Motif 375 (n=391)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A1A5D9 | BICDL2 | S331 | ochoa | BICD family-like cargo adapter 2 (Bicaudal D-related protein 2) (BICD-related protein 2) (BICDR-2) (Coiled-coil domain-containing protein 64B) | None |
A6NHQ4 | EPOP | S180 | ochoa | Elongin BC and Polycomb repressive complex 2-associated protein (Proline-rich protein 28) | Scaffold protein that serves as a bridging partner between the PRC2/EZH2 complex and the elongin BC complex: required to fine-tune the transcriptional status of Polycomb group (PcG) target genes in embryonic stem cells (ESCs). Plays a key role in genomic regions that display both active and repressive chromatin properties in pluripotent stem cells by sustaining low level expression at PcG target genes: acts by recruiting the elongin BC complex, thereby restricting excessive activity of the PRC2/EZH2 complex. Interaction with USP7 promotes deubiquitination of H2B at promoter sites. Acts as a regulator of neuronal differentiation. {ECO:0000250|UniProtKB:Q7TNS8}. |
A7E2V4 | ZSWIM8 | S1048 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
A7MCY6 | TBKBP1 | S385 | ochoa | TANK-binding kinase 1-binding protein 1 (TBK1-binding protein 1) | Adapter protein which constitutively binds TBK1 and IKBKE playing a role in antiviral innate immunity. {ECO:0000269|PubMed:21931631}. |
A8CG34 | POM121C | S161 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
B8ZZF3 | None | S330 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Cofactor required for Sp1 transcriptional activation subunit 7) (Mediator complex subunit 26) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. {ECO:0000256|ARBA:ARBA00057523}. |
E9PAV3 | NACA | S1488 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
H0YIS7 | RNASEK-C17orf49 | S147 | ochoa | BPTF-associated chromatin complex component 1 (BPTF-associated protein of 18 kDa) (Chromatin complexes subunit BAP18) | Component of chromatin complexes such as the MLL1/MLL and NURF complexes. {ECO:0000256|ARBA:ARBA00059556}. |
O00330 | PDHX | S154 | ochoa | Pyruvate dehydrogenase protein X component, mitochondrial (Dihydrolipoamide dehydrogenase-binding protein of pyruvate dehydrogenase complex) (E3-binding protein) (E3BP) (Lipoyl-containing pyruvate dehydrogenase complex component X) (proX) | Required for anchoring dihydrolipoamide dehydrogenase (E3) to the dihydrolipoamide transacetylase (E2) core of the pyruvate dehydrogenase complexes of eukaryotes. This specific binding is essential for a functional PDH complex. |
O00330 | PDHX | S168 | ochoa | Pyruvate dehydrogenase protein X component, mitochondrial (Dihydrolipoamide dehydrogenase-binding protein of pyruvate dehydrogenase complex) (E3-binding protein) (E3BP) (Lipoyl-containing pyruvate dehydrogenase complex component X) (proX) | Required for anchoring dihydrolipoamide dehydrogenase (E3) to the dihydrolipoamide transacetylase (E2) core of the pyruvate dehydrogenase complexes of eukaryotes. This specific binding is essential for a functional PDH complex. |
O00459 | PIK3R2 | S263 | ochoa | Phosphatidylinositol 3-kinase regulatory subunit beta (PI3-kinase regulatory subunit beta) (PI3K regulatory subunit beta) (PtdIns-3-kinase regulatory subunit beta) (Phosphatidylinositol 3-kinase 85 kDa regulatory subunit beta) (PI3-kinase subunit p85-beta) (PtdIns-3-kinase regulatory subunit p85-beta) | Regulatory subunit of phosphoinositide-3-kinase (PI3K), a kinase that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Binds to activated (phosphorylated) protein-tyrosine kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Indirectly regulates autophagy (PubMed:23604317). Promotes nuclear translocation of XBP1 isoform 2 in a ER stress- and/or insulin-dependent manner during metabolic overloading in the liver and hence plays a role in glucose tolerance improvement (By similarity). {ECO:0000250|UniProtKB:O08908, ECO:0000269|PubMed:23604317}. |
O14613 | CDC42EP2 | S109 | ochoa | Cdc42 effector protein 2 (Binder of Rho GTPases 1) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts in a CDC42-dependent manner. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}. |
O14640 | DVL1 | Y651 | ochoa | Segment polarity protein dishevelled homolog DVL-1 (Dishevelled-1) (DSH homolog 1) | Participates in Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Plays a role both in canonical and non-canonical Wnt signaling. Plays a role in the signal transduction pathways mediated by multiple Wnt genes. Required for LEF1 activation upon WNT1 and WNT3A signaling. DVL1 and PAK1 form a ternary complex with MUSK which is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ). |
O14686 | KMT2D | S609 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S4625 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14828 | SCAMP3 | S65 | ochoa | Secretory carrier-associated membrane protein 3 (Secretory carrier membrane protein 3) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O15047 | SETD1A | S1152 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15054 | KDM6B | S467 | ochoa | Lysine-specific demethylase 6B (EC 1.14.11.68) (JmjC domain-containing protein 3) (Jumonji domain-containing protein 3) (Lysine demethylase 6B) ([histone H3]-trimethyl-L-lysine(27) demethylase 6B) | Histone demethylase that specifically demethylates 'Lys-27' of histone H3, thereby playing a central role in histone code (PubMed:17713478, PubMed:17825402, PubMed:17851529, PubMed:18003914). Demethylates trimethylated and dimethylated H3 'Lys-27' (PubMed:17713478, PubMed:17825402, PubMed:17851529, PubMed:18003914). Plays a central role in regulation of posterior development, by regulating HOX gene expression (PubMed:17851529). Involved in inflammatory response by participating in macrophage differentiation in case of inflammation by regulating gene expression and macrophage differentiation (PubMed:17825402). Plays a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression by acting as a link between T-box factors and the SMARCA4-containing SWI/SNF remodeling complex (By similarity). {ECO:0000250|UniProtKB:Q5NCY0, ECO:0000269|PubMed:17713478, ECO:0000269|PubMed:17825402, ECO:0000269|PubMed:17851529, ECO:0000269|PubMed:18003914, ECO:0000269|PubMed:28262558}. |
O15162 | PLSCR1 | Y74 | psp | Phospholipid scramblase 1 (PL scramblase 1) (Ca(2+)-dependent phospholipid scramblase 1) (Erythrocyte phospholipid scramblase) (Mg(2+)-dependent nuclease) (EC 3.1.-.-) (MmTRA1b) | Catalyzes calcium-induced ATP-independent rapid bidirectional and non-specific movement of phospholipids (lipid scrambling or lipid flip-flop) between the inner and outer leaflet of the plasma membrane resulting in collapse of the phospholipid asymmetry which leads to phosphatidylserine externalization on the cell surface (PubMed:10770950, PubMed:18629440, PubMed:23590222, PubMed:23659204, PubMed:24343571, PubMed:24648509, PubMed:29748552, PubMed:32110987, PubMed:8663431, PubMed:9218461, PubMed:9485382, PubMed:9572851). Mediates calcium-dependent phosphatidylserine externalization and apoptosis in neurons via its association with TRPC5 (By similarity). Also exhibits magnesium-dependent nuclease activity against double-stranded DNA and RNA but not single-stranded DNA and can enhance DNA decatenation mediated by TOP2A (PubMed:17567603, PubMed:27206388). Negatively regulates FcR-mediated phagocytosis in differentiated macrophages (PubMed:26745724). May contribute to cytokine-regulated cell proliferation and differentiation (By similarity). May play a role in the antiviral response of interferon (IFN) by amplifying and enhancing the IFN response through increased expression of select subset of potent antiviral genes (PubMed:15308695). Inhibits the functions of viral transactivators, including human T-cell leukemia virus (HTLV)-1 protein Tax, human immunodeficiency virus (HIV)-1 Tat, human hepatitis B virus (HBV) HBx, Epstein-Barr virus (EBV) BZLF1 and human cytomegalovirus IE1 and IE2 proteins through direct interactions (PubMed:22789739, PubMed:23501106, PubMed:25365352, PubMed:31434743, PubMed:35138119). Also mediates the inhibition of influenza virus infection by preventing nuclear import of the viral nucleoprotein/NP (PubMed:29352288, PubMed:35595813). Plays a crucial role as a defense factor against SARS-CoV-2 independently of its scramblase activity by directly targeting nascent viral vesicles to prevent virus-membrane fusion and the release of viral RNA into the host-cell cytosol (PubMed:37438530). {ECO:0000250|UniProtKB:Q9JJ00, ECO:0000269|PubMed:10770950, ECO:0000269|PubMed:15308695, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18629440, ECO:0000269|PubMed:21806988, ECO:0000269|PubMed:22789739, ECO:0000269|PubMed:23501106, ECO:0000269|PubMed:23590222, ECO:0000269|PubMed:23659204, ECO:0000269|PubMed:24343571, ECO:0000269|PubMed:24648509, ECO:0000269|PubMed:25365352, ECO:0000269|PubMed:26745724, ECO:0000269|PubMed:27206388, ECO:0000269|PubMed:29748552, ECO:0000269|PubMed:31434743, ECO:0000269|PubMed:32110987, ECO:0000269|PubMed:35138119, ECO:0000269|PubMed:37438530, ECO:0000269|PubMed:8663431, ECO:0000269|PubMed:9218461, ECO:0000269|PubMed:9485382, ECO:0000269|PubMed:9572851}.; FUNCTION: (Microbial infection) Acts as an attachment receptor for HCV. {ECO:0000269|PubMed:21806988}. |
O15234 | CASC3 | S381 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15417 | TNRC18 | S333 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15446 | POLR1G | S136 | ochoa | DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}. |
O43426 | SYNJ1 | S1083 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43439 | CBFA2T2 | S43 | ochoa | Protein CBFA2T2 (ETO homologous on chromosome 20) (MTG8-like protein) (MTG8-related protein 1) (Myeloid translocation-related protein 1) (p85) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:12559562, PubMed:15203199). Via association with PRDM14 is involved in regulation of embryonic stem cell (ESC) pluripotency (PubMed:27281218). Involved in primordial germ cell (PCG) formation. Stabilizes PRDM14 and OCT4 on chromatin in a homooligomerization-dependent manner (By similarity). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). May function as a complex with the chimeric protein RUNX1/AML1-CBFA2T1/MTG8 (AML1-MTG8/ETO fusion protein) which is produced in acute myeloid leukemia with the chromosomal translocation t(8;21). May thus be involved in the repression of AML1-dependent transcription and the induction of G-CSF/CSF3-dependent cell growth. May be a tumor suppressor gene candidate involved in myeloid tumors with the deletion of the 20q11 region. Through heteromerization with CBFA2T3/MTG16 may be involved in regulation of the proliferation and the differentiation of erythroid progenitors by repressing the expression of TAL1 target genes (By similarity). Required for the maintenance of the secretory cell lineage in the small intestine. Can inhibit Notch signaling probably by association with RBPJ and may be involved in GFI1-mediated Paneth cell differentiation (By similarity). {ECO:0000250|UniProtKB:O70374, ECO:0000269|PubMed:23251453, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}. |
O43561 | LAT | S69 | ochoa | Linker for activation of T-cells family member 1 (36 kDa phosphotyrosine adapter protein) (pp36) (p36-38) | Required for TCR (T-cell antigen receptor)- and pre-TCR-mediated signaling, both in mature T-cells and during their development (PubMed:23514740, PubMed:25907557). Involved in FCGR3 (low affinity immunoglobulin gamma Fc region receptor III)-mediated signaling in natural killer cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Couples activation of these receptors and their associated kinases with distal intracellular events such as mobilization of intracellular calcium stores, PKC activation, MAPK activation or cytoskeletal reorganization through the recruitment of PLCG1, GRB2, GRAP2, and other signaling molecules. {ECO:0000269|PubMed:10072481, ECO:0000269|PubMed:23514740, ECO:0000269|PubMed:25907557}. |
O60496 | DOK2 | S277 | ochoa | Docking protein 2 (Downstream of tyrosine kinase 2) (p56(dok-2)) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK2 may modulate the cellular proliferation induced by IL-4, as well as IL-2 and IL-3. May be involved in modulating Bcr-Abl signaling. Attenuates EGF-stimulated MAP kinase activation (By similarity). {ECO:0000250}. |
O75081 | CBFA2T3 | Y327 | ochoa | Protein CBFA2T3 (MTG8-related protein 2) (Myeloid translocation gene on chromosome 16 protein) (hMTG16) (Zinc finger MYND domain-containing protein 4) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:12559562, PubMed:15203199). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). Reduces the protein levels and stability of the transcriptinal regulator HIF1A; interacts with EGLN1 and promotes the HIF1A prolyl hydroxylation-dependent ubiquitination and proteasomal degradation pathway (PubMed:25974097). Contributes to inhibition of glycolysis and stimulation of mitochondrial respiration by down-regulating the expression of glycolytic genes including PFKFB3, PFKFB4, PDK1, PFKP, LDHA and HK1 which are direct targets of HIF1A (PubMed:23840896, PubMed:25974097). Regulates the proliferation and the differentiation of erythroid progenitors by repressing the expression of TAL1 target genes (By similarity). Plays a role in granulocyte differentiation (PubMed:15231665). {ECO:0000250|UniProtKB:O54972, ECO:0000269|PubMed:12183414, ECO:0000269|PubMed:15231665, ECO:0000269|PubMed:16966434, ECO:0000269|PubMed:23251453, ECO:0000269|PubMed:23840896, ECO:0000269|PubMed:25974097, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}.; FUNCTION: Isoform 2 functions as an A-kinase-anchoring protein (PubMed:11823486). {ECO:0000269|PubMed:11823486}. |
O75161 | NPHP4 | S480 | ochoa | Nephrocystin-4 (Nephroretinin) | Involved in the organization of apical junctions; the function is proposed to implicate a NPHP1-4-8 module (PubMed:19755384, PubMed:21565611). Does not seem to be strictly required for ciliogenesis (PubMed:21565611). Required for building functional cilia. Involved in the organization of the subapical actin network in multiciliated epithelial cells. Seems to recruit INT to basal bodies of motile cilia which subsequently interacts with actin-modifying proteins such as DAAM1 (By similarity). In cooperation with INVS may down-regulate the canonical Wnt pathway and promote the Wnt-PCP pathway by regulating expression and subcellular location of disheveled proteins. Stabilizes protein levels of JADE1 and promotes its translocation to the nucleus leading to cooperative inhibition of canonical Wnt signaling (PubMed:21498478, PubMed:22654112). Acts as a negative regulator of the hippo pathway by association with LATS1 and modifying LATS1-dependent phosphorylation and localization of WWTR1/TAZ (PubMed:21555462). {ECO:0000250|UniProtKB:B0DOB4, ECO:0000250|UniProtKB:P59240, ECO:0000269|PubMed:21498478, ECO:0000269|PubMed:21555462, ECO:0000269|PubMed:21565611, ECO:0000269|PubMed:22654112, ECO:0000305|PubMed:19755384}. |
O75182 | SIN3B | S740 | ochoa | Paired amphipathic helix protein Sin3b (Histone deacetylase complex subunit Sin3b) (Transcriptional corepressor Sin3b) | Acts as a transcriptional repressor. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Interacts with MAD-MAX heterodimers by binding to MAD. The heterodimer then represses transcription by tethering SIN3B to DNA. Also forms a complex with FOXK1 which represses transcription. With FOXK1, regulates cell cycle progression probably by repressing cell cycle inhibitor genes expression. As part of the SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). {ECO:0000250|UniProtKB:Q62141, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
O75952 | CABYR | S154 | ochoa | Calcium-binding tyrosine phosphorylation-regulated protein (Calcium-binding protein 86) (Cancer/testis antigen 88) (CT88) (Fibrousheathin II) (Fibrousheathin-2) (FSP-2) (Testis-specific calcium-binding protein CBP86) | May function as a regulator of both motility- and head-associated functions such as capacitation and the acrosome reaction. Isoform 1 binds calcium in vitro. Isoform 2 and isoform 6 probably bind calcium. Isoform 3 and isoform 5 do not bind calcium in vitro. Isoform 4 probably does not bind calcium. |
O94868 | FCHSD2 | S652 | ochoa | F-BAR and double SH3 domains protein 2 (Carom) (Protein nervous wreck 1) (NWK1) (SH3 multiple domains protein 3) | Adapter protein that plays a role in endocytosis via clathrin-coated pits. Contributes to the internalization of cell surface receptors, such as integrin ITGB1 and transferrin receptor (PubMed:29887380). Promotes endocytosis of EGFR in cancer cells, and thereby contributes to the down-regulation of EGFR signaling (PubMed:30249660). Recruited to clathrin-coated pits during a mid-to-late stage of assembly, where it is required for normal progress from U-shaped intermediate stage pits to terminal, omega-shaped pits (PubMed:29887380). Binds to membranes enriched in phosphatidylinositol 3,4-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate (PubMed:29887380). When bound to membranes, promotes actin polymerization via its interaction with WAS and/or WASL which leads to the activation of the Arp2/3 complex. Does not promote actin polymerisation in the absence of membranes (PubMed:29887380). {ECO:0000269|PubMed:29887380, ECO:0000269|PubMed:30249660}. |
O94875 | SORBS2 | S165 | ochoa | Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) | Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}. |
O94966 | USP19 | S406 | ochoa | Ubiquitin carboxyl-terminal hydrolase 19 (EC 3.4.19.12) (Deubiquitinating enzyme 19) (Ubiquitin thioesterase 19) (Ubiquitin-specific-processing protease 19) (Zinc finger MYND domain-containing protein 9) | Deubiquitinating enzyme that regulates the degradation of various proteins by removing ubiquitin moieties, thereby preventing their proteasomal degradation. Stabilizes RNF123, which promotes CDKN1B degradation and contributes to cell proliferation (By similarity). Decreases the levels of ubiquitinated proteins during skeletal muscle formation and acts to repress myogenesis. Modulates transcription of major myofibrillar proteins. Also involved in turnover of endoplasmic-reticulum-associated degradation (ERAD) substrates (PubMed:19465887, PubMed:24356957). Mechanistically, deubiquitinates and thereby stabilizes several E3 ligases involved in the ERAD pathway including SYVN1 or MARCHF6 (PubMed:24356957). Regulates the stability of other E3 ligases including BIRC2/c-IAP1 and BIRC3/c-IAP2 by preventing their ubiquitination (PubMed:21849505). Required for cells to mount an appropriate response to hypoxia by rescuing HIF1A from degradation in a non-catalytic manner and by mediating the deubiquitination of FUNDC1 (PubMed:22128162, PubMed:33978709). Attenuates mitochondrial damage and ferroptosis by targeting and stabilizing NADPH oxidase 4/NOX4 (PubMed:38943386). Negatively regulates TNF-alpha- and IL-1beta-triggered NF-kappa-B activation by hydrolyzing 'Lys-27'- and 'Lys-63'-linked polyubiquitin chains from MAP3K7 (PubMed:31127032). Modulates also the protein level and aggregation of polyQ-expanded huntingtin/HTT through HSP90AA1 (PubMed:33094816). {ECO:0000250|UniProtKB:Q3UJD6, ECO:0000250|UniProtKB:Q6J1Y9, ECO:0000269|PubMed:19465887, ECO:0000269|PubMed:21849505, ECO:0000269|PubMed:22128162, ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:24356957, ECO:0000269|PubMed:31127032, ECO:0000269|PubMed:33094816, ECO:0000269|PubMed:33978709, ECO:0000269|PubMed:38943386}. |
O95402 | MED26 | S322 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95835 | LATS1 | S244 | ochoa | Serine/threonine-protein kinase LATS1 (EC 2.7.11.1) (Large tumor suppressor homolog 1) (WARTS protein kinase) (h-warts) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:10518011, PubMed:10831611, PubMed:18158288, PubMed:26437443, PubMed:28068668). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288, PubMed:26437443, PubMed:28068668). Phosphorylation of YAP1 by LATS1 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:18158288, PubMed:26437443, PubMed:28068668). Acts as a tumor suppressor which plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G1 tetraploidy checkpoint (PubMed:15122335, PubMed:19927127). Negatively regulates G2/M transition by down-regulating CDK1 kinase activity (PubMed:9988268). Involved in the control of p53 expression (PubMed:15122335). Affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1 (PubMed:15220930). May also play a role in endocrine function. Plays a role in mammary gland epithelial cell differentiation, both through the Hippo signaling pathway and the intracellular estrogen receptor signaling pathway by promoting the degradation of ESR1 (PubMed:28068668). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10518011, ECO:0000269|PubMed:10831611, ECO:0000269|PubMed:15122335, ECO:0000269|PubMed:15220930, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:28068668, ECO:0000269|PubMed:39173637, ECO:0000269|PubMed:9988268}. |
P04004 | VTN | S130 | ochoa | Vitronectin (VN) (S-protein) (Serum-spreading factor) (V75) [Cleaved into: Vitronectin V65 subunit; Vitronectin V10 subunit; Somatomedin-B] | Vitronectin is a cell adhesion and spreading factor found in serum and tissues. Vitronectin interact with glycosaminoglycans and proteoglycans. Is recognized by certain members of the integrin family and serves as a cell-to-substrate adhesion molecule. Inhibitor of the membrane-damaging effect of the terminal cytolytic complement pathway.; FUNCTION: Somatomedin-B is a growth hormone-dependent serum factor with protease-inhibiting activity. |
P10636 | MAPT | S420 | ochoa | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P22681 | CBL | S553 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P22681 | CBL | S669 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P22736 | NR4A1 | S193 | ochoa | Nuclear receptor subfamily 4immunitygroup A member 1 (Early response protein NAK1) (Nuclear hormone receptor NUR/77) (Nur77) (Orphan nuclear receptor HMR) (Orphan nuclear receptor TR3) (ST-59) (Testicular receptor 3) | Orphan nuclear receptor. Binds the NGFI-B response element (NBRE) 5'-AAAGGTCA-3' (PubMed:18690216, PubMed:8121493, PubMed:9315652). Binds 9-cis-retinoic acid outside of its ligand-binding (NR LBD) domain (PubMed:18690216). Participates in energy homeostasis by sequestrating the kinase STK11 in the nucleus, thereby attenuating cytoplasmic AMPK activation (PubMed:22983157). Regulates the inflammatory response in macrophages by regulating metabolic adaptations during inflammation, including repressing the transcription of genes involved in the citric acid cycle (TCA) (By similarity). Inhibits NF-kappa-B signaling by binding to low-affinity NF-kappa-B binding sites, such as at the IL2 promoter (PubMed:15466594). May act concomitantly with NR4A2 in regulating the expression of delayed-early genes during liver regeneration (By similarity). Plays a role in the vascular response to injury (By similarity). {ECO:0000250|UniProtKB:P12813, ECO:0000250|UniProtKB:P22829, ECO:0000269|PubMed:15466594, ECO:0000269|PubMed:18690216, ECO:0000269|PubMed:22983157, ECO:0000269|PubMed:8121493, ECO:0000269|PubMed:9315652}.; FUNCTION: In the cytosol, upon its detection of both bacterial lipopolysaccharide (LPS) and NBRE-containing mitochondrial DNA released by GSDMD pores during pyroptosis, it promotes non-canonical NLRP3 inflammasome activation by stimulating association of NLRP3 and NEK7. {ECO:0000250|UniProtKB:P12813}. |
