containing linker protein 1 (Cytoplasmic linker protein 1) (Cytoplasmic linker protein 170 alpha-2) (CLIP-170) (Reed-Sternberg intermediate filament-associated protein) (Restin) | Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes microtubule growth and microtubule bundling. Links cytoplasmic vesicles to microtubules and thereby plays an important role in intracellular vesicle trafficking. Plays a role macropinocytosis and endosome trafficking. {ECO:0000269|PubMed:12433698, ECO:0000269|PubMed:17563362, ECO:0000269|PubMed:17889670}. |
P32926 | DSG3 | S971 | ochoa | Desmoglein-3 (130 kDa pemphigus vulgaris antigen) (PVA) (Cadherin family member 6) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:31835537). Required for adherens and desmosome junction assembly in response to mechanical force in keratinocytes (PubMed:31835537). Required for desmosome-mediated cell-cell adhesion of cells surrounding the telogen hair club and the basal layer of the outer root sheath epithelium, consequently is essential for the anchoring of telogen hairs in the hair follicle (PubMed:9701552). Required for the maintenance of the epithelial barrier via promoting desmosome-mediated intercellular attachment of suprabasal epithelium to basal cells (By similarity). May play a role in the protein stability of the desmosome plaque components DSP, JUP, PKP1, PKP2 and PKP3 (PubMed:22294297). Required for YAP1 localization at the plasma membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, PKP1 and YWHAG (PubMed:31835537). May also be involved in the positive regulation of YAP1 target gene transcription and as a result cell proliferation (PubMed:31835537). Positively regulates cellular contractility and cell junction formation via organization of cortical F-actin bundles and anchoring of actin to tight junctions, in conjunction with RAC1 (PubMed:22796473). The cytoplasmic pool of DSG3 is required for the localization of CDH1 and CTNNB1 at developing adherens junctions, potentially via modulation of SRC activity (PubMed:22294297). Inhibits keratinocyte migration via suppression of p38MAPK signaling, may therefore play a role in moderating wound healing (PubMed:26763450). {ECO:0000250|UniProtKB:O35902, ECO:0000269|PubMed:22294297, ECO:0000269|PubMed:22796473, ECO:0000269|PubMed:26763450, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9701552}. |
P35414 | APLNR | S348 | ochoa|psp | Apelin receptor (Angiotensin receptor-like 1) (G-protein coupled receptor APJ) (G-protein coupled receptor HG11) | G protein-coupled receptor for peptide hormones apelin (APLN) and apelin receptor early endogenous ligand (APELA/ELA), that plays a role in the regulation of normal cardiovascular function and fluid homeostasis (PubMed:11090199, PubMed:22810587, PubMed:25639753, PubMed:28137936, PubMed:35817871, PubMed:38428423). When acting as apelin receptor, activates both G(i) protein pathway that inhibits adenylate cyclase activity, and the beta-arrestin pathway that promotes internalization of the receptor (PubMed:11090199, PubMed:25639753, PubMed:28137936, PubMed:35817871, PubMed:38428423). APLNR/APJ also functions as mechanoreceptor that is activated by pathological stimuli in a G-protein-independent fashion to induce beta-arrestin signaling, hence eliciting cardiac hypertrophy (PubMed:22810587, PubMed:38428423). However, the presence of apelin ligand blunts cardiac hypertrophic induction from APLNR/APJ on response to pathological stimuli (PubMed:22810587, PubMed:38428423). Plays a key role in early development such as gastrulation, blood vessels formation and heart morphogenesis by acting as a APELA receptor (By similarity). May promote angioblast migration toward the embryonic midline, i.e. the position of the future vessel formation, during vasculogenesis (By similarity). Promotes sinus venosus (SV)-derived endothelial cells migration into the developing heart to promote coronary blood vessel development (By similarity). Also plays a role in various processes in adults such as regulation of blood vessel formation, blood pressure, heart contractility and heart failure (PubMed:25639753, PubMed:28137936). {ECO:0000250|UniProtKB:Q7SZP9, ECO:0000250|UniProtKB:Q9WV08, ECO:0000269|PubMed:11090199, ECO:0000269|PubMed:22810587, ECO:0000269|PubMed:25639753, ECO:0000269|PubMed:28137936, ECO:0000269|PubMed:35817871, ECO:0000269|PubMed:38428423}.; FUNCTION: (Microbial infection) Alternative coreceptor with CD4 for HIV-1 infection; may be involved in the development of AIDS dementia (PubMed:11090199). {ECO:0000269|PubMed:11090199}. |
P35568 | IRS1 | S1101 | ochoa|psp | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35659 | DEK | S72 | ochoa | Protein DEK | Involved in chromatin organization. {ECO:0000269|PubMed:17524367}. |
P36578 | RPL4 | S55 | ochoa | Large ribosomal subunit protein uL4 (60S ribosomal protein L1) (60S ribosomal protein L4) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P38159 | RBMX | S308 | ochoa | RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] | RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}. |
P39880 | CUX1 | S1333 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P41743 | PRKCI | S248 | ochoa | Protein kinase C iota type (EC 2.7.11.13) (Atypical protein kinase C-lambda/iota) (PRKC-lambda/iota) (aPKC-lambda/iota) (nPKC-iota) | Calcium- and diacylglycerol-independent serine/ threonine-protein kinase that plays a general protective role against apoptotic stimuli, is involved in NF-kappa-B activation, cell survival, differentiation and polarity, and contributes to the regulation of microtubule dynamics in the early secretory pathway. Is necessary for BCR-ABL oncogene-mediated resistance to apoptotic drug in leukemia cells, protecting leukemia cells against drug-induced apoptosis. In cultured neurons, prevents amyloid beta protein-induced apoptosis by interrupting cell death process at a very early step. In glioblastoma cells, may function downstream of phosphatidylinositol 3-kinase (PI(3)K) and PDPK1 in the promotion of cell survival by phosphorylating and inhibiting the pro-apoptotic factor BAD. Can form a protein complex in non-small cell lung cancer (NSCLC) cells with PARD6A and ECT2 and regulate ECT2 oncogenic activity by phosphorylation, which in turn promotes transformed growth and invasion. In response to nerve growth factor (NGF), acts downstream of SRC to phosphorylate and activate IRAK1, allowing the subsequent activation of NF-kappa-B and neuronal cell survival. Functions in the organization of the apical domain in epithelial cells by phosphorylating EZR. This step is crucial for activation and normal distribution of EZR at the early stages of intestinal epithelial cell differentiation. Forms a protein complex with LLGL1 and PARD6B independently of PARD3 to regulate epithelial cell polarity. Plays a role in microtubule dynamics in the early secretory pathway through interaction with RAB2A and GAPDH and recruitment to vesicular tubular clusters (VTCs). In human coronary artery endothelial cells (HCAEC), is activated by saturated fatty acids and mediates lipid-induced apoptosis. Involved in early synaptic long term potentiation phase in CA1 hippocampal cells and short term memory formation (By similarity). {ECO:0000250|UniProtKB:F1M7Y5, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10467349, ECO:0000269|PubMed:10906326, ECO:0000269|PubMed:11042363, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:12871960, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15994303, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19327373, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21419810, ECO:0000269|PubMed:8226978, ECO:0000269|PubMed:9346882}. |
P42694 | HELZ | S1741 | ochoa | Probable helicase with zinc finger domain (EC 3.6.4.-) (Down-regulated in human cancers protein) | May act as a helicase that plays a role in RNA metabolism in multiple tissues and organs within the developing embryo. |
P43243 | MATR3 | S80 | ochoa | Matrin-3 | May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}. |
P45880 | VDAC2 | S252 | ochoa | Non-selective voltage-gated ion channel VDAC2 (VDAC-2) (hVDAC2) (Outer mitochondrial membrane protein porin 2) | Non-selective voltage-gated ion channel that mediates the transport of anions and cations through the mitochondrion outer membrane and plasma membrane (PubMed:8420959). The channel adopts an open conformation at zero mV and a closed conformation at both positive and negative potentials (PubMed:8420959). There are two populations of channels; the main that functions in a lower open-state conductance with lower ion selectivity, that switch, in a voltage-dependent manner, from the open to a low-conducting 'closed' state and the other that has a normal ion selectivity in the typical high conductance, 'open' state (PubMed:8420959). Binds various lipids, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterols cholesterol and oxysterol (PubMed:31015432). Binding of ceramide promotes the mitochondrial outer membrane permeabilization (MOMP) apoptotic pathway (PubMed:31015432). {ECO:0000269|PubMed:31015432, ECO:0000269|PubMed:8420959}.; FUNCTION: Catalyzes the scrambling of phospholipids across the outer mitochondrial membrane; the mechanism is unrelated to channel activity and is capable of translocating both anionic and zwitterionic phospholipids. {ECO:0000269|PubMed:38065946}. |
P46063 | RECQL | S64 | ochoa | ATP-dependent DNA helicase Q1 (EC 5.6.2.4) (DNA 3'-5' helicase Q1) (DNA helicase, RecQ-like type 1) (RecQ1) (DNA-dependent ATPase Q1) (RecQ protein-like 1) | DNA helicase that plays a role in DNA damage repair and genome stability (PubMed:15886194, PubMed:35025765, PubMed:7527136, PubMed:7961977, PubMed:8056767). Exhibits a Mg(2+)- and ATP-dependent DNA-helicase activity that unwinds single- and double-stranded DNA in a 3'-5' direction (PubMed:19151156, PubMed:35025765, PubMed:7527136, PubMed:8056767). Full-length protein unwinds forked DNA substrates, resolves Holliday junctions, and has DNA strand annealing activity (PubMed:19151156, PubMed:25831490). Plays a role in restoring regressed replication forks (PubMed:35025765). Required to restart stalled replication forks induced by abortive topoisomerase 1 and 2 lesions (PubMed:35025765). Does not unwind G-quadruplex DNA (PubMed:18426915). May play a role in the repair of DNA that is damaged by ultraviolet light or other mutagens (PubMed:15886194, PubMed:7961977). {ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:19151156, ECO:0000269|PubMed:25831490, ECO:0000269|PubMed:35025765, ECO:0000269|PubMed:7527136, ECO:0000269|PubMed:7961977, ECO:0000269|PubMed:8056767}. |
P46087 | NOP2 | S675 | ochoa | 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) | S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}. |
P46821 | MAP1B | S1818 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48634 | PRRC2A | S1387 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48681 | NES | S1442 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49023 | PXN | S303 | ochoa | Paxillin | Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}. |
P49116 | NR2C2 | S327 | ochoa | Nuclear receptor subfamily 2 group C member 2 (Orphan nuclear receptor TAK1) (Orphan nuclear receptor TR4) (Testicular receptor 4) | Orphan nuclear receptor that can act as a repressor or activator of transcription. An important repressor of nuclear receptor signaling pathways such as retinoic acid receptor, retinoid X, vitamin D3 receptor, thyroid hormone receptor and estrogen receptor pathways. May regulate gene expression during the late phase of spermatogenesis. Together with NR2C1, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription including that of GATA1. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Plays a fundamental role in early embryonic development and embryonic stem cells. Required for normal spermatogenesis and cerebellum development. Appears to be important for neurodevelopmentally regulated behavior (By similarity). Activates transcriptional activity of LHCG. Antagonist of PPARA-mediated transactivation. {ECO:0000250, ECO:0000269|PubMed:10347174, ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:17974920, ECO:0000269|PubMed:7779113, ECO:0000269|PubMed:9556573}. |
P49116 | NR2C2 | S328 | ochoa | Nuclear receptor subfamily 2 group C member 2 (Orphan nuclear receptor TAK1) (Orphan nuclear receptor TR4) (Testicular receptor 4) | Orphan nuclear receptor that can act as a repressor or activator of transcription. An important repressor of nuclear receptor signaling pathways such as retinoic acid receptor, retinoid X, vitamin D3 receptor, thyroid hormone receptor and estrogen receptor pathways. May regulate gene expression during the late phase of spermatogenesis. Together with NR2C1, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription including that of GATA1. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Plays a fundamental role in early embryonic development and embryonic stem cells. Required for normal spermatogenesis and cerebellum development. Appears to be important for neurodevelopmentally regulated behavior (By similarity). Activates transcriptional activity of LHCG. Antagonist of PPARA-mediated transactivation. {ECO:0000250, ECO:0000269|PubMed:10347174, ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:17974920, ECO:0000269|PubMed:7779113, ECO:0000269|PubMed:9556573}. |
P50548 | ERF | S169 | ochoa | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P52746 | ZNF142 | S1011 | ochoa | Zinc finger protein 142 | May be involved in transcriptional regulation. {ECO:0000305}. |
P53814 | SMTN | S503 | ochoa | Smoothelin | Structural protein of the cytoskeleton. |
P55795 | HNRNPH2 | S282 | ochoa | Heterogeneous nuclear ribonucleoprotein H2 (hnRNP H2) (FTP-3) (Heterogeneous nuclear ribonucleoprotein H') (hnRNP H') [Cleaved into: Heterogeneous nuclear ribonucleoprotein H2, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Binds poly(RG). |
P57053 | H2BC12L | S92 | ochoa | Histone H2B type F-S (H2B-clustered histone 12 like) (H2B.S histone 1) (Histone H2B.s) (H2B/s) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
P58876 | H2BC5 | S92 | ochoa | Histone H2B type 1-D (H2B-clustered histone 5) (HIRA-interacting protein 2) (Histone H2B.1 B) (Histone H2B.b) (H2B/b) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
P61129 | ZC3H6 | S188 | ochoa | Zinc finger CCCH domain-containing protein 6 | None |
P61764 | STXBP1 | S507 | ochoa | Syntaxin-binding protein 1 (MUNC18-1) (N-Sec1) (Protein unc-18 homolog 1) (Unc18-1) (Protein unc-18 homolog A) (Unc-18A) (p67) | Participates in the regulation of synaptic vesicle docking and fusion through interaction with GTP-binding proteins (By similarity). Essential for neurotransmission and binds syntaxin, a component of the synaptic vesicle fusion machinery probably in a 1:1 ratio. Can interact with syntaxins 1, 2, and 3 but not syntaxin 4. Involved in the release of neurotransmitters from neurons through interacting with SNARE complex component STX1A and mediating the assembly of the SNARE complex at synaptic membranes (By similarity). May play a role in determining the specificity of intracellular fusion reactions. {ECO:0000250|UniProtKB:O08599, ECO:0000250|UniProtKB:P61765}. |
P62807 | H2BC4 | S92 | ochoa | Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
P62995 | TRA2B | S216 | ochoa | Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) | Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:9546399}. |
P78524 | DENND2B | S465 | ochoa | DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) | [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}. |
Q01484 | ANK2 | S3765 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01851 | POU4F1 | S122 | psp | POU domain, class 4, transcription factor 1 (Brain-specific homeobox/POU domain protein 3A) (Brain-3A) (Brn-3A) (Homeobox/POU domain protein RDC-1) (Oct-T1) | Multifunctional transcription factor with different regions mediating its different effects. Acts by binding (via its C-terminal domain) to sequences related to the consensus octamer motif 5'-ATGCAAAT-3' in the regulatory regions of its target genes. Regulates the expression of specific genes involved in differentiation and survival within a subset of neuronal lineages. It has been shown that activation of some of these genes requires its N-terminal domain, maybe through a neuronal-specific cofactor. Activates BCL2 expression and protects neuronal cells from apoptosis (via the N-terminal domain). Induces neuronal process outgrowth and the coordinate expression of genes encoding synaptic proteins. Exerts its major developmental effects in somatosensory neurons and in brainstem nuclei involved in motor control. Stimulates the binding affinity of the nuclear estrogene receptor ESR1 to DNA estrogen response element (ERE), and hence modulates ESR1-induced transcriptional activity. May positively regulate POU4F2 and POU4F3. Regulates dorsal root ganglion sensory neuron specification and axonal projection into the spinal cord. Plays a role in TNFSF11-mediated terminal osteoclast differentiation. Negatively regulates its own expression interacting directly with a highly conserved autoregulatory domain surrounding the transcription initiation site. {ECO:0000250|UniProtKB:P17208}.; FUNCTION: [Isoform 2]: Able to act as transcription factor, cannot regulate the expression of the same subset of genes than isoform 1. Does not have antiapoptotic effect on neuronal cells. {ECO:0000250|UniProtKB:P17208}. |
Q02383 | SEMG2 | S351 | ochoa | Semenogelin-2 (Semenogelin II) (SGII) | Participates in the formation of a gel matrix (sperm coagulum) entrapping the accessory gland secretions and ejaculated spermatozoa. |
Q02952 | AKAP12 | S742 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03164 | KMT2A | S938 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q04637 | EIF4G1 | S1145 | ochoa | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q05586 | GRIN1 | S890 | psp | Glutamate receptor ionotropic, NMDA 1 (GluN1) (Glutamate [NMDA] receptor subunit zeta-1) (N-methyl-D-aspartate receptor subunit NR1) (NMD-R1) (hNR1) | Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:21376300, PubMed:26875626, PubMed:26919761, PubMed:28126851, PubMed:28228639, PubMed:36959261, PubMed:7679115, PubMed:7681588, PubMed:7685113). NMDARs participate in synaptic plasticity for learning and memory formation by contributing to the long-term potentiation (LTP) (PubMed:26875626). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:21376300, PubMed:26875626, PubMed:26919761, PubMed:27164704, PubMed:28095420, PubMed:28105280, PubMed:28126851, PubMed:28228639, PubMed:36959261, PubMed:38538865, PubMed:7679115, PubMed:7681588, PubMed:7685113). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 or GluN3 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:26919761, PubMed:36309015, PubMed:38598639). {ECO:0000250|UniProtKB:P35438, ECO:0000269|PubMed:21376300, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27164704, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28105280, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:28228639, ECO:0000269|PubMed:36309015, ECO:0000269|PubMed:36959261, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:38598639, ECO:0000269|PubMed:7679115, ECO:0000269|PubMed:7681588, ECO:0000269|PubMed:7685113}. |
Q07157 | TJP1 | Y1199 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08211 | DHX9 | S1033 | ochoa | ATP-dependent RNA helicase A (EC 3.6.4.13) (DEAH box protein 9) (DExH-box helicase 9) (Leukophysin) (LKP) (Nuclear DNA helicase II) (NDH II) (RNA helicase A) | Multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3' to 5' direction and that plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation and RNA-mediated gene silencing (PubMed:11416126, PubMed:12711669, PubMed:15355351, PubMed:16680162, PubMed:17531811, PubMed:20669935, PubMed:21561811, PubMed:24049074, PubMed:24990949, PubMed:25062910, PubMed:28221134, PubMed:9111062, PubMed:37467750). Requires a 3'-single-stranded tail as entry site for acid nuclei unwinding activities as well as the binding and hydrolyzing of any of the four ribo- or deoxyribo-nucleotide triphosphates (NTPs) (PubMed:1537828). Unwinds numerous nucleic acid substrates such as double-stranded (ds) DNA and RNA, DNA:RNA hybrids, DNA and RNA forks composed of either partially complementary DNA duplexes or DNA:RNA hybrids, respectively, and also DNA and RNA displacement loops (D- and R-loops), triplex-helical DNA (H-DNA) structure and DNA and RNA-based G-quadruplexes (PubMed:20669935, PubMed:21561811, PubMed:24049074). Binds dsDNA, single-stranded DNA (ssDNA), dsRNA, ssRNA and poly(A)-containing RNA (PubMed:10198287, PubMed:9111062). Also binds to circular dsDNA or dsRNA of either linear and/or circular forms and stimulates the relaxation of supercoiled DNAs catalyzed by topoisomerase TOP2A (PubMed:12711669). Plays a role in DNA replication at origins of replication and cell cycle progression (PubMed:24990949). Plays a role as a transcriptional coactivator acting as a bridging factor between polymerase II holoenzyme and transcription factors or cofactors, such as BRCA1, CREBBP, RELA and SMN1 (PubMed:11038348, PubMed:11149922, PubMed:11416126, PubMed:15355351, PubMed:28221134, PubMed:9323138, PubMed:9662397). Binds to the CDKN2A promoter (PubMed:11038348). Plays several roles in post-transcriptional regulation of gene expression (PubMed:28221134, PubMed:28355180). In cooperation with NUP98, promotes pre-mRNA alternative splicing activities of a subset of genes (PubMed:11402034, PubMed:16680162, PubMed:28221134, PubMed:28355180). As component of a large PER complex, is involved in the negative regulation of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms (By similarity). Also acts as a nuclear resolvase that is able to bind and neutralize harmful massive secondary double-stranded RNA structures formed by inverted-repeat Alu retrotransposon elements that are inserted and transcribed as parts of genes during the process of gene transposition (PubMed:28355180). Involved in the positive regulation of nuclear export of constitutive transport element (CTE)-containing unspliced mRNA (PubMed:10924507, PubMed:11402034, PubMed:9162007). Component of the coding region determinant (CRD)-mediated complex that promotes cytoplasmic MYC mRNA stability (PubMed:19029303). Plays a role in mRNA translation (PubMed:28355180). Positively regulates translation of selected mRNAs through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Involved with LARP6 in the translation stimulation of type I collagen mRNAs for CO1A1 and CO1A2 through binding of a specific stem-loop structure in their 5'-UTRs (PubMed:22190748). Stimulates LIN28A-dependent mRNA translation probably by facilitating ribonucleoprotein remodeling during the process of translation (PubMed:21247876). Plays also a role as a small interfering (siRNA)-loading factor involved in the RNA-induced silencing complex (RISC) loading complex (RLC) assembly, and hence functions in the RISC-mediated gene silencing process (PubMed:17531811). Binds preferentially to short double-stranded RNA, such as those produced during rotavirus intestinal infection (PubMed:28636595). This interaction may mediate NLRP9 inflammasome activation and trigger inflammatory response, including IL18 release and pyroptosis (PubMed:28636595). Finally, mediates the attachment of heterogeneous nuclear ribonucleoproteins (hnRNPs) to actin filaments in the nucleus (PubMed:11687588). {ECO:0000250|UniProtKB:O70133, ECO:0000269|PubMed:10198287, ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:11038348, ECO:0000269|PubMed:11149922, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11416126, ECO:0000269|PubMed:11687588, ECO:0000269|PubMed:12711669, ECO:0000269|PubMed:15355351, ECO:0000269|PubMed:1537828, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:20669935, ECO:0000269|PubMed:21247876, ECO:0000269|PubMed:21561811, ECO:0000269|PubMed:22190748, ECO:0000269|PubMed:24049074, ECO:0000269|PubMed:24990949, ECO:0000269|PubMed:25062910, ECO:0000269|PubMed:28221134, ECO:0000269|PubMed:28355180, ECO:0000269|PubMed:28636595, ECO:0000269|PubMed:37467750, ECO:0000269|PubMed:9111062, ECO:0000269|PubMed:9162007, ECO:0000269|PubMed:9323138, ECO:0000269|PubMed:9662397}.; FUNCTION: (Microbial infection) Plays a role in HIV-1 replication and virion infectivity (PubMed:11096080, PubMed:19229320, PubMed:25149208, PubMed:27107641). Enhances HIV-1 transcription by facilitating the binding of RNA polymerase II holoenzyme to the proviral DNA (PubMed:11096080, PubMed:25149208). Binds (via DRBM domain 2) to the HIV-1 TAR RNA and stimulates HIV-1 transcription of transactivation response element (TAR)-containing mRNAs (PubMed:11096080, PubMed:9892698). Involved also in HIV-1 mRNA splicing and transport (PubMed:25149208). Positively regulates HIV-1 gag mRNA translation, through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Binds (via DRBM domains) to a HIV-1 double-stranded RNA region of the primer binding site (PBS)-segment of the 5'-UTR, and hence stimulates DHX9 incorporation into virions and virion infectivity (PubMed:27107641). Also plays a role as a cytosolic viral MyD88-dependent DNA and RNA sensors in plasmacytoid dendritic cells (pDCs), and hence induce antiviral innate immune responses (PubMed:20696886, PubMed:21957149). Binds (via the OB-fold region) to viral single-stranded DNA unmethylated C-phosphate-G (CpG) oligonucleotide (PubMed:20696886). {ECO:0000269|PubMed:11096080, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:20696886, ECO:0000269|PubMed:21957149, ECO:0000269|PubMed:25149208, ECO:0000269|PubMed:27107641, ECO:0000269|PubMed:9892698}. |
Q09666 | AHNAK | S242 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12888 | TP53BP1 | S899 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12968 | NFATC3 | S416 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) | Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}. |
Q13023 | AKAP6 | S1566 | ochoa | A-kinase anchor protein 6 (AKAP-6) (A-kinase anchor protein 100 kDa) (AKAP 100) (Protein kinase A-anchoring protein 6) (PRKA6) (mAKAP) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the nuclear membrane or sarcoplasmic reticulum. May act as an adapter for assembling multiprotein complexes. |
Q13233 | MAP3K1 | S35 | ochoa | Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) | Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}. |