P28360 | MSX1 | S160 | ochoa | Homeobox protein MSX-1 (Homeobox protein Hox-7) (Msh homeobox 1-like protein) | Acts as a transcriptional repressor (By similarity). Capable of transcription autoinactivation (By similarity). Binds to the consensus sequence 5'-C/GTAAT-3' in downstream activin regulatory elements (DARE) in the gene promoter, thereby repressing the transcription of CGA/alpha-GSU and GNRHR (By similarity). Represses transcription of myoblast differentiation factors (By similarity). Binds to core enhancer regions in target gene promoters of myoblast differentiation factors with binding specificity facilitated by interaction with PIAS1 (By similarity). Regulates, in a stage-specific manner, a developmental program of gene expression in the fetal tooth bud that controls odontoblast differentiation and proliferation of dental mesenchymal cells (By similarity). At the bud stage, required for mesenchymal molar tooth bud development via facilitating reciprocal signaling between dental epithelial and mesenchymal cells (By similarity). May also regulate expression of Wnt antagonists such as DKK2 and SFPR2 in the developing tooth mesenchyme (By similarity). Required for BMP4 expression in dental mesenchyme cells (By similarity). Also, in response to BMP4, required for BMP4 expression in neighboring dental epithelial cells (By similarity). Required for maximal FGF4-induced expression of SDC1 in dental mesenchyme cells (By similarity). Also in response to SDC1, required for SDC1 expression in neighboring dental epithelial cells (By similarity). At the early bell stage, acts to drive proliferation of dental mesenchyme cells, however during the late bell stage acts as an homeostatic regulator of the cell cycle (By similarity). Regulates proliferation and inhibits premature mesenchymal odontogenesis during the bell stage via inhibition of the Wnt signaling component CTNNB1 and subsequent repression of the odontoblast differentiation factors BMP2, BMP4, LEF1, ALPL and BGLAP/OCN (By similarity). Additionally, required for correct development and fusion of the palatal shelves and embryonic mandibular formation (By similarity). Plays a role in embryonic bone formation of the middle ear, skull and nasal bones (By similarity). Required for correct formation and thickness of the nail plate (By similarity). May play a role in limb-pattern formation (By similarity). {ECO:0000250|UniProtKB:P13297, ECO:0000269|PubMed:12807959, ECO:0000303|PubMed:8696335}. |
P29353 | SHC1 | S453 | ochoa | SHC-transforming protein 1 (SHC-transforming protein 3) (SHC-transforming protein A) (Src homology 2 domain-containing-transforming protein C1) (SH2 domain protein C1) | Signaling adapter that couples activated growth factor receptors to signaling pathways. Participates in a signaling cascade initiated by activated KIT and KITLG/SCF. Isoform p46Shc and isoform p52Shc, once phosphorylated, couple activated receptor tyrosine kinases to Ras via the recruitment of the GRB2/SOS complex and are implicated in the cytoplasmic propagation of mitogenic signals. Isoform p46Shc and isoform p52Shc may thus function as initiators of the Ras signaling cascade in various non-neuronal systems. Isoform p66Shc does not mediate Ras activation, but is involved in signal transduction pathways that regulate the cellular response to oxidative stress and life span. Isoform p66Shc acts as a downstream target of the tumor suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. The expression of isoform p66Shc has been correlated with life span (By similarity). Participates in signaling downstream of the angiopoietin receptor TEK/TIE2, and plays a role in the regulation of endothelial cell migration and sprouting angiogenesis. {ECO:0000250, ECO:0000269|PubMed:14665640}. |
P42566 | EPS15 | S790 | ochoa | Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}. |
P45974 | USP5 | S711 | ochoa | Ubiquitin carboxyl-terminal hydrolase 5 (EC 3.4.19.12) (Deubiquitinating enzyme 5) (Isopeptidase T) (Ubiquitin thioesterase 5) (Ubiquitin-specific-processing protease 5) | Deubiquitinating enzyme that participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. Affects thereby important cellular signaling pathways such as NF-kappa-B, Wnt/beta-catenin, and cytokine production by regulating ubiquitin-dependent protein degradation. Participates in the activation of the Wnt signaling pathway by promoting FOXM1 deubiquitination and stabilization that induces the recruitment of beta-catenin to Wnt target gene promoter (PubMed:26912724). Regulates the assembly and disassembly of heat-induced stress granules by mediating the hydrolysis of unanchored ubiquitin chains (PubMed:29567855). Promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein (PubMed:37534934). Affects T-cell biology by stabilizing the inhibitory receptor on T-cells PDC1 (PubMed:37208329). Acts as a negative regulator of autophagy by regulating ULK1 at both protein and mRNA levels (PubMed:37607937). Acts also as a negative regulator of type I interferon production by simultaneously removing both 'Lys-48'-linked unanchored and 'Lys-63'-linked anchored polyubiquitin chains on the transcription factor IRF3 (PubMed:39761299). Modulates the stability of DNA mismatch repair protein MLH1 and counteracts the effect of the ubiquitin ligase UBR4 (PubMed:39032648). Upon activation by insulin, it gets phosphorylated through mTORC1-mediated phosphorylation to enhance YTHDF1 stability by removing 'Lys-11'-linked polyubiquitination (PubMed:39900921). May also deubiquitinate other substrates such as the calcium channel CACNA1H (By similarity). {ECO:0000250|UniProtKB:P56399, ECO:0000269|PubMed:19098288, ECO:0000269|PubMed:26912724, ECO:0000269|PubMed:29567855, ECO:0000269|PubMed:37208329, ECO:0000269|PubMed:37534934, ECO:0000269|PubMed:39032648, ECO:0000269|PubMed:39761299, ECO:0000269|PubMed:39900921}. |
P46379 | BAG6 | S218 | psp | Large proline-rich protein BAG6 (BAG family molecular chaperone regulator 6) (BCL2-associated athanogene 6) (BAG-6) (HLA-B-associated transcript 3) (Protein G3) (Protein Scythe) | ATP-independent molecular chaperone preventing the aggregation of misfolded and hydrophobic patches-containing proteins (PubMed:21636303). Functions as part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, which maintains these client proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20516149, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20516149, PubMed:20676083, PubMed:25535373, PubMed:28104892). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated by RNF126, an E3 ubiquitin-protein ligase associated with BAG6 and are sorted to the proteasome (PubMed:24981174, PubMed:27193484, PubMed:28104892). SGTA which prevents the recruitment of RNF126 to BAG6 may negatively regulate the ubiquitination and the proteasomal degradation of client proteins (PubMed:23129660, PubMed:25179605, PubMed:27193484). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these retrotranslocated proteins in an unfolded yet soluble state condition in the cytosol to ensure their proper delivery to the proteasome (PubMed:21636303). BAG6 is also required for selective ubiquitin-mediated degradation of defective nascent chain polypeptides by the proteasome. In this context, it may participate in the production of antigenic peptides and play a role in antigen presentation in immune response (By similarity). BAG6 is also involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation. BAG6 may ensure the proper degradation of these proteins and thereby protects the endoplasmic reticulum from protein overload upon stress (PubMed:26565908). By inhibiting the polyubiquitination and subsequent proteasomal degradation of HSPA2 it may also play a role in the assembly of the synaptonemal complex during spermatogenesis (By similarity). Also positively regulates apoptosis by interacting with and stabilizing the proapoptotic factor AIFM1 (By similarity). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:Q9Z1R2, ECO:0000269|PubMed:20516149, ECO:0000269|PubMed:20676083, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:21743475, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:24981174, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: Involved in DNA damage-induced apoptosis: following DNA damage, accumulates in the nucleus and forms a complex with p300/EP300, enhancing p300/EP300-mediated p53/TP53 acetylation leading to increase p53/TP53 transcriptional activity (PubMed:17403783). When nuclear, may also act as a component of some chromatin regulator complex that regulates histone 3 'Lys-4' dimethylation (H3K4me2) (PubMed:18765639). {ECO:0000269|PubMed:17403783, ECO:0000269|PubMed:18765639}.; FUNCTION: Released extracellularly via exosomes, it is a ligand of the natural killer/NK cells receptor NCR3 and stimulates NK cells cytotoxicity. It may thereby trigger NK cells cytotoxicity against neighboring tumor cells and immature myeloid dendritic cells (DC). {ECO:0000269|PubMed:18055229, ECO:0000269|PubMed:18852879}.; FUNCTION: Mediates ricin-induced apoptosis. {ECO:0000269|PubMed:14960581}. |
P48634 | PRRC2A | S516 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S837 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S1690 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49418 | AMPH | S276 | psp | Amphiphysin | May participate in mechanisms of regulated exocytosis in synapses and certain endocrine cell types. May control the properties of the membrane associated cytoskeleton. |
P49715 | CEBPA | S190 | psp | CCAAT/enhancer-binding protein alpha (C/EBP alpha) | Transcription factor that coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, and cells of the lung and the placenta. Binds directly to the consensus DNA sequence 5'-T[TG]NNGNAA[TG]-3' acting as an activator on distinct target genes (PubMed:11242107). During early embryogenesis, plays essential and redundant functions with CEBPB. Essential for the transition from common myeloid progenitors (CMP) to granulocyte/monocyte progenitors (GMP). Critical for the proper development of the liver and the lung (By similarity). Necessary for terminal adipocyte differentiation, is required for postnatal maintenance of systemic energy homeostasis and lipid storage (By similarity). To regulate these different processes at the proper moment and tissue, interplays with other transcription factors and modulators. Down-regulates the expression of genes that maintain cells in an undifferentiated and proliferative state through E2F1 repression, which is critical for its ability to induce adipocyte and granulocyte terminal differentiation. Reciprocally E2F1 blocks adipocyte differentiation by binding to specific promoters and repressing CEBPA binding to its target gene promoters. Proliferation arrest also depends on a functional binding to SWI/SNF complex (PubMed:14660596). In liver, regulates gluconeogenesis and lipogenesis through different mechanisms. To regulate gluconeogenesis, functionally cooperates with FOXO1 binding to IRE-controlled promoters and regulating the expression of target genes such as PCK1 or G6PC1. To modulate lipogenesis, interacts and transcriptionally synergizes with SREBF1 in promoter activation of specific lipogenic target genes such as ACAS2. In adipose tissue, seems to act as FOXO1 coactivator accessing to ADIPOQ promoter through FOXO1 binding sites (By similarity). {ECO:0000250|UniProtKB:P05554, ECO:0000250|UniProtKB:P53566, ECO:0000269|PubMed:11242107, ECO:0000269|PubMed:14660596}.; FUNCTION: [Isoform 3]: Can act as dominant-negative. Binds DNA and have transctivation activity, even if much less efficiently than isoform 2. Does not inhibit cell proliferation (PubMed:14660596). {ECO:0000250|UniProtKB:P05554, ECO:0000250|UniProtKB:P53566, ECO:0000269|PubMed:14660596}.; FUNCTION: [Isoform 4]: Directly and specifically enhances ribosomal DNA transcription interacting with RNA polymerase I-specific cofactors and inducing histone acetylation. {ECO:0000269|PubMed:20075868}. |
P49715 | CEBPA | S234 | psp | CCAAT/enhancer-binding protein alpha (C/EBP alpha) | Transcription factor that coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, and cells of the lung and the placenta. Binds directly to the consensus DNA sequence 5'-T[TG]NNGNAA[TG]-3' acting as an activator on distinct target genes (PubMed:11242107). During early embryogenesis, plays essential and redundant functions with CEBPB. Essential for the transition from common myeloid progenitors (CMP) to granulocyte/monocyte progenitors (GMP). Critical for the proper development of the liver and the lung (By similarity). Necessary for terminal adipocyte differentiation, is required for postnatal maintenance of systemic energy homeostasis and lipid storage (By similarity). To regulate these different processes at the proper moment and tissue, interplays with other transcription factors and modulators. Down-regulates the expression of genes that maintain cells in an undifferentiated and proliferative state through E2F1 repression, which is critical for its ability to induce adipocyte and granulocyte terminal differentiation. Reciprocally E2F1 blocks adipocyte differentiation by binding to specific promoters and repressing CEBPA binding to its target gene promoters. Proliferation arrest also depends on a functional binding to SWI/SNF complex (PubMed:14660596). In liver, regulates gluconeogenesis and lipogenesis through different mechanisms. To regulate gluconeogenesis, functionally cooperates with FOXO1 binding to IRE-controlled promoters and regulating the expression of target genes such as PCK1 or G6PC1. To modulate lipogenesis, interacts and transcriptionally synergizes with SREBF1 in promoter activation of specific lipogenic target genes such as ACAS2. In adipose tissue, seems to act as FOXO1 coactivator accessing to ADIPOQ promoter through FOXO1 binding sites (By similarity). {ECO:0000250|UniProtKB:P05554, ECO:0000250|UniProtKB:P53566, ECO:0000269|PubMed:11242107, ECO:0000269|PubMed:14660596}.; FUNCTION: [Isoform 3]: Can act as dominant-negative. Binds DNA and have transctivation activity, even if much less efficiently than isoform 2. Does not inhibit cell proliferation (PubMed:14660596). {ECO:0000250|UniProtKB:P05554, ECO:0000250|UniProtKB:P53566, ECO:0000269|PubMed:14660596}.; FUNCTION: [Isoform 4]: Directly and specifically enhances ribosomal DNA transcription interacting with RNA polymerase I-specific cofactors and inducing histone acetylation. {ECO:0000269|PubMed:20075868}. |
P50570 | DNM2 | S848 | psp | Dynamin-2 (EC 3.6.5.5) (Dynamin 2) (Dynamin II) | Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission at plasma membrane during endocytosis and filament remodeling at many actin structures during organization of the actin cytoskeleton (PubMed:15731758, PubMed:19605363, PubMed:19623537, PubMed:33713620, PubMed:34744632). Plays an important role in vesicular trafficking processes, namely clathrin-mediated endocytosis (CME), exocytic and clathrin-coated vesicle from the trans-Golgi network, and PDGF stimulated macropinocytosis (PubMed:15731758, PubMed:19623537, PubMed:33713620). During vesicular trafficking process, associates to the membrane, through lipid binding, and self-assembles into ring-like structure through oligomerization to form a helical polymer around the vesicle membrane and leading to vesicle scission (PubMed:17636067, PubMed:34744632, PubMed:36445308). Plays a role in organization of the actin cytoskeleton by mediating arrangement of stress fibers and actin bundles in podocytes (By similarity). During organization of the actin cytoskeleton, self-assembles into ring-like structure that directly bundles actin filaments to form typical membrane tubules decorated with dynamin spiral polymers (By similarity). Self-assembly increases GTPase activity and the GTP hydrolysis causes the rapid depolymerization of dynamin spiral polymers, and results in dispersion of actin bundles (By similarity). Remodels, through its interaction with CTTN, bundled actin filaments in a GTPase-dependent manner and plays a role in orchestrating the global actomyosin cytoskeleton (PubMed:19605363). The interaction with CTTN stabilizes the interaction of DNM2 and actin filaments and stimulates the intrinsic GTPase activity that results in actin filament-barbed ends and increases the sensitivity of filaments in bundles to the actin depolymerizing factor, CFL1 (By similarity). Plays a role in the autophagy process, by participating in the formation of ATG9A vesicles destined for the autophagosomes through its interaction with SNX18 (PubMed:29437695), by mediating recycling endosome scission leading to autophagosome release through MAP1LC3B interaction (PubMed:29437695, PubMed:32315611). Also regulates maturation of apoptotic cell corpse-containing phagosomes by recruiting PIK3C3 to the phagosome membrane (By similarity). Also plays a role in cytokinesis (By similarity). May participate in centrosome cohesion through its interaction with TUBG1 (By similarity). Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Involved in membrane tubulation (PubMed:24135484). {ECO:0000250|UniProtKB:P39052, ECO:0000250|UniProtKB:P39054, ECO:0000269|PubMed:15731758, ECO:0000269|PubMed:17636067, ECO:0000269|PubMed:19605363, ECO:0000269|PubMed:19623537, ECO:0000269|PubMed:24135484, ECO:0000269|PubMed:29437695, ECO:0000269|PubMed:32315611, ECO:0000269|PubMed:33713620, ECO:0000269|PubMed:34744632, ECO:0000269|PubMed:36445308}. |
P51608 | MECP2 | S396 | ochoa | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P51610 | HCFC1 | S419 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P51610 | HCFC1 | S1497 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P52746 | ZNF142 | S990 | ochoa | Zinc finger protein 142 | May be involved in transcriptional regulation. {ECO:0000305}. |
P53992 | SEC24C | S308 | ochoa | Protein transport protein Sec24C (SEC24-related protein C) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:10214955, PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24D may have a different specificity compared to SEC24A and SEC24B (PubMed:17499046, PubMed:18843296, PubMed:20427317). May more specifically package GPI-anchored proteins through the cargo receptor TMED10 (PubMed:20427317). May also be specific for IxM motif-containing cargos like the SNAREs GOSR2 and STX5 (PubMed:18843296). {ECO:0000269|PubMed:10214955, ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}. |
P54259 | ATN1 | S174 | ochoa | Atrophin-1 (Dentatorubral-pallidoluysian atrophy protein) | Transcriptional corepressor. Recruits NR2E1 to repress transcription. Promotes vascular smooth cell (VSMC) migration and orientation (By similarity). Corepressor of MTG8 transcriptional repression. Has some intrinsic repression activity which is independent of the number of poly-Gln (polyQ) repeats. {ECO:0000250|UniProtKB:O35126, ECO:0000269|PubMed:10085113, ECO:0000269|PubMed:10973986}. |
P54792 | DVL1P1 | Y626 | ochoa | Putative segment polarity protein dishevelled homolog DVL1P1 (DSH homolog 1-like) (Segment polarity protein dishevelled homolog DVL-1-like) (Dishevelled-1-like) | May play a role in the signal transduction pathway mediated by multiple Wnt genes. |
P55055 | NR1H2 | S26 | ochoa | Oxysterols receptor LXR-beta (Liver X receptor beta) (Nuclear receptor NER) (Nuclear receptor subfamily 1 group H member 2) (Ubiquitously-expressed nuclear receptor) | Nuclear receptor that exhibits a ligand-dependent transcriptional activation activity (PubMed:25661920). Binds preferentially to double-stranded oligonucleotide direct repeats having the consensus half-site sequence 5'-AGGTCA-3' and 4-nt spacing (DR-4). Regulates cholesterol uptake through MYLIP-dependent ubiquitination of LDLR, VLDLR and LRP8; DLDLR and LRP8. Interplays functionally with RORA for the regulation of genes involved in liver metabolism (By similarity). Induces LPCAT3-dependent phospholipid remodeling in endoplasmic reticulum (ER) membranes of hepatocytes, driving SREBF1 processing and lipogenesis (By similarity). Via LPCAT3, triggers the incorporation of arachidonate into phosphatidylcholines of ER membranes, increasing membrane dynamics and enabling triacylglycerols transfer to nascent very low-density lipoprotein (VLDL) particles (By similarity). Via LPCAT3 also counteracts lipid-induced ER stress response and inflammation, likely by modulating SRC kinase membrane compartmentalization and limiting the synthesis of lipid inflammatory mediators (By similarity). Plays an anti-inflammatory role during the hepatic acute phase response by acting as a corepressor: inhibits the hepatic acute phase response by preventing dissociation of the N-Cor corepressor complex (PubMed:20159957). {ECO:0000250|UniProtKB:Q60644, ECO:0000269|PubMed:20159957, ECO:0000269|PubMed:25661920}. |
P55196 | AFDN | Y1219 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55196 | AFDN | Y1692 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P56945 | BCAR1 | Y165 | psp | Breast cancer anti-estrogen resistance protein 1 (CRK-associated substrate) (Cas scaffolding protein family member 1) (p130cas) | Docking protein which plays a central coordinating role for tyrosine kinase-based signaling related to cell adhesion (PubMed:12432078, PubMed:12832404). Implicated in induction of cell migration and cell branching (PubMed:12432078, PubMed:12832404, PubMed:17038317). Involved in the BCAR3-mediated inhibition of TGFB signaling (By similarity). {ECO:0000250|UniProtKB:Q61140, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:17038317}. |
P56945 | BCAR1 | Y372 | ochoa | Breast cancer anti-estrogen resistance protein 1 (CRK-associated substrate) (Cas scaffolding protein family member 1) (p130cas) | Docking protein which plays a central coordinating role for tyrosine kinase-based signaling related to cell adhesion (PubMed:12432078, PubMed:12832404). Implicated in induction of cell migration and cell branching (PubMed:12432078, PubMed:12832404, PubMed:17038317). Involved in the BCAR3-mediated inhibition of TGFB signaling (By similarity). {ECO:0000250|UniProtKB:Q61140, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:17038317}. |
P57086 | SCAND1 | S51 | ochoa | SCAN domain-containing protein 1 | May regulate transcriptional activity. |
P57682 | KLF3 | S100 | ochoa | Krueppel-like factor 3 (Basic krueppel-like factor) (CACCC-box-binding protein BKLF) (TEF-2) | Binds to the CACCC box of erythroid cell-expressed genes. May play a role in hematopoiesis (By similarity). {ECO:0000250}. |
P57682 | KLF3 | Y107 | ochoa | Krueppel-like factor 3 (Basic krueppel-like factor) (CACCC-box-binding protein BKLF) (TEF-2) | Binds to the CACCC box of erythroid cell-expressed genes. May play a role in hematopoiesis (By similarity). {ECO:0000250}. |
P78325 | ADAM8 | S757 | ochoa | Disintegrin and metalloproteinase domain-containing protein 8 (ADAM 8) (EC 3.4.24.-) (Cell surface antigen MS2) (CD antigen CD156a) | Possible involvement in extravasation of leukocytes. |
P78559 | MAP1A | S2056 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S2171 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
Q01196 | RUNX1 | S225 | ochoa | Runt-related transcription factor 1 (Acute myeloid leukemia 1 protein) (Core-binding factor subunit alpha-2) (CBF-alpha-2) (Oncogene AML-1) (Polyomavirus enhancer-binding protein 2 alpha B subunit) (PEA2-alpha B) (PEBP2-alpha B) (SL3-3 enhancer factor 1 alpha B subunit) (SL3/AKV core-binding factor alpha B subunit) | Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (Probable). Essential for the development of normal hematopoiesis (PubMed:17431401). Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the BLK promoter (PubMed:10207087, PubMed:14970218). Inhibits KAT6B-dependent transcriptional activation (By similarity). Involved in lineage commitment of immature T cell precursors. CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Controls the anergy and suppressive function of regulatory T-cells (Treg) by associating with FOXP3. Activates the expression of IL2 and IFNG and down-regulates the expression of TNFRSF18, IL2RA and CTLA4, in conventional T-cells (PubMed:17377532). Positively regulates the expression of RORC in T-helper 17 cells (By similarity). {ECO:0000250|UniProtKB:Q03347, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:14970218, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:17431401, ECO:0000305}.; FUNCTION: Isoform AML-1G shows higher binding activities for target genes and binds TCR-beta-E2 and RAG-1 target site with threefold higher affinity than other isoforms. It is less effective in the context of neutrophil terminal differentiation. {ECO:0000250|UniProtKB:Q03347}.; FUNCTION: Isoform AML-1L interferes with the transactivation activity of RUNX1. {ECO:0000269|PubMed:9199349}. |
Q01826 | SATB1 | S469 | ochoa | DNA-binding protein SATB1 (Special AT-rich sequence-binding protein 1) | Crucial silencing factor contributing to the initiation of X inactivation mediated by Xist RNA that occurs during embryogenesis and in lymphoma (By similarity). Binds to DNA at special AT-rich sequences, the consensus SATB1-binding sequence (CSBS), at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcriptional repressor controlling nuclear and viral gene expression in a phosphorylated and acetylated status-dependent manner, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes (e.g. PML at the MHC-I locus) and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Modulates genes that are essential in the maturation of the immune T-cell CD8SP from thymocytes. Required for the switching of fetal globin species, and beta- and gamma-globin genes regulation during erythroid differentiation. Plays a role in chromatin organization and nuclear architecture during apoptosis. Interacts with the unique region (UR) of cytomegalovirus (CMV). Alu-like motifs and SATB1-binding sites provide a unique chromatin context which seems preferentially targeted by the HIV-1 integration machinery. Moreover, HIV-1 Tat may overcome SATB1-mediated repression of IL2 and IL2RA (interleukin) in T-cells by binding to the same domain than HDAC1. Delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. Reprograms chromatin organization and the transcription profiles of breast tumors to promote growth and metastasis. Promotes neuronal differentiation of neural stem/progenitor cells in the adult subventricular zone, possibly by positively regulating the expression of NEUROD1 (By similarity). {ECO:0000250|UniProtKB:Q60611, ECO:0000269|PubMed:10595394, ECO:0000269|PubMed:11463840, ECO:0000269|PubMed:12374985, ECO:0000269|PubMed:12692553, ECO:0000269|PubMed:1505028, ECO:0000269|PubMed:15618465, ECO:0000269|PubMed:15713622, ECO:0000269|PubMed:16377216, ECO:0000269|PubMed:16630892, ECO:0000269|PubMed:17173041, ECO:0000269|PubMed:17376900, ECO:0000269|PubMed:18337816, ECO:0000269|PubMed:19103759, ECO:0000269|PubMed:19247486, ECO:0000269|PubMed:19332023, ECO:0000269|PubMed:19430959, ECO:0000269|PubMed:33513338, ECO:0000269|PubMed:9111059, ECO:0000269|PubMed:9548713}. |
Q04323 | UBXN1 | S199 | ochoa | UBX domain-containing protein 1 (SAPK substrate protein 1) (UBA/UBX 33.3 kDa protein) | Ubiquitin-binding protein that plays a role in the modulation of innate immune response. Blocks both the RIG-I-like receptors (RLR) and NF-kappa-B pathways. Following viral infection, UBXN1 is induced and recruited to the RLR component MAVS. In turn, interferes with MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. This function probably serves as a brake to prevent excessive RLR signaling (PubMed:23545497). Interferes with the TNFalpha-triggered NF-kappa-B pathway by interacting with cellular inhibitors of apoptosis proteins (cIAPs) and thereby inhibiting their recruitment to TNFR1 (PubMed:25681446). Also prevents the activation of NF-kappa-B by associating with CUL1 and thus inhibiting NF-kappa-B inhibitor alpha/NFKBIA degradation that remains bound to NF-kappa-B (PubMed:28152074). Interacts with the BRCA1-BARD1 heterodimer and regulates its activity. Specifically binds 'Lys-6'-linked polyubiquitin chains. Interaction with autoubiquitinated BRCA1 leads to the inhibition of the E3 ubiquitin-protein ligase activity of the BRCA1-BARD1 heterodimer (PubMed:20351172). Component of a complex required to couple deglycosylation and proteasome-mediated degradation of misfolded proteins in the endoplasmic reticulum that are retrotranslocated in the cytosol. {ECO:0000269|PubMed:20351172, ECO:0000269|PubMed:23545497, ECO:0000269|PubMed:25681446, ECO:0000269|PubMed:28152074}. |
Q04726 | TLE3 | S332 | ochoa | Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) | Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}. |
Q06190 | PPP2R3A | S686 | ochoa | Serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit alpha (PP2A subunit B isoform PR72/PR130) (PP2A subunit B isoform R3 isoform) (PP2A subunit B isoforms B''-PR72/PR130) (PP2A subunit B isoforms B72/B130) (Serine/threonine-protein phosphatase 2A 72/130 kDa regulatory subunit B) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q08495 | DMTN | S113 | ochoa | Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) | Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}. |
Q13177 | PAK2 | S192 | ochoa|psp | Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}. |
Q13330 | MTA1 | S557 | ochoa | Metastasis-associated protein MTA1 | Transcriptional coregulator which can act as both a transcriptional corepressor and coactivator (PubMed:16617102, PubMed:17671180, PubMed:17922032, PubMed:21965678, PubMed:24413532). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). In the NuRD complex, regulates transcription of its targets by modifying the acetylation status of the target chromatin and cofactor accessibility to the target DNA (PubMed:17671180). In conjunction with other components of NuRD, acts as a transcriptional corepressor of BRCA1, ESR1, TFF1 and CDKN1A (PubMed:17922032, PubMed:24413532). Acts as a transcriptional coactivator of BCAS3, and SUMO2, independent of the NuRD complex (PubMed:16617102, PubMed:17671180, PubMed:21965678). Stimulates the expression of WNT1 by inhibiting the expression of its transcriptional corepressor SIX3 (By similarity). Regulates p53-dependent and -independent DNA repair processes following genotoxic stress (PubMed:19837670). Regulates the stability and function of p53/TP53 by inhibiting its ubiquitination by COP1 and MDM2 thereby regulating the p53-dependent DNA repair (PubMed:19837670). Plays a role in the regulation of the circadian clock and is essential for the generation and maintenance of circadian rhythms under constant light and for normal entrainment of behavior to light-dark (LD) cycles (By similarity). Positively regulates the CLOCK-BMAL1 heterodimer mediated transcriptional activation of its own transcription and the transcription of CRY1 (By similarity). Regulates deacetylation of BMAL1 by regulating SIRT1 expression, resulting in derepressing CRY1-mediated transcription repression (By similarity). With TFCP2L1, promotes establishment and maintenance of pluripotency in embryonic stem cells (ESCs) and inhibits endoderm differentiation (By similarity). {ECO:0000250|UniProtKB:Q8K4B0, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:17671180, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24413532}.; FUNCTION: [Isoform Short]: Binds to ESR1 and sequesters it in the cytoplasm and enhances its non-genomic responses. {ECO:0000269|PubMed:15077195}. |
Q13443 | ADAM9 | S798 | ochoa | Disintegrin and metalloproteinase domain-containing protein 9 (ADAM 9) (EC 3.4.24.-) (Cellular disintegrin-related protein) (Meltrin-gamma) (Metalloprotease/disintegrin/cysteine-rich protein 9) (Myeloma cell metalloproteinase) | Metalloprotease that cleaves and releases a number of molecules with important roles in tumorigenesis and angiogenesis, such as TEK, KDR, EPHB4, CD40, VCAM1 and CDH5. May mediate cell-cell, cell-matrix interactions and regulate the motility of cells via interactions with integrins. {ECO:0000250|UniProtKB:Q61072}.; FUNCTION: [Isoform 2]: May act as alpha-secretase for amyloid precursor protein (APP). {ECO:0000269|PubMed:12054541}. |
Q13443 | ADAM9 | S799 | ochoa | Disintegrin and metalloproteinase domain-containing protein 9 (ADAM 9) (EC 3.4.24.-) (Cellular disintegrin-related protein) (Meltrin-gamma) (Metalloprotease/disintegrin/cysteine-rich protein 9) (Myeloma cell metalloproteinase) | Metalloprotease that cleaves and releases a number of molecules with important roles in tumorigenesis and angiogenesis, such as TEK, KDR, EPHB4, CD40, VCAM1 and CDH5. May mediate cell-cell, cell-matrix interactions and regulate the motility of cells via interactions with integrins. {ECO:0000250|UniProtKB:Q61072}.; FUNCTION: [Isoform 2]: May act as alpha-secretase for amyloid precursor protein (APP). {ECO:0000269|PubMed:12054541}. |
Q13470 | TNK1 | S518 | ochoa | Non-receptor tyrosine-protein kinase TNK1 (EC 2.7.10.2) (CD38 negative kinase 1) | Involved in negative regulation of cell growth. Has tumor suppressor properties. Plays a negative regulatory role in the Ras-MAPK pathway. May function in signaling pathways utilized broadly during fetal development and more selectively in adult tissues and in cells of the lymphohematopoietic system. Could specifically be involved in phospholipid signal transduction. {ECO:0000269|PubMed:10873601, ECO:0000269|PubMed:18974114}. |
Q13470 | TNK1 | S545 | ochoa | Non-receptor tyrosine-protein kinase TNK1 (EC 2.7.10.2) (CD38 negative kinase 1) | Involved in negative regulation of cell growth. Has tumor suppressor properties. Plays a negative regulatory role in the Ras-MAPK pathway. May function in signaling pathways utilized broadly during fetal development and more selectively in adult tissues and in cells of the lymphohematopoietic system. Could specifically be involved in phospholipid signal transduction. {ECO:0000269|PubMed:10873601, ECO:0000269|PubMed:18974114}. |
Q13485 | SMAD4 | Y301 | psp | Mothers against decapentaplegic homolog 4 (MAD homolog 4) (Mothers against DPP homolog 4) (Deletion target in pancreatic carcinoma 4) (SMAD family member 4) (SMAD 4) (Smad4) (hSMAD4) | In muscle physiology, plays a central role in the balance between atrophy and hypertrophy. When recruited by MSTN, promotes atrophy response via phosphorylated SMAD2/4. MSTN decrease causes SMAD4 release and subsequent recruitment by the BMP pathway to promote hypertrophy via phosphorylated SMAD1/5/8. Acts synergistically with SMAD1 and YY1 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression. Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (By similarity). Common SMAD (co-SMAD) is the coactivator and mediator of signal transduction by TGF-beta (transforming growth factor). Component of the heterotrimeric SMAD2/SMAD3-SMAD4 complex that forms in the nucleus and is required for the TGF-mediated signaling (PubMed:25514493). Promotes binding of the SMAD2/SMAD4/FAST-1 complex to DNA and provides an activation function required for SMAD1 or SMAD2 to stimulate transcription. Component of the multimeric SMAD3/SMAD4/JUN/FOS complex which forms at the AP1 promoter site; required for synergistic transcriptional activity in response to TGF-beta. May act as a tumor suppressor. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. {ECO:0000250, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:9389648}. |
Q14118 | DAG1 | S814 | ochoa | Dystroglycan 1 (Dystroglycan) (Dystrophin-associated glycoprotein 1) [Cleaved into: Alpha-dystroglycan (Alpha-DG); Beta-dystroglycan (Beta-DG)] | The dystroglycan complex is involved in a number of processes including laminin and basement membrane assembly, sarcolemmal stability, cell survival, peripheral nerve myelination, nodal structure, cell migration, and epithelial polarization.; FUNCTION: [Alpha-dystroglycan]: Extracellular peripheral glycoprotein that acts as a receptor for extracellular matrix proteins containing laminin-G domains. Receptor for laminin-2 (LAMA2) and agrin in peripheral nerve Schwann cells. Also acts as a receptor for laminin LAMA5 (By similarity). {ECO:0000250|UniProtKB:O18738}.; FUNCTION: [Beta-dystroglycan]: Transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton. Acts as a cell adhesion receptor in both muscle and non-muscle tissues. Receptor for both DMD and UTRN and, through these interactions, scaffolds axin to the cytoskeleton. Also functions in cell adhesion-mediated signaling and implicated in cell polarity.; FUNCTION: [Alpha-dystroglycan]: (Microbial infection) Acts as a receptor for lassa virus and lymphocytic choriomeningitis virus glycoprotein and class C new-world arenaviruses (PubMed:16254364, PubMed:17360738, PubMed:19324387). Acts as a Schwann cell receptor for Mycobacterium leprae, the causative organism of leprosy, but only in the presence of the G-domain of LAMA2 (PubMed:9851927). {ECO:0000269|PubMed:16254364, ECO:0000269|PubMed:17360738, ECO:0000269|PubMed:19324387, ECO:0000269|PubMed:9851927}. |
Q14160 | SCRIB | S1330 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14202 | ZMYM3 | S811 | ochoa | Zinc finger MYM-type protein 3 (Zinc finger protein 261) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q14244 | MAP7 | S348 | ochoa | Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) | Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}. |
Q14289 | PTK2B | Y722 | ochoa | Protein-tyrosine kinase 2-beta (EC 2.7.10.2) (Calcium-dependent tyrosine kinase) (CADTK) (Calcium-regulated non-receptor proline-rich tyrosine kinase) (Cell adhesion kinase beta) (CAK-beta) (CAKB) (Focal adhesion kinase 2) (FADK 2) (Proline-rich tyrosine kinase 2) (Related adhesion focal tyrosine kinase) (RAFTK) | Non-receptor protein-tyrosine kinase that regulates reorganization of the actin cytoskeleton, cell polarization, cell migration, adhesion, spreading and bone remodeling. Plays a role in the regulation of the humoral immune response, and is required for normal levels of marginal B-cells in the spleen and normal migration of splenic B-cells. Required for normal macrophage polarization and migration towards sites of inflammation. Regulates cytoskeleton rearrangement and cell spreading in T-cells, and contributes to the regulation of T-cell responses. Promotes osteoclastic bone resorption; this requires both PTK2B/PYK2 and SRC. May inhibit differentiation and activity of osteoprogenitor cells. Functions in signaling downstream of integrin and collagen receptors, immune receptors, G-protein coupled receptors (GPCR), cytokine, chemokine and growth factor receptors, and mediates responses to cellular stress. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and of the AKT1 signaling cascade. Promotes activation of NOS3. Regulates production of the cellular messenger cGMP. Promotes activation of the MAP kinase signaling cascade, including activation of MAPK1/ERK2, MAPK3/ERK1 and MAPK8/JNK1. Promotes activation of Rho family GTPases, such as RHOA and RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Acts as a scaffold, binding to both PDPK1 and SRC, thereby allowing SRC to phosphorylate PDPK1 at 'Tyr-9, 'Tyr-373', and 'Tyr-376'. Promotes phosphorylation of NMDA receptors by SRC family members, and thereby contributes to the regulation of NMDA receptor ion channel activity and intracellular Ca(2+) levels. May also regulate potassium ion transport by phosphorylation of potassium channel subunits. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ASAP1, NPHP1, KCNA2 and SHC1. Promotes phosphorylation of ASAP2, RHOU and PXN; this requires both SRC and PTK2/PYK2. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:12771146, ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:15050747, ECO:0000269|PubMed:15166227, ECO:0000269|PubMed:17634955, ECO:0000269|PubMed:18086875, ECO:0000269|PubMed:18339875, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18765415, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:19207108, ECO:0000269|PubMed:19244237, ECO:0000269|PubMed:19428251, ECO:0000269|PubMed:19648005, ECO:0000269|PubMed:19880522, ECO:0000269|PubMed:20001213, ECO:0000269|PubMed:20381867, ECO:0000269|PubMed:20521079, ECO:0000269|PubMed:21357692, ECO:0000269|PubMed:21533080, ECO:0000269|PubMed:7544443, ECO:0000269|PubMed:8670418, ECO:0000269|PubMed:8849729}. |
Q14678 | KANK1 | S128 | ochoa | KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) | Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}. |
Q14686 | NCOA6 | S1891 | ochoa | Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins. |
Q14978 | NOLC1 | S291 | ochoa | Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}. |
Q15428 | SF3A2 | S222 | ochoa | Splicing factor 3A subunit 2 (SF3a66) (Spliceosome-associated protein 62) (SAP 62) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3A2 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes, including the Bact complex (PubMed:29360106, PubMed:29361316, PubMed:30315277). Interacts directly with the duplex formed by U2 snRNA and the intron (PubMed:29360106). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310}. |
Q15648 | MED1 | S1196 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15678 | PTPN14 | S327 | ochoa | Tyrosine-protein phosphatase non-receptor type 14 (EC 3.1.3.48) (Protein-tyrosine phosphatase pez) | Protein tyrosine phosphatase which may play a role in the regulation of lymphangiogenesis, cell-cell adhesion, cell-matrix adhesion, cell migration, cell growth and also regulates TGF-beta gene expression, thereby modulating epithelial-mesenchymal transition. Mediates beta-catenin dephosphorylation at adhesion junctions. Acts as a negative regulator of the oncogenic property of YAP, a downstream target of the hippo pathway, in a cell density-dependent manner. May function as a tumor suppressor. {ECO:0000269|PubMed:10934049, ECO:0000269|PubMed:12808048, ECO:0000269|PubMed:17893246, ECO:0000269|PubMed:20826270, ECO:0000269|PubMed:22233626, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:22948661}. |
Q15678 | PTPN14 | S578 | ochoa | Tyrosine-protein phosphatase non-receptor type 14 (EC 3.1.3.48) (Protein-tyrosine phosphatase pez) | Protein tyrosine phosphatase which may play a role in the regulation of lymphangiogenesis, cell-cell adhesion, cell-matrix adhesion, cell migration, cell growth and also regulates TGF-beta gene expression, thereby modulating epithelial-mesenchymal transition. Mediates beta-catenin dephosphorylation at adhesion junctions. Acts as a negative regulator of the oncogenic property of YAP, a downstream target of the hippo pathway, in a cell density-dependent manner. May function as a tumor suppressor. {ECO:0000269|PubMed:10934049, ECO:0000269|PubMed:12808048, ECO:0000269|PubMed:17893246, ECO:0000269|PubMed:20826270, ECO:0000269|PubMed:22233626, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:22948661}. |
Q15772 | SPEG | S537 | ochoa | Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) | Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells. |
Q15772 | SPEG | S2802 | ochoa | Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) | Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells. |
Q16584 | MAP3K11 | S748 | ochoa | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q16825 | PTPN21 | S577 | ochoa | Tyrosine-protein phosphatase non-receptor type 21 (EC 3.1.3.48) (Protein-tyrosine phosphatase D1) | None |
Q27J81 | INF2 | S434 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q2QGD7 | ZXDC | S651 | ochoa | Zinc finger protein ZXDC (ZXD-like zinc finger protein) | Cooperates with CIITA to promote transcription of MHC class I and MHC class II genes. {ECO:0000269|PubMed:16600381, ECO:0000269|PubMed:17493635, ECO:0000269|PubMed:17696781}. |
Q3KQU3 | MAP7D1 | S34 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3KQU3 | MAP7D1 | S41 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q5D1E8 | ZC3H12A | S516 | ochoa | Endoribonuclease ZC3H12A (EC 3.1.-.-) (Monocyte chemotactic protein-induced protein 1) (MCP-induced protein 1) (MCPIP-1) (Regnase-1) (Reg1) (Zinc finger CCCH domain-containing protein 12A) | Endoribonuclease involved in various biological functions such as cellular inflammatory response and immune homeostasis, glial differentiation of neuroprogenitor cells, cell death of cardiomyocytes, adipogenesis and angiogenesis. Functions as an endoribonuclease involved in mRNA decay (PubMed:19909337). Modulates the inflammatory response by promoting the degradation of a set of translationally active cytokine-induced inflammation-related mRNAs, such as IL6 and IL12B, during the early phase of inflammation (PubMed:26320658). Prevents aberrant T-cell-mediated immune reaction by degradation of multiple mRNAs controlling T-cell activation, such as those encoding cytokines (IL6 and IL2), cell surface receptors (ICOS, TNFRSF4 and TNFR2) and transcription factor (REL) (By similarity). Inhibits cooperatively with ZC3H12A the differentiation of helper T cells Th17 in lungs. They repress target mRNA encoding the Th17 cell-promoting factors IL6, ICOS, REL, IRF4, NFKBID and NFKBIZ. The cooperation requires RNA-binding by RC3H1 and the nuclease activity of ZC3H12A (By similarity). Together with RC3H1, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Self regulates by destabilizing its own mRNA (By similarity). Cleaves mRNA harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-dependent manner (PubMed:19909337, PubMed:22561375, PubMed:26134560, PubMed:26320658). Plays a role in the inhibition of microRNAs (miRNAs) biogenesis (PubMed:22055188). Cleaves the terminal loop of a set of precursor miRNAs (pre-miRNAs) important for the regulation of the inflammatory response leading to their degradation, and thus preventing the biosynthesis of mature miRNAs (PubMed:22055188). Also plays a role in promoting angiogenesis in response to inflammatory cytokines by inhibiting the production of antiangiogenic microRNAs via its anti-dicer RNase activity (PubMed:24048733). Affects the overall ubiquitination of cellular proteins (By similarity). Positively regulates deubiquitinase activity promoting the cleavage at 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains on TNF receptor-associated factors (TRAFs), preventing JNK and NF-kappa-B signaling pathway activation, and hence negatively regulating macrophage-mediated inflammatory response and immune homeostasis (By similarity). Also induces deubiquitination of the transcription factor HIF1A, probably leading to its stabilization and nuclear import, thereby positively regulating the expression of proangiogenic HIF1A-targeted genes (PubMed:24048733). Involved in a TANK-dependent negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Prevents stress granule (SGs) formation and promotes macrophage apoptosis under stress conditions, including arsenite-induced oxidative stress, heat shock and energy deprivation (By similarity). Plays a role in the regulation of macrophage polarization; promotes IL4-induced polarization of macrophages M1 into anti-inflammatory M2 state (By similarity). May also act as a transcription factor that regulates the expression of multiple genes involved in inflammatory response, angiogenesis, adipogenesis and apoptosis (PubMed:16574901, PubMed:18364357). Functions as a positive regulator of glial differentiation of neuroprogenitor cells through an amyloid precursor protein (APP)-dependent signaling pathway (PubMed:19185603). Attenuates septic myocardial contractile dysfunction in response to lipopolysaccharide (LPS) by reducing I-kappa-B-kinase (IKK)-mediated NF-kappa-B activation, and hence myocardial pro-inflammatory cytokine production (By similarity). {ECO:0000250|UniProtKB:Q5D1E7, ECO:0000269|PubMed:16574901, ECO:0000269|PubMed:18364357, ECO:0000269|PubMed:19185603, ECO:0000269|PubMed:19909337, ECO:0000269|PubMed:22055188, ECO:0000269|PubMed:22561375, ECO:0000269|PubMed:24048733, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:26134560, ECO:0000269|PubMed:26320658}.; FUNCTION: (Microbial infection) Binds to Japanese encephalitis virus (JEV) and Dengue virus (DEN) RNAs. {ECO:0000269|PubMed:23355615}.; FUNCTION: (Microbial infection) Exhibits antiviral activity against HIV-1 in lymphocytes by decreasing the abundance of HIV-1 viral RNA species. {ECO:0000269|PubMed:24191027}. |