Q13308 | PTK7 | S795 | ochoa | Inactive tyrosine-protein kinase 7 (Colon carcinoma kinase 4) (CCK-4) (Protein-tyrosine kinase 7) (Pseudo tyrosine kinase receptor 7) (Tyrosine-protein kinase-like 7) | Inactive tyrosine kinase involved in Wnt signaling pathway. Component of both the non-canonical (also known as the Wnt/planar cell polarity signaling) and the canonical Wnt signaling pathway. Functions in cell adhesion, cell migration, cell polarity, proliferation, actin cytoskeleton reorganization and apoptosis. Has a role in embryogenesis, epithelial tissue organization and angiogenesis. {ECO:0000269|PubMed:18471990, ECO:0000269|PubMed:20558616, ECO:0000269|PubMed:20837484, ECO:0000269|PubMed:21103379, ECO:0000269|PubMed:21132015}. |
Q13310 | PABPC4 | S342 | ochoa | Polyadenylate-binding protein 4 (PABP-4) (Poly(A)-binding protein 4) (Activated-platelet protein 1) (APP-1) (Inducible poly(A)-binding protein) (iPABP) | Binds the poly(A) tail of mRNA (PubMed:8524242). Binds to SMIM26 mRNA and plays a role in its post-transcriptional regulation (PubMed:37009826). May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity). {ECO:0000250|UniProtKB:P11940, ECO:0000269|PubMed:37009826, ECO:0000269|PubMed:8524242}. |
Q13322 | GRB10 | S134 | ochoa | Growth factor receptor-bound protein 10 (GRB10 adapter protein) (Insulin receptor-binding protein Grb-IR) | Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation. Blocks association between INSR and IRS1 and IRS2 and prevents insulin-stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. May play a role in mediating insulin-stimulated ubiquitination of INSR, leading to proteasomal degradation. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2. {ECO:0000269|PubMed:12493740, ECO:0000269|PubMed:15060076, ECO:0000269|PubMed:16434550, ECO:0000269|PubMed:17376403}. |
Q13330 | MTA1 | S562 | ochoa | Metastasis-associated protein MTA1 | Transcriptional coregulator which can act as both a transcriptional corepressor and coactivator (PubMed:16617102, PubMed:17671180, PubMed:17922032, PubMed:21965678, PubMed:24413532). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). In the NuRD complex, regulates transcription of its targets by modifying the acetylation status of the target chromatin and cofactor accessibility to the target DNA (PubMed:17671180). In conjunction with other components of NuRD, acts as a transcriptional corepressor of BRCA1, ESR1, TFF1 and CDKN1A (PubMed:17922032, PubMed:24413532). Acts as a transcriptional coactivator of BCAS3, and SUMO2, independent of the NuRD complex (PubMed:16617102, PubMed:17671180, PubMed:21965678). Stimulates the expression of WNT1 by inhibiting the expression of its transcriptional corepressor SIX3 (By similarity). Regulates p53-dependent and -independent DNA repair processes following genotoxic stress (PubMed:19837670). Regulates the stability and function of p53/TP53 by inhibiting its ubiquitination by COP1 and MDM2 thereby regulating the p53-dependent DNA repair (PubMed:19837670). Plays a role in the regulation of the circadian clock and is essential for the generation and maintenance of circadian rhythms under constant light and for normal entrainment of behavior to light-dark (LD) cycles (By similarity). Positively regulates the CLOCK-BMAL1 heterodimer mediated transcriptional activation of its own transcription and the transcription of CRY1 (By similarity). Regulates deacetylation of BMAL1 by regulating SIRT1 expression, resulting in derepressing CRY1-mediated transcription repression (By similarity). With TFCP2L1, promotes establishment and maintenance of pluripotency in embryonic stem cells (ESCs) and inhibits endoderm differentiation (By similarity). {ECO:0000250|UniProtKB:Q8K4B0, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:17671180, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24413532}.; FUNCTION: [Isoform Short]: Binds to ESR1 and sequesters it in the cytoplasm and enhances its non-genomic responses. {ECO:0000269|PubMed:15077195}. |
Q13470 | TNK1 | S519 | ochoa | Non-receptor tyrosine-protein kinase TNK1 (EC 2.7.10.2) (CD38 negative kinase 1) | Involved in negative regulation of cell growth. Has tumor suppressor properties. Plays a negative regulatory role in the Ras-MAPK pathway. May function in signaling pathways utilized broadly during fetal development and more selectively in adult tissues and in cells of the lymphohematopoietic system. Could specifically be involved in phospholipid signal transduction. {ECO:0000269|PubMed:10873601, ECO:0000269|PubMed:18974114}. |
Q13526 | PIN1 | S115 | ochoa|psp | Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (EC 5.2.1.8) (Peptidyl-prolyl cis-trans isomerase Pin1) (PPIase Pin1) (Rotamase Pin1) | Peptidyl-prolyl cis/trans isomerase (PPIase) that binds to and isomerizes specific phosphorylated Ser/Thr-Pro (pSer/Thr-Pro) motifs (PubMed:21497122, PubMed:23623683, PubMed:29686383). By inducing conformational changes in a subset of phosphorylated proteins, acts as a molecular switch in multiple cellular processes (PubMed:21497122, PubMed:22033920, PubMed:23623683). Displays a preference for acidic residues located N-terminally to the proline bond to be isomerized. Regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity. Down-regulates kinase activity of BTK (PubMed:16644721). Can transactivate multiple oncogenes and induce centrosome amplification, chromosome instability and cell transformation. Required for the efficient dephosphorylation and recycling of RAF1 after mitogen activation (PubMed:15664191). Binds and targets PML and BCL6 for degradation in a phosphorylation-dependent manner (PubMed:17828269). Acts as a regulator of JNK cascade by binding to phosphorylated FBXW7, disrupting FBXW7 dimerization and promoting FBXW7 autoubiquitination and degradation: degradation of FBXW7 leads to subsequent stabilization of JUN (PubMed:22608923). May facilitate the ubiquitination and proteasomal degradation of RBBP8/CtIP through CUL3/KLHL15 E3 ubiquitin-protein ligase complex, hence favors DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:23623683, PubMed:27561354). Upon IL33-induced lung inflammation, catalyzes cis-trans isomerization of phosphorylated IRAK3/IRAK-M, inducing IRAK3 stabilization, nuclear translocation and expression of pro-inflammatory genes in dendritic cells (PubMed:29686383). Catalyzes cis-trans isomerization of phosphorylated phosphoglycerate kinase PGK1 under hypoxic conditions to promote its binding to the TOM complex and targeting to the mitochondrion (PubMed:26942675). {ECO:0000269|PubMed:15664191, ECO:0000269|PubMed:16644721, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:21497122, ECO:0000269|PubMed:22033920, ECO:0000269|PubMed:22608923, ECO:0000269|PubMed:23623683, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:27561354, ECO:0000269|PubMed:29686383}. |
Q13625 | TP53BP2 | S92 | psp | Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) | Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}. |
Q14004 | CDK13 | S1343 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14149 | MORC3 | S503 | ochoa | MORC family CW-type zinc finger protein 3 (Nuclear matrix protein 2) (Zinc finger CW-type coiled-coil domain protein 3) | Nuclear matrix protein which forms MORC3-NBs (nuclear bodies) via an ATP-dependent mechanism and plays a role in innate immunity by restricting different viruses through modulation of the IFN response (PubMed:27440897, PubMed:34759314). Mechanistically, possesses a primary antiviral function through a MORC3-regulated element that activates IFNB1, and this function is guarded by a secondary IFN-repressing function (PubMed:34759314). Sumoylated MORC3-NBs associates with PML-NBs and recruits TP53 and SP100, thus regulating TP53 activity (PubMed:17332504, PubMed:20501696). Binds RNA in vitro (PubMed:11927593). Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:11927593, ECO:0000269|PubMed:17332504, ECO:0000269|PubMed:20501696, ECO:0000269|PubMed:26933034, ECO:0000269|PubMed:27440897, ECO:0000269|PubMed:34759314}.; FUNCTION: (Microbial infection) May be required for influenza A transcription during viral infection (PubMed:26202233). {ECO:0000269|PubMed:26202233}. |
Q14157 | UBAP2L | S266 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14202 | ZMYM3 | S950 | ochoa | Zinc finger MYM-type protein 3 (Zinc finger protein 261) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q14515 | SPARCL1 | S92 | ochoa | SPARC-like protein 1 (High endothelial venule protein) (Hevin) (MAST 9) | None |
Q14524 | SCN5A | S525 | psp | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
Q14554 | PDIA5 | S213 | ochoa | Protein disulfide-isomerase A5 (EC 5.3.4.1) (Protein disulfide isomerase-related protein) | None |
Q14677 | CLINT1 | S282 | ochoa | Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) | Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}. |
Q14683 | SMC1A | S971 | ochoa | Structural maintenance of chromosomes protein 1A (SMC protein 1A) (SMC-1-alpha) (SMC-1A) (Sb1.8) | Involved in chromosome cohesion during cell cycle and in DNA repair. Central component of cohesin complex. The cohesin complex is required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. Involved in DNA repair via its interaction with BRCA1 and its related phosphorylation by ATM, or via its phosphorylation by ATR. Works as a downstream effector both in the ATM/NBS1 branch and in the ATR/MSH2 branch of S-phase checkpoint. {ECO:0000269|PubMed:11877377}. |
Q14694 | USP10 | S28 | ochoa | Ubiquitin carboxyl-terminal hydrolase 10 (EC 3.4.19.12) (Deubiquitinating enzyme 10) (Ubiquitin thioesterase 10) (Ubiquitin-specific-processing protease 10) | Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiquitination of 40S ribosome subunits (PubMed:27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid-liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiquitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed:31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed:19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiquitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGI-mediated MAVS activation. Mechanistically, removes the unanchored 'Lys-63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed:37582970). {ECO:0000269|PubMed:11439350, ECO:0000269|PubMed:18632802, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:20096447, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:24845384, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:31981475, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731, ECO:0000269|PubMed:37582970}. |
Q14980 | NUMA1 | S1853 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q15018 | ABRAXAS2 | S340 | ochoa | BRISC complex subunit Abraxas 2 (Abraxas brother protein 1) (Protein FAM175B) | Component of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked polyubiquitin, leaving the last ubiquitin chain attached to its substrates (PubMed:19214193, PubMed:20032457, PubMed:20656690, PubMed:24075985). May act as a central scaffold protein that assembles the various components of the BRISC complex and retains them in the cytoplasm (PubMed:20656690). Plays a role in regulating the onset of apoptosis via its role in modulating 'Lys-63'-linked ubiquitination of target proteins (By similarity). Required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubiquitinating NUMA1 (PubMed:26195665). Plays a role in interferon signaling via its role in the deubiquitination of the interferon receptor IFNAR1; deubiquitination increases IFNAR1 activities by enhancing its stability and cell surface expression (PubMed:24075985, PubMed:26344097). Down-regulates the response to bacterial lipopolysaccharide (LPS) via its role in IFNAR1 deubiquitination (PubMed:24075985). Required for normal induction of p53/TP53 in response to DNA damage (PubMed:25283148). Independent of the BRISC complex, promotes interaction between USP7 and p53/TP53, and thereby promotes deubiquitination of p53/TP53, preventing its degradation and resulting in increased p53/TP53-mediated transcription regulation and p53/TP53-dependent apoptosis in response to DNA damage (PubMed:25283148). {ECO:0000250|UniProtKB:Q3TCJ1, ECO:0000269|PubMed:19214193, ECO:0000269|PubMed:20032457, ECO:0000269|PubMed:20656690, ECO:0000269|PubMed:24075985, ECO:0000269|PubMed:25283148}. |
Q15032 | R3HDM1 | S394 | ochoa | R3H domain-containing protein 1 | None |
Q15047 | SETDB1 | S878 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15047 | SETDB1 | S920 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15052 | ARHGEF6 | S124 | ochoa | Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) | Acts as a RAC1 guanine nucleotide exchange factor (GEF). |
Q15058 | KIF14 | S1227 | ochoa | Kinesin-like protein KIF14 | Microtubule motor protein that binds to microtubules with high affinity through each tubulin heterodimer and has an ATPase activity (By similarity). Plays a role in many processes like cell division, cytokinesis and also in cell proliferation and apoptosis (PubMed:16648480, PubMed:24784001). During cytokinesis, targets to central spindle and midbody through its interaction with PRC1 and CIT respectively (PubMed:16431929). Regulates cell growth through regulation of cell cycle progression and cytokinesis (PubMed:24854087). During cell cycle progression acts through SCF-dependent proteasomal ubiquitin-dependent protein catabolic process which controls CDKN1B degradation, resulting in positive regulation of cyclins, including CCNE1, CCND1 and CCNB1 (PubMed:24854087). During late neurogenesis, regulates the cerebellar, cerebral cortex and olfactory bulb development through regulation of apoptosis, cell proliferation and cell division (By similarity). Also is required for chromosome congression and alignment during mitotic cell cycle process (PubMed:15843429). Regulates cell spreading, focal adhesion dynamics, and cell migration through its interaction with RADIL resulting in regulation of RAP1A-mediated inside-out integrin activation by tethering RADIL on microtubules (PubMed:23209302). {ECO:0000250|UniProtKB:L0N7N1, ECO:0000269|PubMed:15843429, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:16648480, ECO:0000269|PubMed:23209302, ECO:0000269|PubMed:24784001, ECO:0000269|PubMed:24854087}. |
Q15147 | PLCB4 | S891 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-4) (Phospholipase C-beta-4) (PLC-beta-4) | Activated phosphatidylinositol-specific phospholipase C enzymes catalyze the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) involved in G-protein coupled receptor signaling pathways. PLCB4 is a direct effector of the endothelin receptor signaling pathway that plays an essential role in lower jaw and middle ear structures development (PubMed:35284927). {ECO:0000250|UniProtKB:Q07722, ECO:0000269|PubMed:35284927}. |
Q15642 | TRIP10 | S299 | ochoa | Cdc42-interacting protein 4 (Protein Felic) (Salt tolerant protein) (hSTP) (Thyroid receptor-interacting protein 10) (TR-interacting protein 10) (TRIP-10) | Required for translocation of GLUT4 to the plasma membrane in response to insulin signaling (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by recruiting WASL/N-WASP which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Required for the formation of podosomes, actin-rich adhesion structures specific to monocyte-derived cells. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:11069762, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391}. |
Q15648 | MED1 | S1026 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q16555 | DPYSL2 | S428 | ochoa | Dihydropyrimidinase-related protein 2 (DRP-2) (Collapsin response mediator protein 2) (CRMP-2) (N2A3) (Unc-33-like phosphoprotein 2) (ULIP-2) | Plays a role in neuronal development and polarity, as well as in axon growth and guidance, neuronal growth cone collapse and cell migration. Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. May play a role in endocytosis. {ECO:0000269|PubMed:11477421, ECO:0000269|PubMed:15466863, ECO:0000269|PubMed:20801876}. |
Q16778 | H2BC21 | S92 | ochoa | Histone H2B type 2-E (H2B-clustered histone 21) (Histone H2B-GL105) (Histone H2B.q) (H2B/q) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
Q16799 | RTN1 | S336 | ochoa | Reticulon-1 (Neuroendocrine-specific protein) | Inhibits amyloid precursor protein processing, probably by blocking BACE1 activity. {ECO:0000269|PubMed:15286784}. |
Q16849 | PTPRN | S303 | ochoa | Receptor-type tyrosine-protein phosphatase-like N (R-PTP-N) (Islet cell antigen 512) (ICA 512) (Islet cell autoantigen 3) (PTP IA-2) [Cleaved into: ICA512-N-terminal fragment (ICA512-NTF); ICA512-transmembrane fragment (ICA512-TMF); ICA512-cleaved cytosolic fragment (ICA512-CCF)] | Plays a role in vesicle-mediated secretory processes (PubMed:24843546). Required for normal accumulation of secretory vesicles in hippocampus, pituitary and pancreatic islets (By similarity). Required for the accumulation of normal levels of insulin-containing vesicles and preventing their degradation (PubMed:24843546). Plays a role in insulin secretion in response to glucose stimuli (PubMed:24843546). Required for normal accumulation of the neurotransmitters norepinephrine, dopamine and serotonin in the brain (By similarity). In females, but not in males, required for normal accumulation and secretion of pituitary hormones, such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) (By similarity). Required to maintain normal levels of renin expression and renin release (By similarity). Seems to lack intrinsic enzyme activity (By similarity). May regulate catalytic active protein-tyrosine phosphatases such as PTPRA through dimerization (By similarity). {ECO:0000250|UniProtKB:Q60673, ECO:0000269|PubMed:24843546}.; FUNCTION: [ICA512-transmembrane fragment]: ICA512-TMF regulates dynamics and exocytosis of insulin secretory granules (SGs); binding of ICA512-TMF to SNTB2/beta-2-syntrophin is proposed to restrain SGs mobility and exocytosis by tethering them to the actin cytoskeleton depending on UTRN; the function is inhibited by cytoplasmic ICA512-CFF dimerizing with ICA512-TMF and displacing SNTB2. {ECO:0000269|PubMed:18824546, ECO:0000269|PubMed:20886068}.; FUNCTION: [ICA512-cleaved cytosolic fragment]: ICA512-CCF translocated to the nucleus promotes expression of insulin and other granule-related genes; the function implicates binding to and regulating activity of STAT5B probably by preventing its dephosphorylation and potentially by inducing its sumoylation by recruiting PIAS4 (PubMed:15596545, PubMed:16622421, PubMed:18178618). Enhances pancreatic beta-cell proliferation by converging with signaling by STAT5B and STAT3 (PubMed:15596545, PubMed:16622421, PubMed:18178618). ICA512-CCF located in the cytoplasm regulates dynamics and exocytosis of insulin secretory granules (SGs) by dimerizing with ICA512-TMF and displacing SNTB2 thus enhancing SGs mobility and exocytosis (PubMed:18824546, PubMed:20886068). {ECO:0000269|PubMed:15596545, ECO:0000269|PubMed:16622421, ECO:0000269|PubMed:18178618, ECO:0000269|PubMed:18824546, ECO:0000269|PubMed:20886068}. |
Q27J81 | INF2 | S372 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q2NKX8 | ERCC6L | S1135 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q2TAZ0 | ATG2A | S1630 | ochoa | Autophagy-related protein 2 homolog A | Lipid transfer protein involved in autophagosome assembly (PubMed:28561066, PubMed:30952800, PubMed:31271352). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:30952800, PubMed:31271352). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (PubMed:30952800, PubMed:31271352). Lipid transfer activity is enhanced by WIPI1 and WDR45/WIPI4, which promote ATG2A-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31271352). Also regulates lipid droplets morphology and distribution within the cell (PubMed:22219374, PubMed:28561066). {ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:30952800, ECO:0000269|PubMed:31271352}. |
Q3KQU3 | MAP7D1 | S742 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3T8J9 | GON4L | S1426 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q4VXU2 | PABPC1L | S342 | ochoa | Polyadenylate-binding protein 1-like (Embryonic poly(A)-binding protein) (Poly(A) binding protein cytoplasmic 1 like) | Poly(A)-binding protein involved in oocyte maturation and early embryo development (PubMed:37723834, PubMed:37052235). It is required for cytosolic mRNA polyadenylation and translational activation of maternally stored mRNA in oocytes (By similarity). {ECO:0000250|UniProtKB:A2A5N3, ECO:0000269|PubMed:37052235, ECO:0000269|PubMed:37723834}. |
Q53EL6 | PDCD4 | S68 | ochoa | Programmed cell death protein 4 (Neoplastic transformation inhibitor protein) (Nuclear antigen H731-like) (Protein 197/15a) | Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity). {ECO:0000250, ECO:0000269|PubMed:16357133, ECO:0000269|PubMed:16449643, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:18296639, ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291}. |
Q53ET0 | CRTC2 | S65 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q53GG5 | PDLIM3 | S133 | ochoa | PDZ and LIM domain protein 3 (Actinin-associated LIM protein) (Alpha-actinin-2-associated LIM protein) | May play a role in the organization of actin filament arrays within muscle cells. {ECO:0000250}. |
Q53T59 | HS1BP3 | S259 | ochoa | HCLS1-binding protein 3 (HS1-binding protein 3) (HSP1BP-3) | May be a modulator of IL-2 signaling. {ECO:0000250}. |
Q5BKZ1 | ZNF326 | S131 | ochoa | DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}. |
Q5JSL3 | DOCK11 | S157 | ochoa | Dedicator of cytokinesis protein 11 (Activated Cdc42-associated guanine nucleotide exchange factor) (ACG) (Zizimin-2) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 by exchanging bound GDP for free GTP (PubMed:37342957). Required for marginal zone (MZ) B-cell development, is associated with early bone marrow B-cell development, MZ B-cell formation, MZ B-cell number and marginal metallophilic macrophages morphology (By similarity). Facilitates filopodia formation through the activation of CDC42 (PubMed:37342957). {ECO:0000250|UniProtKB:A2AF47, ECO:0000269|PubMed:37342957}. |
Q5JSZ5 | PRRC2B | S419 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTV8 | TOR1AIP1 | S40 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5QNW6 | H2BC18 | S92 | ochoa | Histone H2B type 2-F (H2B-clustered histone 18) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q5T1M5 | FKBP15 | S1131 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T5X7 | BEND3 | S167 | ochoa | BEN domain-containing protein 3 | Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}. |
Q5T8I3 | EEIG2 | S228 | ochoa | EEIG family member 2 (EEIG2) | None |
Q5T8I3 | EEIG2 | S321 | ochoa | EEIG family member 2 (EEIG2) | None |
Q5T8R8 | DOCK8-AS1 | T49 | ochoa | Uncharacterized protein DOCK8-AS1 (DOCK8 antisense RNA 1) | None |
Q5TBA9 | FRY | S1380 | ochoa | Protein furry homolog | Plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting PLK1 activity at the spindle poles in early mitosis. May function as a scaffold promoting the interaction between AURKA and PLK1, thereby enhancing AURKA-mediated PLK1 phosphorylation. {ECO:0000269|PubMed:22753416}. |
Q5TCZ1 | SH3PXD2A | S1017 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5THJ4 | VPS13D | S2435 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5VT52 | RPRD2 | S1069 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VWQ8 | DAB2IP | Y729 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q5VZ89 | DENND4C | S1251 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q676U5 | ATG16L1 | S290 | ochoa | Autophagy-related protein 16-1 (APG16-like 1) | Plays an essential role in both canonical and non-canonical autophagy: interacts with ATG12-ATG5 to mediate the lipidation to ATG8 family proteins (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAPL1, GABARAPL2 and GABARAP) (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576, PubMed:29317426, PubMed:30778222, PubMed:33909989). Acts as a molecular hub, coordinating autophagy pathways via distinct domains that support either canonical or non-canonical signaling (PubMed:29317426, PubMed:30778222). During canonical autophagy, interacts with ATG12-ATG5 to mediate the conjugation of phosphatidylethanolamine (PE) to ATG8 proteins, to produce a membrane-bound activated form of ATG8 (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). Thereby, controls the elongation of the nascent autophagosomal membrane (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). As part of the ATG8 conjugation system with ATG5 and ATG12, required for recruitment of LRRK2 to stressed lysosomes and induction of LRRK2 kinase activity in response to lysosomal stress (By similarity). Also involved in non-canonical autophagy, a parallel pathway involving conjugation of ATG8 proteins to single membranes at endolysosomal compartments, probably by catalyzing conjugation of phosphatidylserine (PS) to ATG8 (PubMed:33909989). Non-canonical autophagy plays a key role in epithelial cells to limit lethal infection by influenza A (IAV) virus (By similarity). Regulates mitochondrial antiviral signaling (MAVS)-dependent type I interferon (IFN-I) production (PubMed:22749352, PubMed:25645662). Negatively regulates NOD1- and NOD2-driven inflammatory cytokine response (PubMed:24238340). Instead, promotes an autophagy-dependent antibacterial pathway together with NOD1 or NOD2 (PubMed:20637199). Plays a role in regulating morphology and function of Paneth cell (PubMed:18849966). {ECO:0000250|UniProtKB:Q8C0J2, ECO:0000269|PubMed:18849966, ECO:0000269|PubMed:20637199, ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:23376921, ECO:0000269|PubMed:23392225, ECO:0000269|PubMed:24238340, ECO:0000269|PubMed:24553140, ECO:0000269|PubMed:24954904, ECO:0000269|PubMed:25645662, ECO:0000269|PubMed:27273576, ECO:0000269|PubMed:29317426, ECO:0000269|PubMed:30778222, ECO:0000269|PubMed:33909989}. |
Q68CZ2 | TNS3 | S440 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q68DK7 | MSL1 | S393 | ochoa | Male-specific lethal 1 homolog (MSL-1) (Male-specific lethal 1-like 1) (MSL1-like 1) (Male-specific lethal-1 homolog 1) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16227571, PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). Within the MSL complex, acts as a scaffold to tether MSL3 and KAT8 together for enzymatic activity regulation (PubMed:22547026). Greatly enhances MSL2 E3 ubiquitin ligase activity, promoting monoubiquitination of histone H2B at 'Lys-34' (H2BK34Ub) (PubMed:21726816, PubMed:30930284). This modification in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). {ECO:0000250|UniProtKB:Q6PDM1, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q68EM7 | ARHGAP17 | S561 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q6AI39 | BICRAL | S675 | ochoa | BRD4-interacting chromatin-remodeling complex-associated protein-like (Glioma tumor suppressor candidate region gene 1 protein-like) | Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. {ECO:0000269|PubMed:29374058}. |