Q5JR12 | PPM1J | S33 | ochoa | Protein phosphatase 1J (EC 3.1.3.16) (Protein phosphatase 2C isoform zeta) (PP2C-zeta) | None |
Q5JSH3 | WDR44 | S227 | ochoa | WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) | Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
Q5JYT7 | KIAA1755 | S462 | ochoa | Uncharacterized protein KIAA1755 | None |
Q5SW79 | CEP170 | S1521 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SYE7 | NHSL1 | S941 | ochoa | NHS-like protein 1 | None |
Q5T4S7 | UBR4 | S619 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5VSG8 | MANEAL | T77 | ochoa | Glycoprotein endo-alpha-1,2-mannosidase-like protein (EC 3.2.1.-) | None |
Q5VT52 | RPRD2 | S973 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q68DK7 | MSL1 | S167 | ochoa | Male-specific lethal 1 homolog (MSL-1) (Male-specific lethal 1-like 1) (MSL1-like 1) (Male-specific lethal-1 homolog 1) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16227571, PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). Within the MSL complex, acts as a scaffold to tether MSL3 and KAT8 together for enzymatic activity regulation (PubMed:22547026). Greatly enhances MSL2 E3 ubiquitin ligase activity, promoting monoubiquitination of histone H2B at 'Lys-34' (H2BK34Ub) (PubMed:21726816, PubMed:30930284). This modification in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). {ECO:0000250|UniProtKB:Q6PDM1, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q68EM7 | ARHGAP17 | S743 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q68EM7 | ARHGAP17 | S808 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q6F5E8 | CARMIL2 | S1415 | ochoa | Capping protein, Arp2/3 and myosin-I linker protein 2 (Capping protein regulator and myosin 1 linker 2) (F-actin-uncapping protein RLTPR) (Leucine-rich repeat-containing protein 16C) (RGD, leucine-rich repeat, tropomodulin and proline-rich-containing protein) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization (PubMed:26466680). Plays a role in cell protrusion formations; involved in cell polarity, lamellipodial assembly, membrane ruffling and macropinosome formations (PubMed:19846667, PubMed:26466680, PubMed:26578515). Involved as well in cell migration and invadopodia formation during wound healing (PubMed:19846667, PubMed:26466680, PubMed:26578515). Required for CD28-mediated stimulation of NF-kappa-B signaling, involved in naive T cells activation, maturation into T memory cells, and differentiation into T helper and T regulatory cells (PubMed:27647348, PubMed:27647349, PubMed:28112205). {ECO:0000269|PubMed:19846667, ECO:0000269|PubMed:26466680, ECO:0000269|PubMed:26578515, ECO:0000269|PubMed:27647348, ECO:0000269|PubMed:27647349, ECO:0000269|PubMed:28112205}. |
Q6IQ23 | PLEKHA7 | S860 | ochoa | Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) | Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}. |
Q6NYC8 | PPP1R18 | S432 | ochoa | Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) | [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}. |
Q6P1N0 | CC2D1A | S238 | ochoa | Coiled-coil and C2 domain-containing protein 1A (Akt kinase-interacting protein 1) (Five prime repressor element under dual repression-binding protein 1) (FRE under dual repression-binding protein 1) (Freud-1) (Putative NF-kappa-B-activating protein 023N) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. The combination of calcium and ATP specifically inactivates the binding with FRE. May play a role in the altered regulation of HTR1A associated with anxiety and major depression. Mediates HDAC-independent repression of HTR1A promoter in neuronal cell. Performs essential function in controlling functional maturation of synapses (By similarity). Plays distinct roles depending on its localization. When cytoplasmic, acts as a scaffold protein in the PI3K/PDK1/AKT pathway. Repressor of HTR1A when nuclear. In the centrosome, regulates spindle pole localization of the cohesin subunit SCC1/RAD21, thereby mediating centriole cohesion during mitosis. {ECO:0000250, ECO:0000269|PubMed:20171170}. |
Q6UXY8 | TMC5 | S111 | ochoa | Transmembrane channel-like protein 5 | Probable component of an ion channel (Probable). Molecular function hasn't been characterized yet (Probable). {ECO:0000305}. |
Q6ZMT1 | STAC2 | S78 | ochoa | SH3 and cysteine-rich domain-containing protein 2 (24b2/STAC2) (Src homology 3 and cysteine-rich domain-containing protein 2) | Plays a redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. Slows down the inactivation rate of the calcium channel CACNA1C. {ECO:0000250|UniProtKB:Q8R1B0}. |
Q7L3V2 | RTL10 | S290 | ochoa | Protein Bop (BH3-only protein) (Retrotransposon Gag-like protein 10) | Could induce apoptosis in a BH3 domain-dependent manner. The direct interaction network of Bcl-2 family members may play a key role in modulation RTL10/BOP intrinsic apoptotic signaling activity. {ECO:0000269|PubMed:23055042}. |
Q7Z591 | AKNA | S1043 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q86UU0 | BCL9L | S1054 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86VE0 | MYPOP | S202 | ochoa | Myb-related transcription factor, partner of profilin (Myb-related protein p42POP) (Partner of profilin) | Transcriptional repressor; DNA-binding protein that specifically recognizes the core sequence 5'-YAAC[GT]G-3'. Dimerization with PFN1 reduces its DNA-binding capacity (By similarity). {ECO:0000250}. |
Q86YV0 | RASAL3 | S841 | ochoa | RAS protein activator like-3 | Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}. |
Q8IWZ8 | SUGP1 | S346 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8IX07 | ZFPM1 | S52 | ochoa | Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) | Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}. |
Q8IXM2 | BACC1 | S106 | ochoa | BPTF-associated chromatin complex component 1 (BPTF-associated protein of 18 kDa) (Chromatin complexes subunit BAP18) | Component of chromatin complexes such as the MLL1/MLL and NURF complexes. |
Q8IZ21 | PHACTR4 | S270 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8IZP0 | ABI1 | Y421 | psp | Abl interactor 1 (Abelson interactor 1) (Abi-1) (Abl-binding protein 4) (AblBP4) (Eps8 SH3 domain-binding protein) (Eps8-binding protein) (Nap1-binding protein) (Nap1BP) (Spectrin SH3 domain-binding protein 1) (e3B1) | May act in negative regulation of cell growth and transformation by interacting with nonreceptor tyrosine kinases ABL1 and/or ABL2. May play a role in regulation of EGF-induced Erk pathway activation. Involved in cytoskeletal reorganization and EGFR signaling. Together with EPS8 participates in transduction of signals from Ras to Rac. In vitro, a trimeric complex of ABI1, EPS8 and SOS1 exhibits Rac specific guanine nucleotide exchange factor (GEF) activity and ABI1 seems to act as an adapter in the complex. Regulates ABL1/c-Abl-mediated phosphorylation of ENAH. Recruits WASF1 to lamellipodia and there seems to regulate WASF1 protein level. In brain, seems to regulate the dendritic outgrowth and branching as well as to determine the shape and number of synaptic contacts of developing neurons. {ECO:0000269|PubMed:11003655, ECO:0000269|PubMed:18328268}. |
Q8N4C8 | MINK1 | S563 | ochoa | Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) | Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration. |
Q8N684 | CPSF7 | S314 | ochoa | Cleavage and polyadenylation specificity factor subunit 7 (Cleavage and polyadenylation specificity factor 59 kDa subunit) (CPSF 59 kDa subunit) (Cleavage factor Im complex 59 kDa subunit) (CFIm59) (Pre-mRNA cleavage factor Im 59 kDa subunit) | Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:17024186, PubMed:29276085, PubMed:8626397). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:17024186, PubMed:8626397). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF7 activates directly the mRNA 3'-processing machinery (PubMed:29276085). Binds to pA signals in RNA substrates (PubMed:17024186, PubMed:8626397). {ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397}. |
Q8NBZ0 | INO80E | S98 | ochoa | INO80 complex subunit E (Coiled-coil domain-containing protein 95) | Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. |
Q8NC74 | RBBP8NL | S250 | ochoa | RBBP8 N-terminal-like protein | None |
Q8ND04 | SMG8 | S667 | ochoa | Nonsense-mediated mRNA decay factor SMG8 (Amplified in breast cancer gene 2 protein) (Protein smg-8 homolog) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited by release factors to stalled ribosomes together with SMG1 and SMG9 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required to mediate the recruitment of SMG1 to the ribosome:SURF complex and to suppress SMG1 kinase activity until the ribosome:SURF complex locates the exon junction complex (EJC). Acts as a regulator of kinase activity. {ECO:0000269|PubMed:19417104}. |
Q8TAQ2 | SMARCC2 | S969 | psp | SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q8TDM6 | DLG5 | S1000 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TF50 | ZNF526 | S187 | ochoa | Zinc finger protein 526 | May be involved in transcriptional regulation. {ECO:0000250}. |
Q8TF71 | SLC16A10 | S36 | ochoa | Monocarboxylate transporter 10 (MCT 10) (Aromatic amino acid transporter 1) (Solute carrier family 16 member 10) (T-type amino acid transporter 1) | Sodium- and proton-independent thyroid hormones and aromatic acids transporter (PubMed:11827462, PubMed:18337592, PubMed:28754537). Mediates both uptake and efflux of 3,5,3'-triiodothyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) with high affinity, suggesting a role in the homeostasis of thyroid hormone levels (PubMed:18337592). Responsible for low affinity bidirectional transport of the aromatic amino acids, such as phenylalanine, tyrosine, tryptophan and L-3,4-dihydroxyphenylalanine (L-dopa) (PubMed:11827462, PubMed:28754537). Plays an important role in homeostasis of aromatic amino acids (By similarity). {ECO:0000250|UniProtKB:Q3U9N9, ECO:0000269|PubMed:11827462, ECO:0000269|PubMed:18337592, ECO:0000269|PubMed:28754537}. |
Q8TF74 | WIPF2 | Y255 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8TF74 | WIPF2 | S301 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8WUF5 | PPP1R13L | S596 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WUZ0 | BCL7C | S122 | ochoa | B-cell CLL/lymphoma 7 protein family member C | May play an anti-apoptotic role. {ECO:0000250}. |
Q8WWM7 | ATXN2L | S434 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q8WXE0 | CASKIN2 | S877 | ochoa | Caskin-2 (CASK-interacting protein 2) | None |
Q92918 | MAP4K1 | S446 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 1 (EC 2.7.11.1) (Hematopoietic progenitor kinase) (MAPK/ERK kinase kinase kinase 1) (MEK kinase kinase 1) (MEKKK 1) | Serine/threonine-protein kinase, which plays a role in the response to environmental stress (PubMed:24362026). Appears to act upstream of the JUN N-terminal pathway (PubMed:8824585). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). May play a role in hematopoietic lineage decisions and growth regulation (PubMed:24362026, PubMed:8824585). Together with CLNK, it enhances CD3-triggered activation of T-cells and subsequent IL2 production (By similarity). {ECO:0000250|UniProtKB:P70218, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:8824585}. |
Q96B97 | SH3KBP1 | S410 | ochoa | SH3 domain-containing kinase-binding protein 1 (CD2-binding protein 3) (CD2BP3) (Cbl-interacting protein of 85 kDa) (Human Src family kinase-binding protein 1) (HSB-1) | Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through an association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may be inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Has an essential role in the stimulation of B cell activation (PubMed:29636373). {ECO:0000250, ECO:0000269|PubMed:11894095, ECO:0000269|PubMed:11894096, ECO:0000269|PubMed:12177062, ECO:0000269|PubMed:12734385, ECO:0000269|PubMed:12771190, ECO:0000269|PubMed:15090612, ECO:0000269|PubMed:15707590, ECO:0000269|PubMed:16177060, ECO:0000269|PubMed:16256071, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29636373}. |
Q96DN6 | MBD6 | S199 | ochoa | Methyl-CpG-binding domain protein 6 (Methyl-CpG-binding protein MBD6) | Non-catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:24634419). Important for stability of PR-DUB components and stimulating its ubiquitinase activity (PubMed:36180891). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). MBD5 and MBD6 containing complexes associate with distinct chromatin regions enriched in genes involved in different pathways (PubMed:36180891). Heterochromatin recruitment is not mediated by DNA methylation (PubMed:20700456). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in development, cell communication, signaling, cell proliferation and cell viability; may promote cancer cell growth (PubMed:36180891). {ECO:0000269|PubMed:20700456, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:36180891}. |
Q96EP0 | RNF31 | S450 | ochoa | E3 ubiquitin-protein ligase RNF31 (EC 2.3.2.31) (HOIL-1-interacting protein) (HOIP) (RING finger protein 31) (RING-type E3 ubiquitin transferase RNF31) (Zinc in-between-RING-finger ubiquitin-associated domain protein) | E3 ubiquitin-protein ligase component of the LUBAC complex which conjugates linear ('Met-1'-linked) polyubiquitin chains to substrates and plays a key role in NF-kappa-B activation and regulation of inflammation (PubMed:17006537, PubMed:19136968, PubMed:20005846, PubMed:21455173, PubMed:21455180, PubMed:21455181, PubMed:22863777, PubMed:28189684, PubMed:28481331). LUBAC conjugates linear polyubiquitin to IKBKG and RIPK1 and is involved in activation of the canonical NF-kappa-B and the JNK signaling pathways (PubMed:17006537, PubMed:19136968, PubMed:20005846, PubMed:21455173, PubMed:21455180, PubMed:21455181, PubMed:22863777, PubMed:28189684). Linear ubiquitination mediated by the LUBAC complex interferes with TNF-induced cell death and thereby prevents inflammation (PubMed:21455173, PubMed:28189684). LUBAC is recruited to the TNF-R1 signaling complex (TNF-RSC) following polyubiquitination of TNF-RSC components by BIRC2 and/or BIRC3 and to conjugate linear polyubiquitin to IKBKG and possibly other components contributing to the stability of the complex (PubMed:20005846, PubMed:27458237). The LUBAC complex is also involved in innate immunity by conjugating linear polyubiquitin chains at the surface of bacteria invading the cytosol to form the ubiquitin coat surrounding bacteria (PubMed:28481331, PubMed:34012115). LUBAC is not able to initiate formation of the bacterial ubiquitin coat, and can only promote formation of linear polyubiquitins on pre-existing ubiquitin (PubMed:28481331). Recruited to the surface of bacteria by RNF213, which initiates the bacterial ubiquitin coat (PubMed:34012115). The bacterial ubiquitin coat acts as an 'eat-me' signal for xenophagy and promotes NF-kappa-B activation (PubMed:28481331, PubMed:34012115). Together with OTULIN, the LUBAC complex regulates the canonical Wnt signaling during angiogenesis (PubMed:23708998). RNF31 is required for linear ubiquitination of BCL10, thereby promoting TCR-induced NF-kappa-B activation (PubMed:27777308). Binds polyubiquitin of different linkage types (PubMed:23708998). {ECO:0000269|PubMed:17006537, ECO:0000269|PubMed:19136968, ECO:0000269|PubMed:20005846, ECO:0000269|PubMed:21455173, ECO:0000269|PubMed:21455180, ECO:0000269|PubMed:21455181, ECO:0000269|PubMed:22863777, ECO:0000269|PubMed:23708998, ECO:0000269|PubMed:27458237, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28189684, ECO:0000269|PubMed:28481331, ECO:0000269|PubMed:34012115}. |
Q96HA1 | POM121 | S174 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96HA1 | POM121 | S179 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96HA1 | POM121 | S184 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96J02 | ITCH | S257 | psp | E3 ubiquitin-protein ligase Itchy homolog (Itch) (EC 2.3.2.26) (Atrophin-1-interacting protein 4) (AIP4) (HECT-type E3 ubiquitin transferase Itchy homolog) (NFE2-associated polypeptide 1) (NAPP1) | Acts as an Acts as an E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:11046148, PubMed:14602072, PubMed:15051726, PubMed:16387660, PubMed:17028573, PubMed:18718448, PubMed:18718449, PubMed:19116316, PubMed:19592251, PubMed:19881509, PubMed:20068034, PubMed:20392206, PubMed:20491914, PubMed:23146885, PubMed:24790097, PubMed:25631046). Catalyzes 'Lys-29'-, 'Lys-48'- and 'Lys-63'-linked ubiquitin conjugation (PubMed:17028573, PubMed:18718448, PubMed:19131965, PubMed:19881509). Involved in the control of inflammatory signaling pathways (PubMed:19131965). Essential component of a ubiquitin-editing protein complex, comprising also TNFAIP3, TAX1BP1 and RNF11, that ensures the transient nature of inflammatory signaling pathways (PubMed:19131965). Promotes the association of the complex after TNF stimulation (PubMed:19131965). Once the complex is formed, TNFAIP3 deubiquitinates 'Lys-63' polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:19131965). This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NFKB1 (PubMed:19131965). Ubiquitinates RIPK2 by 'Lys-63'-linked conjugation and influences NOD2-dependent signal transduction pathways (PubMed:19592251). Regulates the transcriptional activity of several transcription factors, and probably plays an important role in the regulation of immune response (PubMed:18718448, PubMed:20491914). Ubiquitinates NFE2 by 'Lys-63' linkages and is implicated in the control of the development of hematopoietic lineages (PubMed:18718448). Mediates JUN ubiquitination and degradation (By similarity). Mediates JUNB ubiquitination and degradation (PubMed:16387660). Critical regulator of type 2 helper T (Th2) cell cytokine production by inducing JUNB ubiquitination and degradation (By similarity). Involved in the negative regulation of MAVS-dependent cellular antiviral responses (PubMed:19881509). Ubiquitinates MAVS through 'Lys-48'-linked conjugation resulting in MAVS proteasomal degradation (PubMed:19881509). Following ligand stimulation, regulates sorting of Wnt receptor FZD4 to the degradative endocytic pathway probably by modulating PI42KA activity (PubMed:23146885). Ubiquitinates PI4K2A and negatively regulates its catalytic activity (PubMed:23146885). Ubiquitinates chemokine receptor CXCR4 and regulates sorting of CXCR4 to the degradative endocytic pathway following ligand stimulation by ubiquitinating endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:14602072, PubMed:23146885, PubMed:34927784). Targets DTX1 for lysosomal degradation and controls NOTCH1 degradation, in the absence of ligand, through 'Lys-29'-linked polyubiquitination (PubMed:17028573, PubMed:18628966, PubMed:23886940). Ubiquitinates SNX9 (PubMed:20491914). Ubiquitinates MAP3K7 through 'Lys-48'-linked conjugation (By similarity). Together with UBR5, involved in the regulation of apoptosis and reactive oxygen species levels through the ubiquitination and proteasomal degradation of TXNIP: catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP (PubMed:20068034, PubMed:29378950). ITCH synthesizes 'Lys-63'-linked chains, while UBR5 is branching multiple 'Lys-48'-linked chains of substrate initially modified (PubMed:29378950). Mediates the antiapoptotic activity of epidermal growth factor through the ubiquitination and proteasomal degradation of p15 BID (PubMed:20392206). Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Inhibits the replication of influenza A virus (IAV) via ubiquitination of IAV matrix protein 1 (M1) through 'Lys-48'-linked conjugation resulting in M1 proteasomal degradation (PubMed:30328013). Ubiquitinates NEDD9/HEF1, resulting in proteasomal degradation of NEDD9/HEF1 (PubMed:15051726). {ECO:0000250|UniProtKB:Q8C863, ECO:0000269|PubMed:14602072, ECO:0000269|PubMed:15051726, ECO:0000269|PubMed:16387660, ECO:0000269|PubMed:17028573, ECO:0000269|PubMed:18628966, ECO:0000269|PubMed:18718448, ECO:0000269|PubMed:18718449, ECO:0000269|PubMed:19116316, ECO:0000269|PubMed:19131965, ECO:0000269|PubMed:19592251, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:20068034, ECO:0000269|PubMed:20392206, ECO:0000269|PubMed:20491914, ECO:0000269|PubMed:23146885, ECO:0000269|PubMed:23886940, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:30328013}. |
Q96JM3 | CHAMP1 | S161 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JM3 | CHAMP1 | S177 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JM3 | CHAMP1 | S181 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JM3 | CHAMP1 | S325 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96K37 | SLC35E1 | S94 | ochoa | Solute carrier family 35 member E1 | Putative transporter. {ECO:0000250}. |
Q96KQ4 | PPP1R13B | S475 | ochoa | Apoptosis-stimulating of p53 protein 1 (Protein phosphatase 1 regulatory subunit 13B) | Regulator that plays a central role in regulation of apoptosis via its interaction with p53/TP53 (PubMed:11684014, PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540}. |
Q96L14 | CEP170P1 | S230 | ochoa | Cep170-like protein (CEP170 pseudogene 1) | None |
Q96MG2 | JSRP1 | S166 | ochoa | Junctional sarcoplasmic reticulum protein 1 (Junctional-face membrane protein of 45 kDa homolog) (JP-45) | Involved in skeletal muscle excitation/contraction coupling (EC), probably acting as a regulator of the voltage-sensitive calcium channel CACNA1S. EC is a physiological process whereby an electrical signal (depolarization of the plasma membrane) is converted into a chemical signal, a calcium gradient, by the opening of ryanodine receptor calcium release channels. May regulate CACNA1S membrane targeting and activity. {ECO:0000269|PubMed:22927026}. |
Q96RU3 | FNBP1 | S347 | ochoa | Formin-binding protein 1 (Formin-binding protein 17) (hFBP17) | May act as a link between RND2 signaling and regulation of the actin cytoskeleton (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during the late stage of clathrin-mediated endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also enhances actin polymerization via the recruitment of WASL/N-WASP, which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:15252009, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:16418535, ECO:0000269|PubMed:17512409}. |
Q96T58 | SPEN | S3463 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96TA1 | NIBAN2 | S691 | ochoa | Protein Niban 2 (Meg-3) (Melanoma invasion by ERK) (MINERVA) (Niban-like protein 1) (Protein FAM129B) | May play a role in apoptosis suppression. May promote melanoma cell invasion in vitro. {ECO:0000269|PubMed:19362540, ECO:0000269|PubMed:21148485}. |