Q6DN12 | MCTP2 | S135 | ochoa | Multiple C2 and transmembrane domain-containing protein 2 | Might play a role in the development of cardiac outflow tract. {ECO:0000269|PubMed:23773997}. |
Q6GQQ9 | OTUD7B | S105 | ochoa | OTU domain-containing protein 7B (EC 3.4.19.12) (Cellular zinc finger anti-NF-kappa-B protein) (Cezanne) (Zinc finger A20 domain-containing protein 1) (Zinc finger protein Cezanne) | Negative regulator of the non-canonical NF-kappa-B pathway that acts by mediating deubiquitination of TRAF3, an inhibitor of the NF-kappa-B pathway, thereby acting as a negative regulator of B-cell responses (PubMed:18178551). In response to non-canonical NF-kappa-B stimuli, deubiquitinates 'Lys-48'-linked polyubiquitin chains of TRAF3, preventing TRAF3 proteolysis and over-activation of non-canonical NF-kappa-B (By similarity). Negatively regulates mucosal immunity against infections (By similarity). Deubiquitinates ZAP70, and thereby regulates T cell receptor (TCR) signaling that leads to the activation of NF-kappa-B (PubMed:26903241). Plays a role in T cell homeostasis and is required for normal T cell responses, including production of IFNG and IL2 (By similarity). Mediates deubiquitination of EGFR (PubMed:22179831). Has deubiquitinating activity toward 'Lys-11', 'Lys-48' and 'Lys-63'-linked polyubiquitin chains (PubMed:11463333, PubMed:20622874, PubMed:23827681, PubMed:27732584). Has a much higher catalytic rate with 'Lys-11'-linked polyubiquitin chains (in vitro); however the physiological significance of these data are unsure (PubMed:27732584). Hydrolyzes both linear and branched forms of polyubiquitin (PubMed:12682062). Acts as a regulator of mTORC1 and mTORC2 assembly by mediating 'Lys-63'-linked deubiquitination of MLST8, thereby promoting assembly of the mTORC2 complex, while inibiting formation of the mTORC1 complex (PubMed:28489822). {ECO:0000250|UniProtKB:B2RUR8, ECO:0000269|PubMed:11463333, ECO:0000269|PubMed:12682062, ECO:0000269|PubMed:18178551, ECO:0000269|PubMed:20622874, ECO:0000269|PubMed:22179831, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:27732584, ECO:0000269|PubMed:28489822}. |
Q6NV74 | CRACDL | S316 | ochoa | CRACD-like protein | None |
Q6NZI2 | CAVIN1 | S26 | ochoa | Caveolae-associated protein 1 (Cavin-1) (Polymerase I and transcript release factor) | Plays an important role in caveolae formation and organization. Essential for the formation of caveolae in all tissues (PubMed:18056712, PubMed:18191225, PubMed:19726876). Core component of the CAVIN complex which is essential for recruitment of the complex to the caveolae in presence of calveolin-1 (CAV1). Essential for normal oligomerization of CAV1. Promotes ribosomal transcriptional activity in response to metabolic challenges in the adipocytes and plays an important role in the formation of the ribosomal transcriptional loop. Dissociates transcription complexes paused by DNA-bound TTF1, thereby releasing both RNA polymerase I and pre-RNA from the template (By similarity) (PubMed:18056712, PubMed:18191225, PubMed:19726876). The caveolae biogenesis pathway is required for the secretion of proteins such as GASK1A (By similarity). {ECO:0000250|UniProtKB:O54724, ECO:0000269|PubMed:18056712, ECO:0000269|PubMed:18191225, ECO:0000269|PubMed:19726876}. |
Q6P0Q8 | MAST2 | S1504 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P4E1 | GOLM2 | S233 | ochoa | Protein GOLM2 (Cancer susceptibility candidate gene 4 protein) (CASC4) (Golgi membrane protein 2) | None |
Q6P995 | FAM171B | S504 | ochoa | Protein FAM171B | None |
Q6P9G4 | TMEM154 | S112 | ochoa | Transmembrane protein 154 | None |
Q6RW13 | AGTRAP | S138 | ochoa | Type-1 angiotensin II receptor-associated protein (AT1 receptor-associated protein) | Appears to be a negative regulator of type-1 angiotensin II receptor-mediated signaling by regulating receptor internalization as well as mechanism of receptor desensitization such as phosphorylation. Also induces a decrease in cell proliferation and angiotensin II-stimulated transcriptional activity. {ECO:0000269|PubMed:12960423}. |
Q6VN20 | RANBP10 | S490 | ochoa | Ran-binding protein 10 (RanBP10) | May act as an adapter protein to couple membrane receptors to intracellular signaling pathways (Probable). Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1 (PubMed:29911972). Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but does not affect estrogen-induced transactivation (PubMed:18222118). Acts as a guanine nucleotide exchange factor (GEF) for RAN GTPase. May play an essential role in hemostasis and in maintaining microtubule dynamics with respect to both platelet shape and function (By similarity). {ECO:0000250|UniProtKB:Q6VN19, ECO:0000269|PubMed:18222118, ECO:0000269|PubMed:29911972, ECO:0000305}. |
Q6ZN30 | BNC2 | S937 | ochoa | Zinc finger protein basonuclin-2 | Probable transcription factor specific for skin keratinocytes. May play a role in the differentiation of spermatozoa and oocytes (PubMed:14988505). May also play an important role in early urinary-tract development (PubMed:31051115). {ECO:0000269|PubMed:14988505, ECO:0000269|PubMed:31051115}. |
Q6ZNB6 | NFXL1 | S108 | ochoa | NF-X1-type zinc finger protein NFXL1 (Ovarian zinc finger protein) (hOZFP) | None |
Q6ZRV2 | FAM83H | S685 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZU35 | CRACD | S874 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q6ZUJ8 | PIK3AP1 | S731 | ochoa | Phosphoinositide 3-kinase adapter protein 1 (B-cell adapter for phosphoinositide 3-kinase) (B-cell phosphoinositide 3-kinase adapter protein 1) | Signaling adapter that contributes to B-cell development by linking B-cell receptor (BCR) signaling to the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. Has a complementary role to the BCR coreceptor CD19, coupling BCR and PI3K activation by providing a docking site for the PI3K subunit PIK3R1. Alternatively, links Toll-like receptor (TLR) signaling to PI3K activation, a process preventing excessive inflammatory cytokine production. Also involved in the activation of PI3K in natural killer cells. May be involved in the survival of mature B-cells via activation of REL. {ECO:0000269|PubMed:15893754}. |
Q6ZV73 | FGD6 | S652 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q70EL4 | USP43 | S1069 | ochoa | Ubiquitin carboxyl-terminal hydrolase 43 (EC 3.4.19.12) (Deubiquitinating enzyme 43) (Ubiquitin thioesterase 43) (Ubiquitin-specific-processing protease 43) | May recognize and hydrolyze the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins (By similarity). {ECO:0000250}. |
Q76I76 | SSH2 | S1216 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q7KZI7 | MARK2 | S577 | ochoa | Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}. |
Q7Z401 | DENND4A | S963 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z417 | NUFIP2 | S113 | ochoa | FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) | Binds RNA. {ECO:0000269|PubMed:12837692}. |
Q7Z434 | MAVS | S402 | ochoa | Mitochondrial antiviral-signaling protein (MAVS) (CARD adapter inducing interferon beta) (Cardif) (Interferon beta promoter stimulator protein 1) (IPS-1) (Putative NF-kappa-B-activating protein 031N) (Virus-induced-signaling adapter) (VISA) | Adapter required for innate immune defense against viruses (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:21170385, PubMed:23087404, PubMed:27992402, PubMed:33139700, PubMed:37582970). Acts downstream of DHX33, RIGI and IFIH1/MDA5, which detect intracellular dsRNA produced during viral replication, to coordinate pathways leading to the activation of NF-kappa-B, IRF3 and IRF7, and to the subsequent induction of antiviral cytokines such as IFNB and RANTES (CCL5) (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:20628368, PubMed:21170385, PubMed:23087404, PubMed:25636800, PubMed:27736772, PubMed:33110251). Peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state (PubMed:20451243). Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response (PubMed:20451243). May activate the same pathways following detection of extracellular dsRNA by TLR3 (PubMed:16153868). May protect cells from apoptosis (PubMed:16125763). Involved in NLRP3 inflammasome activation by mediating NLRP3 recruitment to mitochondria (PubMed:23582325). {ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:16177806, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20451243, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:27992402, ECO:0000269|PubMed:33110251, ECO:0000269|PubMed:33139700, ECO:0000269|PubMed:37582970}. |
Q7Z434 | MAVS | S409 | ochoa | Mitochondrial antiviral-signaling protein (MAVS) (CARD adapter inducing interferon beta) (Cardif) (Interferon beta promoter stimulator protein 1) (IPS-1) (Putative NF-kappa-B-activating protein 031N) (Virus-induced-signaling adapter) (VISA) | Adapter required for innate immune defense against viruses (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:21170385, PubMed:23087404, PubMed:27992402, PubMed:33139700, PubMed:37582970). Acts downstream of DHX33, RIGI and IFIH1/MDA5, which detect intracellular dsRNA produced during viral replication, to coordinate pathways leading to the activation of NF-kappa-B, IRF3 and IRF7, and to the subsequent induction of antiviral cytokines such as IFNB and RANTES (CCL5) (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:20628368, PubMed:21170385, PubMed:23087404, PubMed:25636800, PubMed:27736772, PubMed:33110251). Peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state (PubMed:20451243). Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response (PubMed:20451243). May activate the same pathways following detection of extracellular dsRNA by TLR3 (PubMed:16153868). May protect cells from apoptosis (PubMed:16125763). Involved in NLRP3 inflammasome activation by mediating NLRP3 recruitment to mitochondria (PubMed:23582325). {ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:16177806, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20451243, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:27992402, ECO:0000269|PubMed:33110251, ECO:0000269|PubMed:33139700, ECO:0000269|PubMed:37582970}. |
Q7Z5L9 | IRF2BP2 | S463 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q7Z6E9 | RBBP6 | S1262 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6E9 | RBBP6 | S1263 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6Z7 | HUWE1 | S2750 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86SK9 | SCD5 | S27 | ochoa | Stearoyl-CoA desaturase 5 (EC 1.14.19.1) (Acyl-CoA-desaturase 4) (HSCD5) (Stearoyl-CoA 9-desaturase) (Stearoyl-CoA desaturase 2) | Stearoyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates. Catalyzes the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA (PubMed:15610069, PubMed:15907797, PubMed:22745828). Gives rise to a mixture of 16:1 and 18:1 unsaturated fatty acids (PubMed:15610069, PubMed:15907797). Involved in neuronal cell proliferation and differentiation through down-regulation of EGFR/AKT/MAPK and Wnt signaling pathways (PubMed:22745828). {ECO:0000269|PubMed:15610069, ECO:0000269|PubMed:15907797, ECO:0000269|PubMed:22745828}. |
Q86SQ0 | PHLDB2 | S348 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86TI0 | TBC1D1 | S263 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86V48 | LUZP1 | S574 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86VP3 | PACS2 | S688 | ochoa | Phosphofurin acidic cluster sorting protein 2 (PACS-2) (PACS1-like protein) | Multifunctional sorting protein that controls the endoplasmic reticulum (ER)-mitochondria communication, including the apposition of mitochondria with the ER and ER homeostasis. In addition, in response to apoptotic inducer, translocates BIB to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated BID, the release of cytochrome c, the activation of caspase-3 thereby causing cell death. May also be involved in ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments. {ECO:0000269|PubMed:15692563, ECO:0000269|PubMed:15692567}. |
Q86W50 | METTL16 | S484 | ochoa | RNA N(6)-adenosine-methyltransferase METTL16 (EC 2.1.1.348) (Methyltransferase 10 domain-containing protein) (Methyltransferase-like protein 16) (U6 small nuclear RNA (adenine-(43)-N(6))-methyltransferase) (EC 2.1.1.346) | RNA N6-methyltransferase that methylates adenosine residues at the N(6) position of a subset of RNAs and is involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts (PubMed:28525753, PubMed:30197297, PubMed:30197299, PubMed:33428944, PubMed:33930289). Able to N6-methylate a subset of mRNAs and U6 small nuclear RNAs (U6 snRNAs) (PubMed:28525753). In contrast to the METTL3-METTL14 heterodimer, only able to methylate a limited number of RNAs: requires both a 5'UACAGAGAA-3' nonamer sequence and a specific RNA structure (PubMed:28525753, PubMed:30197297, PubMed:30197299). Plays a key role in S-adenosyl-L-methionine homeostasis by mediating N6-methylation of MAT2A mRNAs, altering splicing of MAT2A transcripts: in presence of S-adenosyl-L-methionine, binds the 3'-UTR region of MAT2A mRNA and specifically N6-methylates the first hairpin of MAT2A mRNA, preventing recognition of their 3'-splice site by U2AF1/U2AF35, thereby inhibiting splicing and protein production of S-adenosylmethionine synthase (PubMed:28525753, PubMed:33930289). In S-adenosyl-L-methionine-limiting conditions, binds the 3'-UTR region of MAT2A mRNA but stalls due to the lack of a methyl donor, preventing N6-methylation and promoting expression of MAT2A (PubMed:28525753). In addition to mRNAs, also able to mediate N6-methylation of U6 small nuclear RNA (U6 snRNA): specifically N6-methylates adenine in position 43 of U6 snRNAs (PubMed:28525753, PubMed:29051200, PubMed:32266935). Also able to bind various lncRNAs, such as 7SK snRNA (7SK RNA) or 7SL RNA (PubMed:29051200). Specifically binds the 3'-end of the MALAT1 long non-coding RNA (PubMed:27872311). {ECO:0000269|PubMed:27872311, ECO:0000269|PubMed:28525753, ECO:0000269|PubMed:29051200, ECO:0000269|PubMed:30197297, ECO:0000269|PubMed:30197299, ECO:0000269|PubMed:32266935, ECO:0000269|PubMed:33428944}. |
Q86WP2 | GPBP1 | S50 | ochoa | Vasculin (GC-rich promoter-binding protein 1) (Vascular wall-linked protein) | Functions as a GC-rich promoter-specific transactivating transcription factor. {ECO:0000250|UniProtKB:Q6NXH3}. |
Q86WP2 | GPBP1 | S380 | ochoa | Vasculin (GC-rich promoter-binding protein 1) (Vascular wall-linked protein) | Functions as a GC-rich promoter-specific transactivating transcription factor. {ECO:0000250|UniProtKB:Q6NXH3}. |
Q86X27 | RALGPS2 | S443 | ochoa | Ras-specific guanine nucleotide-releasing factor RalGPS2 (Ral GEF with PH domain and SH3-binding motif 2) (RalA exchange factor RalGPS2) | Guanine nucleotide exchange factor for the small GTPase RALA. May be involved in cytoskeletal organization. May also be involved in the stimulation of transcription in a Ras-independent fashion (By similarity). {ECO:0000250}. |
Q86XA9 | HEATR5A | S827 | ochoa | HEAT repeat-containing protein 5A | None |
Q86XA9 | HEATR5A | S830 | ochoa | HEAT repeat-containing protein 5A | None |
Q86XZ4 | SPATS2 | S484 | ochoa | Spermatogenesis-associated serine-rich protein 2 (Serine-rich spermatocytes and round spermatid 59 kDa protein) (p59scr) | None |
Q86YS7 | C2CD5 | S307 | ochoa | C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) | Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}. |
Q86YV0 | RASAL3 | S945 | ochoa | RAS protein activator like-3 | Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}. |
Q8IVF2 | AHNAK2 | S56 | ochoa | Protein AHNAK2 | None |
Q8IVH2 | FOXP4 | S292 | ochoa | Forkhead box protein P4 (Fork head-related protein-like A) | Transcriptional repressor that represses lung-specific expression. {ECO:0000250}. |
Q8IVM0 | CCDC50 | S288 | ochoa | Coiled-coil domain-containing protein 50 (Protein Ymer) | Involved in EGFR signaling. {ECO:0000269|PubMed:15314609}. |
Q8IVT2 | MISP | Y68 | ochoa | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8IWE5 | PLEKHM2 | S496 | ochoa | Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) | Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}. |
Q8IWS0 | PHF6 | S50 | ochoa | PHD finger protein 6 (PHD-like zinc finger protein) | Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}. |
Q8IXK0 | PHC2 | S591 | ochoa | Polyhomeotic-like protein 2 (hPH2) (Early development regulatory protein 2) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. |
Q8IZW8 | TNS4 | S169 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8IZW8 | TNS4 | S197 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8N122 | RPTOR | S855 | ochoa|psp | Regulatory-associated protein of mTOR (Raptor) (p150 target of rapamycin (TOR)-scaffold protein) | Component of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:32561715, PubMed:37541260). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:32561715, PubMed:37541260). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:37541260). Within the mTORC1 complex, RPTOR acts both as a molecular adapter, which (1) mediates recruitment of mTORC1 to lysosomal membranes via interaction with small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD), and a (2) substrate-specific adapter, which promotes substrate specificity by binding to TOS motif-containing proteins and direct them towards the active site of the MTOR kinase domain for phosphorylation (PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). mTORC1 complex regulates many cellular processes, such as odontoblast and osteoclast differentiation or neuronal transmission (By similarity). mTORC1 complex in excitatory neuronal transmission is required for the prosocial behavior induced by the psychoactive substance lysergic acid diethylamide (LSD) (By similarity). {ECO:0000250|UniProtKB:Q8K4Q0, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12747827, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:26588989, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37541260}. |
Q8N1G2 | CMTR1 | S29 | ochoa | Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (EC 2.1.1.57) (Cap methyltransferase 1) (Cap1 2'O-ribose methyltransferase 1) (MTr1) (hMTr1) (FtsJ methyltransferase domain-containing protein 2) (Interferon-stimulated gene 95 kDa protein) (ISG95) | S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap1 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the first nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) to produce m(7)GpppRm (cap1). Displays a preference for cap0 transcripts. Cap1 modification is linked to higher levels of translation. May be involved in the interferon response pathway. {ECO:0000269|PubMed:18533109, ECO:0000269|PubMed:20713356, ECO:0000269|PubMed:21310715}. |
Q8N1G2 | CMTR1 | S121 | ochoa | Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (EC 2.1.1.57) (Cap methyltransferase 1) (Cap1 2'O-ribose methyltransferase 1) (MTr1) (hMTr1) (FtsJ methyltransferase domain-containing protein 2) (Interferon-stimulated gene 95 kDa protein) (ISG95) | S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap1 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the first nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) to produce m(7)GpppRm (cap1). Displays a preference for cap0 transcripts. Cap1 modification is linked to higher levels of translation. May be involved in the interferon response pathway. {ECO:0000269|PubMed:18533109, ECO:0000269|PubMed:20713356, ECO:0000269|PubMed:21310715}. |
Q8N2F6 | ARMC10 | S43 | ochoa | Armadillo repeat-containing protein 10 (Splicing variant involved in hepatocarcinogenesis protein) | May play a role in cell survival and cell growth. May suppress the transcriptional activity of p53/TP53. {ECO:0000269|PubMed:12839973, ECO:0000269|PubMed:17904127}. |
Q8N370 | SLC43A2 | S278 | psp | Large neutral amino acids transporter small subunit 4 (L-type amino acid transporter 4) (Solute carrier family 43 member 2) | Uniporter that mediates the transport of the stereospecific L-phenylalanine, L-methionine and L-branched-chain amino acids, between the extracellular space and the cytoplasm and may control the transepithelial (re)absorption of neutral amino acid in kidney and small intestine (PubMed:15659399, PubMed:30379325). The transport activity is mediated through facilitated diffusion and is sodium ions-, chloride ions- and pH-independent (PubMed:15659399). {ECO:0000269|PubMed:15659399, ECO:0000269|PubMed:30379325}. |
Q8N3X1 | FNBP4 | S432 | ochoa | Formin-binding protein 4 (Formin-binding protein 30) | None |
Q8N697 | SLC15A4 | S291 | ochoa | Solute carrier family 15 member 4 (Peptide transporter 4) (Peptide/histidine transporter 1) (hPHT1) | Proton-coupled amino-acid transporter that mediates the transmembrane transport of L-histidine and some di- and tripeptides from inside the lysosome to the cytosol, and plays a key role in innate immune response (PubMed:16289537, PubMed:25238095, PubMed:29224352). Able to transport a variety of di- and tripeptides, including carnosine and some peptidoglycans (PubMed:29224352, PubMed:31073693). Transporter activity is pH-dependent and maximized in the acidic lysosomal environment (By similarity). Involved in the detection of microbial pathogens by toll-like receptors (TLRs) and NOD-like receptors (NLRs), probably by mediating transport of bacterial peptidoglycans across the endolysosomal membrane: catalyzes the transport of certain bacterial peptidoglycans, such as muramyl dipeptide (MDP), the NOD2 ligand, and L-alanyl-gamma-D-glutamyl-meso-2,6-diaminoheptanedioate (tri-DAP), the NOD1 ligand (PubMed:25238095, PubMed:29224352). Required for TLR7, TLR8 and TLR9-mediated type I interferon (IFN-I) productions in plasmacytoid dendritic cells (pDCs) (PubMed:25238095). Independently of its transporter activity, also promotes the recruitment of innate immune adapter TASL to endolysosome downstream of TLR7, TLR8 and TLR9: TASL recruitment leads to the specific recruitment and activation of IRF5 (PubMed:32433612). Required for isotype class switch recombination to IgG2c isotype in response to TLR9 stimulation (By similarity). Required for mast cell secretory-granule homeostasis by limiting mast cell functions and inflammatory responses (By similarity). {ECO:0000250|UniProtKB:O09014, ECO:0000250|UniProtKB:Q91W98, ECO:0000269|PubMed:16289537, ECO:0000269|PubMed:25238095, ECO:0000269|PubMed:29224352, ECO:0000269|PubMed:31073693, ECO:0000269|PubMed:32433612}. |
Q8N6H7 | ARFGAP2 | S414 | ochoa | ADP-ribosylation factor GTPase-activating protein 2 (ARF GAP 2) (GTPase-activating protein ZNF289) (Zinc finger protein 289) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:17760859}. |
Q8N6T3 | ARFGAP1 | S160 | ochoa | ADP-ribosylation factor GTPase-activating protein 1 (ARF GAP 1) (ADP-ribosylation factor 1 GTPase-activating protein) (ARF1 GAP) (ARF1-directed GTPase-activating protein) | GTPase-activating protein (GAP) for the ADP ribosylation factor 1 (ARF1). Involved in membrane trafficking and /or vesicle transport. Promotes hydrolysis of the ARF1-bound GTP and thus, is required for the dissociation of coat proteins from Golgi-derived membranes and vesicles, a prerequisite for vesicle's fusion with target compartment. Probably regulates ARF1-mediated transport via its interaction with the KDELR proteins and TMED2. Overexpression induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, as when ARF1 is deactivated. Its activity is stimulated by phosphoinosides and inhibited by phosphatidylcholine (By similarity). {ECO:0000250}. |
Q8N9M1 | C19orf47 | S286 | ochoa | Uncharacterized protein C19orf47 | None |
Q8NC44 | RETREG2 | S403 | ochoa | Reticulophagy regulator 2 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Required for collagen quality control in a LIR motif-independent manner (By similarity). {ECO:0000250|UniProtKB:Q6NS82, ECO:0000269|PubMed:34338405}. |
Q8ND24 | RNF214 | S21 | ochoa | RING finger protein 214 | None |
Q8ND25 | ZNRF1 | S53 | ochoa | E3 ubiquitin-protein ligase ZNRF1 (EC 2.3.2.27) (Nerve injury-induced gene 283 protein) (RING-type E3 ubiquitin transferase ZNRF1) (Zinc/RING finger protein 1) | E3 ubiquitin-protein ligase that plays a role in different processes including cell differentiation, receptor recycling or regulation of inflammation (PubMed:28593998, PubMed:33996800, PubMed:37158982). Mediates the ubiquitination of AKT1 and GLUL, thereby playing a role in neuron cells differentiation. Plays a role in the establishment and maintenance of neuronal transmission and plasticity. Regulates Schwann cells differentiation by mediating ubiquitination of GLUL. Promotes neurodegeneration by mediating 'Lys-48'-linked polyubiquitination and subsequent degradation of AKT1 in axons: degradation of AKT1 prevents AKT1-mediated phosphorylation of GSK3B, leading to GSK3B activation and phosphorylation of DPYSL2/CRMP2 followed by destabilization of microtubule assembly in axons. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Controls ligand-induced EGFR signaling via mediating receptor ubiquitination and recruitment of the ESCRT machinery (PubMed:33996800). Acts as a negative feedback mechanism controlling TLR3 trafficking by mediating TLR3 'Lys-63'-linked polyubiquitination to reduce type I IFN production (PubMed:37158982). Modulates inflammation by promoting caveolin-1/CAV1 ubiquitination and degradation to regulate TLR4-activated immune response (PubMed:28593998). {ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:28593998, ECO:0000269|PubMed:29626159, ECO:0000269|PubMed:33996800, ECO:0000269|PubMed:37158982, ECO:0000305|PubMed:14561866}. |
Q8NE01 | CNNM3 | S689 | ochoa | Metal transporter CNNM3 (Ancient conserved domain-containing protein 3) (Cyclin-M3) | Probable metal transporter. {ECO:0000250}. |
Q8NFA0 | USP32 | S1423 | ochoa | Ubiquitin carboxyl-terminal hydrolase 32 (EC 3.4.19.12) (Deubiquitinating enzyme 32) (Renal carcinoma antigen NY-REN-60) (Ubiquitin thioesterase 32) (Ubiquitin-specific-processing protease 32) | Deubiquitinase that can remove conjugated ubiquitin from target proteins, such as RAB7A and LAMTOR1 (PubMed:36476874). Acts as a positive regulator of the mTORC1 signaling by mediating deubiquitination of LAMTOR1, thereby promoting the association between LAMTOR1 and the lysosomal V-ATPase complex and subsequent activation of the mTORC1 complex (PubMed:36476874). {ECO:0000269|PubMed:36476874}. |
Q8NFQ8 | TOR1AIP2 | S135 | ochoa | Torsin-1A-interacting protein 2 (Lumenal domain-like LAP1) | Required for endoplasmic reticulum integrity. Regulates the distribution of TOR1A between the endoplasmic reticulum and the nuclear envelope as well as induces TOR1A, TOR1B and TOR3A ATPase activity. {ECO:0000269|PubMed:19339278, ECO:0000269|PubMed:23569223, ECO:0000269|PubMed:24275647}. |
Q8NHG8 | ZNRF2 | S120 | ochoa | E3 ubiquitin-protein ligase ZNRF2 (EC 2.3.2.27) (Protein Ells2) (RING finger protein 202) (RING-type E3 ubiquitin transferase ZNRF2) (Zinc/RING finger protein 2) | E3 ubiquitin-protein ligase that plays a role in the establishment and maintenance of neuronal transmission and plasticity. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Acts also as a positive regulator of mTORC1 activation by amino acids, which functions upstream of the V-ATPase and of Rag-GTPases (PubMed:27244671). In turn, phosphorylation by mTOR leads to its inhibition via targeting to the cytosol allowing a self-regulating feedback mechanism (PubMed:27244671). {ECO:0000269|PubMed:14561866, ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:27244671}. |
Q8NHV4 | NEDD1 | S549 | ochoa | Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) | Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}. |
Q8TAB5 | C1orf216 | S62 | ochoa | UPF0500 protein C1orf216 | None |
Q8TBP0 | TBC1D16 | S384 | ochoa | TBC1 domain family member 16 | May act as a GTPase-activating protein for Rab family protein(s). |
Q8TC07 | TBC1D15 | S71 | ochoa | TBC1 domain family member 15 (GTPase-activating protein RAB7) (GAP for RAB7) (Rab7-GAP) | Acts as a GTPase activating protein for RAB7A. Does not act on RAB4, RAB5 or RAB6 (By similarity). {ECO:0000250}. |
Q8TD08 | MAPK15 | S192 | psp | Mitogen-activated protein kinase 15 (MAP kinase 15) (MAPK 15) (EC 2.7.11.24) (Extracellular signal-regulated kinase 7) (ERK-7) (Extracellular signal-regulated kinase 8) (ERK-8) | Atypical MAPK protein that regulates several process such as autophagy, ciliogenesis, protein trafficking/secretion and genome integrity, in a kinase activity-dependent manner (PubMed:20733054, PubMed:21847093, PubMed:22948227, PubMed:24618899, PubMed:29021280). Controls both, basal and starvation-induced autophagy throught its interaction with GABARAP, MAP1LC3B and GABARAPL1 leading to autophagosome formation, SQSTM1 degradation and reduced MAP1LC3B inhibitory phosphorylation (PubMed:22948227). Regulates primary cilium formation and the localization of ciliary proteins involved in cilium structure, transport, and signaling (PubMed:29021280). Prevents the relocation of the sugar-adding enzymes from the Golgi to the endoplasmic reticulum, thereby restricting the production of sugar-coated proteins (PubMed:24618899). Upon amino-acid starvation, mediates transitional endoplasmic reticulum site disassembly and inhibition of secretion (PubMed:21847093). Binds to chromatin leading to MAPK15 activation and interaction with PCNA, that which protects genomic integrity by inhibiting MDM2-mediated degradation of PCNA (PubMed:20733054). Regulates DA transporter (DAT) activity and protein expression via activation of RhoA (PubMed:28842414). In response to H(2)O(2) treatment phosphorylates ELAVL1, thus preventing it from binding to the PDCD4 3'UTR and rendering the PDCD4 mRNA accessible to miR-21 and leading to its degradation and loss of protein expression (PubMed:26595526). Also functions in a kinase activity-independent manner as a negative regulator of growth (By similarity). Phosphorylates in vitro FOS and MBP (PubMed:11875070, PubMed:16484222, PubMed:19166846, PubMed:20638370). During oocyte maturation, plays a key role in the microtubule organization and meiotic cell cycle progression in oocytes, fertilized eggs, and early embryos (By similarity). Interacts with ESRRA promoting its re-localization from the nucleus to the cytoplasm and then prevents its transcriptional activity (PubMed:21190936). {ECO:0000250|UniProtKB:Q80Y86, ECO:0000250|UniProtKB:Q9Z2A6, ECO:0000269|PubMed:11875070, ECO:0000269|PubMed:16484222, ECO:0000269|PubMed:19166846, ECO:0000269|PubMed:20638370, ECO:0000269|PubMed:20733054, ECO:0000269|PubMed:21190936, ECO:0000269|PubMed:21847093, ECO:0000269|PubMed:22948227, ECO:0000269|PubMed:24618899, ECO:0000269|PubMed:26595526, ECO:0000269|PubMed:28842414, ECO:0000269|PubMed:29021280}. |
Q8TD19 | NEK9 | S869 | ochoa|psp | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q8TEW0 | PARD3 | S1234 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TF40 | FNIP1 | S939 | psp | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8TF72 | SHROOM3 | S677 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WUM0 | NUP133 | S475 | ochoa | Nuclear pore complex protein Nup133 (133 kDa nucleoporin) (Nucleoporin Nup133) | Involved in poly(A)+ RNA transport. Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:11684705, ECO:0000269|PubMed:30179222}. |
Q8WW22 | DNAJA4 | S84 | ochoa | DnaJ homolog subfamily A member 4 | None |
Q8WWI1 | LMO7 | S1010 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWY3 | PRPF31 | S446 | ochoa | U4/U6 small nuclear ribonucleoprotein Prp31 (Pre-mRNA-processing factor 31) (Serologically defined breast cancer antigen NY-BR-99) (U4/U6 snRNP 61 kDa protein) (Protein 61K) (hPrp31) | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11867543, PubMed:20118938, PubMed:28781166). Required for the assembly of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome (PubMed:11867543). {ECO:0000269|PubMed:11867543, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:28781166}. |
Q8WXI7 | MUC16 | S9553 | ochoa | Mucin-16 (MUC-16) (Ovarian cancer-related tumor marker CA125) (CA-125) (Ovarian carcinoma antigen CA125) | Thought to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces. {ECO:0000250}. |
Q92576 | PHF3 | S1614 | ochoa | PHD finger protein 3 | None |
Q92614 | MYO18A | S102 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92619 | ARHGAP45 | S578 | ochoa | Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}. |
Q92754 | TFAP2C | S23 | ochoa | Transcription factor AP-2 gamma (AP2-gamma) (Activating enhancer-binding protein 2 gamma) (Transcription factor ERF-1) | Sequence-specific DNA-binding transcription factor that interacts with cellular enhancer elements to regulate transcription of selected genes, and which plays a key role in early embryonic development (PubMed:11694877, PubMed:24413532). AP-2 factors bind to the consensus sequence 5'-GCCNNNGGC-3' and activate genes involved in a large spectrum of important biological functions (PubMed:11694877, PubMed:24413532). TFAP2C plays a key role in early embryonic development by regulating both inner cell mass (ICM) and trophectoderm differentiation (By similarity). At the 8-cell stage, during morula development, controls expression of cell-polarity genes (By similarity). Upon trophoblast commitment, binds to late trophectoderm genes in blastocysts together with CDX2, and later to extra-embryonic ectoderm genes together with SOX2 (By similarity). Binds to both closed and open chromatin with other transcription factors (By similarity). Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer (PubMed:24413532). {ECO:0000250|UniProtKB:Q61312, ECO:0000269|PubMed:11694877, ECO:0000269|PubMed:24413532}. |
Q92859 | NEO1 | S803 | ochoa | Neogenin (Immunoglobulin superfamily DCC subclass member 2) | Multi-functional cell surface receptor regulating cell adhesion in many diverse developmental processes, including neural tube and mammary gland formation, myogenesis and angiogenesis. Receptor for members of the BMP, netrin, and repulsive guidance molecule (RGM) families. Netrin-Neogenin interactions result in a chemoattractive axon guidance response and cell-cell adhesion, the interaction between NEO1/Neogenin and RGMa and RGMb induces a chemorepulsive response. {ECO:0000269|PubMed:21149453}. |
Q93079 | H2BC9 | S92 | ochoa | Histone H2B type 1-H (H2B-clustered histone 9) (Histone H2B.j) (H2B/j) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q96CP6 | GRAMD1A | S257 | ochoa | Protein Aster-A (GRAM domain-containing protein 1A) | Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). May play a role in tumor progression (By similarity). Plays a role in autophagy regulation and is required for biogenesis of the autophagosome (PubMed:31222192). This function in autophagy requires its cholesterol-transfer activity (PubMed:31222192). {ECO:0000250|UniProtKB:Q8VEF1, ECO:0000269|PubMed:31222192}. |
Q96D71 | REPS1 | S461 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96E39 | RBMXL1 | S308 | ochoa | RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) | RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}. |
Q96E39 | RBMXL1 | S329 | ochoa | RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) | RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}. |
Q96EV8 | DTNBP1 | S300 | ochoa | Dysbindin (Biogenesis of lysosome-related organelles complex 1 subunit 8) (BLOC-1 subunit 8) (Dysbindin-1) (Dystrobrevin-binding protein 1) (Hermansky-Pudlak syndrome 7 protein) (HPS7 protein) | Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes. In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Associates with the BLOC-2 complex to facilitate the transport of TYRP1 independent of AP-3 function. Plays a role in synaptic vesicle trafficking and in neurotransmitter release. Plays a role in the regulation of cell surface exposure of DRD2. May play a role in actin cytoskeleton reorganization and neurite outgrowth. May modulate MAPK8 phosphorylation. Appears to promote neuronal transmission and viability through regulating the expression of SNAP25 and SYN1, modulating PI3-kinase-Akt signaling and influencing glutamatergic release. Regulates the expression of SYN1 through binding to its promoter. Modulates prefrontal cortical activity via the dopamine/D2 pathway. {ECO:0000269|PubMed:15345706, ECO:0000269|PubMed:16837549, ECO:0000269|PubMed:17182842, ECO:0000269|PubMed:17989303, ECO:0000269|PubMed:19094965, ECO:0000269|PubMed:20180862, ECO:0000269|PubMed:20921223}. |
Q96GA3 | LTV1 | S380 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}. |
Q96GU1 | PAGE5 | S31 | ochoa | P antigen family member 5 (PAGE-5) (Cancer/testis antigen 16.1) (CT16.1) (G antigen family E member 1) (Prostate-associated gene 5 protein) | None |
Q96H79 | ZC3HAV1L | S257 | ochoa | Zinc finger CCCH-type antiviral protein 1-like | None |
Q96LZ7 | RMDN2 | S137 | ochoa | Regulator of microtubule dynamics protein 2 (RMD-2) (hRMD-2) (Protein FAM82A1) | None |
Q96N67 | DOCK7 | S440 | ochoa | Dedicator of cytokinesis protein 7 | Functions as a guanine nucleotide exchange factor (GEF), which activates Rac1 and Rac3 Rho small GTPases by exchanging bound GDP for free GTP. Does not have a GEF activity for CDC42. Required for STMN1 'Ser-15' phosphorylation during axon formation and consequently for neuronal polarization (PubMed:16982419). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). Has a role in pigmentation (By similarity). Involved in the regulation of cortical neurogenesis through the control of radial glial cells (RGCs) proliferation versus differentiation; negatively regulates the basal-to-apical interkinetic nuclear migration of RGCs by antagonizing the microtubule growth-promoting function of TACC3 (By similarity). {ECO:0000250|UniProtKB:Q8R1A4, ECO:0000269|PubMed:16982419, ECO:0000269|PubMed:29467281}. |
Q96P47 | AGAP3 | S450 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3 (AGAP-3) (CRAM-associated GTPase) (CRAG) (Centaurin-gamma-3) (Cnt-g3) (MR1-interacting protein) (MRIP-1) | GTPase-activating protein for the ADP ribosylation factor family (Potential). GTPase which may be involved in the degradation of expanded polyglutamine proteins through the ubiquitin-proteasome pathway. {ECO:0000269|PubMed:16461359, ECO:0000305}. |
Q96R06 | SPAG5 | S110 | ochoa | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96RL1 | UIMC1 | S452 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96T37 | RBM15 | S104 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q99523 | SORT1 | S793 | ochoa|psp | Sortilin (100 kDa NT receptor) (Glycoprotein 95) (Gp95) (Neurotensin receptor 3) (NT3) (NTR3) | Functions as a sorting receptor in the Golgi compartment and as a clearance receptor on the cell surface. Required for protein transport from the Golgi apparatus to the lysosomes by a pathway that is independent of the mannose-6-phosphate receptor (M6PR). Lysosomal proteins bind specifically to the receptor in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelysosomal compartment where the low pH mediates the dissociation of the complex (PubMed:16787399). The receptor is then recycled back to the Golgi for another round of trafficking through its binding to the retromer. Also required for protein transport from the Golgi apparatus to the endosomes. Promotes neuronal apoptosis by mediating endocytosis of the proapoptotic precursor forms of BDNF (proBDNF) and NGFB (proNGFB). Also acts as a receptor for neurotensin. May promote mineralization of the extracellular matrix during osteogenic differentiation by scavenging extracellular LPL. Probably required in adipocytes for the formation of specialized storage vesicles containing the glucose transporter SLC2A4/GLUT4 (GLUT4 storage vesicles, or GSVs). These vesicles provide a stable pool of SLC2A4 and confer increased responsiveness to insulin. May also mediate transport from the endoplasmic reticulum to the Golgi. {ECO:0000269|PubMed:10085125, ECO:0000269|PubMed:11331584, ECO:0000269|PubMed:11390366, ECO:0000269|PubMed:12209882, ECO:0000269|PubMed:12598608, ECO:0000269|PubMed:14657016, ECO:0000269|PubMed:14985763, ECO:0000269|PubMed:15313463, ECO:0000269|PubMed:15930396, ECO:0000269|PubMed:15987945, ECO:0000269|PubMed:16787399, ECO:0000269|PubMed:18817523}. |
Q99575 | POP1 | S24 | ochoa | Ribonucleases P/MRP protein subunit POP1 (hPOP1) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}. |
Q99575 | POP1 | S77 | ochoa | Ribonucleases P/MRP protein subunit POP1 (hPOP1) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}. |
Q99590 | SCAF11 | S474 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99607 | ELF4 | S545 | ochoa | ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) | Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}. |
Q99728 | BARD1 | S364 | ochoa | BRCA1-associated RING domain protein 1 (BARD-1) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase BARD1) | E3 ubiquitin-protein ligase. The BRCA1-BARD1 heterodimer specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Plays a central role in the control of the cell cycle in response to DNA damage. Acts by mediating ubiquitin E3 ligase activity that is required for its tumor suppressor function. Also forms a heterodimer with CSTF1/CSTF-50 to modulate mRNA processing and RNAP II stability by inhibiting pre-mRNA 3' cleavage. {ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:20351172}. |
Q99755 | PIP5K1A | S476 | ochoa | Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha (PIP5K1-alpha) (PtdIns(4)P-5-kinase 1 alpha) (EC 2.7.1.68) (68 kDa type I phosphatidylinositol 4-phosphate 5-kinase alpha) (Phosphatidylinositol 4-phosphate 5-kinase type I alpha) (PIP5KIalpha) | Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:21477596, PubMed:22942276, PubMed:8955136). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (PubMed:19158393, PubMed:20660631). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Can also use phosphatidylinositol (PtdIns) as substrate in vitro (PubMed:22942276). Together with PIP5K1C, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle ingestion by activating the WAS GTPase-binding protein that induces Arp2/3 dependent actin polymerization at the nascent phagocytic cup (By similarity). Together with PIP5K1B, is required, after stimulation by G-protein coupled receptors, for the synthesis of IP3 that will induce stable platelet adhesion (By similarity). Recruited to the plasma membrane by the E-cadherin/beta-catenin complex where it provides the substrate PtdIns(4,5)P2 for the production of PtdIns(3,4,5)P3, IP3 and DAG, that will mobilize internal calcium and drive keratinocyte differentiation (PubMed:19158393). Positively regulates insulin-induced translocation of SLC2A4 to the cell membrane in adipocytes (By similarity). Together with PIP5K1C has a role during embryogenesis (By similarity). Independently of its catalytic activity, is required for membrane ruffling formation, actin organization and focal adhesion formation during directional cell migration by controlling integrin-induced translocation of the small GTPase RAC1 to the plasma membrane (PubMed:20660631). Also functions in the nucleus where it acts as an activator of TUT1 adenylyltransferase activity in nuclear speckles, thereby regulating mRNA polyadenylation of a select set of mRNAs (PubMed:18288197). {ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:19158393, ECO:0000269|PubMed:20660631, ECO:0000269|PubMed:21477596, ECO:0000269|PubMed:22942276, ECO:0000269|PubMed:8955136}. |
Q99877 | H2BC15 | S92 | ochoa | Histone H2B type 1-N (Histone H2B.d) (H2B/d) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q99879 | H2BC14 | S92 | ochoa | Histone H2B type 1-M (Histone H2B.e) (H2B/e) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q99880 | H2BC13 | S92 | ochoa | Histone H2B type 1-L (Histone H2B.c) (H2B/c) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q9BPX5 | ARPC5L | S91 | ochoa | Actin-related protein 2/3 complex subunit 5-like protein (Arp2/3 complex 16 kDa subunit 2) (ARC16-2) | May function as component of the Arp2/3 complex which is involved in regulation of actin polymerization and together with an activating nucleation-promoting factor (NPF) mediates the formation of branched actin networks. |
Q9BQ61 | TRIR | S50 | ochoa | Telomerase RNA component interacting RNase (EC 3.1.13.-) (Exoribonuclease TRIR) | Exoribonuclease that is part of the telomerase RNA 3' end processing complex and which has the ability to cleave all four unpaired RNA nucleotides from the 5' end or 3' end with higher efficiency for purine bases (PubMed:28322335). {ECO:0000269|PubMed:28322335}. |
Q9BQ89 | FAM110A | S229 | ochoa | Protein FAM110A | None |
Q9BQE4 | SELENOS | S147 | ochoa | Selenoprotein S (SelS) (VCP-interacting membrane protein) | Involved in the degradation process of misfolded endoplasmic reticulum (ER) luminal proteins. Participates in the transfer of misfolded proteins from the ER to the cytosol, where they are destroyed by the proteasome in a ubiquitin-dependent manner. Probably acts by serving as a linker between DERL1, which mediates the retrotranslocation of misfolded proteins into the cytosol, and the ATPase complex VCP, which mediates the translocation and ubiquitination. {ECO:0000269|PubMed:15215856}. |
Q9BUA3 | SPINDOC | S82 | ochoa | Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) | Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}. |
Q9BWH6 | RPAP1 | S201 | ochoa | RNA polymerase II-associated protein 1 | Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. Required for interaction of the RNA polymerase II complex with acetylated histone H3. {ECO:0000269|PubMed:17643375}. |
Q9BYT3 | STK33 | S470 | ochoa | Serine/threonine-protein kinase 33 (EC 2.7.11.1) | Serine/threonine protein kinase required for spermatid differentiation and male fertility (PubMed:37146716, PubMed:38781365). Promotes sperm flagella assembly during spermatogenesis by mediating phosphorylation of fibrous sheath proteins AKAP3 and AKAP4 (By similarity). Also phosphorylates vimentin/VIM, thereby regulating the dynamic behavior of the intermediate filament cytoskeleton (By similarity). {ECO:0000250|UniProtKB:Q924X7, ECO:0000269|PubMed:37146716, ECO:0000269|PubMed:38781365}. |
Q9BZH6 | WDR11 | S399 | ochoa | WD repeat-containing protein 11 (Bromodomain and WD repeat-containing protein 2) (WD repeat-containing protein 15) | Involved in the Hedgehog (Hh) signaling pathway, is essential for normal ciliogenesis (PubMed:29263200). Regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotropin-releasing hormone production (PubMed:29263200). WDR11 complex facilitates the tethering of Adaptor protein-1 complex (AP-1)-derived vesicles. WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). {ECO:0000269|PubMed:29263200, ECO:0000269|PubMed:29426865}. |
Q9C0B0 | UNK | Y412 | ochoa | RING finger protein unkempt homolog (Zinc finger CCCH domain-containing protein 5) | Sequence-specific RNA-binding protein which plays an important role in the establishment and maintenance of the early morphology of cortical neurons during embryonic development. Acts as a translation repressor and controls a translationally regulated cell morphology program to ensure proper structuring of the nervous system. Translational control depends on recognition of its binding element within target mRNAs which consists of a mandatory UAG trimer upstream of a U/A-rich motif. Associated with polysomes (PubMed:25737280). {ECO:0000269|PubMed:25737280}. |
Q9C0B5 | ZDHHC5 | S428 | ochoa | Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}. |
Q9C0C9 | UBE2O | S99 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0F1 | CEP44 | S343 | ochoa | Centrosomal protein of 44 kDa (Cep44) (HBV PreS1-transactivated protein 3) (PS1TP3) | Centriole-enriched microtubule-binding protein involved in centriole biogenesis. In collaboration with CEP295 and POC1B, is required for the centriole-to-centrosome conversion by ensuring the formation of bona fide centriole wall (PubMed:32060285). Functions as a linker component that maintains centrosome cohesion. Associates with CROCC and regulates its stability and localization to the centrosome (PubMed:31974111). {ECO:0000269|PubMed:31974111, ECO:0000269|PubMed:32060285}. |
Q9C0I1 | MTMR12 | S716 | ochoa | Myotubularin-related protein 12 (Inactive phosphatidylinositol 3-phosphatase 12) (Phosphatidylinositol 3 phosphate 3-phosphatase adapter subunit) (3-PAP) (3-phosphatase adapter protein) | Acts as an adapter for the myotubularin-related phosphatases (PubMed:11504939, PubMed:12847286, PubMed:23818870). Regulates phosphatase MTM1 protein stability and possibly its intracellular location (PubMed:23818870). By stabilizing MTM1 protein levels, required for skeletal muscle maintenance but not for myogenesis (By similarity). {ECO:0000250|UniProtKB:Q80TA6, ECO:0000269|PubMed:11504939, ECO:0000269|PubMed:12847286, ECO:0000269|PubMed:23818870}. |
Q9C0K0 | BCL11B | S257 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9C0K0 | BCL11B | S789 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9H165 | BCL11A | S735 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H1B7 | IRF2BPL | S220 | ochoa | Probable E3 ubiquitin-protein ligase IRF2BPL (EC 2.3.2.27) (Enhanced at puberty protein 1) (Interferon regulatory factor 2-binding protein-like) | Probable E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins (PubMed:29374064). Through the degradation of CTNNB1, functions downstream of FOXF2 to negatively regulate the Wnt signaling pathway (PubMed:29374064). Probably plays a role in the development of the central nervous system and in neuronal maintenance (Probable). Also acts as a transcriptional regulator of genes controlling female reproductive function. May play a role in gene transcription by transactivating GNRH1 promoter and repressing PENK promoter (By similarity). {ECO:0000250|UniProtKB:Q5EIC4, ECO:0000269|PubMed:29374064, ECO:0000305|PubMed:17334524, ECO:0000305|PubMed:29374064, ECO:0000305|PubMed:30057031}. |
Q9H1H9 | KIF13A | S1394 | ochoa | Kinesin-like protein KIF13A (Kinesin-like protein RBKIN) | Plus end-directed microtubule-dependent motor protein involved in intracellular transport and regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis and cytokinesis. Mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. Also required for the abscission step in cytokinesis: mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. {ECO:0000269|PubMed:19841138, ECO:0000269|PubMed:20208530}. |
Q9H2S9 | IKZF4 | S241 | ochoa | Zinc finger protein Eos (Ikaros family zinc finger protein 4) | DNA-binding protein that binds to the 5'GGGAATRCC-3' Ikaros-binding sequence. Transcriptional repressor. Interacts with SPI1 and MITF to repress transcription of the CTSK and ACP5 promoters via recruitment of corepressors SIN3A and CTBP2. May be involved in the development of central and peripheral nervous systems. Essential for the inhibitory function of regulatory T-cells (Treg). Mediates FOXP3-mediated gene silencing in regulatory T-cells (Treg) via recruitment of corepressor CTBP1 (By similarity). {ECO:0000250|UniProtKB:Q8C208, ECO:0000269|PubMed:10978333, ECO:0000269|PubMed:12015313, ECO:0000269|PubMed:12444977}. |
Q9H2Y7 | ZNF106 | S509 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H361 | PABPC3 | S342 | ochoa | Polyadenylate-binding protein 3 (PABP-3) (Poly(A)-binding protein 3) (Testis-specific poly(A)-binding protein) | Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism. Binds poly(A) with a slightly lower affinity as compared to PABPC1. |
Q9H3D4 | TP63 | S622 | ochoa | Tumor protein 63 (p63) (Chronic ulcerative stomatitis protein) (CUSP) (Keratinocyte transcription factor KET) (Transformation-related protein 63) (TP63) (Tumor protein p73-like) (p73L) (p40) (p51) | Acts as a sequence specific DNA binding transcriptional activator or repressor. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. Isoform 2 activates RIPK4 transcription. May be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. Involved in Notch signaling by probably inducing JAG1 and JAG2. Plays a role in the regulation of epithelial morphogenesis. The ratio of DeltaN-type and TA*-type isoforms may govern the maintenance of epithelial stem cell compartments and regulate the initiation of epithelial stratification from the undifferentiated embryonal ectoderm. Required for limb formation from the apical ectodermal ridge. Activates transcription of the p21 promoter. {ECO:0000269|PubMed:11641404, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12446779, ECO:0000269|PubMed:12446784, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:22197488, ECO:0000269|PubMed:9774969}. |