Q99638 | RAD9A | S363 | psp | Cell cycle checkpoint control protein RAD9A (hRAD9) (EC 3.1.11.2) (DNA repair exonuclease rad9 homolog A) | Component of the 9-1-1 cell-cycle checkpoint response complex that plays a major role in DNA repair (PubMed:10713044, PubMed:17575048, PubMed:20545769, PubMed:21659603, PubMed:31135337). The 9-1-1 complex is recruited to DNA lesion upon damage by the RAD17-replication factor C (RFC) clamp loader complex (PubMed:21659603). Acts then as a sliding clamp platform on DNA for several proteins involved in long-patch base excision repair (LP-BER) (PubMed:21659603). The 9-1-1 complex stimulates DNA polymerase beta (POLB) activity by increasing its affinity for the 3'-OH end of the primer-template and stabilizes POLB to those sites where LP-BER proceeds; endonuclease FEN1 cleavage activity on substrates with double, nick, or gap flaps of distinct sequences and lengths; and DNA ligase I (LIG1) on long-patch base excision repair substrates (PubMed:21659603). The 9-1-1 complex is necessary for the recruitment of RHNO1 to sites of double-stranded breaks (DSB) occurring during the S phase (PubMed:21659603). RAD9A possesses 3'->5' double stranded DNA exonuclease activity (PubMed:10713044). {ECO:0000269|PubMed:10713044, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:31135337}. |
Q99700 | ATXN2 | S560 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q9BQQ3 | GORASP1 | S220 | ochoa | Golgi reassembly-stacking protein 1 (Golgi peripheral membrane protein p65) (Golgi phosphoprotein 5) (GOLPH5) (Golgi reassembly-stacking protein of 65 kDa) (GRASP65) | Key structural protein of the Golgi apparatus (PubMed:33301566). The membrane cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon (PubMed:33301566). Acting in concert with GORASP2/GRASP55, is required for the formation and maintenance of the Golgi ribbon, and may be dispensable for the formation of stacks (PubMed:33301566). However, other studies suggest that GORASP1 plays an important role in assembly and membrane stacking of the cisternae, and in the reassembly of Golgi stacks after breakdown during mitosis (By similarity). Caspase-mediated cleavage of GORASP1 is required for fragmentation of the Golgi during apoptosis (By similarity). Also mediates, via its interaction with GOLGA2/GM130, the docking of transport vesicles with the Golgi membranes (PubMed:16489344). Mediates ER stress-induced unconventional (ER/Golgi-independent) trafficking of core-glycosylated CFTR to cell membrane (PubMed:21884936). {ECO:0000250|UniProtKB:O35254, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:21884936, ECO:0000269|PubMed:33301566}. |
Q9BR39 | JPH2 | S594 | ochoa | Junctophilin-2 (JP-2) (Junctophilin type 2) [Cleaved into: Junctophilin-2 N-terminal fragment (JP2NT)] | [Junctophilin-2]: Membrane-binding protein that provides a structural bridge between the plasma membrane and the sarcoplasmic reticulum and is required for normal excitation-contraction coupling in cardiomyocytes (PubMed:20095964). Provides a structural foundation for functional cross-talk between the cell surface and intracellular Ca(2+) release channels by maintaining the 12-15 nm gap between the sarcolemma and the sarcoplasmic reticulum membranes in the cardiac dyads (By similarity). Necessary for proper intracellular Ca(2+) signaling in cardiac myocytes via its involvement in ryanodine receptor-mediated calcium ion release (By similarity). Contributes to the construction of skeletal muscle triad junctions (By similarity). {ECO:0000250|UniProtKB:Q9ET78, ECO:0000269|PubMed:20095964}.; FUNCTION: [Junctophilin-2 N-terminal fragment]: Transcription repressor required to safeguard against the deleterious effects of cardiac stress. Generated following cleavage of the Junctophilin-2 chain by calpain in response to cardiac stress in cardiomyocytes. Following cleavage and release from the membrane, translocates to the nucleus, binds DNA and represses expression of genes implicated in cell growth and differentiation, hypertrophy, inflammation and fibrosis. Modifies the transcription profile and thereby attenuates pathological remodeling in response to cardiac stress. Probably acts by competing with MEF2 transcription factors and TATA-binding proteins. {ECO:0000250|UniProtKB:Q9ET78}. |
Q9BUL9 | RPP25 | Y151 | ochoa | Ribonuclease P protein subunit p25 (RNase P protein subunit p25) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:12003489, PubMed:16723659, PubMed:30454648). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:12003489, ECO:0000269|PubMed:16723659, ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648}. |
Q9BUL9 | RPP25 | S161 | ochoa | Ribonuclease P protein subunit p25 (RNase P protein subunit p25) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:12003489, PubMed:16723659, PubMed:30454648). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:12003489, ECO:0000269|PubMed:16723659, ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648}. |
Q9BZ71 | PITPNM3 | S946 | ochoa | Membrane-associated phosphatidylinositol transfer protein 3 (Phosphatidylinositol transfer protein, membrane-associated 3) (PITPnm 3) (Pyk2 N-terminal domain-interacting receptor 1) (NIR-1) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro) (By similarity). Binds calcium ions. {ECO:0000250}. |
Q9BZL4 | PPP1R12C | S498 | ochoa | Protein phosphatase 1 regulatory subunit 12C (Protein phosphatase 1 myosin-binding subunit of 85 kDa) (Protein phosphatase 1 myosin-binding subunit p85) | Regulates myosin phosphatase activity. {ECO:0000269|PubMed:11399775}. |
Q9C0C2 | TNKS1BP1 | S368 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0E8 | LNPK | S202 | ochoa | Endoplasmic reticulum junction formation protein lunapark (ER junction formation factor lunapark) | Endoplasmic reticulum (ER)-shaping membrane protein that plays a role in determining ER morphology (PubMed:30032983). Involved in the stabilization of nascent three-way ER tubular junctions within the ER network (PubMed:24223779, PubMed:25404289, PubMed:25548161, PubMed:27619977). May also play a role as a curvature-stabilizing protein within the three-way ER tubular junction network (PubMed:25404289). May be involved in limb development (By similarity). Is involved in central nervous system development (PubMed:30032983). {ECO:0000250|UniProtKB:Q7TQ95, ECO:0000269|PubMed:24223779, ECO:0000269|PubMed:25404289, ECO:0000269|PubMed:25548161, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:30032983}. |
Q9H0W8 | SMG9 | S117 | ochoa | Nonsense-mediated mRNA decay factor SMG9 | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (PubMed:19417104). Is recruited by release factors to stalled ribosomes together with SMG1 and SMG8 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required for the efficient association between SMG1 and SMG8 (PubMed:19417104). Plays a role in brain, heart, and eye development (By similarity). {ECO:0000250|UniProtKB:Q9DB90, ECO:0000269|PubMed:19417104}. |
Q9H1K0 | RBSN | S601 | ochoa | Rabenosyn-5 (110 kDa protein) (FYVE finger-containing Rab5 effector protein rabenosyn-5) (RAB effector RBSN) (Zinc finger FYVE domain-containing protein 20) | Rab4/Rab5 effector protein acting in early endocytic membrane fusion and membrane trafficking of recycling endosomes. Required for endosome fusion either homotypically or with clathrin coated vesicles. Plays a role in the lysosomal trafficking of CTSD/cathepsin D from the Golgi to lysosomes. Also promotes the recycling of transferrin directly from early endosomes to the plasma membrane. Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate (PtdInsP3) (PubMed:11062261, PubMed:11788822, PubMed:15020713). Plays a role in the recycling of transferrin receptor to the plasma membrane (PubMed:22308388). {ECO:0000269|PubMed:11062261, ECO:0000269|PubMed:11788822, ECO:0000269|PubMed:15020713, ECO:0000269|PubMed:22308388}. |
Q9H2D6 | TRIOBP | S1123 | ochoa | TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) | [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}. |
Q9H2D6 | TRIOBP | S1175 | ochoa | TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) | [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}. |
Q9H4L4 | SENP3 | S25 | ochoa|psp | Sentrin-specific protease 3 (EC 3.4.22.-) (SUMO-1-specific protease 3) (Sentrin/SUMO-specific protease SENP3) | Protease that releases SUMO2 and SUMO3 monomers from sumoylated substrates, but has only weak activity against SUMO1 conjugates (PubMed:16608850, PubMed:32832608, PubMed:36050397). Deconjugates SUMO2 from MEF2D, which increases its transcriptional activation capability (PubMed:15743823). Deconjugates SUMO2 and SUMO3 from CDCA8 (PubMed:18946085). Redox sensor that, when redistributed into nucleoplasm, can act as an effector to enhance HIF1A transcriptional activity by desumoylating EP300 (PubMed:19680224). Required for rRNA processing through deconjugation of SUMO2 and SUMO3 from nucleophosmin, NPM1 (PubMed:19015314). Plays a role in the regulation of sumoylation status of ZNF148 (PubMed:18259216). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Deconjugates SUMO2 from KAT5 (PubMed:32832608). Catalyzes desumoylation of MRE11 (PubMed:36050397). {ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:16608850, ECO:0000269|PubMed:18259216, ECO:0000269|PubMed:18946085, ECO:0000269|PubMed:19015314, ECO:0000269|PubMed:19680224, ECO:0000269|PubMed:22872859, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:36050397}. |
Q9H792 | PEAK1 | T860 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H7D0 | DOCK5 | S1824 | ochoa | Dedicator of cytokinesis protein 5 | Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}. |
Q9H7N4 | SCAF1 | Y238 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7P9 | PLEKHG2 | S1317 | ochoa | Pleckstrin homology domain-containing family G member 2 (PH domain-containing family G member 2) | May be a transforming oncogene with exchange activity for CDC42 (By similarity). May be a guanine-nucleotide exchange factor (GEF) for RAC1 and CDC42. Activated by the binding to subunits beta and gamma of the heterotrimeric guanine nucleotide-binding protein (G protein) (PubMed:18045877). Involved in the regulation of actin polymerization (PubMed:26573021). {ECO:0000250|UniProtKB:Q6KAU7, ECO:0000269|PubMed:18045877, ECO:0000269|PubMed:26573021}. |
Q9H987 | SYNPO2L | S446 | ochoa | Synaptopodin 2-like protein | Actin-associated protein that may play a role in modulating actin-based shape. {ECO:0000250}. |
Q9H9H4 | VPS37B | S197 | ochoa | Vacuolar protein sorting-associated protein 37B (hVps37B) (ESCRT-I complex subunit VPS37B) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies. May be involved in cell growth and differentiation. {ECO:0000269|PubMed:15218037}. |
Q9HA65 | TBC1D17 | S608 | ochoa | TBC1 domain family member 17 | Probable RAB GTPase-activating protein that inhibits RAB8A/B function. Reduces Rab8 recruitment to tubules emanating from the endocytic recycling compartment (ERC) and inhibits Rab8-mediated endocytic trafficking, such as that of transferrin receptor (TfR) (PubMed:22854040). Involved in regulation of autophagy. {ECO:0000269|PubMed:22854040, ECO:0000269|PubMed:24752605}. |
Q9HAH7 | FBRS | S351 | ochoa | Probable fibrosin-1 | None |
Q9NP31 | SH2D2A | Y260 | psp | SH2 domain-containing protein 2A (SH2 domain-containing adapter protein) (T cell-specific adapter protein) (TSAd) (VEGF receptor-associated protein) | Could be a T-cell-specific adapter protein involved in the control of T-cell activation. May play a role in the CD4-p56-LCK-dependent signal transduction pathway. Could also play an important role in normal and pathological angiogenesis. Could be an adapter protein that facilitates and regulates interaction of KDR with effector proteins important to endothelial cell survival and proliferation. |
Q9NQC3 | RTN4 | S150 | ochoa | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
Q9NQX3 | GPHN | S194 | ochoa|psp | Gephyrin [Includes: Molybdopterin adenylyltransferase (MPT adenylyltransferase) (EC 2.7.7.75) (Domain G); Molybdopterin molybdenumtransferase (MPT Mo-transferase) (EC 2.10.1.1) (Domain E)] | Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to anchor the inhibitory glycine receptor (GLYR) to subsynaptic microtubules (By similarity). Acts as a major instructive molecule at inhibitory synapses, where it also clusters GABA type A receptors (PubMed:25025157, PubMed:26613940). {ECO:0000250|UniProtKB:Q03555, ECO:0000269|PubMed:25025157, ECO:0000269|PubMed:26613940}.; FUNCTION: Also has a catalytic activity and catalyzes two steps in the biosynthesis of the molybdenum cofactor. In the first step, molybdopterin is adenylated. Subsequently, molybdate is inserted into adenylated molybdopterin and AMP is released. {ECO:0000269|PubMed:26613940}. |
Q9NR12 | PDLIM7 | S111 | ochoa | PDZ and LIM domain protein 7 (LIM mineralization protein) (LMP) (Protein enigma) | May function as a scaffold on which the coordinated assembly of proteins can occur. May play a role as an adapter that, via its PDZ domain, localizes LIM-binding proteins to actin filaments of both skeletal muscle and nonmuscle tissues. Involved in both of the two fundamental mechanisms of bone formation, direct bone formation (e.g. embryonic flat bones mandible and cranium), and endochondral bone formation (e.g. embryonic long bone development). Plays a role during fracture repair. Involved in BMP6 signaling pathway (By similarity). {ECO:0000250, ECO:0000269|PubMed:11874232, ECO:0000269|PubMed:7929196}. |
Q9NR12 | PDLIM7 | S204 | ochoa | PDZ and LIM domain protein 7 (LIM mineralization protein) (LMP) (Protein enigma) | May function as a scaffold on which the coordinated assembly of proteins can occur. May play a role as an adapter that, via its PDZ domain, localizes LIM-binding proteins to actin filaments of both skeletal muscle and nonmuscle tissues. Involved in both of the two fundamental mechanisms of bone formation, direct bone formation (e.g. embryonic flat bones mandible and cranium), and endochondral bone formation (e.g. embryonic long bone development). Plays a role during fracture repair. Involved in BMP6 signaling pathway (By similarity). {ECO:0000250, ECO:0000269|PubMed:11874232, ECO:0000269|PubMed:7929196}. |
Q9NRR5 | UBQLN4 | S97 | ochoa | Ubiquilin-4 (Ataxin-1 interacting ubiquitin-like protein) (A1Up) (Ataxin-1 ubiquitin-like-interacting protein A1U) (Connexin43-interacting protein of 75 kDa) (CIP75) | Regulator of protein degradation that mediates the proteasomal targeting of misfolded, mislocalized or accumulated proteins (PubMed:15280365, PubMed:27113755, PubMed:29666234, PubMed:30612738). Acts by binding polyubiquitin chains of target proteins via its UBA domain and by interacting with subunits of the proteasome via its ubiquitin-like domain (PubMed:15280365, PubMed:27113755, PubMed:30612738). Key regulator of DNA repair that represses homologous recombination repair: in response to DNA damage, recruited to sites of DNA damage following phosphorylation by ATM and acts by binding and removing ubiquitinated MRE11 from damaged chromatin, leading to MRE11 degradation by the proteasome (PubMed:30612738). MRE11 degradation prevents homologous recombination repair, redirecting double-strand break repair toward non-homologous end joining (NHEJ) (PubMed:30612738). Specifically recognizes and binds mislocalized transmembrane-containing proteins and targets them to proteasomal degradation (PubMed:27113755). Collaborates with DESI1/POST in the export of ubiquitinated proteins from the nucleus to the cytoplasm (PubMed:29666234). Also plays a role in the regulation of the proteasomal degradation of non-ubiquitinated GJA1 (By similarity). Acts as an adapter protein that recruits UBQLN1 to the autophagy machinery (PubMed:23459205). Mediates the association of UBQLN1 with autophagosomes and the autophagy-related protein LC3 (MAP1LC3A/B/C) and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion (PubMed:23459205). {ECO:0000250|UniProtKB:Q99NB8, ECO:0000269|PubMed:15280365, ECO:0000269|PubMed:23459205, ECO:0000269|PubMed:27113755, ECO:0000269|PubMed:29666234, ECO:0000269|PubMed:30612738}. |
Q9NZJ0 | DTL | S520 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9P206 | NHSL3 | S669 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P206 | NHSL3 | S677 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9UBC2 | EPS15L1 | S796 | ochoa | Epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) | Seems to be a constitutive component of clathrin-coated pits that is required for receptor-mediated endocytosis. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:9407958}. |
Q9UBW5 | BIN2 | S425 | ochoa | Bridging integrator 2 (Breast cancer-associated protein 1) | Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}. |
Q9UGP5 | POLL | S177 | ochoa|psp | DNA polymerase lambda (Pol Lambda) (EC 2.7.7.7) (EC 4.2.99.-) (DNA polymerase beta-2) (Pol beta2) (DNA polymerase kappa) | DNA polymerase that functions in several pathways of DNA repair (PubMed:11457865, PubMed:19806195, PubMed:20693240, PubMed:30250067). Involved in base excision repair (BER) responsible for repair of lesions that give rise to abasic (AP) sites in DNA (PubMed:11457865, PubMed:19806195). Also contributes to DNA double-strand break repair by non-homologous end joining and homologous recombination (PubMed:19806195, PubMed:20693240, PubMed:30250067). Has both template-dependent and template-independent (terminal transferase) DNA polymerase activities (PubMed:10887191, PubMed:10982892, PubMed:12809503, PubMed:14627824, PubMed:15537631, PubMed:19806195). Also has a 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity (PubMed:11457865, PubMed:19806195). {ECO:0000269|PubMed:10887191, ECO:0000269|PubMed:10982892, ECO:0000269|PubMed:11457865, ECO:0000269|PubMed:12809503, ECO:0000269|PubMed:14627824, ECO:0000269|PubMed:15537631, ECO:0000269|PubMed:19806195, ECO:0000269|PubMed:20693240, ECO:0000269|PubMed:30250067}. |
Q9UIS9 | MBD1 | S295 | ochoa | Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) | Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}. |
Q9UL51 | HCN2 | S779 | ochoa | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2 (Brain cyclic nucleotide-gated channel 2) (BCNG-2) | Hyperpolarization-activated ion channel that is permeable to sodium and potassium ions. Displays lower selectivity for K(+) over Na(+) ions (PubMed:10228147, PubMed:22006928). Contributes to the native pacemaker currents in heart (If) and in neurons (Ih) (PubMed:10228147, PubMed:10524219). Can also transport ammonium in the distal nephron (By similarity). Involved in the initiation of neuropathic pain in sensory neurons (By similarity). {ECO:0000250|UniProtKB:Q9JKA9, ECO:0000269|PubMed:10228147, ECO:0000269|PubMed:10524219, ECO:0000269|PubMed:22006928}. |
Q9ULE3 | DENND2A | S309 | ochoa | DENN domain-containing protein 2A | Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. May play a role in late endosomes back to trans-Golgi network/TGN transport. {ECO:0000269|PubMed:20937701}. |
Q9ULH1 | ASAP1 | S839 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 (130 kDa phosphatidylinositol 4,5-bisphosphate-dependent ARF1 GTPase-activating protein) (ADP-ribosylation factor-directed GTPase-activating protein 1) (ARF GTPase-activating protein 1) (Development and differentiation-enhancing factor 1) (DEF-1) (Differentiation-enhancing factor 1) (PIP2-dependent ARF1 GAP) | Possesses phosphatidylinositol 4,5-bisphosphate-dependent GTPase-activating protein activity for ARF1 (ADP ribosylation factor 1) and ARF5 and a lesser activity towards ARF6. May coordinate membrane trafficking with cell growth or actin cytoskeleton remodeling by binding to both SRC and PIP2. May function as a signal transduction protein involved in the differentiation of fibroblasts into adipocytes and possibly other cell types. Part of the ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which direct preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879). {ECO:0000250, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:25673879}. |
Q9ULJ3 | ZBTB21 | S983 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9UMN6 | KMT2B | S570 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UMN6 | KMT2B | S582 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UMN6 | KMT2B | S632 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UMN6 | KMT2B | S1930 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UMS6 | SYNPO2 | S637 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UPW6 | SATB2 | S594 | ochoa | DNA-binding protein SATB2 (Special AT-rich sequence-binding protein 2) | Binds to DNA, at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcription factor controlling nuclear gene expression, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Required for the initiation of the upper-layer neurons (UL1) specific genetic program and for the inactivation of deep-layer neurons (DL) and UL2 specific genes, probably by modulating BCL11B expression. Repressor of Ctip2 and regulatory determinant of corticocortical connections in the developing cerebral cortex. May play an important role in palate formation. Acts as a molecular node in a transcriptional network regulating skeletal development and osteoblast differentiation. {ECO:0000269|PubMed:14701874}. |
Q9UPZ9 | CILK1 | S584 | ochoa | Serine/threonine-protein kinase ICK (EC 2.7.11.1) (Ciliogenesis associated kinase 1) (Intestinal cell kinase) (hICK) (Laryngeal cancer kinase 2) (LCK2) (MAK-related kinase) (MRK) | Required for ciliogenesis (PubMed:24797473). Phosphorylates KIF3A (By similarity). Involved in the control of ciliary length (PubMed:24853502). Regulates the ciliary localization of SHH pathway components as well as the localization of IFT components at ciliary tips (By similarity). May play a key role in the development of multiple organ systems and particularly in cardiac development (By similarity). Regulates intraflagellar transport (IFT) speed and negatively regulates cilium length in a cAMP and mTORC1 signaling-dependent manner and this regulation requires its kinase activity (By similarity). {ECO:0000250|UniProtKB:Q62726, ECO:0000250|UniProtKB:Q9JKV2, ECO:0000269|PubMed:24797473, ECO:0000269|PubMed:24853502}. |
Q9UQ35 | SRRM2 | S357 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S387 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQQ2 | SH2B3 | S519 | ochoa | SH2B adapter protein 3 (Lymphocyte adapter protein) (Lymphocyte-specific adapter protein Lnk) (Signal transduction protein Lnk) | Links T-cell receptor activation signal to phospholipase C-gamma-1, GRB2 and phosphatidylinositol 3-kinase. {ECO:0000250}. |
Q9Y2H9 | MAST1 | S1241 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y3Q8 | TSC22D4 | S28 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y3Q8 | TSC22D4 | S203 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y4H4 | GPSM3 | S35 | ochoa|psp | G-protein-signaling modulator 3 (Activator of G-protein signaling 4) (G18.1b) (Protein G18) | Interacts with subunit of G(i) alpha proteins and regulates the activation of G(i) alpha proteins. {ECO:0000269|PubMed:14656218, ECO:0000269|PubMed:15096500}. |
Q9Y613 | FHOD1 | S580 | ochoa | FH1/FH2 domain-containing protein 1 (Formin homolog overexpressed in spleen 1) (FHOS) (Formin homology 2 domain-containing protein 1) | Required for the assembly of F-actin structures, such as stress fibers. Depends on the Rho-ROCK cascade for its activity. Contributes to the coordination of microtubules with actin fibers and plays a role in cell elongation. Acts synergistically with ROCK1 to promote SRC-dependent non-apoptotic plasma membrane blebbing. {ECO:0000269|PubMed:14576350, ECO:0000269|PubMed:15878344, ECO:0000269|PubMed:18694941}. |