Q9H4B6 | SAV1 | S136 | ochoa | Protein salvador homolog 1 (45 kDa WW domain protein) (hWW45) | Regulator of STK3/MST2 and STK4/MST1 in the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:29063833). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. SAV1 is required for STK3/MST2 and STK4/MST1 activation and promotes cell-cycle exit and terminal differentiation in developing epithelial tissues. Plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosomes, and its ability to phosphorylate CROCC and CEP250. In conjunction with STK3/MST2, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation. {ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:19212654, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:29063833}. |
Q9H4L5 | OSBPL3 | S765 | ochoa | Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) | Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}. |
Q9H4L7 | SMARCAD1 | S34 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) | DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}. |
Q9H6A9 | PCNX3 | S707 | ochoa | Pecanex-like protein 3 (Pecanex homolog protein 3) | None |
Q9H7N4 | SCAF1 | S847 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H8K7 | PAAT | S253 | ochoa | ATPase PAAT (EC 3.6.1.-) (Protein associated with ABC transporters) (PAAT) | ATPase that regulates mitochondrial ABC transporters ABCB7, ABCB8/MITOSUR and ABCB10 (PubMed:25063848). Regulates mitochondrial ferric concentration and heme biosynthesis and plays a role in the maintenance of mitochondrial homeostasis and cell survival (PubMed:25063848). {ECO:0000269|PubMed:25063848}. |
Q9HB19 | PLEKHA2 | S321 | ochoa | Pleckstrin homology domain-containing family A member 2 (PH domain-containing family A member 2) (Tandem PH domain-containing protein 2) (TAPP-2) | Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane (By similarity). {ECO:0000250}. |
Q9HC44 | GPBP1L1 | S50 | ochoa | Vasculin-like protein 1 (GC-rich promoter-binding protein 1-like 1) | Possible transcription factor. {ECO:0000305}. |
Q9NP98 | MYOZ1 | S83 | ochoa | Myozenin-1 (Calsarcin-2) (Filamin-, actinin- and telethonin-binding protein) (Protein FATZ) | Myozenins may serve as intracellular binding proteins involved in linking Z-disk proteins such as alpha-actinin, gamma-filamin, TCAP/telethonin, LDB3/ZASP and localizing calcineurin signaling to the sarcomere. Plays an important role in the modulation of calcineurin signaling. May play a role in myofibrillogenesis. |
Q9NPB6 | PARD6A | S319 | ochoa | Partitioning defective 6 homolog alpha (PAR-6) (PAR-6 alpha) (PAR-6A) (PAR6C) (Tax interaction protein 40) (TIP-40) | Adapter protein involved in asymmetrical cell division and cell polarization processes. Probably involved in the formation of epithelial tight junctions. Association with PARD3 may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly. The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10873802). Regulates centrosome organization and function. Essential for the centrosomal recruitment of key proteins that control centrosomal microtubule organization (PubMed:20719959). {ECO:0000269|PubMed:10873802, ECO:0000269|PubMed:20719959}. |
Q9NPI6 | DCP1A | S180 | ochoa | mRNA-decapping enzyme 1A (EC 3.6.1.62) (Smad4-interacting transcriptional co-activator) (Transcription factor SMIF) | Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:12417715). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12417715). Contributes to the transactivation of target genes after stimulation by TGFB1 (PubMed:11836524). Essential for embryonic development (PubMed:33813271). {ECO:0000269|PubMed:11836524, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:33813271}. |
Q9NRR3 | CDC42SE2 | S55 | ochoa | CDC42 small effector protein 2 (Small effector of CDC42 protein 2) | Probably involved in the organization of the actin cytoskeleton by acting downstream of CDC42, inducing actin filament assembly. Alters CDC42-induced cell shape changes. In activated T-cells, may play a role in CDC42-mediated F-actin accumulation at the immunological synapse. May play a role in early contractile events in phagocytosis in macrophages. {ECO:0000269|PubMed:10816584, ECO:0000269|PubMed:15840583}. |
Q9NSI6 | BRWD1 | S1482 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NUQ6 | SPATS2L | S369 | ochoa | SPATS2-like protein (DNA polymerase-transactivated protein 6) (Stress granule and nucleolar protein) (SGNP) | None |
Q9NWH9 | SLTM | S789 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWH9 | SLTM | S999 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NX94 | WBP1L | S228 | ochoa | WW domain binding protein 1-like (Outcome predictor in acute leukemia 1) | None |
Q9NXF1 | TEX10 | S293 | ochoa | Testis-expressed protein 10 | Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit (PubMed:21326211). {ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}. |
Q9NY27 | PPP4R2 | S139 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q9NZB2 | FAM120A | S511 | ochoa | Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) | Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}. |
Q9NZV1 | CRIM1 | S981 | ochoa | Cysteine-rich motor neuron 1 protein (CRIM-1) (Cysteine-rich repeat-containing protein S52) [Cleaved into: Processed cysteine-rich motor neuron 1 protein] | May play a role in CNS development by interacting with growth factors implicated in motor neuron differentiation and survival. May play a role in capillary formation and maintenance during angiogenesis. Modulates BMP activity by affecting its processing and delivery to the cell surface. {ECO:0000269|PubMed:12464430, ECO:0000269|PubMed:12805376}. |
Q9P107 | GMIP | S460 | ochoa | GEM-interacting protein (GMIP) | Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}. |
Q9P1Y5 | CAMSAP3 | S351 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P212 | PLCE1 | S1689 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1 (EC 3.1.4.11) (Pancreas-enriched phospholipase C) (Phosphoinositide phospholipase C-epsilon-1) (Phospholipase C-epsilon-1) (PLC-epsilon-1) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. PLCE1 is a bifunctional enzyme which also regulates small GTPases of the Ras superfamily through its Ras guanine-exchange factor (RasGEF) activity. As an effector of heterotrimeric and small G-protein, it may play a role in cell survival, cell growth, actin organization and T-cell activation. In podocytes, is involved in the regulation of lamellipodia formation. Acts downstream of AVIL to allow ARP2/3 complex assembly (PubMed:29058690). {ECO:0000269|PubMed:11022047, ECO:0000269|PubMed:11395506, ECO:0000269|PubMed:11715024, ECO:0000269|PubMed:11877431, ECO:0000269|PubMed:12721365, ECO:0000269|PubMed:16537651, ECO:0000269|PubMed:17086182, ECO:0000269|PubMed:29058690}. |
Q9P219 | CCDC88C | S1584 | ochoa | Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) | Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}. |
Q9P265 | DIP2B | S186 | ochoa | Disco-interacting protein 2 homolog B (DIP2 homolog B) | Negatively regulates axonal outgrowth and is essential for normal synaptic transmission. Not required for regulation of axon polarity. Promotes acetylation of alpha-tubulin. {ECO:0000250|UniProtKB:Q3UH60}. |
Q9P266 | JCAD | S629 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P270 | SLAIN2 | S88 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P2D6 | FAM135A | S640 | ochoa | Protein FAM135A | None |
Q9UBL3 | ASH2L | S292 | ochoa | Set1/Ash2 histone methyltransferase complex subunit ASH2 (ASH2-like protein) | Transcriptional regulator (PubMed:12670868). Component or associated component of some histone methyltransferase complexes which regulates transcription through recruitment of those complexes to gene promoters (PubMed:19131338). Component of the Set1/Ash2 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3, but not if the neighboring 'Lys-9' residue is already methylated (PubMed:19556245). As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3 (PubMed:19556245). May play a role in hematopoiesis (PubMed:12670868). In association with RBBP5 and WDR5, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}. |
Q9UER7 | DAXX | S403 | ochoa | Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) | Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}. |
Q9UGU0 | TCF20 | S544 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU5 | HMGXB4 | S55 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UHB7 | AFF4 | S499 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UHB7 | AFF4 | S526 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UHF7 | TRPS1 | Y806 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UIF9 | BAZ2A | S1376 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UJD0 | RIMS3 | S21 | ochoa | Regulating synaptic membrane exocytosis protein 3 (Nim3) (RIM3 gamma) (Rab-3-interacting molecule 3) (RIM 3) | Regulates synaptic membrane exocytosis. {ECO:0000250}. |
Q9UJD0 | RIMS3 | S22 | ochoa | Regulating synaptic membrane exocytosis protein 3 (Nim3) (RIM3 gamma) (Rab-3-interacting molecule 3) (RIM 3) | Regulates synaptic membrane exocytosis. {ECO:0000250}. |
Q9UJF2 | RASAL2 | S812 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UK76 | JPT1 | S80 | ochoa | Jupiter microtubule associated homolog 1 (Androgen-regulated protein 2) (Hematological and neurological expressed 1 protein) [Cleaved into: Jupiter microtubule associated homolog 1, N-terminally processed] | Modulates negatively AKT-mediated GSK3B signaling (PubMed:21323578, PubMed:22155408). Induces CTNNB1 'Ser-33' phosphorylation and degradation through the suppression of the inhibitory 'Ser-9' phosphorylation of GSK3B, which represses the function of the APC:CTNNB1:GSK3B complex and the interaction with CDH1/E-cadherin in adherent junctions (PubMed:25169422). Plays a role in the regulation of cell cycle and cell adhesion (PubMed:25169422, PubMed:25450365). Has an inhibitory role on AR-signaling pathway through the induction of receptor proteasomal degradation (PubMed:22155408). {ECO:0000269|PubMed:21323578, ECO:0000269|PubMed:22155408, ECO:0000269|PubMed:25169422, ECO:0000269|PubMed:25450365}. |
Q9ULJ3 | ZBTB21 | S285 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9UMD9 | COL17A1 | S56 | ochoa | Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] | May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies. |
Q9UMS6 | SYNPO2 | S264 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UNZ2 | NSFL1C | S177 | ochoa | NSFL1 cofactor p47 (UBX domain-containing protein 2C) (p97 cofactor p47) | Reduces the ATPase activity of VCP (By similarity). Necessary for the fragmentation of Golgi stacks during mitosis and for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). May play a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Inhibits the activity of CTSL (in vitro) (PubMed:15498563). Together with UBXN2B/p37, regulates the centrosomal levels of kinase AURKA/Aurora A during mitotic progression by promoting AURKA removal from centrosomes in prophase (PubMed:23649807). Also, regulates spindle orientation during mitosis (PubMed:23649807). {ECO:0000250|UniProtKB:O35987, ECO:0000269|PubMed:15498563, ECO:0000269|PubMed:23649807}. |
Q9UPS6 | SETD1B | S1767 | ochoa | Histone-lysine N-methyltransferase SETD1B (EC 2.1.1.364) (Lysine N-methyltransferase 2G) (SET domain-containing protein 1B) (hSET1B) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:17355966, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17355966, PubMed:25561738). Plays an essential role in regulating the transcriptional programming of multipotent hematopoietic progenitor cells and lymphoid lineage specification during hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CFT2, ECO:0000269|PubMed:17355966, ECO:0000269|PubMed:25561738}. |
Q9UQ35 | SRRM2 | S1463 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S2327 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y263 | PLAA | S485 | ochoa | Phospholipase A-2-activating protein (PLA2P) (PLAP) | Plays a role in protein ubiquitination, sorting and degradation through its association with VCP (PubMed:27753622). Involved in ubiquitin-mediated membrane proteins trafficking to late endosomes in an ESCRT-dependent manner, and hence plays a role in synaptic vesicle recycling (By similarity). May play a role in macroautophagy, regulating for instance the clearance of damaged lysosomes (PubMed:27753622). Plays a role in cerebellar Purkinje cell development (By similarity). Positively regulates cytosolic and calcium-independent phospholipase A2 activities in a tumor necrosis factor alpha (TNF-alpha)- or lipopolysaccharide (LPS)-dependent manner, and hence prostaglandin E2 biosynthesis (PubMed:18291623, PubMed:28007986). {ECO:0000250|UniProtKB:P27612, ECO:0000269|PubMed:18291623, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:28007986}. |
Q9Y2J4 | AMOTL2 | S180 | ochoa | Angiomotin-like protein 2 (Leman coiled-coil protein) (LCCP) | Regulates the translocation of phosphorylated SRC to peripheral cell-matrix adhesion sites. Required for proper architecture of actin filaments. Plays a role in coupling actin fibers to cell junctions in endothelial cells and is therefore required for correct endothelial cell morphology via facilitating transcellular transmission of mechanical force resulting in endothelial cell elongation (By similarity). Required for the anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane which facilitates organization of radial actin fiber structure and cellular response to contractile forces (PubMed:28842668). This contributes to maintenance of cell area, size, shape, epithelial sheet organization and trophectoderm cell properties that facilitate blastocyst zona hatching (PubMed:28842668). Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. Participates in angiogenesis. Activates the Hippo signaling pathway in response to cell contact inhibition via interaction with and ubiquitination by Crumbs complex-bound WWP1 (PubMed:34404733). Ubiquitinated AMOTL2 then interacts with LATS2 which in turn phosphorylates YAP1, excluding it from the nucleus and localizing it to the cytoplasm and tight junctions, therefore ultimately repressing YAP1-driven transcription of target genes (PubMed:17293535, PubMed:21205866, PubMed:26598551). Acts to inhibit WWTR1/TAZ transcriptional coactivator activity via sequestering WWTR1/TAZ in the cytoplasm and at tight junctions (PubMed:23911299). Regulates the size and protein composition of the podosome cortex and core at myofibril neuromuscular junctions (PubMed:23525008). Selectively promotes FGF-induced MAPK activation through SRC (PubMed:17293535). May play a role in the polarity, proliferation and migration of endothelial cells. {ECO:0000250|UniProtKB:Q8K371, ECO:0000269|PubMed:17293535, ECO:0000269|PubMed:21205866, ECO:0000269|PubMed:21937427, ECO:0000269|PubMed:22362771, ECO:0000269|PubMed:23525008, ECO:0000269|PubMed:23911299, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:28842668, ECO:0000269|PubMed:34404733}. |
Q9Y2K6 | USP20 | S290 | ochoa | Ubiquitin carboxyl-terminal hydrolase 20 (EC 3.4.19.12) (Deubiquitinating enzyme 20) (Ubiquitin thioesterase 20) (Ubiquitin-specific-processing protease 20) (VHL-interacting deubiquitinating enzyme 2) (hVDU2) | Deubiquitinating enzyme that plays a role in many cellular processes including autophagy, cellular antiviral response or membrane protein biogenesis (PubMed:27801882, PubMed:29487085). Attenuates TLR4-mediated NF-kappa-B signaling by cooperating with beta-arrestin-2/ARRB2 and inhibiting TRAF6 autoubiquitination (PubMed:26839314). Promotes cellular antiviral responses by deconjugating 'Lys-33' and 'Lys-48'-linked ubiquitination of STING1 leading to its stabilization (PubMed:27801882). Plays an essential role in autophagy induction by regulating the ULK1 stability through deubiquitination of ULK1 (PubMed:29487085). Acts as a positive regulator for NF-kappa-B activation by TNF-alpha through deubiquitinating 'Lys-48'-linked polyubiquitination of SQSTM1, leading to its increased stability (PubMed:32354117). Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination beta-2 adrenergic receptor (ADRB2) (PubMed:19424180). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, possibly leading to beta-arrestins deubiquitination and disengagement from ADRB2 (PubMed:19424180). This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Deubiquitinates HIF1A, leading to stabilize HIF1A and enhance HIF1A-mediated activity (PubMed:15776016). Deubiquitinates MCL1, a pivotal member of the anti-apoptotic Bcl-2 protein family to regulate its stability (PubMed:35063767). Within the endoplasmic reticulum, participates with USP33 in the rescue of post-translationally targeted membrane proteins that are inappropriately ubiquitinated by the cytosolic protein quality control in the cytosol (PubMed:33792613). {ECO:0000269|PubMed:12056827, ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:15776016, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:26839314, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:32354117, ECO:0000269|PubMed:33792613, ECO:0000269|PubMed:35063767}. |
Q9Y2K6 | USP20 | S305 | ochoa | Ubiquitin carboxyl-terminal hydrolase 20 (EC 3.4.19.12) (Deubiquitinating enzyme 20) (Ubiquitin thioesterase 20) (Ubiquitin-specific-processing protease 20) (VHL-interacting deubiquitinating enzyme 2) (hVDU2) | Deubiquitinating enzyme that plays a role in many cellular processes including autophagy, cellular antiviral response or membrane protein biogenesis (PubMed:27801882, PubMed:29487085). Attenuates TLR4-mediated NF-kappa-B signaling by cooperating with beta-arrestin-2/ARRB2 and inhibiting TRAF6 autoubiquitination (PubMed:26839314). Promotes cellular antiviral responses by deconjugating 'Lys-33' and 'Lys-48'-linked ubiquitination of STING1 leading to its stabilization (PubMed:27801882). Plays an essential role in autophagy induction by regulating the ULK1 stability through deubiquitination of ULK1 (PubMed:29487085). Acts as a positive regulator for NF-kappa-B activation by TNF-alpha through deubiquitinating 'Lys-48'-linked polyubiquitination of SQSTM1, leading to its increased stability (PubMed:32354117). Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination beta-2 adrenergic receptor (ADRB2) (PubMed:19424180). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, possibly leading to beta-arrestins deubiquitination and disengagement from ADRB2 (PubMed:19424180). This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Deubiquitinates HIF1A, leading to stabilize HIF1A and enhance HIF1A-mediated activity (PubMed:15776016). Deubiquitinates MCL1, a pivotal member of the anti-apoptotic Bcl-2 protein family to regulate its stability (PubMed:35063767). Within the endoplasmic reticulum, participates with USP33 in the rescue of post-translationally targeted membrane proteins that are inappropriately ubiquitinated by the cytosolic protein quality control in the cytosol (PubMed:33792613). {ECO:0000269|PubMed:12056827, ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:15776016, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:26839314, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:32354117, ECO:0000269|PubMed:33792613, ECO:0000269|PubMed:35063767}. |
Q9Y388 | RBMX2 | S188 | ochoa | RNA-binding motif protein, X-linked 2 | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9Y3L3 | SH3BP1 | S244 | ochoa | SH3 domain-binding protein 1 | GTPase activating protein (GAP) which specifically converts GTP-bound Rho-type GTPases including RAC1 and CDC42 in their inactive GDP-bound form. By specifically inactivating RAC1 at the leading edge of migrating cells, it regulates the spatiotemporal organization of cell protrusions which is important for proper cell migration (PubMed:21658605). Also negatively regulates CDC42 in the process of actin remodeling and the formation of epithelial cell junctions (PubMed:22891260). Through its GAP activity toward RAC1 and/or CDC42 plays a specific role in phagocytosis of large particles. Specifically recruited by a PI3 kinase/PI3K-dependent mechanism to sites of large particles engagement, inactivates RAC1 and/or CDC42 allowing the reorganization of the underlying actin cytoskeleton required for engulfment (PubMed:26465210). It also plays a role in angiogenesis and the process of repulsive guidance as part of a semaphorin-plexin signaling pathway. Following the binding of PLXND1 to extracellular SEMA3E it dissociates from PLXND1 and inactivates RAC1, inducing the intracellular reorganization of the actin cytoskeleton and the collapse of cells (PubMed:24841563). {ECO:0000269|PubMed:21658605, ECO:0000269|PubMed:22891260, ECO:0000269|PubMed:24841563, ECO:0000269|PubMed:26465210}. |
Q9Y490 | TLN1 | S1164 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4H2 | IRS2 | S805 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y4K4 | MAP4K5 | S434 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 5 (EC 2.7.11.1) (Kinase homologous to SPS1/STE20) (KHS) (MAPK/ERK kinase kinase kinase 5) (MEK kinase kinase 5) (MEKKK 5) | May play a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway. {ECO:0000269|PubMed:9038372}. |
Q9Y5P4 | CERT1 | S126 | ochoa | Ceramide transfer protein (hCERT) (Collagen type IV alpha-3-binding protein) (Goodpasture antigen-binding protein) (GPBP) (START domain-containing protein 11) (StARD11) (StAR-related lipid transfer protein 11) | Shelters ceramides and diacylglycerol lipids inside its START domain and mediates the intracellular trafficking of ceramides and diacylglycerol lipids in a non-vesicular manner. {ECO:0000269|PubMed:14685229, ECO:0000269|PubMed:17591919, ECO:0000269|PubMed:18184806, ECO:0000269|PubMed:20036255}. |
Q9Y5T5 | USP16 | S552 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 16 (EC 3.4.19.12) (Deubiquitinating enzyme 16) (Ubiquitin thioesterase 16) (Ubiquitin-processing protease UBP-M) (Ubiquitin-specific-processing protease 16) | Specifically deubiquitinates 'Lys-120' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (PubMed:17914355). Deubiquitination of histone H2A is a prerequisite for subsequent phosphorylation at 'Ser-11' of histone H3 (H3S10ph), and is required for chromosome segregation when cells enter into mitosis (PubMed:17914355). In resting B- and T-lymphocytes, phosphorylation by AURKB leads to enhance its activity, thereby maintaining transcription in resting lymphocytes. Regulates Hox gene expression via histone H2A deubiquitination (PubMed:17914355). Prefers nucleosomal substrates (PubMed:17914355). Does not deubiquitinate histone H2B (PubMed:17914355). Also deubiquitinates non-histone proteins, such as ribosomal protein RPS27A: deubiquitination of monoubiquitinated RPS27A promotes maturation of the 40S ribosomal subunit (PubMed:32129764). Also mediates deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5), promoting their stability. {ECO:0000255|HAMAP-Rule:MF_03062, ECO:0000269|PubMed:17914355, ECO:0000269|PubMed:32129764}. |
Q9Y6I9 | TEX264 | S272 | ochoa | Testis-expressed protein 264 (Putative secreted protein Zsig11) | Major reticulophagy (also called ER-phagy) receptor that acts independently of other candidate reticulophagy receptors to remodel subdomains of the endoplasmic reticulum into autophagosomes upon nutrient stress, which then fuse with lysosomes for endoplasmic reticulum turnover (PubMed:31006537, PubMed:31006538). The ATG8-containing isolation membrane (IM) cradles a tubular segment of TEX264-positive ER near a three-way junction, allowing the formation of a synapse of 2 juxtaposed membranes with trans interaction between the TEX264 and ATG8 proteins (PubMed:31006537). Expansion of the IM would extend the capture of ER, possibly through a 'zipper-like' process involving continued trans TEX264-ATG8 interactions, until poorly understood mechanisms lead to the fission of relevant membranes and, ultimately, autophagosomal membrane closure (PubMed:31006537). Also involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis: acts by bridging VCP/p97 to covalent DNA-protein cross-links (DPCs) and initiating resolution of DPCs by SPRTN (PubMed:32152270). {ECO:0000269|PubMed:31006537, ECO:0000269|PubMed:31006538, ECO:0000269|PubMed:32152270}. |
Q9Y6M4 | CSNK1G3 | S33 | ochoa | Casein kinase I isoform gamma-3 (CKI-gamma 3) (EC 2.7.11.1) | Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling. Regulates fast synaptic transmission mediated by glutamate (By similarity). {ECO:0000250}. |
Q9Y6Q6 | TNFRSF11A | S514 | ochoa | Tumor necrosis factor receptor superfamily member 11A (Osteoclast differentiation factor receptor) (ODFR) (Receptor activator of NF-KB) (CD antigen CD265) | Receptor for TNFSF11/RANKL/TRANCE/OPGL; essential for RANKL-mediated osteoclastogenesis (PubMed:9878548). Its interaction with EEIG1 promotes osteoclastogenesis via facilitating the transcription of NFATC1 and activation of PLCG2 (By similarity). Involved in the regulation of interactions between T-cells and dendritic cells (By similarity). {ECO:0000250|UniProtKB:O35305, ECO:0000269|PubMed:9878548}. |
Q9Y6R4 | MAP3K4 | S1252 | ochoa | Mitogen-activated protein kinase kinase kinase 4 (EC 2.7.11.25) (MAP three kinase 1) (MAPK/ERK kinase kinase 4) (MEK kinase 4) (MEKK 4) | Component of a protein kinase signal transduction cascade. Activates the CSBP2, P38 and JNK MAPK pathways, but not the ERK pathway. Specifically phosphorylates and activates MAP2K4 and MAP2K6. {ECO:0000269|PubMed:12052864, ECO:0000269|PubMed:9305639}. |
R4GMW8 | BIVM-ERCC5 | S878 | ochoa | DNA excision repair protein ERCC-5 | None |
Q15007 | WTAP | S283 | Sugiyama | Pre-mRNA-splicing regulator WTAP (Female-lethal(2)D homolog) (hFL(2)D) (WT1-associated protein) (Wilms tumor 1-associating protein) | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Required for accumulation of METTL3 and METTL14 to nuclear speckle (PubMed:24316715, PubMed:24407421, PubMed:24981863). Acts as a mRNA splicing regulator (PubMed:12444081). Regulates G2/M cell-cycle transition by binding to the 3' UTR of CCNA2, which enhances its stability (PubMed:17088532). Impairs WT1 DNA-binding ability and inhibits expression of WT1 target genes (PubMed:17095724). {ECO:0000269|PubMed:12444081, ECO:0000269|PubMed:17088532, ECO:0000269|PubMed:17095724, ECO:0000269|PubMed:24316715, ECO:0000269|PubMed:24407421, ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}. |
Q96RT7 | TUBGCP6 | S1176 | SIGNOR | Gamma-tubulin complex component 6 (GCP-6) | Component of the gamma-tubulin ring complex (gTuRC) which mediates microtubule nucleation (PubMed:11694571, PubMed:38305685, PubMed:38609661, PubMed:39321809). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:38305685, PubMed:38609661, PubMed:39321809). {ECO:0000269|PubMed:11694571, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
O60749 | SNX2 | S265 | Sugiyama | Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}. |