Q9Y6K5 | OAS3 | S396 | ochoa | 2'-5'-oligoadenylate synthase 3 ((2-5')oligo(A) synthase 3) (2-5A synthase 3) (EC 2.7.7.84) (p100 OAS) (p100OAS) | Interferon-induced, dsRNA-activated antiviral enzyme which plays a critical role in cellular innate antiviral response. In addition, it may also play a role in other cellular processes such as apoptosis, cell growth, differentiation and gene regulation. Synthesizes preferentially dimers of 2'-5'-oligoadenylates (2-5A) from ATP which then bind to the inactive monomeric form of ribonuclease L (RNase L) leading to its dimerization and subsequent activation. Activation of RNase L leads to degradation of cellular as well as viral RNA, resulting in the inhibition of protein synthesis, thus terminating viral replication. Can mediate the antiviral effect via the classical RNase L-dependent pathway or an alternative antiviral pathway independent of RNase L. Displays antiviral activity against Chikungunya virus (CHIKV), Dengue virus, Sindbis virus (SINV) and Semliki forest virus (SFV). {ECO:0000269|PubMed:19056102, ECO:0000269|PubMed:19923450, ECO:0000269|PubMed:9880533}. |
Q13435 | SF3B2 | Y639 | Sugiyama | Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
Q9Y6J0 | CABIN1 | S2126 | GPS6 | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
A0A1W2PPC1 | PRR33 | S279 | ochoa | Proline rich 33 | None |
A6NGB9 | WIPF3 | S202 | ochoa | WAS/WASL-interacting protein family member 3 (Corticosteroids and regional expression protein 16 homolog) | May be a regulator of cytoskeletal organization. May have a role in spermatogenesis (By similarity). {ECO:0000250}. |
A8MZF0 | PRR33 | S131 | ochoa | Proline-rich protein 33 | None |
B1AK53 | ESPN | S611 | ochoa | Espin (Autosomal recessive deafness type 36 protein) (Ectoplasmic specialization protein) | Multifunctional actin-bundling protein. Plays a major role in regulating the organization, dimension, dynamics and signaling capacities of the actin filament-rich microvilli in the mechanosensory and chemosensory cells (PubMed:29572253). Required for the assembly and stabilization of the stereociliary parallel actin bundles. Plays a crucial role in the formation and maintenance of inner ear hair cell stereocilia (By similarity). Involved in the elongation of actin in stereocilia (PubMed:29572253). In extrastriolar hair cells, required for targeting MYO3B to stereocilia tips, and for regulation of stereocilia diameter and staircase formation. {ECO:0000250|UniProtKB:Q9ET47, ECO:0000269|PubMed:29572253}. |
B1AK53 | ESPN | S612 | ochoa | Espin (Autosomal recessive deafness type 36 protein) (Ectoplasmic specialization protein) | Multifunctional actin-bundling protein. Plays a major role in regulating the organization, dimension, dynamics and signaling capacities of the actin filament-rich microvilli in the mechanosensory and chemosensory cells (PubMed:29572253). Required for the assembly and stabilization of the stereociliary parallel actin bundles. Plays a crucial role in the formation and maintenance of inner ear hair cell stereocilia (By similarity). Involved in the elongation of actin in stereocilia (PubMed:29572253). In extrastriolar hair cells, required for targeting MYO3B to stereocilia tips, and for regulation of stereocilia diameter and staircase formation. {ECO:0000250|UniProtKB:Q9ET47, ECO:0000269|PubMed:29572253}. |
E9PAV3 | NACA | S916 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
E9PAV3 | NACA | S1581 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
O00512 | BCL9 | S307 | ochoa | B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) | Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}. |
O00560 | SDCBP | S36 | ochoa | Syntenin-1 (Melanoma differentiation-associated protein 9) (MDA-9) (Pro-TGF-alpha cytoplasmic domain-interacting protein 18) (TACIP18) (Scaffold protein Pbp1) (Syndecan-binding protein 1) | Multifunctional adapter protein involved in diverse array of functions including trafficking of transmembrane proteins, neuro and immunomodulation, exosome biogenesis, and tumorigenesis (PubMed:26291527). Positively regulates TGFB1-mediated SMAD2/3 activation and TGFB1-induced epithelial-to-mesenchymal transition (EMT) and cell migration in various cell types. May increase TGFB1 signaling by enhancing cell-surface expression of TGFR1 by preventing the interaction between TGFR1 and CAV1 and subsequent CAV1-dependent internalization and degradation of TGFR1 (PubMed:25893292). In concert with SDC1/4 and PDCD6IP, regulates exosome biogenesis (PubMed:22660413). Regulates migration, growth, proliferation, and cell cycle progression in a variety of cancer types (PubMed:26539120). In adherens junctions may function to couple syndecans to cytoskeletal proteins or signaling components. Seems to couple transcription factor SOX4 to the IL-5 receptor (IL5RA) (PubMed:11498591). May also play a role in vesicular trafficking (PubMed:11179419). Seems to be required for the targeting of TGFA to the cell surface in the early secretory pathway (PubMed:10230395). {ECO:0000269|PubMed:10230395, ECO:0000269|PubMed:11179419, ECO:0000269|PubMed:11498591, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:25893292, ECO:0000269|PubMed:26539120, ECO:0000303|PubMed:26291527}. |
O14497 | ARID1A | S232 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14578 | CIT | S1948 | ochoa | Citron Rho-interacting kinase (CRIK) (EC 2.7.11.1) (Serine/threonine-protein kinase 21) | Plays a role in cytokinesis. Required for KIF14 localization to the central spindle and midbody. Putative RHO/RAC effector that binds to the GTP-bound forms of RHO and RAC1. It probably binds p21 with a tighter specificity in vivo. Displays serine/threonine protein kinase activity. Plays an important role in the regulation of cytokinesis and the development of the central nervous system. Phosphorylates MYL9/MLC2. {ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:27453578}. |
O14578 | CIT | S1954 | ochoa | Citron Rho-interacting kinase (CRIK) (EC 2.7.11.1) (Serine/threonine-protein kinase 21) | Plays a role in cytokinesis. Required for KIF14 localization to the central spindle and midbody. Putative RHO/RAC effector that binds to the GTP-bound forms of RHO and RAC1. It probably binds p21 with a tighter specificity in vivo. Displays serine/threonine protein kinase activity. Plays an important role in the regulation of cytokinesis and the development of the central nervous system. Phosphorylates MYL9/MLC2. {ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:27453578}. |
O14686 | KMT2D | S4327 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O15047 | SETD1A | S1125 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15327 | INPP4B | S495 | ochoa | Inositol polyphosphate 4-phosphatase type II (Type II inositol 3,4-bisphosphate 4-phosphatase) (EC 3.1.3.66) | Catalyzes the hydrolysis of the 4-position phosphate of phosphatidylinositol 3,4-bisphosphate, inositol 1,3,4-trisphosphate and inositol 3,4-trisphosphate (PubMed:24070612, PubMed:24591580). Plays a role in the late stages of macropinocytosis by dephosphorylating phosphatidylinositol 3,4-bisphosphate in membrane ruffles (PubMed:24591580). The lipid phosphatase activity is critical for tumor suppressor function. Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival (PubMed:19647222, PubMed:24070612). {ECO:0000269|PubMed:19647222, ECO:0000269|PubMed:24070612, ECO:0000269|PubMed:24591580}. |
O15357 | INPPL1 | S157 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2 (EC 3.1.3.86) (Inositol polyphosphate phosphatase-like protein 1) (INPPL-1) (Protein 51C) (SH2 domain-containing inositol 5'-phosphatase 2) (SH2 domain-containing inositol phosphatase 2) (SHIP-2) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:16824732). Required for correct mitotic spindle orientation and therefore progression of mitosis (By similarity). Plays a central role in regulation of PI3K-dependent insulin signaling, although the precise molecular mechanisms and signaling pathways remain unclear (PubMed:9660833). While overexpression reduces both insulin-stimulated MAP kinase and Akt activation, its absence does not affect insulin signaling or GLUT4 trafficking (By similarity). Confers resistance to dietary obesity (By similarity). May act by regulating AKT2, but not AKT1, phosphorylation at the plasma membrane (By similarity). Part of a signaling pathway that regulates actin cytoskeleton remodeling (PubMed:11739414, PubMed:12676785). Required for the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation (PubMed:15668240). Participates in regulation of cortical and submembraneous actin by hydrolyzing PtdIns(3,4,5)P3 thereby regulating membrane ruffling (PubMed:21624956). Regulates cell adhesion and cell spreading (PubMed:12235291). Required for HGF-mediated lamellipodium formation, cell scattering and spreading (PubMed:15735664). Acts as a negative regulator of EPHA2 receptor endocytosis by inhibiting via PI3K-dependent Rac1 activation (PubMed:17135240). Acts as a regulator of neuritogenesis by regulating PtdIns(3,4,5)P3 level and is required to form an initial protrusive pattern, and later, maintain proper neurite outgrowth (By similarity). Acts as a negative regulator of the FC-gamma-RIIA receptor (FCGR2A) (PubMed:12690104). Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems (PubMed:11016922). Involved in EGF signaling pathway (PubMed:11349134). Upon stimulation by EGF, it is recruited by EGFR and dephosphorylates PtdIns(3,4,5)P3 (PubMed:11349134). Plays a negative role in regulating the PI3K-PKB pathway, possibly by inhibiting PKB activity (PubMed:11349134). Down-regulates Fc-gamma-R-mediated phagocytosis in macrophages independently of INPP5D/SHIP1 (By similarity). In macrophages, down-regulates NF-kappa-B-dependent gene transcription by regulating macrophage colony-stimulating factor (M-CSF)-induced signaling (By similarity). Plays a role in the localization of AURKA and NEDD9/HEF1 to the basolateral membrane at interphase in polarized cysts, thereby mediates cell cycle homeostasis, cell polarization and cilia assembly (By similarity). Additionally promotion of cilia growth is also facilitated by hydrolysis of (PtdIns(3,4,5)P3) to PtdIns(3,4)P2 (By similarity). Promotes formation of apical membrane-initiation sites during the initial stages of lumen formation via Rho family-induced actin filament organization and CTNNB1 localization to cell-cell contacts (By similarity). May also hydrolyze PtdIns(1,3,4,5)P4, and could thus affect the levels of the higher inositol polyphosphates like InsP6. Involved in endochondral ossification (PubMed:23273569). {ECO:0000250|UniProtKB:F1PNY0, ECO:0000250|UniProtKB:Q6P549, ECO:0000250|UniProtKB:Q9WVR3, ECO:0000269|PubMed:11016922, ECO:0000269|PubMed:11349134, ECO:0000269|PubMed:11739414, ECO:0000269|PubMed:12235291, ECO:0000269|PubMed:12676785, ECO:0000269|PubMed:12690104, ECO:0000269|PubMed:15668240, ECO:0000269|PubMed:15735664, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:17135240, ECO:0000269|PubMed:21624956, ECO:0000269|PubMed:23273569, ECO:0000269|PubMed:9660833}. |
O15357 | INPPL1 | S1011 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2 (EC 3.1.3.86) (Inositol polyphosphate phosphatase-like protein 1) (INPPL-1) (Protein 51C) (SH2 domain-containing inositol 5'-phosphatase 2) (SH2 domain-containing inositol phosphatase 2) (SHIP-2) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:16824732). Required for correct mitotic spindle orientation and therefore progression of mitosis (By similarity). Plays a central role in regulation of PI3K-dependent insulin signaling, although the precise molecular mechanisms and signaling pathways remain unclear (PubMed:9660833). While overexpression reduces both insulin-stimulated MAP kinase and Akt activation, its absence does not affect insulin signaling or GLUT4 trafficking (By similarity). Confers resistance to dietary obesity (By similarity). May act by regulating AKT2, but not AKT1, phosphorylation at the plasma membrane (By similarity). Part of a signaling pathway that regulates actin cytoskeleton remodeling (PubMed:11739414, PubMed:12676785). Required for the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation (PubMed:15668240). Participates in regulation of cortical and submembraneous actin by hydrolyzing PtdIns(3,4,5)P3 thereby regulating membrane ruffling (PubMed:21624956). Regulates cell adhesion and cell spreading (PubMed:12235291). Required for HGF-mediated lamellipodium formation, cell scattering and spreading (PubMed:15735664). Acts as a negative regulator of EPHA2 receptor endocytosis by inhibiting via PI3K-dependent Rac1 activation (PubMed:17135240). Acts as a regulator of neuritogenesis by regulating PtdIns(3,4,5)P3 level and is required to form an initial protrusive pattern, and later, maintain proper neurite outgrowth (By similarity). Acts as a negative regulator of the FC-gamma-RIIA receptor (FCGR2A) (PubMed:12690104). Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems (PubMed:11016922). Involved in EGF signaling pathway (PubMed:11349134). Upon stimulation by EGF, it is recruited by EGFR and dephosphorylates PtdIns(3,4,5)P3 (PubMed:11349134). Plays a negative role in regulating the PI3K-PKB pathway, possibly by inhibiting PKB activity (PubMed:11349134). Down-regulates Fc-gamma-R-mediated phagocytosis in macrophages independently of INPP5D/SHIP1 (By similarity). In macrophages, down-regulates NF-kappa-B-dependent gene transcription by regulating macrophage colony-stimulating factor (M-CSF)-induced signaling (By similarity). Plays a role in the localization of AURKA and NEDD9/HEF1 to the basolateral membrane at interphase in polarized cysts, thereby mediates cell cycle homeostasis, cell polarization and cilia assembly (By similarity). Additionally promotion of cilia growth is also facilitated by hydrolysis of (PtdIns(3,4,5)P3) to PtdIns(3,4)P2 (By similarity). Promotes formation of apical membrane-initiation sites during the initial stages of lumen formation via Rho family-induced actin filament organization and CTNNB1 localization to cell-cell contacts (By similarity). May also hydrolyze PtdIns(1,3,4,5)P4, and could thus affect the levels of the higher inositol polyphosphates like InsP6. Involved in endochondral ossification (PubMed:23273569). {ECO:0000250|UniProtKB:F1PNY0, ECO:0000250|UniProtKB:Q6P549, ECO:0000250|UniProtKB:Q9WVR3, ECO:0000269|PubMed:11016922, ECO:0000269|PubMed:11349134, ECO:0000269|PubMed:11739414, ECO:0000269|PubMed:12235291, ECO:0000269|PubMed:12676785, ECO:0000269|PubMed:12690104, ECO:0000269|PubMed:15668240, ECO:0000269|PubMed:15735664, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:17135240, ECO:0000269|PubMed:21624956, ECO:0000269|PubMed:23273569, ECO:0000269|PubMed:9660833}. |
O43281 | EFS | S298 | ochoa | Embryonal Fyn-associated substrate (hEFS) (Cas scaffolding protein family member 3) | Docking protein which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. May serve as an activator of SRC and a downstream effector. Interacts with the SH3 domain of FYN and with CRK, SRC, and YES (By similarity). {ECO:0000250}. |
O43281 | EFS | S331 | ochoa | Embryonal Fyn-associated substrate (hEFS) (Cas scaffolding protein family member 3) | Docking protein which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. May serve as an activator of SRC and a downstream effector. Interacts with the SH3 domain of FYN and with CRK, SRC, and YES (By similarity). {ECO:0000250}. |
O43295 | SRGAP3 | S894 | ochoa | SLIT-ROBO Rho GTPase-activating protein 3 (srGAP3) (Mental disorder-associated GAP) (Rho GTPase-activating protein 14) (WAVE-associated Rac GTPase-activating protein) (WRP) | GTPase-activating protein for RAC1 and perhaps Cdc42, but not for RhoA small GTPase. May attenuate RAC1 signaling in neurons. {ECO:0000269|PubMed:12195014, ECO:0000269|PubMed:12447388}. |
O43379 | WDR62 | S1356 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43426 | SYNJ1 | S1551 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O60341 | KDM1A | S166 | ochoa | Lysine-specific histone demethylase 1A (EC 1.14.99.66) (BRAF35-HDAC complex protein BHC110) (Flavin-containing amine oxidase domain-containing protein 2) ([histone H3]-dimethyl-L-lysine(4) FAD-dependent demethylase 1A) | Histone demethylase that can demethylate both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context (PubMed:15620353, PubMed:15811342, PubMed:16079794, PubMed:16079795, PubMed:16140033, PubMed:16223729, PubMed:27292636). Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed (PubMed:15620353, PubMed:15811342, PubMed:16079794, PubMed:21300290). Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me (PubMed:15620353, PubMed:20389281, PubMed:21300290, PubMed:23721412). May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity (PubMed:16079794, PubMed:16140033, PubMed:16885027, PubMed:21300290, PubMed:23721412). Also acts as a coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in AR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A (PubMed:16079795). Demethylates di-methylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1 (PubMed:29691401). Demethylates methylated 'Lys-42' and methylated 'Lys-117' of SOX2 (PubMed:29358331). Required for gastrulation during embryogenesis. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (PubMed:16079794, PubMed:16140033). Facilitates epithelial-to-mesenchymal transition by acting as an effector of SNAI1-mediated transcription repression of epithelial markers E-cadherin/CDH1, CDN7 and KRT8 (PubMed:20562920, PubMed:27292636). Required for the maintenance of the silenced state of the SNAI1 target genes E-cadherin/CDH1 and CDN7 (PubMed:20389281). Required for the repression of GIPR expression (PubMed:34655521, PubMed:34906447). {ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:15620353, ECO:0000269|PubMed:15811342, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16079795, ECO:0000269|PubMed:16140033, ECO:0000269|PubMed:16223729, ECO:0000269|PubMed:16885027, ECO:0000269|PubMed:16956976, ECO:0000269|PubMed:17805299, ECO:0000269|PubMed:20228790, ECO:0000269|PubMed:20389281, ECO:0000269|PubMed:20562920, ECO:0000269|PubMed:21300290, ECO:0000269|PubMed:23721412, ECO:0000269|PubMed:27292636, ECO:0000269|PubMed:29358331, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:34655521, ECO:0000269|PubMed:34906447}. |
O75061 | DNAJC6 | S744 | ochoa | Auxilin (EC 3.1.3.-) (DnaJ homolog subfamily C member 6) | May act as a protein phosphatase and/or a lipid phosphatase. Co-chaperone that recruits HSPA8/HSC70 to clathrin-coated vesicles (CCVs) and promotes the ATP-dependent dissociation of clathrin from CCVs and participates in clathrin-mediated endocytosis of synaptic vesicles and their recycling and also in intracellular trafficking (PubMed:18489706). Firstly, binds tightly to the clathrin cages, at a ratio of one DNAJC6 per clathrin triskelion. The HSPA8:ATP complex then binds to the clathrin-auxilin cage, initially at a ratio of one HSPA8 per triskelion leading to ATP hydrolysis stimulation and causing a conformational change in the HSPA8. This cycle is repeated three times to drive to a complex containing the clathrin-auxilin cage associated to three HSPA8:ADP complex. The ATP hydrolysis of the third HSPA8:ATP complex leads to a concerted dismantling of the cage into component triskelia. Then, dissociates from the released triskelia and be recycled to initiate another cycle of HSPA8's recruitment. Also acts during the early steps of clathrin-coated vesicle (CCV) formation through its interaction with the GTP bound form of DNM1 (By similarity). {ECO:0000250|UniProtKB:Q27974, ECO:0000269|PubMed:18489706}. |
O75381 | PEX14 | S251 | ochoa | Peroxisomal membrane protein PEX14 (PTS1 receptor-docking protein) (Peroxin-14) (Peroxisomal membrane anchor protein PEX14) | Component of the PEX13-PEX14 docking complex, a translocon channel that specifically mediates the import of peroxisomal cargo proteins bound to PEX5 receptor (PubMed:24235149, PubMed:28765278, PubMed:9653144). The PEX13-PEX14 docking complex forms a large import pore which can be opened to a diameter of about 9 nm (By similarity). Mechanistically, PEX5 receptor along with cargo proteins associates with the PEX14 subunit of the PEX13-PEX14 docking complex in the cytosol, leading to the insertion of the receptor into the organelle membrane with the concomitant translocation of the cargo into the peroxisome matrix (PubMed:24235149, PubMed:28765278). Plays a key role for peroxisome movement through a direct interaction with tubulin (PubMed:21525035). {ECO:0000250|UniProtKB:P53112, ECO:0000269|PubMed:21525035, ECO:0000269|PubMed:24235149, ECO:0000269|PubMed:28765278, ECO:0000269|PubMed:9653144}. |
O75626 | PRDM1 | S350 | ochoa | PR domain zinc finger protein 1 (EC 2.1.1.-) (BLIMP-1) (Beta-interferon gene positive regulatory domain I-binding factor) (PR domain-containing protein 1) (Positive regulatory domain I-binding factor 1) (PRDI-BF1) (PRDI-binding factor 1) | Transcription factor that mediates a transcriptional program in various innate and adaptive immune tissue-resident lymphocyte T cell types such as tissue-resident memory T (Trm), natural killer (trNK) and natural killer T (NKT) cells and negatively regulates gene expression of proteins that promote the egress of tissue-resident T-cell populations from non-lymphoid organs. Plays a role in the development, retention and long-term establishment of adaptive and innate tissue-resident lymphocyte T cell types in non-lymphoid organs, such as the skin and gut, but also in other nonbarrier tissues like liver and kidney, and therefore may provide immediate immunological protection against reactivating infections or viral reinfection (By similarity). Binds specifically to the PRDI element in the promoter of the beta-interferon gene (PubMed:1851123). Drives the maturation of B-lymphocytes into Ig secreting cells (PubMed:12626569). Associates with the transcriptional repressor ZNF683 to chromatin at gene promoter regions (By similarity). Binds to the promoter and acts as a transcriptional repressor of IRF8, thereby promotes transcription of osteoclast differentiation factors such as NFATC1 and EEIG1 (By similarity). {ECO:0000250|UniProtKB:Q60636, ECO:0000269|PubMed:12626569, ECO:0000269|PubMed:1851123}. |
O75694 | NUP155 | S1006 | ochoa | Nuclear pore complex protein Nup155 (155 kDa nucleoporin) (Nucleoporin Nup155) | Essential component of nuclear pore complex. Could be essessential for embryogenesis. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport. {ECO:0000250|UniProtKB:Q99P88}. |
O75962 | TRIO | S1762 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O94868 | FCHSD2 | S664 | ochoa | F-BAR and double SH3 domains protein 2 (Carom) (Protein nervous wreck 1) (NWK1) (SH3 multiple domains protein 3) | Adapter protein that plays a role in endocytosis via clathrin-coated pits. Contributes to the internalization of cell surface receptors, such as integrin ITGB1 and transferrin receptor (PubMed:29887380). Promotes endocytosis of EGFR in cancer cells, and thereby contributes to the down-regulation of EGFR signaling (PubMed:30249660). Recruited to clathrin-coated pits during a mid-to-late stage of assembly, where it is required for normal progress from U-shaped intermediate stage pits to terminal, omega-shaped pits (PubMed:29887380). Binds to membranes enriched in phosphatidylinositol 3,4-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate (PubMed:29887380). When bound to membranes, promotes actin polymerization via its interaction with WAS and/or WASL which leads to the activation of the Arp2/3 complex. Does not promote actin polymerisation in the absence of membranes (PubMed:29887380). {ECO:0000269|PubMed:29887380, ECO:0000269|PubMed:30249660}. |
O95171 | SCEL | S195 | ochoa | Sciellin | May function in the assembly or regulation of proteins in the cornified envelope. The LIM domain may be involved in homotypic or heterotypic associations and may function to localize sciellin to the cornified envelope. |