Q01844 | EWSR1 | S274 | Sugiyama | RNA-binding protein EWS (EWS oncogene) (Ewing sarcoma breakpoint region 1 protein) | Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Might normally function as a transcriptional repressor (PubMed:10767297). EWS-fusion-proteins (EFPS) may play a role in the tumorigenic process. They may disturb gene expression by mimicking, or interfering with the normal function of CTD-POLII within the transcription initiation complex. They may also contribute to an aberrant activation of the fusion protein target genes. {ECO:0000269|PubMed:10767297, ECO:0000269|PubMed:21256132}. |
Q01860 | POU5F1 | S289 | PSP | POU domain, class 5, transcription factor 1 (Octamer-binding protein 3) (Oct-3) (Octamer-binding protein 4) (Oct-4) (Octamer-binding transcription factor 3) (OTF-3) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3'). Forms a trimeric complex with SOX2 or SOX15 on DNA and controls the expression of a number of genes involved in embryonic development such as YES1, FGF4, UTF1 and ZFP206. Critical for early embryogenesis and for embryonic stem cell pluripotency. {ECO:0000269|PubMed:18035408}. |
P19525 | EIF2AK2 | S462 | Sugiyama | Interferon-induced, double-stranded RNA-activated protein kinase (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 2) (eIF-2A protein kinase 2) (Interferon-inducible RNA-dependent protein kinase) (P1/eIF-2A protein kinase) (Protein kinase RNA-activated) (PKR) (Protein kinase R) (Tyrosine-protein kinase EIF2AK2) (EC 2.7.10.2) (p68 kinase) | IFN-induced dsRNA-dependent serine/threonine-protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) and plays a key role in the innate immune response to viral infection (PubMed:18835251, PubMed:19189853, PubMed:19507191, PubMed:21072047, PubMed:21123651, PubMed:22381929, PubMed:22948139, PubMed:23229543). Inhibits viral replication via the integrated stress response (ISR): EIF2S1/eIF-2-alpha phosphorylation in response to viral infection converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, resulting to a shutdown of cellular and viral protein synthesis, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4 (PubMed:19189853, PubMed:21123651, PubMed:22948139, PubMed:23229543). Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1) (PubMed:11836380, PubMed:19189853, PubMed:19840259, PubMed:20171114, PubMed:21710204, PubMed:23115276, PubMed:23399035). Also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation: phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11 (PubMed:11836380, PubMed:19229320, PubMed:22214662). In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteasomal degradation (PubMed:20395957). Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding pro-inflammatory cytokines and IFNs (PubMed:22948139, PubMed:23084476, PubMed:23372823). Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6 (PubMed:10848580, PubMed:15121867, PubMed:15229216). Can act as both a positive and negative regulator of the insulin signaling pathway (ISP) (PubMed:20685959). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2) (PubMed:20685959). Can regulate NLRP3 inflammasome assembly and the activation of NLRP3, NLRP1, AIM2 and NLRC4 inflammasomes (PubMed:22801494). Plays a role in the regulation of the cytoskeleton by binding to gelsolin (GSN), sequestering the protein in an inactive conformation away from actin (By similarity). {ECO:0000250|UniProtKB:Q03963, ECO:0000269|PubMed:10848580, ECO:0000269|PubMed:11836380, ECO:0000269|PubMed:15121867, ECO:0000269|PubMed:15229216, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:19189853, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:19507191, ECO:0000269|PubMed:19840259, ECO:0000269|PubMed:20171114, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20685959, ECO:0000269|PubMed:21072047, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:21710204, ECO:0000269|PubMed:22214662, ECO:0000269|PubMed:22381929, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:22948139, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:23115276, ECO:0000269|PubMed:23229543, ECO:0000269|PubMed:23372823, ECO:0000269|PubMed:23399035, ECO:0000269|PubMed:32197074}. |
P16930 | FAH | S165 | Sugiyama | Fumarylacetoacetase (FAA) (EC 3.7.1.2) (Beta-diketonase) (Fumarylacetoacetate hydrolase) | None |
P22061 | PCMT1 | S133 | Sugiyama | Protein-L-isoaspartate(D-aspartate) O-methyltransferase (PIMT) (EC 2.1.1.77) (L-isoaspartyl protein carboxyl methyltransferase) (Protein L-isoaspartyl/D-aspartyl methyltransferase) (Protein-beta-aspartate methyltransferase) | Initiates the repair of damaged proteins by catalyzing methyl esterification of L-isoaspartyl and D-aspartyl residues produced by spontaneous isomerization and racemization of L-aspartyl and L-asparaginyl residues in aging peptides and proteins (PubMed:3167043, PubMed:6469980). Acts on EIF4EBP2, microtubule-associated protein 2, calreticulin, clathrin light chains a and b, Ubiquitin C-terminal hydrolase isozyme L1, phosphatidylethanolamine-binding protein 1, stathmin, beta-synuclein and alpha-synuclein (By similarity). {ECO:0000250|UniProtKB:P23506, ECO:0000269|PubMed:3167043, ECO:0000269|PubMed:6469980}. |
Q6XUX3 | DSTYK | S66 | Sugiyama | Dual serine/threonine and tyrosine protein kinase (EC 2.7.12.1) (Dusty protein kinase) (Dusty PK) (RIP-homologous kinase) (Receptor-interacting serine/threonine-protein kinase 5) (Sugen kinase 496) (SgK496) | Acts as a positive regulator of ERK phosphorylation downstream of fibroblast growth factor-receptor activation (PubMed:23862974, PubMed:28157540). Involved in the regulation of both caspase-dependent apoptosis and caspase-independent cell death (PubMed:15178406). In the skin, it plays a predominant role in suppressing caspase-dependent apoptosis in response to UV stress in a range of dermal cell types (PubMed:28157540). {ECO:0000269|PubMed:15178406, ECO:0000269|PubMed:23862974, ECO:0000269|PubMed:28157540}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 1.833111e-11 | 10.737 |
R-HSA-73927 | Depurination | 1.419674e-10 | 9.848 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 6.517461e-10 | 9.186 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 6.285877e-10 | 9.202 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 9.765321e-10 | 9.010 |
R-HSA-110331 | Cleavage of the damaged purine | 1.375321e-09 | 8.862 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 1.922585e-09 | 8.716 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 5.606083e-09 | 8.251 |
R-HSA-73928 | Depyrimidination | 5.606083e-09 | 8.251 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 5.039743e-09 | 8.298 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 7.891521e-09 | 8.103 |
R-HSA-171306 | Packaging Of Telomere Ends | 1.226439e-08 | 7.911 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 1.226439e-08 | 7.911 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 1.561387e-08 | 7.806 |
R-HSA-5334118 | DNA methylation | 2.117064e-08 | 7.674 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 3.118512e-08 | 7.506 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 3.118512e-08 | 7.506 |
R-HSA-73884 | Base Excision Repair | 3.131851e-08 | 7.504 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 5.738696e-08 | 7.241 |
R-HSA-5693606 | DNA Double Strand Break Response | 5.695737e-08 | 7.244 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 5.738649e-08 | 7.241 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 1.112993e-07 | 6.954 |
R-HSA-212300 | PRC2 methylates histones and DNA | 1.399522e-07 | 6.854 |
R-HSA-69473 | G2/M DNA damage checkpoint | 1.562917e-07 | 6.806 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 1.724281e-07 | 6.763 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 2.069732e-07 | 6.684 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 3.230889e-07 | 6.491 |
R-HSA-1221632 | Meiotic synapsis | 4.071576e-07 | 6.390 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 4.071576e-07 | 6.390 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 3.781400e-07 | 6.422 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 3.781400e-07 | 6.422 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 3.700887e-07 | 6.432 |
R-HSA-3214815 | HDACs deacetylate histones | 5.563714e-07 | 6.255 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 6.389447e-07 | 6.195 |
R-HSA-9710421 | Defective pyroptosis | 6.506178e-07 | 6.187 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 7.287126e-07 | 6.137 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 9.161766e-07 | 6.038 |
R-HSA-774815 | Nucleosome assembly | 9.161766e-07 | 6.038 |
R-HSA-4839726 | Chromatin organization | 9.985385e-07 | 6.001 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 1.081330e-06 | 5.966 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 1.158639e-06 | 5.936 |
R-HSA-5693538 | Homology Directed Repair | 1.148491e-06 | 5.940 |
R-HSA-5688426 | Deubiquitination | 1.423662e-06 | 5.847 |
R-HSA-73864 | RNA Polymerase I Transcription | 1.737650e-06 | 5.760 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 2.335818e-06 | 5.632 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 2.335818e-06 | 5.632 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 2.335818e-06 | 5.632 |
R-HSA-912446 | Meiotic recombination | 2.358111e-06 | 5.627 |
R-HSA-977225 | Amyloid fiber formation | 2.459220e-06 | 5.609 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 2.731277e-06 | 5.564 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 3.359262e-06 | 5.474 |
R-HSA-1474165 | Reproduction | 3.851116e-06 | 5.414 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 4.235886e-06 | 5.373 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 4.770498e-06 | 5.321 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 5.363138e-06 | 5.271 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 8.062481e-06 | 5.094 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 8.424953e-06 | 5.074 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 1.032777e-05 | 4.986 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 1.290897e-05 | 4.889 |
R-HSA-3247509 | Chromatin modifying enzymes | 1.860380e-05 | 4.730 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 1.933553e-05 | 4.714 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 1.955381e-05 | 4.709 |
R-HSA-1500620 | Meiosis | 2.131978e-05 | 4.671 |
R-HSA-5689880 | Ub-specific processing proteases | 2.394229e-05 | 4.621 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 2.405568e-05 | 4.619 |
R-HSA-9842860 | Regulation of endogenous retroelements | 2.585197e-05 | 4.588 |
R-HSA-68875 | Mitotic Prophase | 3.035156e-05 | 4.518 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 3.321029e-05 | 4.479 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 3.321029e-05 | 4.479 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 3.795837e-05 | 4.421 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 4.072342e-05 | 4.390 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 4.082911e-05 | 4.389 |
R-HSA-212165 | Epigenetic regulation of gene expression | 4.188338e-05 | 4.378 |
R-HSA-69481 | G2/M Checkpoints | 5.435565e-05 | 4.265 |
R-HSA-157579 | Telomere Maintenance | 8.035255e-05 | 4.095 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 8.361210e-05 | 4.078 |
R-HSA-3214847 | HATs acetylate histones | 9.424628e-05 | 4.026 |
R-HSA-9018519 | Estrogen-dependent gene expression | 1.133441e-04 | 3.946 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 1.189126e-04 | 3.925 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 1.503110e-04 | 3.823 |
R-HSA-9645723 | Diseases of programmed cell death | 1.526176e-04 | 3.816 |
R-HSA-73894 | DNA Repair | 1.784971e-04 | 3.748 |
R-HSA-211000 | Gene Silencing by RNA | 1.850385e-04 | 3.733 |
R-HSA-8852135 | Protein ubiquitination | 2.242896e-04 | 3.649 |
R-HSA-68867 | Assembly of the pre-replicative complex | 2.451925e-04 | 3.610 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 2.800207e-04 | 3.553 |
R-HSA-446728 | Cell junction organization | 4.175913e-04 | 3.379 |
R-HSA-73886 | Chromosome Maintenance | 5.286887e-04 | 3.277 |
R-HSA-74713 | IRS activation | 7.002622e-04 | 3.155 |
R-HSA-69002 | DNA Replication Pre-Initiation | 8.416390e-04 | 3.075 |
R-HSA-3214841 | PKMTs methylate histone lysines | 1.216105e-03 | 2.915 |
R-HSA-69620 | Cell Cycle Checkpoints | 1.404725e-03 | 2.852 |
R-HSA-1500931 | Cell-Cell communication | 1.596901e-03 | 2.797 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 1.935690e-03 | 2.713 |
R-HSA-9827857 | Specification of primordial germ cells | 2.136545e-03 | 2.670 |
R-HSA-2028269 | Signaling by Hippo | 2.136545e-03 | 2.670 |
R-HSA-9656249 | Defective Base Excision Repair Associated with OGG1 | 2.484174e-03 | 2.605 |
R-HSA-9609690 | HCMV Early Events | 2.525564e-03 | 2.598 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 2.531175e-03 | 2.597 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 2.688976e-03 | 2.570 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 2.803166e-03 | 2.552 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 2.803166e-03 | 2.552 |
R-HSA-421270 | Cell-cell junction organization | 2.817159e-03 | 2.550 |
R-HSA-2559583 | Cellular Senescence | 3.717489e-03 | 2.430 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 3.785148e-03 | 2.422 |
R-HSA-9610379 | HCMV Late Events | 3.963037e-03 | 2.402 |
R-HSA-74749 | Signal attenuation | 4.032914e-03 | 2.394 |
R-HSA-68886 | M Phase | 4.791489e-03 | 2.320 |
R-HSA-195721 | Signaling by WNT | 5.130806e-03 | 2.290 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 6.685105e-03 | 2.175 |
R-HSA-8875513 | MET interacts with TNS proteins | 6.685105e-03 | 2.175 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 6.685105e-03 | 2.175 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 6.685105e-03 | 2.175 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 6.718178e-03 | 2.173 |
R-HSA-1266695 | Interleukin-7 signaling | 7.119737e-03 | 2.148 |
R-HSA-389948 | Co-inhibition by PD-1 | 7.706976e-03 | 2.113 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 8.405021e-03 | 2.075 |
R-HSA-8939211 | ESR-mediated signaling | 1.058799e-02 | 1.975 |
R-HSA-69306 | DNA Replication | 9.451765e-03 | 2.024 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 1.269545e-02 | 1.896 |
R-HSA-418990 | Adherens junctions interactions | 1.405453e-02 | 1.852 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 1.411777e-02 | 1.850 |
R-HSA-9609646 | HCMV Infection | 1.530503e-02 | 1.815 |
R-HSA-427975 | Proton/oligopeptide cotransporters | 1.632280e-02 | 1.787 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 1.632280e-02 | 1.787 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 1.632280e-02 | 1.787 |
R-HSA-9605308 | Diseases of Base Excision Repair | 1.632280e-02 | 1.787 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 1.697526e-02 | 1.770 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 2.033650e-02 | 1.692 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 2.271935e-02 | 1.644 |
R-HSA-9657050 | Defective OGG1 Localization | 2.380766e-02 | 1.623 |
R-HSA-9656255 | Defective OGG1 Substrate Binding | 2.380766e-02 | 1.623 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 2.380766e-02 | 1.623 |
R-HSA-112412 | SOS-mediated signalling | 2.471620e-02 | 1.607 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 2.471620e-02 | 1.607 |
R-HSA-9959399 | SLC-mediated transport of oligopeptides | 2.471620e-02 | 1.607 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 2.827928e-02 | 1.549 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 2.896381e-02 | 1.538 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 2.989982e-02 | 1.524 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 3.099730e-02 | 1.509 |
R-HSA-9656223 | Signaling by RAF1 mutants | 3.188134e-02 | 1.496 |
R-HSA-5674135 | MAP2K and MAPK activation | 3.188134e-02 | 1.496 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 3.316190e-02 | 1.479 |
R-HSA-982772 | Growth hormone receptor signaling | 3.384750e-02 | 1.470 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 3.449588e-02 | 1.462 |
R-HSA-429947 | Deadenylation of mRNA | 3.682895e-02 | 1.434 |
R-HSA-381070 | IRE1alpha activates chaperones | 3.722790e-02 | 1.429 |
R-HSA-9656256 | Defective OGG1 Substrate Processing | 4.704993e-02 | 1.327 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 4.704993e-02 | 1.327 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 4.704993e-02 | 1.327 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 4.704993e-02 | 1.327 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 4.704993e-02 | 1.327 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 4.704993e-02 | 1.327 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 4.704993e-02 | 1.327 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 4.704993e-02 | 1.327 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 4.292252e-02 | 1.367 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 4.292252e-02 | 1.367 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 4.292252e-02 | 1.367 |
R-HSA-198203 | PI3K/AKT activation | 3.985879e-02 | 1.399 |
R-HSA-6802949 | Signaling by RAS mutants | 4.292252e-02 | 1.367 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 3.827870e-02 | 1.417 |
R-HSA-169131 | Inhibition of PKR | 4.704993e-02 | 1.327 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 4.592463e-02 | 1.338 |
R-HSA-420029 | Tight junction interactions | 3.994051e-02 | 1.399 |
R-HSA-5689901 | Metalloprotease DUBs | 4.318089e-02 | 1.365 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 3.994051e-02 | 1.399 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 3.994051e-02 | 1.399 |
R-HSA-2586552 | Signaling by Leptin | 3.985879e-02 | 1.399 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 3.772816e-02 | 1.423 |
R-HSA-75153 | Apoptotic execution phase | 4.292252e-02 | 1.367 |
R-HSA-1169408 | ISG15 antiviral mechanism | 5.217560e-02 | 1.283 |
R-HSA-157118 | Signaling by NOTCH | 5.305760e-02 | 1.275 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 5.763154e-02 | 1.239 |
R-HSA-162582 | Signal Transduction | 6.153596e-02 | 1.211 |
R-HSA-445355 | Smooth Muscle Contraction | 6.155441e-02 | 1.211 |
R-HSA-1299316 | TWIK-releated acid-sensitive K+ channel (TASK) | 6.974022e-02 | 1.157 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 7.072263e-02 | 1.150 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 7.262886e-02 | 1.139 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 7.353545e-02 | 1.134 |
R-HSA-68877 | Mitotic Prometaphase | 7.404880e-02 | 1.130 |
R-HSA-6802957 | Oncogenic MAPK signaling | 7.641531e-02 | 1.117 |
R-HSA-418885 | DCC mediated attractive signaling | 7.759589e-02 | 1.110 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 7.759589e-02 | 1.110 |
R-HSA-446353 | Cell-extracellular matrix interactions | 7.759589e-02 | 1.110 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 7.759589e-02 | 1.110 |
R-HSA-1640170 | Cell Cycle | 7.838109e-02 | 1.106 |
R-HSA-69278 | Cell Cycle, Mitotic | 7.866714e-02 | 1.104 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 8.040123e-02 | 1.095 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 8.466891e-02 | 1.072 |
R-HSA-8866906 | TFAP2 (AP-2) family regulates transcription of other transcription factors | 1.135168e-01 | 0.945 |
R-HSA-8941237 | Invadopodia formation | 1.135168e-01 | 0.945 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 9.936138e-02 | 1.003 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 9.618140e-02 | 1.017 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 1.109653e-01 | 0.955 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 9.189160e-02 | 1.037 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 1.069557e-01 | 0.971 |
R-HSA-9834899 | Specification of the neural plate border | 1.146994e-01 | 0.940 |
R-HSA-9754189 | Germ layer formation at gastrulation | 1.146994e-01 | 0.940 |
R-HSA-376172 | DSCAM interactions | 9.189160e-02 | 1.037 |
R-HSA-8875878 | MET promotes cell motility | 9.618140e-02 | 1.017 |
R-HSA-5689896 | Ovarian tumor domain proteases | 9.144564e-02 | 1.039 |
R-HSA-9675151 | Disorders of Developmental Biology | 9.192835e-02 | 1.037 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 9.144564e-02 | 1.039 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 1.069557e-01 | 0.971 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 1.225811e-01 | 0.912 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 1.251331e-01 | 0.903 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 1.295880e-01 | 0.887 |
R-HSA-373752 | Netrin-1 signaling | 1.319183e-01 | 0.880 |
R-HSA-199991 | Membrane Trafficking | 1.338547e-01 | 0.873 |
R-HSA-191650 | Regulation of gap junction activity | 1.346284e-01 | 0.871 |
R-HSA-8866911 | TFAP2 (AP-2) family regulates transcription of cell cycle factors | 1.346284e-01 | 0.871 |
R-HSA-390651 | Dopamine receptors | 1.346284e-01 | 0.871 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 1.346284e-01 | 0.871 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 1.388498e-01 | 0.857 |
R-HSA-9675135 | Diseases of DNA repair | 1.428754e-01 | 0.845 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 1.461703e-01 | 0.835 |
R-HSA-166208 | mTORC1-mediated signalling | 1.469476e-01 | 0.833 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 1.469476e-01 | 0.833 |
R-HSA-9833110 | RSV-host interactions | 1.508685e-01 | 0.821 |
R-HSA-9842640 | Signaling by LTK in cancer | 1.950013e-01 | 0.710 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 1.950013e-01 | 0.710 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 1.950013e-01 | 0.710 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 2.141770e-01 | 0.669 |
R-HSA-418886 | Netrin mediated repulsion signals | 2.141770e-01 | 0.669 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 2.141770e-01 | 0.669 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 2.141770e-01 | 0.669 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 2.328971e-01 | 0.633 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 2.328971e-01 | 0.633 |
R-HSA-201688 | WNT mediated activation of DVL | 2.511724e-01 | 0.600 |
R-HSA-9700645 | ALK mutants bind TKIs | 2.511724e-01 | 0.600 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 2.690133e-01 | 0.570 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 2.690133e-01 | 0.570 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 2.864303e-01 | 0.543 |
R-HSA-4839744 | Signaling by APC mutants | 2.864303e-01 | 0.543 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 2.864303e-01 | 0.543 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 2.864303e-01 | 0.543 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 2.864303e-01 | 0.543 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 3.034333e-01 | 0.518 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 3.034333e-01 | 0.518 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 3.200322e-01 | 0.495 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 3.200322e-01 | 0.495 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 3.200322e-01 | 0.495 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 3.200322e-01 | 0.495 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 3.200322e-01 | 0.495 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 3.200322e-01 | 0.495 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 1.893832e-01 | 0.723 |
R-HSA-170660 | Adenylate cyclase activating pathway | 3.362366e-01 | 0.473 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 3.362366e-01 | 0.473 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 2.067953e-01 | 0.684 |
R-HSA-1170546 | Prolactin receptor signaling | 3.520557e-01 | 0.453 |
R-HSA-9027284 | Erythropoietin activates RAS | 3.674988e-01 | 0.435 |
R-HSA-170670 | Adenylate cyclase inhibitory pathway | 3.674988e-01 | 0.435 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 3.674988e-01 | 0.435 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 3.825748e-01 | 0.417 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 3.825748e-01 | 0.417 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 2.686557e-01 | 0.571 |
R-HSA-2892247 | POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation | 3.972923e-01 | 0.401 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 3.972923e-01 | 0.401 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 4.116598e-01 | 0.385 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 4.393782e-01 | 0.357 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 2.078460e-01 | 0.682 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 4.527449e-01 | 0.344 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 4.527449e-01 | 0.344 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 4.527449e-01 | 0.344 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 4.527449e-01 | 0.344 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 3.102154e-01 | 0.508 |
R-HSA-380287 | Centrosome maturation | 3.232893e-01 | 0.490 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 3.428987e-01 | 0.465 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 3.500155e-01 | 0.456 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 3.500155e-01 | 0.456 |
R-HSA-72649 | Translation initiation complex formation | 4.404447e-01 | 0.356 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 3.948440e-01 | 0.404 |
R-HSA-141424 | Amplification of signal from the kinetochores | 3.948440e-01 | 0.404 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 4.393946e-01 | 0.357 |
R-HSA-9833482 | PKR-mediated signaling | 3.559491e-01 | 0.449 |
R-HSA-446107 | Type I hemidesmosome assembly | 2.328971e-01 | 0.633 |
R-HSA-354192 | Integrin signaling | 2.420450e-01 | 0.616 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 3.825748e-01 | 0.417 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 2.511724e-01 | 0.600 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 1.980658e-01 | 0.703 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 3.972923e-01 | 0.401 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 3.651798e-01 | 0.437 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 1.893832e-01 | 0.723 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 1.890066e-01 | 0.724 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 1.552385e-01 | 0.809 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 1.753589e-01 | 0.756 |
R-HSA-8866904 | Negative regulation of activity of TFAP2 (AP-2) family transcription factors | 2.328971e-01 | 0.633 |
R-HSA-444473 | Formyl peptide receptors bind formyl peptides and many other ligands | 2.328971e-01 | 0.633 |
R-HSA-2025928 | Calcineurin activates NFAT | 2.511724e-01 | 0.600 |
R-HSA-9664420 | Killing mechanisms | 3.825748e-01 | 0.417 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 3.825748e-01 | 0.417 |
R-HSA-72172 | mRNA Splicing | 1.766608e-01 | 0.753 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 2.243671e-01 | 0.649 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 4.094510e-01 | 0.388 |
R-HSA-399956 | CRMPs in Sema3A signaling | 3.520557e-01 | 0.453 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 3.337675e-01 | 0.477 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 4.527449e-01 | 0.344 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 3.474721e-01 | 0.459 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 3.972923e-01 | 0.401 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 1.968409e-01 | 0.706 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 3.972923e-01 | 0.401 |
R-HSA-5205647 | Mitophagy | 2.597805e-01 | 0.585 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 1.636935e-01 | 0.786 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 3.034333e-01 | 0.518 |
R-HSA-4839735 | Signaling by AXIN mutants | 3.034333e-01 | 0.518 |
R-HSA-4839748 | Signaling by AMER1 mutants | 3.034333e-01 | 0.518 |
R-HSA-418890 | Role of second messengers in netrin-1 signaling | 3.200322e-01 | 0.495 |
R-HSA-5576886 | Phase 4 - resting membrane potential | 3.825748e-01 | 0.417 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 2.775290e-01 | 0.557 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 4.256858e-01 | 0.371 |
R-HSA-164378 | PKA activation in glucagon signalling | 4.256858e-01 | 0.371 |
R-HSA-6807878 | COPI-mediated anterograde transport | 2.589469e-01 | 0.587 |
R-HSA-74751 | Insulin receptor signalling cascade | 2.518403e-01 | 0.599 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 4.256858e-01 | 0.371 |
R-HSA-170968 | Frs2-mediated activation | 3.362366e-01 | 0.473 |
R-HSA-9663891 | Selective autophagy | 4.140709e-01 | 0.383 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 2.067953e-01 | 0.684 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 3.651798e-01 | 0.437 |
R-HSA-169893 | Prolonged ERK activation events | 3.825748e-01 | 0.417 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 3.819345e-01 | 0.418 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 2.141770e-01 | 0.669 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 2.511724e-01 | 0.600 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 2.690133e-01 | 0.570 |
R-HSA-5658442 | Regulation of RAS by GAPs | 1.656363e-01 | 0.781 |
R-HSA-165159 | MTOR signalling | 3.392017e-01 | 0.470 |
R-HSA-9612973 | Autophagy | 4.089187e-01 | 0.388 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 4.256858e-01 | 0.371 |
R-HSA-74752 | Signaling by Insulin receptor | 4.456617e-01 | 0.351 |
R-HSA-5673001 | RAF/MAP kinase cascade | 2.156546e-01 | 0.666 |
R-HSA-1632852 | Macroautophagy | 3.333286e-01 | 0.477 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 1.753589e-01 | 0.756 |
R-HSA-187706 | Signalling to p38 via RIT and RIN | 1.753589e-01 | 0.756 |
R-HSA-2161517 | Abacavir transmembrane transport | 1.950013e-01 | 0.710 |
R-HSA-170984 | ARMS-mediated activation | 2.511724e-01 | 0.600 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 3.520557e-01 | 0.453 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 3.972923e-01 | 0.401 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 2.264245e-01 | 0.645 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 3.040889e-01 | 0.517 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 4.323137e-01 | 0.364 |
R-HSA-9734767 | Developmental Cell Lineages | 3.740724e-01 | 0.427 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 2.351648e-01 | 0.629 |
R-HSA-9842663 | Signaling by LTK | 3.200322e-01 | 0.495 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 3.304675e-01 | 0.481 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 4.201661e-01 | 0.377 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 2.420450e-01 | 0.616 |
R-HSA-3928662 | EPHB-mediated forward signaling | 3.565610e-01 | 0.448 |
R-HSA-6794361 | Neurexins and neuroligins | 4.241203e-01 | 0.373 |
R-HSA-5676594 | TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway | 3.362366e-01 | 0.473 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 3.362366e-01 | 0.473 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 2.243671e-01 | 0.649 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 3.674988e-01 | 0.435 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 3.674988e-01 | 0.435 |
R-HSA-9634600 | Regulation of glycolysis by fructose 2,6-bisphosphate metabolism | 3.825748e-01 | 0.417 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 3.040889e-01 | 0.517 |
R-HSA-163615 | PKA activation | 4.256858e-01 | 0.371 |
R-HSA-5683057 | MAPK family signaling cascades | 3.916468e-01 | 0.407 |
R-HSA-8851805 | MET activates RAS signaling | 3.200322e-01 | 0.495 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 3.040889e-01 | 0.517 |
R-HSA-5653656 | Vesicle-mediated transport | 4.385756e-01 | 0.358 |
R-HSA-373755 | Semaphorin interactions | 2.454441e-01 | 0.610 |
R-HSA-1266738 | Developmental Biology | 3.111633e-01 | 0.507 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 1.693788e-01 | 0.771 |
R-HSA-1483249 | Inositol phosphate metabolism | 3.500155e-01 | 0.456 |
R-HSA-1295596 | Spry regulation of FGF signaling | 3.674988e-01 | 0.435 |
R-HSA-114608 | Platelet degranulation | 4.467381e-01 | 0.350 |
R-HSA-422475 | Axon guidance | 3.905235e-01 | 0.408 |
R-HSA-9675108 | Nervous system development | 2.088293e-01 | 0.680 |
R-HSA-1296346 | Tandem pore domain potassium channels | 2.690133e-01 | 0.570 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 3.674988e-01 | 0.435 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 2.420450e-01 | 0.616 |
R-HSA-8963684 | Tyrosine catabolism | 4.256858e-01 | 0.371 |
R-HSA-109704 | PI3K Cascade | 4.075528e-01 | 0.390 |
R-HSA-1592230 | Mitochondrial biogenesis | 3.879104e-01 | 0.411 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 1.893832e-01 | 0.723 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 4.174258e-01 | 0.379 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 3.036840e-01 | 0.518 |
R-HSA-5676934 | Protein repair | 3.674988e-01 | 0.435 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 3.217015e-01 | 0.493 |
R-HSA-8854214 | TBC/RABGAPs | 3.479006e-01 | 0.459 |
R-HSA-9007101 | Rab regulation of trafficking | 2.110621e-01 | 0.676 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 3.948440e-01 | 0.404 |
R-HSA-140875 | Common Pathway of Fibrin Clot Formation | 4.527449e-01 | 0.344 |
R-HSA-597592 | Post-translational protein modification | 3.613328e-01 | 0.442 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 3.559491e-01 | 0.449 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 3.362366e-01 | 0.473 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 3.825748e-01 | 0.417 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 3.825748e-01 | 0.417 |
R-HSA-6806834 | Signaling by MET | 1.647596e-01 | 0.783 |
R-HSA-73893 | DNA Damage Bypass | 3.991828e-01 | 0.399 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 3.833322e-01 | 0.416 |
R-HSA-209543 | p75NTR recruits signalling complexes | 3.200322e-01 | 0.495 |
R-HSA-844456 | The NLRP3 inflammasome | 4.393782e-01 | 0.357 |
R-HSA-114452 | Activation of BH3-only proteins | 2.155647e-01 | 0.666 |
R-HSA-5633007 | Regulation of TP53 Activity | 2.608330e-01 | 0.584 |
R-HSA-180292 | GAB1 signalosome | 4.256858e-01 | 0.371 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 4.256858e-01 | 0.371 |
R-HSA-9754706 | Atorvastatin ADME | 3.825748e-01 | 0.417 |
R-HSA-8853659 | RET signaling | 2.775290e-01 | 0.557 |
R-HSA-193639 | p75NTR signals via NF-kB | 3.674988e-01 | 0.435 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 2.690133e-01 | 0.570 |
R-HSA-8948216 | Collagen chain trimerization | 2.863954e-01 | 0.543 |
R-HSA-9700206 | Signaling by ALK in cancer | 3.229544e-01 | 0.491 |
R-HSA-2262752 | Cellular responses to stress | 2.324150e-01 | 0.634 |
R-HSA-9823739 | Formation of the anterior neural plate | 3.674988e-01 | 0.435 |
R-HSA-8953897 | Cellular responses to stimuli | 3.110839e-01 | 0.507 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 3.229544e-01 | 0.491 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 3.145596e-01 | 0.502 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 1.552767e-01 | 0.809 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 3.362366e-01 | 0.473 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 4.116598e-01 | 0.385 |
R-HSA-109581 | Apoptosis | 2.688927e-01 | 0.570 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 3.520557e-01 | 0.453 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 4.393782e-01 | 0.357 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 1.775148e-01 | 0.751 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 4.565122e-01 | 0.341 |
R-HSA-5357801 | Programmed Cell Death | 4.580652e-01 | 0.339 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 4.581111e-01 | 0.339 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 4.625020e-01 | 0.335 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 4.642914e-01 | 0.333 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 4.644458e-01 | 0.333 |
R-HSA-112399 | IRS-mediated signalling | 4.644458e-01 | 0.333 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 4.657938e-01 | 0.332 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 4.657938e-01 | 0.332 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 4.657938e-01 | 0.332 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 4.657938e-01 | 0.332 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 4.723108e-01 | 0.326 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 4.765583e-01 | 0.322 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 4.785323e-01 | 0.320 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 4.785323e-01 | 0.320 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 4.785323e-01 | 0.320 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 4.785323e-01 | 0.320 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 4.785323e-01 | 0.320 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 4.785323e-01 | 0.320 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 4.801060e-01 | 0.319 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 4.832705e-01 | 0.316 |
R-HSA-397014 | Muscle contraction | 4.871705e-01 | 0.312 |
R-HSA-8957275 | Post-translational protein phosphorylation | 4.886940e-01 | 0.311 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 4.909679e-01 | 0.309 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 4.909679e-01 | 0.309 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 4.954825e-01 | 0.305 |
R-HSA-112043 | PLC beta mediated events | 4.954825e-01 | 0.305 |
R-HSA-1442490 | Collagen degradation | 4.954825e-01 | 0.305 |
R-HSA-8953854 | Metabolism of RNA | 4.977732e-01 | 0.303 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 5.006917e-01 | 0.300 |
R-HSA-6784531 | tRNA processing in the nucleus | 5.030617e-01 | 0.298 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 5.030617e-01 | 0.298 |
R-HSA-9707616 | Heme signaling | 5.030617e-01 | 0.298 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 5.031076e-01 | 0.298 |
R-HSA-9830674 | Formation of the ureteric bud | 5.031076e-01 | 0.298 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 5.031076e-01 | 0.298 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 5.031076e-01 | 0.298 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 5.031076e-01 | 0.298 |
R-HSA-1280218 | Adaptive Immune System | 5.052107e-01 | 0.297 |
R-HSA-913531 | Interferon Signaling | 5.096192e-01 | 0.293 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 5.105672e-01 | 0.292 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 5.105672e-01 | 0.292 |
R-HSA-1483255 | PI Metabolism | 5.125449e-01 | 0.290 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 5.149585e-01 | 0.288 |
R-HSA-2428924 | IGF1R signaling cascade | 5.179980e-01 | 0.286 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 5.242479e-01 | 0.280 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 5.253535e-01 | 0.280 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 5.253535e-01 | 0.280 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 5.265275e-01 | 0.279 |
R-HSA-9620244 | Long-term potentiation | 5.265275e-01 | 0.279 |
R-HSA-400685 | Sema4D in semaphorin signaling | 5.265275e-01 | 0.279 |
R-HSA-1482801 | Acyl chain remodelling of PS | 5.265275e-01 | 0.279 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 5.265275e-01 | 0.279 |
R-HSA-8854518 | AURKA Activation by TPX2 | 5.326330e-01 | 0.274 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 5.378213e-01 | 0.269 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 5.378213e-01 | 0.269 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 5.378213e-01 | 0.269 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 5.378213e-01 | 0.269 |
R-HSA-2161522 | Abacavir ADME | 5.378213e-01 | 0.269 |
R-HSA-525793 | Myogenesis | 5.378213e-01 | 0.269 |
R-HSA-112040 | G-protein mediated events | 5.398360e-01 | 0.268 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 5.469621e-01 | 0.262 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 5.488463e-01 | 0.261 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 5.488463e-01 | 0.261 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 5.488463e-01 | 0.261 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 5.528148e-01 | 0.257 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 5.540106e-01 | 0.256 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 5.596090e-01 | 0.252 |
R-HSA-9757110 | Prednisone ADME | 5.596090e-01 | 0.252 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 5.596090e-01 | 0.252 |
R-HSA-5620971 | Pyroptosis | 5.596090e-01 | 0.252 |
R-HSA-622312 | Inflammasomes | 5.596090e-01 | 0.252 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 5.609814e-01 | 0.251 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 5.627475e-01 | 0.250 |
R-HSA-9006335 | Signaling by Erythropoietin | 5.701156e-01 | 0.244 |
R-HSA-9615710 | Late endosomal microautophagy | 5.701156e-01 | 0.244 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 5.701156e-01 | 0.244 |
R-HSA-72086 | mRNA Capping | 5.701156e-01 | 0.244 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 5.701156e-01 | 0.244 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 5.803722e-01 | 0.236 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 5.803722e-01 | 0.236 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 5.803722e-01 | 0.236 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 5.803722e-01 | 0.236 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 5.814243e-01 | 0.236 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 5.857179e-01 | 0.232 |
R-HSA-1226099 | Signaling by FGFR in disease | 5.880814e-01 | 0.231 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 5.903846e-01 | 0.229 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 5.903846e-01 | 0.229 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 5.910498e-01 | 0.228 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 5.946599e-01 | 0.226 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 5.946599e-01 | 0.226 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 5.963373e-01 | 0.225 |
R-HSA-4791275 | Signaling by WNT in cancer | 6.001588e-01 | 0.222 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 6.001588e-01 | 0.222 |
R-HSA-9020591 | Interleukin-12 signaling | 6.011595e-01 | 0.221 |
R-HSA-72613 | Eukaryotic Translation Initiation | 6.067781e-01 | 0.217 |
R-HSA-72737 | Cap-dependent Translation Initiation | 6.067781e-01 | 0.217 |
R-HSA-373760 | L1CAM interactions | 6.067781e-01 | 0.217 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 6.097003e-01 | 0.215 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 6.097003e-01 | 0.215 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 6.097003e-01 | 0.215 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 6.097003e-01 | 0.215 |
R-HSA-397795 | G-protein beta:gamma signalling | 6.097003e-01 | 0.215 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 6.097003e-01 | 0.215 |
R-HSA-9930044 | Nuclear RNA decay | 6.097003e-01 | 0.215 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 6.097003e-01 | 0.215 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 6.097003e-01 | 0.215 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 6.097003e-01 | 0.215 |
R-HSA-4086400 | PCP/CE pathway | 6.139226e-01 | 0.212 |
R-HSA-416482 | G alpha (12/13) signalling events | 6.139226e-01 | 0.212 |
R-HSA-216083 | Integrin cell surface interactions | 6.139226e-01 | 0.212 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 6.170386e-01 | 0.210 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 6.190147e-01 | 0.208 |
R-HSA-5693537 | Resolution of D-Loop Structures | 6.190147e-01 | 0.208 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 6.190147e-01 | 0.208 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 6.190147e-01 | 0.208 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 6.190147e-01 | 0.208 |
R-HSA-1482788 | Acyl chain remodelling of PC | 6.190147e-01 | 0.208 |
R-HSA-5696400 | Dual Incision in GG-NER | 6.281074e-01 | 0.202 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 6.281074e-01 | 0.202 |
R-HSA-5673000 | RAF activation | 6.281074e-01 | 0.202 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 6.281074e-01 | 0.202 |
R-HSA-180746 | Nuclear import of Rev protein | 6.281074e-01 | 0.202 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 6.281074e-01 | 0.202 |
R-HSA-5686938 | Regulation of TLR by endogenous ligand | 6.281074e-01 | 0.202 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 6.281074e-01 | 0.202 |
R-HSA-1257604 | PIP3 activates AKT signaling | 6.361341e-01 | 0.196 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 6.369836e-01 | 0.196 |
R-HSA-187687 | Signalling to ERKs | 6.369836e-01 | 0.196 |
R-HSA-1482839 | Acyl chain remodelling of PE | 6.369836e-01 | 0.196 |
R-HSA-2559585 | Oncogene Induced Senescence | 6.369836e-01 | 0.196 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 6.369836e-01 | 0.196 |
R-HSA-2467813 | Separation of Sister Chromatids | 6.393579e-01 | 0.194 |
R-HSA-74160 | Gene expression (Transcription) | 6.409291e-01 | 0.193 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 6.444579e-01 | 0.191 |
R-HSA-9006925 | Intracellular signaling by second messengers | 6.450347e-01 | 0.190 |
R-HSA-9682385 | FLT3 signaling in disease | 6.456485e-01 | 0.190 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 6.456485e-01 | 0.190 |
R-HSA-6804757 | Regulation of TP53 Degradation | 6.456485e-01 | 0.190 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 6.456485e-01 | 0.190 |
R-HSA-111933 | Calmodulin induced events | 6.456485e-01 | 0.190 |
R-HSA-111997 | CaM pathway | 6.456485e-01 | 0.190 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 6.503313e-01 | 0.187 |
R-HSA-4641258 | Degradation of DVL | 6.541071e-01 | 0.184 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 6.541071e-01 | 0.184 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 6.541071e-01 | 0.184 |
R-HSA-419037 | NCAM1 interactions | 6.541071e-01 | 0.184 |
R-HSA-8963691 | Phenylalanine and tyrosine metabolism | 6.541071e-01 | 0.184 |
R-HSA-6794362 | Protein-protein interactions at synapses | 6.561275e-01 | 0.183 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 6.623643e-01 | 0.179 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 6.623643e-01 | 0.179 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 6.674894e-01 | 0.176 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 6.674894e-01 | 0.176 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 6.701881e-01 | 0.174 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 6.704249e-01 | 0.174 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 6.704249e-01 | 0.174 |
R-HSA-201556 | Signaling by ALK | 6.704249e-01 | 0.174 |
R-HSA-73857 | RNA Polymerase II Transcription | 6.726931e-01 | 0.172 |
R-HSA-447115 | Interleukin-12 family signaling | 6.730560e-01 | 0.172 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 6.782935e-01 | 0.169 |
R-HSA-9646399 | Aggrephagy | 6.782935e-01 | 0.169 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 6.782935e-01 | 0.169 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 6.782935e-01 | 0.169 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 6.782935e-01 | 0.169 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 6.782935e-01 | 0.169 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 6.782935e-01 | 0.169 |
R-HSA-5260271 | Diseases of Immune System | 6.782935e-01 | 0.169 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 6.782935e-01 | 0.169 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 6.859747e-01 | 0.164 |
R-HSA-9607240 | FLT3 Signaling | 6.859747e-01 | 0.164 |
R-HSA-9694548 | Maturation of spike protein | 6.859747e-01 | 0.164 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 6.893031e-01 | 0.162 |
R-HSA-9909396 | Circadian clock | 6.924947e-01 | 0.160 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 6.924947e-01 | 0.160 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 6.934730e-01 | 0.159 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 6.934730e-01 | 0.159 |
R-HSA-6811438 | Intra-Golgi traffic | 6.934730e-01 | 0.159 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 7.007927e-01 | 0.154 |
R-HSA-991365 | Activation of GABAB receptors | 7.007927e-01 | 0.154 |
R-HSA-977444 | GABA B receptor activation | 7.007927e-01 | 0.154 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 7.007927e-01 | 0.154 |
R-HSA-111996 | Ca-dependent events | 7.007927e-01 | 0.154 |
R-HSA-156842 | Eukaryotic Translation Elongation | 7.048812e-01 | 0.152 |
R-HSA-2682334 | EPH-Ephrin signaling | 7.048812e-01 | 0.152 |
R-HSA-5654743 | Signaling by FGFR4 | 7.079381e-01 | 0.150 |
R-HSA-1433557 | Signaling by SCF-KIT | 7.079381e-01 | 0.150 |
R-HSA-212436 | Generic Transcription Pathway | 7.143775e-01 | 0.146 |
R-HSA-1474290 | Collagen formation | 7.149018e-01 | 0.146 |
R-HSA-9907900 | Proteasome assembly | 7.149132e-01 | 0.146 |
R-HSA-375280 | Amine ligand-binding receptors | 7.149132e-01 | 0.146 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 7.217222e-01 | 0.142 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 7.217222e-01 | 0.142 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 7.217222e-01 | 0.142 |
R-HSA-5654741 | Signaling by FGFR3 | 7.217222e-01 | 0.142 |
R-HSA-1489509 | DAG and IP3 signaling | 7.217222e-01 | 0.142 |
R-HSA-6807070 | PTEN Regulation | 7.257934e-01 | 0.139 |
R-HSA-69275 | G2/M Transition | 7.281575e-01 | 0.138 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 7.283689e-01 | 0.138 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 7.283689e-01 | 0.138 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 7.283689e-01 | 0.138 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 7.283689e-01 | 0.138 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 7.340880e-01 | 0.134 |
R-HSA-437239 | Recycling pathway of L1 | 7.348573e-01 | 0.134 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 7.350482e-01 | 0.134 |
R-HSA-453274 | Mitotic G2-G2/M phases | 7.350482e-01 | 0.134 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 7.352590e-01 | 0.134 |
R-HSA-9634597 | GPER1 signaling | 7.411911e-01 | 0.130 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 7.432631e-01 | 0.129 |
R-HSA-157858 | Gap junction trafficking and regulation | 7.473740e-01 | 0.126 |
R-HSA-70171 | Glycolysis | 7.477483e-01 | 0.126 |
R-HSA-3371571 | HSF1-dependent transactivation | 7.593013e-01 | 0.120 |
R-HSA-9864848 | Complex IV assembly | 7.593013e-01 | 0.120 |
R-HSA-166520 | Signaling by NTRKs | 7.633773e-01 | 0.117 |
R-HSA-111885 | Opioid Signalling | 7.650225e-01 | 0.116 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 7.650225e-01 | 0.116 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 7.650525e-01 | 0.116 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 7.650525e-01 | 0.116 |
R-HSA-9758941 | Gastrulation | 7.668960e-01 | 0.115 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 7.706668e-01 | 0.113 |
R-HSA-5696398 | Nucleotide Excision Repair | 7.732688e-01 | 0.112 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 7.736483e-01 | 0.111 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 7.771974e-01 | 0.109 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 7.796324e-01 | 0.108 |
R-HSA-418597 | G alpha (z) signalling events | 7.814969e-01 | 0.107 |
R-HSA-376176 | Signaling by ROBO receptors | 7.825773e-01 | 0.106 |
R-HSA-73887 | Death Receptor Signaling | 7.838556e-01 | 0.106 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 7.851650e-01 | 0.105 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 7.867192e-01 | 0.104 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 7.867192e-01 | 0.104 |
R-HSA-193648 | NRAGE signals death through JNK | 7.867192e-01 | 0.104 |
R-HSA-75893 | TNF signaling | 7.867192e-01 | 0.104 |
R-HSA-5654736 | Signaling by FGFR1 | 7.867192e-01 | 0.104 |
R-HSA-177929 | Signaling by EGFR | 7.867192e-01 | 0.104 |
R-HSA-9824446 | Viral Infection Pathways | 7.916172e-01 | 0.101 |
R-HSA-9764561 | Regulation of CDH1 Function | 7.918169e-01 | 0.101 |
R-HSA-5621480 | Dectin-2 family | 7.918169e-01 | 0.101 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 7.918169e-01 | 0.101 |
R-HSA-9711097 | Cellular response to starvation | 7.966797e-01 | 0.099 |
R-HSA-6782135 | Dual incision in TC-NER | 7.967931e-01 | 0.099 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 7.967931e-01 | 0.099 |
R-HSA-191859 | snRNP Assembly | 8.016506e-01 | 0.096 |
R-HSA-194441 | Metabolism of non-coding RNA | 8.016506e-01 | 0.096 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 8.016506e-01 | 0.096 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 8.037764e-01 | 0.095 |
R-HSA-977443 | GABA receptor activation | 8.063924e-01 | 0.093 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 8.063924e-01 | 0.093 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 8.110210e-01 | 0.091 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 8.110210e-01 | 0.091 |
R-HSA-445717 | Aquaporin-mediated transport | 8.110210e-01 | 0.091 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 8.142445e-01 | 0.089 |
R-HSA-1268020 | Mitochondrial protein import | 8.155393e-01 | 0.089 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 8.155393e-01 | 0.089 |