O95365 | ZBTB7A | S525 | ochoa | Zinc finger and BTB domain-containing protein 7A (Factor binding IST protein 1) (FBI-1) (Factor that binds to inducer of short transcripts protein 1) (HIV-1 1st-binding protein 1) (Leukemia/lymphoma-related factor) (POZ and Krueppel erythroid myeloid ontogenic factor) (POK erythroid myeloid ontogenic factor) (Pokemon) (Pokemon 1) (TTF-I-interacting peptide 21) (TIP21) (Zinc finger protein 857A) | Transcription factor that represses the transcription of a wide range of genes involved in cell proliferation and differentiation (PubMed:14701838, PubMed:17595526, PubMed:20812024, PubMed:25514493, PubMed:26455326, PubMed:26816381). Directly and specifically binds to the consensus sequence 5'-[GA][CA]GACCCCCCCCC-3' and represses transcription both by regulating the organization of chromatin and through the direct recruitment of transcription factors to gene regulatory regions (PubMed:12004059, PubMed:17595526, PubMed:20812024, PubMed:25514493, PubMed:26816381). Negatively regulates SMAD4 transcriptional activity in the TGF-beta signaling pathway through these two mechanisms (PubMed:25514493). That is, recruits the chromatin regulator HDAC1 to the SMAD4-DNA complex and in parallel prevents the recruitment of the transcriptional activators CREBBP and EP300 (PubMed:25514493). Collaborates with transcription factors like RELA to modify the accessibility of gene transcription regulatory regions to secondary transcription factors (By similarity). Also directly interacts with transcription factors like SP1 to prevent their binding to DNA (PubMed:12004059). Functions as an androgen receptor/AR transcriptional corepressor by recruiting NCOR1 and NCOR2 to the androgen response elements/ARE on target genes (PubMed:20812024). Thereby, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Involved in the switch between fetal and adult globin expression during erythroid cells maturation (PubMed:26816381). Through its interaction with the NuRD complex regulates chromatin at the fetal globin genes to repress their transcription (PubMed:26816381). Specifically represses the transcription of the tumor suppressor ARF isoform from the CDKN2A gene (By similarity). Efficiently abrogates E2F1-dependent CDKN2A transactivation (By similarity). Regulates chondrogenesis through the transcriptional repression of specific genes via a mechanism that also requires histone deacetylation (By similarity). Regulates cell proliferation through the transcriptional regulation of genes involved in glycolysis (PubMed:26455326). Involved in adipogenesis through the regulation of genes involved in adipocyte differentiation (PubMed:14701838). Plays a key role in the differentiation of lymphoid progenitors into B and T lineages (By similarity). Promotes differentiation towards the B lineage by inhibiting the T-cell instructive Notch signaling pathway through the specific transcriptional repression of Notch downstream target genes (By similarity). Also regulates osteoclast differentiation (By similarity). May also play a role, independently of its transcriptional activity, in double-strand break repair via classical non-homologous end joining/cNHEJ (By similarity). Recruited to double-strand break sites on damage DNA, interacts with the DNA-dependent protein kinase complex and directly regulates its stability and activity in DNA repair (By similarity). May also modulate the splicing activity of KHDRBS1 toward BCL2L1 in a mechanism which is histone deacetylase-dependent and thereby negatively regulates the pro-apoptotic effect of KHDRBS1 (PubMed:24514149). {ECO:0000250|UniProtKB:O88939, ECO:0000250|UniProtKB:Q9QZ48, ECO:0000269|PubMed:12004059, ECO:0000269|PubMed:14701838, ECO:0000269|PubMed:17595526, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:24514149, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:26455326, ECO:0000269|PubMed:26816381}. |
O95817 | BAG3 | S385 | ochoa | BAG family molecular chaperone regulator 3 (BAG-3) (Bcl-2-associated athanogene 3) (Bcl-2-binding protein Bis) (Docking protein CAIR-1) | Co-chaperone and adapter protein that connects different classes of molecular chaperones including heat shock proteins 70 (HSP70s), e.g. HSPA1A/HSP70 or HSPA8/HSC70, and small heat shock proteins (sHSPs), e.g. HSPB8 (PubMed:27884606, PubMed:30559338). Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from HSP70s, thereby triggering client protein release (PubMed:27884606, PubMed:30559338). Nucleotide release is mediated via BAG3 binding to the nucleotide-binding domain (NBD) of HSP70s, whereas client release is mediated via binding to the substrate-binding domain (SBD) (PubMed:27474739, PubMed:9873016). Has anti-apoptotic activity (PubMed:10597216). Plays a role in the HSF1 nucleocytoplasmic transport (PubMed:26159920). {ECO:0000269|PubMed:10597216, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:26159920, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27884606, ECO:0000269|PubMed:30559338, ECO:0000269|PubMed:9873016}. |
O95863 | SNAI1 | S115 | psp | Zinc finger protein SNAI1 (Protein snail homolog 1) (Protein sna) | Involved in induction of the epithelial to mesenchymal transition (EMT), formation and maintenance of embryonic mesoderm, growth arrest, survival and cell migration (PubMed:10655587, PubMed:15647282, PubMed:20389281, PubMed:20562920, PubMed:21952048, PubMed:25827072). Binds to 3 E-boxes of the E-cadherin/CDH1 gene promoter and to the promoters of CLDN7 and KRT8 and, in association with histone demethylase KDM1A which it recruits to the promoters, causes a decrease in dimethylated H3K4 levels and represses transcription (PubMed:10655587, PubMed:20389281, PubMed:20562920). The N-terminal SNAG domain competes with histone H3 for the same binding site on the histone demethylase complex formed by KDM1A and RCOR1, and thereby inhibits demethylation of histone H3 at 'Lys-4' (in vitro) (PubMed:20389281, PubMed:21300290, PubMed:23721412). During EMT, involved with LOXL2 in negatively regulating pericentromeric heterochromatin transcription (PubMed:16096638). SNAI1 recruits LOXL2 to pericentromeric regions to oxidize histone H3 and repress transcription which leads to release of heterochromatin component CBX5/HP1A, enabling chromatin reorganization and acquisition of mesenchymal traits (By similarity). Associates with EGR1 and SP1 to mediate tetradecanoyl phorbol acetate (TPA)-induced up-regulation of CDKN2B, possibly by binding to the CDKN2B promoter region 5'-TCACA-3 (PubMed:20121949). In addition, may also activate the CDKN2B promoter by itself (PubMed:20121949). {ECO:0000250|UniProtKB:Q02085, ECO:0000269|PubMed:10655587, ECO:0000269|PubMed:15647282, ECO:0000269|PubMed:16096638, ECO:0000269|PubMed:20121949, ECO:0000269|PubMed:20389281, ECO:0000269|PubMed:20562920, ECO:0000269|PubMed:21300290, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:23721412, ECO:0000269|PubMed:25827072}. |
P11137 | MAP2 | S1610 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P15407 | FOSL1 | S74 | ochoa | Fos-related antigen 1 (FRA-1) | None |
P18887 | XRCC1 | S446 | ochoa | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P19793 | RXRA | S78 | psp | Retinoic acid receptor RXR-alpha (Nuclear receptor subfamily 2 group B member 1) (Retinoid X receptor alpha) | Receptor for retinoic acid that acts as a transcription factor (PubMed:10874028, PubMed:11162439, PubMed:11915042, PubMed:37478846). Forms homo- or heterodimers with retinoic acid receptors (RARs) and binds to target response elements in response to their ligands, all-trans or 9-cis retinoic acid, to regulate gene expression in various biological processes (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:16107141, PubMed:17761950, PubMed:18800767, PubMed:19167885, PubMed:28167758, PubMed:37478846). The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 to regulate transcription (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:17761950, PubMed:28167758). The high affinity ligand for retinoid X receptors (RXRs) is 9-cis retinoic acid (PubMed:1310260). In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone deacetylation, chromatin condensation and transcriptional suppression (PubMed:20215566). On ligand binding, the corepressors dissociate from the receptors and coactivators are recruited leading to transcriptional activation (PubMed:20215566, PubMed:37478846, PubMed:9267036). Serves as a common heterodimeric partner for a number of nuclear receptors, such as RARA, RARB and PPARA (PubMed:10195690, PubMed:11915042, PubMed:28167758, PubMed:29021580). The RXRA/RARB heterodimer can act as a transcriptional repressor or transcriptional activator, depending on the RARE DNA element context (PubMed:29021580). The RXRA/PPARA heterodimer is required for PPARA transcriptional activity on fatty acid oxidation genes such as ACOX1 and the P450 system genes (PubMed:10195690). Together with RARA, positively regulates microRNA-10a expression, thereby inhibiting the GATA6/VCAM1 signaling response to pulsatile shear stress in vascular endothelial cells (PubMed:28167758). Acts as an enhancer of RARA binding to RARE DNA element (PubMed:28167758). May facilitate the nuclear import of heterodimerization partners such as VDR and NR4A1 (PubMed:12145331, PubMed:15509776). Promotes myelin debris phagocytosis and remyelination by macrophages (PubMed:26463675). Plays a role in the attenuation of the innate immune system in response to viral infections, possibly by negatively regulating the transcription of antiviral genes such as type I IFN genes (PubMed:25417649). Involved in the regulation of calcium signaling by repressing ITPR2 gene expression, thereby controlling cellular senescence (PubMed:30216632). {ECO:0000269|PubMed:10195690, ECO:0000269|PubMed:10874028, ECO:0000269|PubMed:11162439, ECO:0000269|PubMed:11915042, ECO:0000269|PubMed:12145331, ECO:0000269|PubMed:1310260, ECO:0000269|PubMed:15509776, ECO:0000269|PubMed:16107141, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18800767, ECO:0000269|PubMed:19167885, ECO:0000269|PubMed:20215566, ECO:0000269|PubMed:25417649, ECO:0000269|PubMed:26463675, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:29021580, ECO:0000269|PubMed:30216632, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9267036}. |
P22681 | CBL | Y552 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P22681 | CBL | S558 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P41161 | ETV5 | S248 | ochoa | ETS translocation variant 5 (Ets-related protein ERM) | Binds to DNA sequences containing the consensus nucleotide core sequence 5'-GGAA.-3'. {ECO:0000269|PubMed:8152800}. |
P41212 | ETV6 | S30 | ochoa | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P50548 | ERF | S362 | ochoa | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P50548 | ERF | S368 | ochoa | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P51003 | PAPOLA | S617 | ochoa | Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) | Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}. |
P51608 | MECP2 | T400 | ochoa | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P52746 | ZNF142 | S1010 | ochoa | Zinc finger protein 142 | May be involved in transcriptional regulation. {ECO:0000305}. |
P55198 | MLLT6 | S384 | ochoa | Protein AF-17 (ALL1-fused gene from chromosome 17 protein) | None |
P78314 | SH3BP2 | S278 | ochoa|psp | SH3 domain-binding protein 2 (3BP-2) | Binds differentially to the SH3 domains of certain proteins of signal transduction pathways. Binds to phosphatidylinositols; linking the hemopoietic tyrosine kinase fes to the cytoplasmic membrane in a phosphorylation dependent mechanism. |
P78524 | DENND2B | T87 | ochoa | DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) | [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}. |
P78559 | MAP1A | S2188 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
Q05209 | PTPN12 | S342 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q05707 | COL14A1 | S1724 | ochoa | Collagen alpha-1(XIV) chain (Undulin) | Plays an adhesive role by integrating collagen bundles. It is probably associated with the surface of interstitial collagen fibrils via COL1. The COL2 domain may then serve as a rigid arm which sticks out from the fibril and protrudes the large N-terminal globular domain into the extracellular space, where it might interact with other matrix molecules or cell surface receptors (By similarity). {ECO:0000250, ECO:0000269|PubMed:2187872}. |
Q07157 | TJP1 | S1142 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q07157 | TJP1 | S1439 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q07889 | SOS1 | S1161 | ochoa|psp | Son of sevenless homolog 1 (SOS-1) | Promotes the exchange of Ras-bound GDP by GTP (PubMed:8493579). Probably by promoting Ras activation, regulates phosphorylation of MAP kinase MAPK3/ERK1 in response to EGF (PubMed:17339331). Catalytic component of a trimeric complex that participates in transduction of signals from Ras to Rac by promoting the Rac-specific guanine nucleotide exchange factor (GEF) activity (By similarity). {ECO:0000250|UniProtKB:Q62245, ECO:0000269|PubMed:17339331, ECO:0000269|PubMed:8493579}. |
Q07889 | SOS1 | S1166 | ochoa | Son of sevenless homolog 1 (SOS-1) | Promotes the exchange of Ras-bound GDP by GTP (PubMed:8493579). Probably by promoting Ras activation, regulates phosphorylation of MAP kinase MAPK3/ERK1 in response to EGF (PubMed:17339331). Catalytic component of a trimeric complex that participates in transduction of signals from Ras to Rac by promoting the Rac-specific guanine nucleotide exchange factor (GEF) activity (By similarity). {ECO:0000250|UniProtKB:Q62245, ECO:0000269|PubMed:17339331, ECO:0000269|PubMed:8493579}. |
Q07890 | SOS2 | S1298 | ochoa | Son of sevenless homolog 2 (SOS-2) | Promotes the exchange of Ras-bound GDP by GTP. {ECO:0000250|UniProtKB:Q62245}. |
Q09472 | EP300 | S2325 | ochoa | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q12802 | AKAP13 | S2711 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q13495 | MAMLD1 | S464 | ochoa | Mastermind-like domain-containing protein 1 (F18) (Protein CG1) | Transactivates the HES3 promoter independently of NOTCH proteins. HES3 is a non-canonical NOTCH target gene which lacks binding sites for RBPJ. {ECO:0000269|PubMed:18162467}. |
Q13884 | SNTB1 | S227 | ochoa | Beta-1-syntrophin (59 kDa dystrophin-associated protein A1 basic component 1) (DAPA1B) (BSYN2) (Syntrophin-2) (Tax interaction protein 43) (TIP-43) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin glycoprotein complex. |
Q13905 | RAPGEF1 | S222 | ochoa | Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) | Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}. |
Q14157 | UBAP2L | S462 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14247 | CTTN | S417 | ochoa | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14674 | ESPL1 | S1125 | ochoa | Separin (EC 3.4.22.49) (Caspase-like protein ESPL1) (Extra spindle poles-like 1 protein) (Separase) | Caspase-like protease, which plays a central role in the chromosome segregation by cleaving the SCC1/RAD21 subunit of the cohesin complex at the onset of anaphase. During most of the cell cycle, it is inactivated by different mechanisms. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11509732}. |
Q14814 | MEF2D | S471 | ochoa | Myocyte-specific enhancer factor 2D | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}. |
Q15365 | PCBP1 | S189 | ochoa | Poly(rC)-binding protein 1 (Alpha-CP1) (Heterogeneous nuclear ribonucleoprotein E1) (hnRNP E1) (Nucleic acid-binding protein SUB2.3) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:15731341, PubMed:7556077, PubMed:7607214, PubMed:8152927). Together with PCBP2, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:P60335, ECO:0000269|PubMed:15731341, ECO:0000269|PubMed:7556077, ECO:0000269|PubMed:7607214, ECO:0000269|PubMed:8152927}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. {ECO:0000269|PubMed:12414943}. |
Q15654 | TRIP6 | S161 | ochoa | Thyroid receptor-interacting protein 6 (TR-interacting protein 6) (TRIP-6) (Opa-interacting protein 1) (OIP-1) (Zyxin-related protein 1) (ZRP-1) | Relays signals from the cell surface to the nucleus to weaken adherens junction and promote actin cytoskeleton reorganization and cell invasiveness. Involved in lysophosphatidic acid-induced cell adhesion and migration. Acts as a transcriptional coactivator for NF-kappa-B and JUN, and mediates the transrepression of these transcription factors induced by glucocorticoid receptor. {ECO:0000269|PubMed:14688263, ECO:0000269|PubMed:15489293, ECO:0000269|PubMed:16624523, ECO:0000269|PubMed:19017743}. |
Q15772 | SPEG | S540 | ochoa | Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) | Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells. |
Q15942 | ZYX | S142 | ochoa|psp | Zyxin (Zyxin-2) | Adhesion plaque protein. Binds alpha-actinin and the CRP protein. Important for targeting TES and ENA/VASP family members to focal adhesions and for the formation of actin-rich structures. May be a component of a signal transduction pathway that mediates adhesion-stimulated changes in gene expression (By similarity). {ECO:0000250}. |
Q3KQU3 | MAP7D1 | S587 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3KR16 | PLEKHG6 | S645 | ochoa | Pleckstrin homology domain-containing family G member 6 (PH domain-containing family G member 6) (Myosin-interacting guanine nucleotide exchange factor) (MyoGEF) | Guanine nucleotide exchange factor activating the small GTPase RHOA, which, in turn, induces myosin filament formation. Also activates RHOG. Does not activate RAC1, or to a much lower extent than RHOA and RHOG. Part of a functional unit, involving PLEKHG6, MYH10 and RHOA, at the cleavage furrow to advance furrow ingression during cytokinesis. In epithelial cells, required for the formation of microvilli and membrane ruffles on the apical pole. Along with EZR, required for normal macropinocytosis. {ECO:0000269|PubMed:16721066, ECO:0000269|PubMed:17881735}. |
Q5T1R4 | HIVEP3 | S1894 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T200 | ZC3H13 | S380 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5VST9 | OBSCN | S7091 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VUA4 | ZNF318 | S709 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VV67 | PPRC1 | S841 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) | Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}. |
Q5VZK9 | CARMIL1 | S1280 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q63HR2 | TNS2 | S1095 | ochoa | Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) | Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}. |
Q68DC2 | ANKS6 | S696 | ochoa | Ankyrin repeat and SAM domain-containing protein 6 (Ankyrin repeat domain-containing protein 14) (SamCystin) (Sterile alpha motif domain-containing protein 6) (SAM domain-containing protein 6) | Required for renal function. {ECO:0000269|PubMed:23793029}. |
Q68EM7 | ARHGAP17 | S584 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q6JBY9 | RCSD1 | S132 | ochoa | CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) | Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}. |
Q6P1L5 | FAM117B | S151 | ochoa | Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) | None |
Q6ZRV2 | FAM83H | S924 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q7Z3K3 | POGZ | S438 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z422 | SZRD1 | S51 | ochoa | SUZ RNA-binding domain-containing (SUZ domain-containing protein 1) (Putative MAPK-activating protein PM18/PM20/PM22) | None |
Q7Z5J4 | RAI1 | S1121 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z6J9 | TSEN54 | S248 | ochoa | tRNA-splicing endonuclease subunit Sen54 (SEN54 homolog) (HsSEN54) (tRNA-intron endonuclease Sen54) | Non-catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5' and 3' splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3' cyclic phosphate and 5'-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant distance from the constant structural features of the tRNA body. The tRNA splicing endonuclease is also involved in mRNA processing via its association with pre-mRNA 3'-end processing factors, establishing a link between pre-tRNA splicing and pre-mRNA 3'-end formation, suggesting that the endonuclease subunits function in multiple RNA-processing events. {ECO:0000269|PubMed:15109492}. |
Q7Z6Z7 | HUWE1 | S3929 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86YD1 | PTOV1 | S53 | ochoa|psp | Prostate tumor-overexpressed gene 1 protein (PTOV-1) (Activator interaction domain-containing protein 2) | May activate transcription. Required for nuclear translocation of FLOT1. Promotes cell proliferation. {ECO:0000269|PubMed:12598323, ECO:0000269|PubMed:15713644, ECO:0000269|PubMed:17641689}. |
Q86YV5 | PRAG1 | T407 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q86YW5 | TREML1 | S264 | ochoa | Trem-like transcript 1 protein (TLT-1) (Triggering receptor expressed on myeloid cells-like protein 1) | Cell surface receptor that may play a role in the innate and adaptive immune response. {ECO:0000269|PubMed:15128762}. |
Q86YW5 | TREML1 | S276 | ochoa | Trem-like transcript 1 protein (TLT-1) (Triggering receptor expressed on myeloid cells-like protein 1) | Cell surface receptor that may play a role in the innate and adaptive immune response. {ECO:0000269|PubMed:15128762}. |
Q8IV56 | PRR15 | S54 | ochoa | Proline-rich protein 15 | May have a role in proliferation and/or differentiation. {ECO:0000250}. |
Q8IWD4 | CCDC117 | S52 | ochoa | Coiled-coil domain-containing protein 117 | Facilitates DNA repair, cell cycle progression, and cell proliferation through its interaction with CIAO2B. {ECO:0000269|PubMed:30742009}. |
Q8IX07 | ZFPM1 | T60 | ochoa | Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) | Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}. |
Q8IX21 | SLF2 | S20 | ochoa | SMC5-SMC6 complex localization factor protein 2 (Smc5/6 localization factor 1) | Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of the SMC5-SMC6 complex to DNA lesions (PubMed:25931565). Plays a role in SMC5-SMC6 complex recruitment for viral restriction. Forms a complex with SIMC1 and this complex is required to recruit SMC5-SMC6 complex to PML nuclear bodies and sites of viral replication (PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}. |
Q8IYB3 | SRRM1 | S695 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8IZW8 | TNS4 | S241 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8N3F8 | MICALL1 | S390 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N4B1 | PHETA1 | S213 | ochoa | Sesquipedalian-1 (Ses1) (27 kDa inositol polyphosphate phosphatase-interacting protein A) (IPIP27A) (PH domain-containing endocytic trafficking adaptor 1) | Plays a role in endocytic trafficking. Required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. {ECO:0000269|PubMed:21233288}. |
Q8NDX1 | PSD4 | S447 | ochoa | PH and SEC7 domain-containing protein 4 (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6 B) (Exchange factor for ARF6 B) (Pleckstrin homology and SEC7 domain-containing protein 4) (Telomeric of interleukin-1 cluster protein) | Guanine nucleotide exchange factor for ARF6 and ARL14/ARF7. Through ARL14 activation, controls the movement of MHC class II-containing vesicles along the actin cytoskeleton in dendritic cells. Involved in membrane recycling. Interacts with several phosphatidylinositol phosphate species, including phosphatidylinositol 3,4-bisphosphate, phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 4,5-bisphosphate. {ECO:0000269|PubMed:12082148, ECO:0000269|PubMed:21458045}. |