R-HSA-186797 | Signaling by PDGF | 8.155393e-01 | 0.089 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 8.176215e-01 | 0.087 |
R-HSA-909733 | Interferon alpha/beta signaling | 8.176215e-01 | 0.087 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 8.199498e-01 | 0.086 |
R-HSA-8848021 | Signaling by PTK6 | 8.199498e-01 | 0.086 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 8.199498e-01 | 0.086 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 8.199498e-01 | 0.086 |
R-HSA-68882 | Mitotic Anaphase | 8.205992e-01 | 0.086 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 8.230930e-01 | 0.085 |
R-HSA-70326 | Glucose metabolism | 8.242115e-01 | 0.084 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 8.242551e-01 | 0.084 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 8.286392e-01 | 0.082 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 8.305871e-01 | 0.081 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 8.305871e-01 | 0.081 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 8.340400e-01 | 0.079 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 8.365647e-01 | 0.078 |
R-HSA-9830369 | Kidney development | 8.365647e-01 | 0.078 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 8.365647e-01 | 0.078 |
R-HSA-3371556 | Cellular response to heat stress | 8.367539e-01 | 0.077 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 8.397607e-01 | 0.076 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 8.397607e-01 | 0.076 |
R-HSA-913709 | O-linked glycosylation of mucins | 8.404737e-01 | 0.075 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 8.404737e-01 | 0.075 |
R-HSA-5218859 | Regulated Necrosis | 8.404737e-01 | 0.075 |
R-HSA-167172 | Transcription of the HIV genome | 8.404737e-01 | 0.075 |
R-HSA-6809371 | Formation of the cornified envelope | 8.456244e-01 | 0.073 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 8.480141e-01 | 0.072 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 8.480141e-01 | 0.072 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 8.480141e-01 | 0.072 |
R-HSA-194138 | Signaling by VEGF | 8.512930e-01 | 0.070 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 8.516500e-01 | 0.070 |
R-HSA-3000178 | ECM proteoglycans | 8.516500e-01 | 0.070 |
R-HSA-168255 | Influenza Infection | 8.563158e-01 | 0.067 |
R-HSA-72312 | rRNA processing | 8.571770e-01 | 0.067 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 8.586634e-01 | 0.066 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 8.586634e-01 | 0.066 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 8.620451e-01 | 0.064 |
R-HSA-5689603 | UCH proteinases | 8.685683e-01 | 0.061 |
R-HSA-9843745 | Adipogenesis | 8.696718e-01 | 0.061 |
R-HSA-5576891 | Cardiac conduction | 8.696718e-01 | 0.061 |
R-HSA-9694635 | Translation of Structural Proteins | 8.717136e-01 | 0.060 |
R-HSA-1474228 | Degradation of the extracellular matrix | 8.721205e-01 | 0.059 |
R-HSA-392499 | Metabolism of proteins | 8.744334e-01 | 0.058 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 8.747838e-01 | 0.058 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 8.777807e-01 | 0.057 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 8.807061e-01 | 0.055 |
R-HSA-5654738 | Signaling by FGFR2 | 8.807061e-01 | 0.055 |
R-HSA-168898 | Toll-like Receptor Cascades | 8.819308e-01 | 0.055 |
R-HSA-168256 | Immune System | 8.821840e-01 | 0.054 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 8.837411e-01 | 0.054 |
R-HSA-163685 | Integration of energy metabolism | 8.837411e-01 | 0.054 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 8.851749e-01 | 0.053 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 8.863490e-01 | 0.052 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 8.890698e-01 | 0.051 |
R-HSA-6798695 | Neutrophil degranulation | 8.907773e-01 | 0.050 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 8.983763e-01 | 0.047 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 8.983763e-01 | 0.047 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 8.989952e-01 | 0.046 |
R-HSA-438064 | Post NMDA receptor activation events | 9.017295e-01 | 0.045 |
R-HSA-390466 | Chaperonin-mediated protein folding | 9.017295e-01 | 0.045 |
R-HSA-70268 | Pyruvate metabolism | 9.017295e-01 | 0.045 |
R-HSA-156902 | Peptide chain elongation | 9.040830e-01 | 0.044 |
R-HSA-1236974 | ER-Phagosome pathway | 9.063802e-01 | 0.043 |
R-HSA-112310 | Neurotransmitter release cycle | 9.086226e-01 | 0.042 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 9.095379e-01 | 0.041 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 9.108114e-01 | 0.041 |
R-HSA-9679191 | Potential therapeutics for SARS | 9.129964e-01 | 0.040 |
R-HSA-9856651 | MITF-M-dependent gene expression | 9.129964e-01 | 0.040 |
R-HSA-391251 | Protein folding | 9.150333e-01 | 0.039 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 9.150333e-01 | 0.039 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 9.163309e-01 | 0.038 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 9.170689e-01 | 0.038 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 9.209953e-01 | 0.036 |
R-HSA-1989781 | PPARA activates gene expression | 9.211085e-01 | 0.036 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 9.211085e-01 | 0.036 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 9.228884e-01 | 0.035 |
R-HSA-72764 | Eukaryotic Translation Termination | 9.228884e-01 | 0.035 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 9.228884e-01 | 0.035 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 9.241499e-01 | 0.034 |
R-HSA-162587 | HIV Life Cycle | 9.241499e-01 | 0.034 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 9.243599e-01 | 0.034 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 9.247363e-01 | 0.034 |
R-HSA-1296071 | Potassium Channels | 9.247363e-01 | 0.034 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 9.247363e-01 | 0.034 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 9.256289e-01 | 0.034 |
R-HSA-877300 | Interferon gamma signaling | 9.270807e-01 | 0.033 |
R-HSA-422356 | Regulation of insulin secretion | 9.283005e-01 | 0.032 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 9.283005e-01 | 0.032 |
R-HSA-190236 | Signaling by FGFR | 9.283005e-01 | 0.032 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 9.283005e-01 | 0.032 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 9.283005e-01 | 0.032 |
R-HSA-9006936 | Signaling by TGFB family members | 9.285058e-01 | 0.032 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 9.300190e-01 | 0.032 |
R-HSA-382556 | ABC-family proteins mediated transport | 9.316964e-01 | 0.031 |
R-HSA-5610787 | Hedgehog 'off' state | 9.316964e-01 | 0.031 |
R-HSA-2408557 | Selenocysteine synthesis | 9.333337e-01 | 0.030 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 9.349319e-01 | 0.029 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 9.349319e-01 | 0.029 |
R-HSA-192823 | Viral mRNA Translation | 9.364918e-01 | 0.028 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 9.380144e-01 | 0.028 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 9.383193e-01 | 0.028 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 9.423673e-01 | 0.026 |
R-HSA-72306 | tRNA processing | 9.425403e-01 | 0.026 |
R-HSA-9694516 | SARS-CoV-2 Infection | 9.432549e-01 | 0.025 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 9.436777e-01 | 0.025 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 9.437494e-01 | 0.025 |
R-HSA-1236975 | Antigen processing-Cross presentation | 9.450985e-01 | 0.025 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 9.450985e-01 | 0.025 |
R-HSA-1483257 | Phospholipid metabolism | 9.459108e-01 | 0.024 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 9.464152e-01 | 0.024 |
R-HSA-194068 | Bile acid and bile salt metabolism | 9.477005e-01 | 0.023 |
R-HSA-9678108 | SARS-CoV-1 Infection | 9.480167e-01 | 0.023 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 9.480167e-01 | 0.023 |
R-HSA-6803157 | Antimicrobial peptides | 9.489550e-01 | 0.023 |
R-HSA-2871796 | FCERI mediated MAPK activation | 9.501795e-01 | 0.022 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 9.558763e-01 | 0.020 |
R-HSA-375276 | Peptide ligand-binding receptors | 9.583677e-01 | 0.018 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 9.599621e-01 | 0.018 |
R-HSA-5617833 | Cilium Assembly | 9.616182e-01 | 0.017 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 9.631509e-01 | 0.016 |
R-HSA-162909 | Host Interactions of HIV factors | 9.645426e-01 | 0.016 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 9.670360e-01 | 0.015 |
R-HSA-9711123 | Cellular response to chemical stress | 9.700053e-01 | 0.013 |
R-HSA-1474244 | Extracellular matrix organization | 9.702572e-01 | 0.013 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 9.705854e-01 | 0.013 |
R-HSA-6805567 | Keratinization | 9.729127e-01 | 0.012 |
R-HSA-5173105 | O-linked glycosylation | 9.759704e-01 | 0.011 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 9.760741e-01 | 0.011 |
R-HSA-9658195 | Leishmania infection | 9.764344e-01 | 0.010 |
R-HSA-9824443 | Parasitic Infection Pathways | 9.764344e-01 | 0.010 |
R-HSA-9948299 | Ribosome-associated quality control | 9.765480e-01 | 0.010 |
R-HSA-5358351 | Signaling by Hedgehog | 9.765480e-01 | 0.010 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 9.765652e-01 | 0.010 |
R-HSA-8951664 | Neddylation | 9.801579e-01 | 0.009 |
R-HSA-69242 | S Phase | 9.820562e-01 | 0.008 |
R-HSA-162906 | HIV Infection | 9.824965e-01 | 0.008 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 9.833202e-01 | 0.007 |
R-HSA-9609507 | Protein localization | 9.841131e-01 | 0.007 |
R-HSA-9679506 | SARS-CoV Infections | 9.859722e-01 | 0.006 |
R-HSA-2408522 | Selenoamino acid metabolism | 9.878477e-01 | 0.005 |
R-HSA-449147 | Signaling by Interleukins | 9.883369e-01 | 0.005 |
R-HSA-5619102 | SLC transporter disorders | 9.887046e-01 | 0.005 |
R-HSA-112315 | Transmission across Chemical Synapses | 9.894013e-01 | 0.005 |
R-HSA-418555 | G alpha (s) signalling events | 9.900008e-01 | 0.004 |
R-HSA-9664433 | Leishmania parasite growth and survival | 9.904768e-01 | 0.004 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 9.904768e-01 | 0.004 |
R-HSA-611105 | Respiratory electron transport | 9.915701e-01 | 0.004 |
R-HSA-112316 | Neuronal System | 9.918682e-01 | 0.004 |
R-HSA-416476 | G alpha (q) signalling events | 9.920043e-01 | 0.003 |
R-HSA-418594 | G alpha (i) signalling events | 9.923678e-01 | 0.003 |
R-HSA-3781865 | Diseases of glycosylation | 9.927180e-01 | 0.003 |
R-HSA-446203 | Asparagine N-linked glycosylation | 9.942074e-01 | 0.003 |
R-HSA-5663205 | Infectious disease | 9.947393e-01 | 0.002 |
R-HSA-72766 | Translation | 9.949124e-01 | 0.002 |
R-HSA-428157 | Sphingolipid metabolism | 9.951917e-01 | 0.002 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 9.954210e-01 | 0.002 |
R-HSA-9748784 | Drug ADME | 9.969032e-01 | 0.001 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 9.974577e-01 | 0.001 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.976078e-01 | 0.001 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 9.976339e-01 | 0.001 |
R-HSA-8957322 | Metabolism of steroids | 9.978242e-01 | 0.001 |
R-HSA-1643685 | Disease | 9.983896e-01 | 0.001 |
R-HSA-5619115 | Disorders of transmembrane transporters | 9.984773e-01 | 0.001 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 9.985040e-01 | 0.001 |
R-HSA-168249 | Innate Immune System | 9.985064e-01 | 0.001 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 9.998873e-01 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 9.998961e-01 | 0.000 |
R-HSA-109582 | Hemostasis | 9.999142e-01 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 9.999195e-01 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 9.999587e-01 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 9.999711e-01 | 0.000 |
R-HSA-382551 | Transport of small molecules | 9.999715e-01 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 9.999824e-01 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 9.999974e-01 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000e+00 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
COT |
0.836 | 0.141 | 2 | 0.891 |
MOS |
0.833 | 0.286 | 1 | 0.866 |
CLK3 |
0.828 | 0.106 | 1 | 0.862 |
GRK1 |
0.828 | 0.243 | -2 | 0.835 |
CDC7 |
0.823 | -0.001 | 1 | 0.839 |
PIM3 |
0.821 | 0.052 | -3 | 0.892 |
KIS |
0.820 | 0.117 | 1 | 0.763 |
PRPK |
0.820 | -0.014 | -1 | 0.261 |
CDKL1 |
0.818 | 0.081 | -3 | 0.862 |
IKKB |
0.818 | -0.005 | -2 | 0.776 |
NLK |
0.817 | 0.057 | 1 | 0.866 |
SRPK1 |
0.817 | 0.094 | -3 | 0.826 |
MTOR |
0.816 | -0.065 | 1 | 0.793 |
HIPK4 |
0.815 | 0.071 | 1 | 0.846 |
CAMK1B |
0.815 | 0.041 | -3 | 0.892 |
NDR2 |
0.815 | -0.006 | -3 | 0.889 |
SKMLCK |
0.814 | 0.050 | -2 | 0.898 |
CDKL5 |
0.813 | 0.065 | -3 | 0.853 |
RIPK3 |
0.812 | 0.028 | 3 | 0.784 |
RAF1 |
0.812 | -0.062 | 1 | 0.817 |
RSK2 |
0.812 | 0.052 | -3 | 0.831 |
CAMK2G |
0.812 | 0.023 | 2 | 0.843 |
ERK5 |
0.811 | 0.000 | 1 | 0.827 |
DYRK2 |
0.810 | 0.094 | 1 | 0.784 |
WNK1 |
0.809 | -0.007 | -2 | 0.919 |
BMPR2 |
0.809 | -0.102 | -2 | 0.882 |
PIM1 |
0.809 | 0.049 | -3 | 0.857 |
CAMLCK |
0.808 | 0.042 | -2 | 0.875 |
PDHK4 |
0.808 | -0.187 | 1 | 0.834 |
PKN3 |
0.808 | 0.030 | -3 | 0.865 |
NDR1 |
0.808 | -0.001 | -3 | 0.879 |
ICK |
0.807 | 0.049 | -3 | 0.886 |
P90RSK |
0.807 | 0.027 | -3 | 0.832 |
MST4 |
0.806 | 0.003 | 2 | 0.870 |
NUAK2 |
0.806 | -0.005 | -3 | 0.878 |
BMPR1B |
0.806 | 0.091 | 1 | 0.807 |
TBK1 |
0.806 | -0.097 | 1 | 0.710 |
FAM20C |
0.806 | 0.087 | 2 | 0.723 |
GRK6 |
0.806 | 0.034 | 1 | 0.816 |
PKN2 |
0.806 | 0.027 | -3 | 0.874 |
MLK1 |
0.805 | -0.023 | 2 | 0.829 |
ATR |
0.805 | -0.048 | 1 | 0.782 |
DAPK2 |
0.805 | 0.028 | -3 | 0.891 |
GCN2 |
0.805 | -0.131 | 2 | 0.819 |
SRPK2 |
0.805 | 0.075 | -3 | 0.757 |
GRK5 |
0.805 | -0.073 | -3 | 0.893 |
DSTYK |
0.804 | -0.071 | 2 | 0.906 |
NIK |
0.804 | -0.040 | -3 | 0.897 |
IKKE |
0.804 | -0.083 | 1 | 0.708 |
CLK2 |
0.804 | 0.126 | -3 | 0.817 |
P70S6KB |
0.804 | 0.044 | -3 | 0.843 |
PRKD1 |
0.804 | -0.023 | -3 | 0.860 |
AMPKA1 |
0.803 | -0.014 | -3 | 0.885 |
SRPK3 |
0.803 | 0.079 | -3 | 0.803 |
PKACG |
0.803 | 0.016 | -2 | 0.765 |
CDK7 |
0.803 | 0.047 | 1 | 0.752 |
CHAK2 |
0.803 | -0.042 | -1 | 0.232 |
HIPK1 |
0.803 | 0.109 | 1 | 0.799 |
HIPK2 |
0.803 | 0.105 | 1 | 0.716 |
PRKD2 |
0.802 | 0.006 | -3 | 0.816 |
RSK3 |
0.802 | 0.024 | -3 | 0.817 |
AURC |
0.801 | 0.030 | -2 | 0.685 |
RIPK1 |
0.801 | -0.045 | 1 | 0.796 |
BCKDK |
0.801 | -0.111 | -1 | 0.206 |
RSK4 |
0.801 | 0.069 | -3 | 0.814 |
CLK4 |
0.801 | 0.073 | -3 | 0.830 |
MAPKAPK2 |
0.801 | 0.037 | -3 | 0.795 |
TGFBR2 |
0.801 | -0.067 | -2 | 0.789 |
PDHK1 |
0.800 | -0.185 | 1 | 0.812 |
IKKA |
0.800 | -0.047 | -2 | 0.760 |
MAPKAPK3 |
0.800 | -0.003 | -3 | 0.817 |
LATS2 |
0.799 | -0.042 | -5 | 0.777 |
CK1E |
0.798 | 0.124 | -3 | 0.691 |
DLK |
0.798 | -0.017 | 1 | 0.798 |
CAMK2B |
0.798 | 0.026 | 2 | 0.829 |
LATS1 |
0.798 | 0.034 | -3 | 0.890 |
MYLK4 |
0.798 | 0.059 | -2 | 0.805 |
WNK3 |
0.798 | -0.130 | 1 | 0.782 |
MARK4 |
0.797 | -0.061 | 4 | 0.857 |
AMPKA2 |
0.797 | -0.014 | -3 | 0.860 |
CAMK2D |
0.797 | -0.047 | -3 | 0.859 |
ACVR2B |
0.797 | 0.101 | -2 | 0.784 |
TSSK2 |
0.797 | -0.026 | -5 | 0.885 |
MASTL |
0.797 | -0.119 | -2 | 0.846 |
PKCD |
0.797 | -0.030 | 2 | 0.799 |
CDK8 |
0.797 | 0.025 | 1 | 0.735 |
GRK4 |
0.796 | -0.067 | -2 | 0.843 |
TGFBR1 |
0.796 | 0.041 | -2 | 0.796 |
ULK2 |
0.796 | -0.188 | 2 | 0.799 |
MSK2 |
0.796 | 0.019 | -3 | 0.816 |
HUNK |
0.796 | -0.111 | 2 | 0.824 |
GRK7 |
0.796 | 0.050 | 1 | 0.750 |
CLK1 |
0.795 | 0.063 | -3 | 0.798 |
DYRK4 |
0.795 | 0.101 | 1 | 0.720 |
MSK1 |
0.795 | 0.050 | -3 | 0.812 |
ANKRD3 |
0.795 | -0.043 | 1 | 0.822 |
PAK1 |
0.795 | -0.005 | -2 | 0.825 |
PKACB |
0.794 | 0.052 | -2 | 0.700 |
NEK6 |
0.794 | -0.132 | -2 | 0.863 |
CAMK2A |
0.794 | 0.012 | 2 | 0.834 |
ATM |
0.794 | -0.048 | 1 | 0.715 |
CDK18 |
0.794 | 0.056 | 1 | 0.694 |
JNK2 |
0.794 | 0.073 | 1 | 0.707 |
NEK7 |
0.794 | -0.166 | -3 | 0.830 |
CDK13 |
0.794 | 0.039 | 1 | 0.732 |
CAMK4 |
0.794 | -0.036 | -3 | 0.855 |
CDK1 |
0.794 | 0.066 | 1 | 0.723 |
ACVR2A |
0.794 | 0.048 | -2 | 0.770 |
JNK3 |
0.793 | 0.067 | 1 | 0.736 |
ALK4 |
0.793 | -0.007 | -2 | 0.828 |
TSSK1 |
0.793 | -0.044 | -3 | 0.895 |
CDK19 |
0.793 | 0.032 | 1 | 0.704 |
IRE1 |
0.793 | -0.077 | 1 | 0.781 |
MLK2 |
0.792 | -0.101 | 2 | 0.828 |
DYRK1A |
0.792 | 0.076 | 1 | 0.802 |
DYRK3 |
0.792 | 0.095 | 1 | 0.801 |
DYRK1B |
0.792 | 0.088 | 1 | 0.745 |
MLK3 |
0.791 | -0.045 | 2 | 0.756 |
PLK1 |
0.791 | -0.024 | -2 | 0.802 |
AURB |
0.791 | 0.024 | -2 | 0.685 |
ALK2 |
0.791 | 0.034 | -2 | 0.807 |
PRKX |
0.791 | 0.059 | -3 | 0.755 |
PAK3 |
0.791 | -0.038 | -2 | 0.820 |
CK1D |
0.791 | 0.120 | -3 | 0.645 |
HIPK3 |
0.790 | 0.075 | 1 | 0.787 |
PKR |
0.790 | -0.036 | 1 | 0.825 |
AKT2 |
0.790 | 0.054 | -3 | 0.758 |
P38A |
0.790 | 0.044 | 1 | 0.775 |
P38B |
0.790 | 0.061 | 1 | 0.714 |
PKCG |
0.790 | -0.026 | 2 | 0.748 |
CDK12 |
0.790 | 0.045 | 1 | 0.708 |
BMPR1A |
0.789 | 0.064 | 1 | 0.783 |
PIM2 |
0.789 | 0.051 | -3 | 0.803 |
PRKD3 |
0.789 | 0.005 | -3 | 0.790 |
PKCB |
0.789 | -0.027 | 2 | 0.747 |
MNK2 |
0.789 | -0.044 | -2 | 0.819 |
CDK5 |
0.788 | 0.043 | 1 | 0.764 |
AURA |
0.788 | 0.035 | -2 | 0.660 |
CK1A2 |
0.788 | 0.128 | -3 | 0.648 |
SGK3 |
0.788 | 0.025 | -3 | 0.817 |
PKG2 |
0.788 | 0.018 | -2 | 0.692 |
TTBK2 |
0.788 | -0.111 | 2 | 0.707 |
P38G |
0.788 | 0.066 | 1 | 0.643 |
MLK4 |
0.788 | -0.043 | 2 | 0.741 |
PAK2 |
0.788 | -0.025 | -2 | 0.815 |
CDK10 |
0.787 | 0.085 | 1 | 0.724 |
NIM1 |
0.787 | -0.111 | 3 | 0.806 |
ERK1 |
0.787 | 0.048 | 1 | 0.709 |
MELK |
0.787 | -0.046 | -3 | 0.837 |
GRK2 |
0.787 | 0.020 | -2 | 0.724 |
MEK1 |
0.787 | -0.075 | 2 | 0.859 |
VRK2 |
0.787 | -0.088 | 1 | 0.850 |
CDK17 |
0.787 | 0.053 | 1 | 0.647 |
PKCA |
0.787 | -0.030 | 2 | 0.739 |
CAMK1G |
0.786 | 0.036 | -3 | 0.809 |
QIK |
0.786 | -0.075 | -3 | 0.850 |
QSK |
0.786 | -0.038 | 4 | 0.833 |
CDK14 |
0.786 | 0.061 | 1 | 0.734 |
NUAK1 |
0.786 | -0.046 | -3 | 0.827 |
PASK |
0.785 | 0.066 | -3 | 0.905 |
PRP4 |
0.785 | 0.041 | -3 | 0.794 |
PKCZ |
0.785 | -0.062 | 2 | 0.786 |
YSK4 |
0.785 | -0.081 | 1 | 0.745 |
PHKG1 |
0.785 | -0.043 | -3 | 0.865 |
NEK9 |
0.785 | -0.202 | 2 | 0.842 |
ULK1 |
0.785 | -0.190 | -3 | 0.796 |
DRAK1 |
0.785 | -0.006 | 1 | 0.765 |
MNK1 |
0.784 | -0.041 | -2 | 0.818 |
BRSK1 |
0.784 | -0.025 | -3 | 0.830 |
CK2A2 |
0.784 | 0.099 | 1 | 0.727 |
CDK9 |
0.784 | 0.019 | 1 | 0.738 |
ERK2 |
0.784 | 0.025 | 1 | 0.751 |
PAK6 |
0.784 | -0.016 | -2 | 0.751 |
MEKK3 |
0.783 | 0.005 | 1 | 0.774 |
SMG1 |
0.783 | -0.103 | 1 | 0.729 |
DNAPK |
0.783 | -0.051 | 1 | 0.663 |
IRE2 |
0.782 | -0.092 | 2 | 0.762 |
PKCH |
0.781 | -0.049 | 2 | 0.734 |
MST3 |
0.781 | 0.012 | 2 | 0.846 |
SIK |
0.781 | -0.040 | -3 | 0.806 |
WNK4 |
0.780 | -0.063 | -2 | 0.919 |
SMMLCK |
0.780 | 0.030 | -3 | 0.857 |
MARK3 |
0.779 | -0.037 | 4 | 0.791 |
BRSK2 |
0.779 | -0.070 | -3 | 0.839 |
GAK |
0.778 | 0.084 | 1 | 0.829 |
GRK3 |
0.778 | 0.033 | -2 | 0.687 |
MAK |
0.778 | 0.097 | -2 | 0.778 |
TLK2 |
0.778 | -0.115 | 1 | 0.750 |
MPSK1 |
0.778 | -0.021 | 1 | 0.782 |
P38D |
0.778 | 0.057 | 1 | 0.652 |
SNRK |
0.778 | -0.069 | 2 | 0.697 |
PLK3 |
0.778 | -0.088 | 2 | 0.803 |
CK2A1 |
0.777 | 0.106 | 1 | 0.710 |
P70S6K |
0.777 | 0.025 | -3 | 0.764 |
CDK3 |
0.777 | 0.049 | 1 | 0.665 |
AKT1 |
0.777 | 0.037 | -3 | 0.771 |
DCAMKL1 |
0.776 | -0.040 | -3 | 0.829 |
MEK5 |
0.776 | -0.115 | 2 | 0.839 |
CHAK1 |
0.776 | -0.144 | 2 | 0.772 |
CDK16 |
0.776 | 0.050 | 1 | 0.661 |
PKACA |
0.776 | 0.034 | -2 | 0.639 |
MAPKAPK5 |
0.776 | -0.051 | -3 | 0.770 |
SSTK |
0.776 | -0.017 | 4 | 0.823 |
MARK2 |
0.776 | -0.054 | 4 | 0.754 |
CDK2 |
0.775 | -0.013 | 1 | 0.780 |
PLK4 |
0.775 | -0.099 | 2 | 0.653 |
CHK1 |
0.775 | -0.095 | -3 | 0.838 |
MOK |
0.775 | 0.091 | 1 | 0.807 |
DAPK3 |
0.775 | 0.054 | -3 | 0.851 |
GSK3A |
0.774 | 0.030 | 4 | 0.475 |
NEK2 |
0.774 | -0.169 | 2 | 0.817 |
DAPK1 |
0.773 | 0.072 | -3 | 0.843 |
CK1G1 |
0.773 | 0.011 | -3 | 0.681 |
IRAK4 |
0.773 | -0.116 | 1 | 0.778 |
GSK3B |
0.773 | 0.008 | 4 | 0.467 |
MARK1 |
0.773 | -0.060 | 4 | 0.811 |
ZAK |
0.772 | -0.120 | 1 | 0.742 |
TAO3 |
0.772 | -0.071 | 1 | 0.770 |
MEKK2 |
0.772 | -0.095 | 2 | 0.813 |
BRAF |
0.772 | -0.134 | -4 | 0.838 |
PERK |
0.772 | -0.151 | -2 | 0.831 |
PKCT |
0.771 | -0.048 | 2 | 0.740 |
JNK1 |
0.770 | 0.048 | 1 | 0.697 |
MEKK1 |
0.770 | -0.140 | 1 | 0.767 |
HRI |
0.770 | -0.176 | -2 | 0.841 |
CAMK1D |
0.770 | 0.007 | -3 | 0.738 |
PKCI |
0.769 | -0.045 | 2 | 0.757 |
TLK1 |
0.769 | -0.105 | -2 | 0.821 |
NEK11 |
0.769 | -0.063 | 1 | 0.771 |
SGK1 |
0.768 | 0.055 | -3 | 0.696 |
PKCE |
0.768 | -0.004 | 2 | 0.733 |
IRAK1 |
0.768 | -0.156 | -1 | 0.199 |
AKT3 |
0.768 | 0.049 | -3 | 0.710 |
PAK5 |
0.767 | -0.028 | -2 | 0.692 |
NEK5 |
0.767 | -0.168 | 1 | 0.792 |
DCAMKL2 |
0.767 | -0.055 | -3 | 0.837 |
GCK |
0.767 | -0.020 | 1 | 0.787 |
PHKG2 |
0.766 | -0.048 | -3 | 0.826 |
HPK1 |
0.766 | -0.003 | 1 | 0.779 |
ERK7 |
0.766 | 0.002 | 2 | 0.558 |
PDK1 |
0.766 | -0.055 | 1 | 0.784 |
TAK1 |
0.765 | -0.004 | 1 | 0.786 |
PAK4 |
0.764 | -0.020 | -2 | 0.693 |
ROCK2 |
0.764 | 0.026 | -3 | 0.840 |
PINK1 |
0.764 | -0.183 | 1 | 0.843 |
TAO2 |
0.763 | -0.098 | 2 | 0.855 |
CHK2 |
0.763 | 0.018 | -3 | 0.704 |
MRCKB |
0.762 | 0.025 | -3 | 0.791 |
CDK4 |
0.762 | 0.035 | 1 | 0.697 |
HASPIN |
0.761 | -0.022 | -1 | 0.173 |
NEK8 |
0.761 | -0.142 | 2 | 0.826 |
TTBK1 |
0.761 | -0.133 | 2 | 0.627 |
LKB1 |
0.761 | -0.134 | -3 | 0.824 |
BMPR2_TYR |
0.761 | 0.383 | -1 | 0.410 |
MINK |
0.760 | -0.059 | 1 | 0.769 |
CDK6 |
0.760 | 0.024 | 1 | 0.714 |
VRK1 |
0.760 | -0.055 | 2 | 0.844 |
PKN1 |
0.760 | -0.012 | -3 | 0.773 |
LRRK2 |
0.759 | -0.106 | 2 | 0.857 |
MST2 |
0.759 | -0.070 | 1 | 0.775 |
BUB1 |
0.759 | 0.001 | -5 | 0.863 |
CAMKK1 |
0.759 | -0.184 | -2 | 0.772 |
MRCKA |
0.758 | 0.008 | -3 | 0.806 |
DMPK1 |
0.758 | 0.056 | -3 | 0.815 |
CAMK1A |
0.758 | 0.013 | -3 | 0.721 |
TNIK |
0.757 | -0.071 | 3 | 0.861 |
PLK2 |
0.757 | -0.035 | -3 | 0.776 |
MEKK6 |
0.757 | -0.117 | 1 | 0.754 |
SBK |
0.757 | 0.033 | -3 | 0.646 |
KHS2 |
0.757 | -0.016 | 1 | 0.781 |
PDHK3_TYR |
0.756 | 0.129 | 4 | 0.911 |
MAP3K15 |
0.756 | -0.110 | 1 | 0.729 |
HGK |
0.755 | -0.108 | 3 | 0.867 |
EEF2K |
0.755 | -0.072 | 3 | 0.840 |
CAMKK2 |
0.755 | -0.179 | -2 | 0.762 |
KHS1 |
0.754 | -0.048 | 1 | 0.765 |
PDHK4_TYR |
0.754 | 0.174 | 2 | 0.904 |
NEK4 |
0.753 | -0.178 | 1 | 0.763 |
CRIK |
0.752 | 0.054 | -3 | 0.774 |
LOK |
0.752 | -0.113 | -2 | 0.783 |
MAP2K6_TYR |
0.752 | 0.140 | -1 | 0.296 |
SLK |
0.751 | -0.095 | -2 | 0.735 |
CK1A |
0.751 | 0.074 | -3 | 0.564 |
ALPHAK3 |
0.750 | 0.025 | -1 | 0.280 |
PBK |
0.750 | -0.050 | 1 | 0.746 |
ROCK1 |
0.750 | 0.023 | -3 | 0.806 |
PDHK1_TYR |
0.750 | 0.180 | -1 | 0.326 |
EPHA6 |
0.750 | 0.241 | -1 | 0.392 |
STK33 |
0.750 | -0.119 | 2 | 0.631 |
RIPK2 |
0.749 | -0.144 | 1 | 0.700 |
NEK1 |
0.749 | -0.178 | 1 | 0.771 |
MAP2K4_TYR |
0.748 | 0.022 | -1 | 0.266 |
TESK1_TYR |
0.747 | 0.026 | 3 | 0.895 |
MST1 |
0.747 | -0.123 | 1 | 0.760 |
PKG1 |
0.746 | -0.016 | -2 | 0.604 |
TXK |
0.746 | 0.149 | 1 | 0.807 |
PTK2 |
0.746 | 0.334 | -1 | 0.542 |
PKMYT1_TYR |
0.746 | 0.006 | 3 | 0.877 |
YSK1 |
0.745 | -0.116 | 2 | 0.814 |
OSR1 |
0.745 | -0.041 | 2 | 0.813 |
FYN |
0.745 | 0.276 | -1 | 0.455 |
LCK |
0.745 | 0.232 | -1 | 0.408 |
TTK |
0.745 | -0.046 | -2 | 0.818 |
MAP2K7_TYR |
0.744 | -0.021 | 2 | 0.877 |
YANK3 |
0.742 | -0.013 | 2 | 0.420 |
BLK |
0.741 | 0.206 | -1 | 0.399 |
EPHB4 |
0.741 | 0.077 | -1 | 0.311 |
PINK1_TYR |
0.741 | 0.016 | 1 | 0.818 |
LIMK2_TYR |
0.740 | -0.043 | -3 | 0.888 |
MEK2 |
0.740 | -0.233 | 2 | 0.822 |
HCK |
0.739 | 0.159 | -1 | 0.374 |
BMX |
0.738 | 0.069 | -1 | 0.313 |
SYK |
0.738 | 0.287 | -1 | 0.490 |
BIKE |
0.737 | -0.027 | 1 | 0.715 |
JAK3 |
0.736 | 0.107 | 1 | 0.745 |
MYO3B |
0.735 | -0.093 | 2 | 0.829 |
ABL2 |
0.735 | -0.015 | -1 | 0.250 |
ITK |
0.735 | 0.072 | -1 | 0.317 |
INSRR |
0.734 | 0.057 | 3 | 0.780 |
RET |
0.734 | -0.066 | 1 | 0.766 |
YES1 |
0.734 | 0.003 | -1 | 0.278 |
EPHA4 |
0.734 | 0.085 | 2 | 0.806 |
NEK3 |
0.733 | -0.197 | 1 | 0.725 |
ASK1 |
0.733 | -0.129 | 1 | 0.718 |
MST1R |
0.733 | -0.025 | 3 | 0.834 |
SRMS |
0.733 | 0.018 | 1 | 0.806 |
FGR |
0.733 | 0.000 | 1 | 0.802 |
FER |
0.732 | -0.036 | 1 | 0.817 |
MYO3A |
0.732 | -0.096 | 1 | 0.773 |
EPHB3 |
0.731 | 0.048 | -1 | 0.314 |
EPHB1 |
0.731 | 0.042 | 1 | 0.792 |
EPHB2 |
0.731 | 0.065 | -1 | 0.323 |
LIMK1_TYR |
0.731 | -0.141 | 2 | 0.863 |
CSF1R |
0.731 | -0.044 | 3 | 0.819 |
ABL1 |
0.730 | -0.050 | -1 | 0.234 |
TYRO3 |
0.729 | -0.121 | 3 | 0.821 |
FLT1 |
0.729 | 0.115 | -1 | 0.372 |
MET |
0.729 | 0.076 | 3 | 0.805 |
KIT |
0.729 | -0.006 | 3 | 0.820 |
TAO1 |
0.728 | -0.131 | 1 | 0.697 |
TYK2 |
0.728 | -0.111 | 1 | 0.760 |
ROS1 |
0.728 | -0.093 | 3 | 0.802 |
JAK2 |
0.727 | -0.072 | 1 | 0.757 |
KDR |
0.727 | 0.032 | 3 | 0.785 |
DDR1 |
0.726 | -0.111 | 4 | 0.828 |
FGFR2 |
0.726 | -0.029 | 3 | 0.824 |
EPHA7 |
0.726 | 0.073 | 2 | 0.804 |
LYN |
0.725 | 0.090 | 3 | 0.757 |
TEC |
0.725 | -0.064 | -1 | 0.232 |
WEE1_TYR |
0.724 | -0.047 | -1 | 0.219 |
SRC |
0.724 | 0.092 | -1 | 0.367 |
EPHA8 |
0.724 | 0.130 | -1 | 0.398 |
MERTK |
0.723 | -0.068 | 3 | 0.799 |
TNK2 |
0.723 | -0.091 | 3 | 0.782 |
TEK |
0.722 | -0.033 | 3 | 0.765 |
STLK3 |
0.722 | -0.120 | 1 | 0.705 |
FRK |
0.721 | 0.058 | -1 | 0.352 |
CK1G3 |
0.721 | 0.027 | -3 | 0.519 |
BTK |
0.721 | -0.102 | -1 | 0.249 |
EPHA3 |
0.721 | 0.017 | 2 | 0.776 |
CK1G2 |
0.720 | 0.109 | -3 | 0.605 |
EPHA5 |
0.719 | 0.046 | 2 | 0.795 |
FLT3 |
0.719 | -0.078 | 3 | 0.818 |
ERBB2 |
0.719 | 0.014 | 1 | 0.719 |
FGFR3 |
0.719 | -0.003 | 3 | 0.795 |
AXL |
0.719 | -0.133 | 3 | 0.802 |
EPHA2 |
0.718 | 0.126 | -1 | 0.397 |
EPHA1 |
0.718 | -0.001 | 3 | 0.787 |
AAK1 |
0.718 | -0.017 | 1 | 0.622 |
PDGFRB |
0.717 | -0.143 | 3 | 0.828 |
ZAP70 |
0.716 | 0.136 | -1 | 0.429 |
FGFR1 |
0.716 | -0.103 | 3 | 0.797 |
JAK1 |
0.716 | -0.083 | 1 | 0.706 |
PTK6 |
0.716 | -0.164 | -1 | 0.202 |
NEK10_TYR |
0.715 | -0.123 | 1 | 0.667 |
ALK |
0.715 | -0.105 | 3 | 0.756 |
TNK1 |
0.715 | -0.153 | 3 | 0.807 |
PTK2B |
0.714 | -0.059 | -1 | 0.222 |
LTK |
0.714 | -0.112 | 3 | 0.778 |
ERBB4 |
0.714 | 0.123 | 1 | 0.652 |
EGFR |
0.714 | 0.007 | 1 | 0.624 |
FLT4 |
0.713 | -0.053 | 3 | 0.784 |
NTRK1 |
0.713 | -0.120 | -1 | 0.248 |
INSR |
0.713 | -0.063 | 3 | 0.759 |
DDR2 |
0.712 | -0.037 | 3 | 0.771 |
MATK |
0.712 | -0.088 | -1 | 0.210 |
TNNI3K_TYR |
0.711 | -0.137 | 1 | 0.770 |
NTRK3 |
0.710 | -0.098 | -1 | 0.238 |
FGFR4 |
0.709 | -0.046 | -1 | 0.261 |
YANK2 |
0.708 | -0.032 | 2 | 0.437 |
PDGFRA |
0.708 | -0.183 | 3 | 0.824 |
IGF1R |
0.706 | -0.008 | 3 | 0.703 |
NTRK2 |
0.705 | -0.161 | 3 | 0.779 |
CSK |
0.704 | -0.094 | 2 | 0.801 |
FES |
0.697 | -0.045 | -1 | 0.270 |
MUSK |
0.695 | -0.090 | 1 | 0.615 |