Q8TDM6 | DLG5 | S1164 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TF72 | SHROOM3 | S749 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8TF72 | SHROOM3 | S755 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8TF74 | WIPF2 | S266 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8TF74 | WIPF2 | S272 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8WUF5 | PPP1R13L | S74 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WUF5 | PPP1R13L | S597 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WWM7 | ATXN2L | S634 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q8WXE0 | CASKIN2 | S880 | ochoa | Caskin-2 (CASK-interacting protein 2) | None |
Q8WYP3 | RIN2 | T321 | ochoa | Ras and Rab interactor 2 (Ras association domain family 4) (Ras inhibitor JC265) (Ras interaction/interference protein 2) | Ras effector protein. May function as an upstream activator and/or downstream effector for RAB5B in endocytic pathway. May function as a guanine nucleotide exchange (GEF) of RAB5B, required for activating the RAB5 proteins by exchanging bound GDP for free GTP. {ECO:0000269|PubMed:11733506}. |
Q92610 | ZNF592 | S679 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92615 | LARP4B | S532 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92793 | CREBBP | S2361 | ochoa | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q92997 | DVL3 | S689 | psp | Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) | Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}. |
Q96G01 | BICD1 | S609 | ochoa | Protein bicaudal D homolog 1 (Bic-D 1) | Regulates coat complex coatomer protein I (COPI)-independent Golgi-endoplasmic reticulum transport by recruiting the dynein-dynactin motor complex. |
Q96IQ9 | ZNF414 | S112 | ochoa | Zinc finger protein 414 | May be involved in transcriptional regulation. |
Q96JM3 | CHAMP1 | S183 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96KQ4 | PPP1R13B | S477 | ochoa | Apoptosis-stimulating of p53 protein 1 (Protein phosphatase 1 regulatory subunit 13B) | Regulator that plays a central role in regulation of apoptosis via its interaction with p53/TP53 (PubMed:11684014, PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540}. |
Q96MX3 | ZNF48 | T408 | ochoa | Zinc finger protein 48 (Zinc finger protein 553) | May be involved in transcriptional regulation. |
Q96MX3 | ZNF48 | S409 | ochoa | Zinc finger protein 48 (Zinc finger protein 553) | May be involved in transcriptional regulation. |
Q96RU3 | FNBP1 | S351 | ochoa | Formin-binding protein 1 (Formin-binding protein 17) (hFBP17) | May act as a link between RND2 signaling and regulation of the actin cytoskeleton (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during the late stage of clathrin-mediated endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also enhances actin polymerization via the recruitment of WASL/N-WASP, which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:15252009, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:16418535, ECO:0000269|PubMed:17512409}. |
Q96ST3 | SIN3A | S251 | ochoa | Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) | Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}. |
Q99501 | GAS2L1 | S316 | ochoa | GAS2-like protein 1 (GAS2-related protein on chromosome 22) (Growth arrest-specific protein 2-like 1) | Involved in the cross-linking of microtubules and microfilaments (PubMed:12584248, PubMed:24706950). Regulates microtubule dynamics and stability by interacting with microtubule plus-end tracking proteins, such as MAPRE1, to regulate microtubule growth along actin stress fibers (PubMed:24706950). {ECO:0000269|PubMed:12584248, ECO:0000269|PubMed:24706950}. |
Q9BU19 | ZNF692 | S250 | ochoa | Zinc finger protein 692 (AICAR responsive element binding protein) | May act as an transcriptional repressor for PCK1 gene expression, in turn may participate in the hepatic gluconeogenesis regulation through the activated AMPK signaling pathway. {ECO:0000269|PubMed:17097062, ECO:0000269|PubMed:21910974}. |
Q9BUJ2 | HNRNPUL1 | Y717 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 1 (Adenovirus early region 1B-associated protein 5) (E1B-55 kDa-associated protein 5) (E1B-AP5) | Acts as a basic transcriptional regulator. Represses basic transcription driven by several virus and cellular promoters. When associated with BRD7, activates transcription of glucocorticoid-responsive promoter in the absence of ligand-stimulation. Also plays a role in mRNA processing and transport. Binds avidly to poly(G) and poly(C) RNA homopolymers in vitro. {ECO:0000269|PubMed:12489984, ECO:0000269|PubMed:9733834}. |
Q9BUK6 | MSTO1 | S486 | ochoa | Protein misato homolog 1 | Involved in the regulation of mitochondrial distribution and morphology (PubMed:17349998, PubMed:28544275, PubMed:28554942). Required for mitochondrial fusion and mitochondrial network formation (PubMed:28544275, PubMed:28554942). {ECO:0000269|PubMed:17349998, ECO:0000269|PubMed:28544275, ECO:0000269|PubMed:28554942}. |
Q9BUL5 | PHF23 | S158 | ochoa | PHD finger protein 23 (PDH-containing protein JUNE-1) | Acts as a negative regulator of autophagy, through promoting ubiquitination and degradation of LRSAM1, an E3 ubiquitin ligase that promotes autophagy in response to starvation or infecting bacteria. {ECO:0000269|PubMed:25484098}. |
Q9BUT9 | MCRIP2 | S60 | ochoa | MAPK regulated corepressor interacting protein 2 (Protein FAM195A) | None |
Q9BWN1 | PRR14 | S333 | ochoa | Proline-rich protein 14 | Functions in tethering peripheral heterochromatin to the nuclear lamina during interphase, possibly through the interaction with heterochromatin protein CBX5/HP1 alpha (PubMed:24209742). Might play a role in reattaching heterochromatin to the nuclear lamina at mitotic exit (PubMed:24209742). Promotes myoblast differentiation during skeletal myogenesis, possibly by stimulating transcription factor MyoD activity via binding to CBX5/HP1 alpha (PubMed:25906157). Involved in the positive regulation of the PI3K-Akt-mTOR signaling pathway and in promoting cell proliferation, possibly via binding to GRB2 (PubMed:27041574). {ECO:0000269|PubMed:24209742, ECO:0000269|PubMed:25906157, ECO:0000269|PubMed:27041574}. |
Q9BX66 | SORBS1 | S259 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BZL4 | PPP1R12C | S398 | ochoa | Protein phosphatase 1 regulatory subunit 12C (Protein phosphatase 1 myosin-binding subunit of 85 kDa) (Protein phosphatase 1 myosin-binding subunit p85) | Regulates myosin phosphatase activity. {ECO:0000269|PubMed:11399775}. |
Q9H013 | ADAM19 | S802 | ochoa | Disintegrin and metalloproteinase domain-containing protein 19 (ADAM 19) (EC 3.4.24.-) (Meltrin-beta) (Metalloprotease and disintegrin dendritic antigen marker) (MADDAM) | Participates in the proteolytic processing of beta-type neuregulin isoforms which are involved in neurogenesis and synaptogenesis, suggesting a regulatory role in glial cell. Also cleaves alpha-2 macroglobulin. May be involved in osteoblast differentiation and/or osteoblast activity in bone (By similarity). {ECO:0000250}. |
Q9H3P2 | NELFA | S327 | ochoa | Negative elongation factor A (NELF-A) (Wolf-Hirschhorn syndrome candidate 2 protein) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II. The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex. {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:12563561, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}. |
Q9H3P2 | NELFA | S360 | ochoa | Negative elongation factor A (NELF-A) (Wolf-Hirschhorn syndrome candidate 2 protein) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II. The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex. {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:12563561, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}. |
Q9H3T3 | SEMA6B | S747 | ochoa | Semaphorin-6B (Semaphorin-Z) (Sema Z) | Functions as a cell surface repellent for mossy fibers of developing neurons in the hippocampus where it plays a role in axon guidance. May function through the PLXNA4 receptor expressed by mossy cell axons. {ECO:0000250|UniProtKB:O54951}.; FUNCTION: (Microbial infection) Acts as a receptor for P.sordellii toxin TcsL in the in the vascular endothelium. {ECO:0000269|PubMed:32302524, ECO:0000269|PubMed:32589945}. |
Q9H7D0 | DOCK5 | S1802 | ochoa | Dedicator of cytokinesis protein 5 | Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}. |
Q9H8N7 | ZNF395 | S377 | ochoa | Zinc finger protein 395 (HD-regulating factor 2) (HDRF-2) (Huntington disease gene regulatory region-binding protein 2) (HD gene regulatory region-binding protein 2) (HDBP-2) (Papillomavirus regulatory factor 1) (PRF-1) (Papillomavirus-binding factor) | Plays a role in papillomavirus genes transcription. |
Q9HCM7 | FBRSL1 | T1019 | ochoa | Fibrosin-1-like protein (AUTS2-like protein) (HBV X-transactivated gene 9 protein) (HBV XAg-transactivated protein 9) | None |
Q9NQC3 | RTN4 | S171 | ochoa | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
Q9NQS7 | INCENP | S400 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NQS7 | INCENP | S420 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NRR5 | UBQLN4 | S106 | ochoa | Ubiquilin-4 (Ataxin-1 interacting ubiquitin-like protein) (A1Up) (Ataxin-1 ubiquitin-like-interacting protein A1U) (Connexin43-interacting protein of 75 kDa) (CIP75) | Regulator of protein degradation that mediates the proteasomal targeting of misfolded, mislocalized or accumulated proteins (PubMed:15280365, PubMed:27113755, PubMed:29666234, PubMed:30612738). Acts by binding polyubiquitin chains of target proteins via its UBA domain and by interacting with subunits of the proteasome via its ubiquitin-like domain (PubMed:15280365, PubMed:27113755, PubMed:30612738). Key regulator of DNA repair that represses homologous recombination repair: in response to DNA damage, recruited to sites of DNA damage following phosphorylation by ATM and acts by binding and removing ubiquitinated MRE11 from damaged chromatin, leading to MRE11 degradation by the proteasome (PubMed:30612738). MRE11 degradation prevents homologous recombination repair, redirecting double-strand break repair toward non-homologous end joining (NHEJ) (PubMed:30612738). Specifically recognizes and binds mislocalized transmembrane-containing proteins and targets them to proteasomal degradation (PubMed:27113755). Collaborates with DESI1/POST in the export of ubiquitinated proteins from the nucleus to the cytoplasm (PubMed:29666234). Also plays a role in the regulation of the proteasomal degradation of non-ubiquitinated GJA1 (By similarity). Acts as an adapter protein that recruits UBQLN1 to the autophagy machinery (PubMed:23459205). Mediates the association of UBQLN1 with autophagosomes and the autophagy-related protein LC3 (MAP1LC3A/B/C) and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion (PubMed:23459205). {ECO:0000250|UniProtKB:Q99NB8, ECO:0000269|PubMed:15280365, ECO:0000269|PubMed:23459205, ECO:0000269|PubMed:27113755, ECO:0000269|PubMed:29666234, ECO:0000269|PubMed:30612738}. |
Q9NZI5 | GRHL1 | S95 | ochoa | Grainyhead-like protein 1 homolog (Mammalian grainyhead) (NH32) (Transcription factor CP2-like 2) (Transcription factor LBP-32) | Transcription factor involved in epithelial development. Binds directly to the consensus DNA sequence 5'-AACCGGTT-3' (PubMed:12175488, PubMed:18288204, PubMed:29309642). Important regulator of DSG1 in the context of hair anchorage and epidermal differentiation, participates in the maintenance of the skin barrier. There is no genetic interaction with GRHL3, nor functional cooperativity due to diverse target gene selectivity during epithelia development (By similarity). May play a role in regulating glucose homeostasis and insulin signaling. {ECO:0000250|UniProtKB:Q921D9, ECO:0000269|PubMed:12175488, ECO:0000269|PubMed:18288204, ECO:0000269|PubMed:29309642, ECO:0000269|PubMed:35013237}.; FUNCTION: [Isoform 1]: Functions as a transcription activator. {ECO:0000269|PubMed:12175488, ECO:0000269|PubMed:29309642}.; FUNCTION: [Isoform 2]: May function as a repressor in tissues where both isoform 1 and isoform 2 are expressed. {ECO:0000269|PubMed:12175488}. |
Q9P0K7 | RAI14 | S289 | ochoa | Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) | Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}. |
Q9P2Y4 | ZNF219 | S242 | ochoa | Zinc finger protein 219 | Transcriptional regulator (PubMed:14621294, PubMed:19549071). Recognizes and binds 2 copies of the core DNA sequence motif 5'-GGGGG-3' (PubMed:14621294). Binds to the HMGN1 promoter and may repress HMGN1 expression (PubMed:14621294). Regulates SNCA expression in primary cortical neurons (PubMed:19549071). Binds to the COL2A1 promoter and activates COL2A1 expression, as part of a complex with SOX9 (By similarity). Plays a role in chondrocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q6IQX8, ECO:0000269|PubMed:14621294, ECO:0000269|PubMed:19549071}. |
Q9UBW5 | BIN2 | S435 | ochoa | Bridging integrator 2 (Breast cancer-associated protein 1) | Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}. |
Q9UHD8 | SEPTIN9 | S211 | ochoa | Septin-9 (MLL septin-like fusion protein MSF-A) (MLL septin-like fusion protein) (Ovarian/Breast septin) (Ov/Br septin) (Septin D1) | Filament-forming cytoskeletal GTPase (By similarity). May play a role in cytokinesis (Potential). May play a role in the internalization of 2 intracellular microbial pathogens, Listeria monocytogenes and Shigella flexneri. {ECO:0000250, ECO:0000305}. |
Q9UIS9 | MBD1 | T301 | ochoa | Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) | Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}. |
Q9ULD4 | BRPF3 | S852 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULH7 | MRTFB | S846 | ochoa | Myocardin-related transcription factor B (MRTF-B) (MKL/myocardin-like protein 2) (Megakaryoblastic leukemia 2) | Acts as a transcriptional coactivator of serum response factor (SRF). Required for skeletal myogenic differentiation. {ECO:0000269|PubMed:14565952}. |
Q9ULI4 | KIF26A | S1470 | ochoa | Kinesin-like protein KIF26A | Atypical kinesin that plays a key role in enteric neuron development. Acts by repressing a cell growth signaling pathway in the enteric nervous system development, possibly via its interaction with GRB2 that prevents GRB2-binding to SHC, thereby attenating the GDNF-Ret signaling (By similarity). Binds to microtubules but lacks microtubule-based motility due to the absence of ATPase activity (By similarity). Plays a critical role in cerebral cortical development. It probably acts as a microtubule stabilizer that regulates neurite growth and radial migration of cortical excitatory neurons (PubMed:36228617). {ECO:0000250|UniProtKB:Q52KG5, ECO:0000269|PubMed:36228617}. |
Q9ULP9 | TBC1D24 | S473 | ochoa | TBC1 domain family member 24 | May act as a GTPase-activating protein for Rab family protein(s) (PubMed:20727515, PubMed:20797691). Involved in neuronal projections development, probably through a negative modulation of ARF6 function (PubMed:20727515). Involved in the regulation of synaptic vesicle trafficking (PubMed:31257402). {ECO:0000269|PubMed:20727515, ECO:0000269|PubMed:20797691, ECO:0000269|PubMed:31257402}. |
Q9UMN6 | KMT2B | S602 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UN79 | SOX13 | S309 | ochoa | Transcription factor SOX-13 (Islet cell antigen 12) (SRY (Sex determining region Y)-box 13) (Type 1 diabetes autoantigen ICA12) | Transcription factor that binds to DNA at the consensus sequence 5'-AACAAT-3' (PubMed:10871192). Binds to the proximal promoter region of the myelin protein MPZ gene, and may thereby be involved in the differentiation of oligodendroglia in the developing spinal tube (By similarity). Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). Binds to and modifies the activity of TCF7/TCF1, thereby inhibiting transcription and modulates normal gamma-delta T-cell development and differentiation of IL17A expressing gamma-delta T-cells (By similarity). Regulates expression of BLK in the differentiation of IL17A expressing gamma-delta T-cells (By similarity). Promotes brown adipocyte differentiation (By similarity). Inhibitor of WNT signaling (PubMed:20028982). {ECO:0000250|UniProtKB:Q04891, ECO:0000269|PubMed:10871192, ECO:0000269|PubMed:20028982}. |
Q9UPQ9 | TNRC6B | S1611 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UQQ2 | SH2B3 | S120 | ochoa | SH2B adapter protein 3 (Lymphocyte adapter protein) (Lymphocyte-specific adapter protein Lnk) (Signal transduction protein Lnk) | Links T-cell receptor activation signal to phospholipase C-gamma-1, GRB2 and phosphatidylinositol 3-kinase. {ECO:0000250}. |
Q9Y2F5 | ICE1 | S1692 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2K7 | KDM2A | S739 | ochoa | Lysine-specific demethylase 2A (EC 1.14.11.27) (CXXC-type zinc finger protein 8) (F-box and leucine-rich repeat protein 11) (F-box protein FBL7) (F-box protein Lilina) (F-box/LRR-repeat protein 11) (JmjC domain-containing histone demethylation protein 1A) ([Histone-H3]-lysine-36 demethylase 1A) | Histone demethylase that specifically demethylates 'Lys-36' of histone H3, thereby playing a central role in histone code. Preferentially demethylates dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36'. May also recognize and bind to some phosphorylated proteins and promote their ubiquitination and degradation. Required to maintain the heterochromatic state. Associates with centromeres and represses transcription of small non-coding RNAs that are encoded by the clusters of satellite repeats at the centromere. Required to sustain centromeric integrity and genomic stability, particularly during mitosis. Regulates circadian gene expression by repressing the transcriptional activator activity of CLOCK-BMAL1 heterodimer and RORA in a catalytically-independent manner (PubMed:26037310). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:19001877, ECO:0000269|PubMed:26037310, ECO:0000269|PubMed:28262558}. |
Q9Y3L3 | SH3BP1 | S585 | ochoa | SH3 domain-binding protein 1 | GTPase activating protein (GAP) which specifically converts GTP-bound Rho-type GTPases including RAC1 and CDC42 in their inactive GDP-bound form. By specifically inactivating RAC1 at the leading edge of migrating cells, it regulates the spatiotemporal organization of cell protrusions which is important for proper cell migration (PubMed:21658605). Also negatively regulates CDC42 in the process of actin remodeling and the formation of epithelial cell junctions (PubMed:22891260). Through its GAP activity toward RAC1 and/or CDC42 plays a specific role in phagocytosis of large particles. Specifically recruited by a PI3 kinase/PI3K-dependent mechanism to sites of large particles engagement, inactivates RAC1 and/or CDC42 allowing the reorganization of the underlying actin cytoskeleton required for engulfment (PubMed:26465210). It also plays a role in angiogenesis and the process of repulsive guidance as part of a semaphorin-plexin signaling pathway. Following the binding of PLXND1 to extracellular SEMA3E it dissociates from PLXND1 and inactivates RAC1, inducing the intracellular reorganization of the actin cytoskeleton and the collapse of cells (PubMed:24841563). {ECO:0000269|PubMed:21658605, ECO:0000269|PubMed:22891260, ECO:0000269|PubMed:24841563, ECO:0000269|PubMed:26465210}. |
Q9Y3X0 | CCDC9 | T389 | ochoa | Coiled-coil domain-containing protein 9 | Probable component of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. {ECO:0000305|PubMed:33973408}. |
Q9Y4B6 | DCAF1 | S946 | ochoa | DDB1- and CUL4-associated factor 1 (HIV-1 Vpr-binding protein) (VprBP) (Serine/threonine-protein kinase VPRBP) (EC 2.7.11.1) (Vpr-interacting protein) | Acts both as a substrate recognition component of E3 ubiquitin-protein ligase complexes and as an atypical serine/threonine-protein kinase, playing key roles in various processes such as cell cycle, telomerase regulation and histone modification. Probable substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex, named CUL4A-RBX1-DDB1-DCAF1/VPRBP complex, which mediates ubiquitination and proteasome-dependent degradation of proteins such as NF2 (PubMed:23063525). Involved in the turnover of methylated proteins: recognizes and binds methylated proteins via its chromo domain, leading to ubiquitination of target proteins by the RBX1-DDB1-DCAF1/VPRBP complex (PubMed:23063525). The CUL4A-RBX1-DDB1-DCAF1/VPRBP complex is also involved in B-cell development: DCAF1 is recruited by RAG1 to ubiquitinate proteins, leading to limit error-prone repair during V(D)J recombination (By similarity). Also part of the EDVP complex, an E3 ligase complex that mediates ubiquitination of proteins such as TERT, leading to TERT degradation and telomerase inhibition (PubMed:19287380, PubMed:23362280). The EDVP complex also mediates ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Also acts as an atypical serine/threonine-protein kinase that specifically mediates phosphorylation of 'Thr-120' of histone H2A (H2AT120ph) in a nucleosomal context, thereby repressing transcription (PubMed:24140421). H2AT120ph is present in the regulatory region of many tumor suppresor genes, down-regulates their transcription and is present at high level in a number of tumors (PubMed:24140421). Involved in JNK-mediated apoptosis during cell competition process via its interaction with LLGL1 and LLGL2 (PubMed:20644714). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). {ECO:0000250|UniProtKB:Q80TR8, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:18606781, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:20644714, ECO:0000269|PubMed:22184063, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:24140421, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, it is recruited by HIV-1 Vpr in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to arrest the cell cycle in G2 phase, and also to protect the viral protein from proteasomal degradation by another E3 ubiquitin ligase. The HIV-1 Vpr protein hijacks the CUL4A-RBX1-DDB1-DCAF1/VPRBP complex to promote ubiquitination and degradation of proteins such as TERT and ZIP/ZGPAT. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:17559673, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17620334, ECO:0000269|PubMed:17626091, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:24116224}.; FUNCTION: (Microbial infection) In case of infection by HIV-2 virus, it is recruited by HIV-2 Vpx in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to enhanced efficiency of macrophage infection and promotion of the replication of cognate primate lentiviruses in cells of monocyte/macrophage lineage. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:18464893, ECO:0000269|PubMed:19264781, ECO:0000269|PubMed:19923175, ECO:0000269|PubMed:24336198}. |
Q9Y4H4 | GPSM3 | S39 | ochoa|psp | G-protein-signaling modulator 3 (Activator of G-protein signaling 4) (G18.1b) (Protein G18) | Interacts with subunit of G(i) alpha proteins and regulates the activation of G(i) alpha proteins. {ECO:0000269|PubMed:14656218, ECO:0000269|PubMed:15096500}. |
Q9Y4K4 | MAP4K5 | S400 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 5 (EC 2.7.11.1) (Kinase homologous to SPS1/STE20) (KHS) (MAPK/ERK kinase kinase kinase 5) (MEK kinase kinase 5) (MEKKK 5) | May play a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway. {ECO:0000269|PubMed:9038372}. |
Q9Y6K9 | IKBKG | S376 | ochoa|psp | NF-kappa-B essential modulator (NEMO) (FIP-3) (IkB kinase-associated protein 1) (IKKAP1) (Inhibitor of nuclear factor kappa-B kinase subunit gamma) (I-kappa-B kinase subunit gamma) (IKK-gamma) (IKKG) (IkB kinase subunit gamma) (NF-kappa-B essential modifier) | Regulatory subunit of the IKK core complex which phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor (PubMed:14695475, PubMed:20724660, PubMed:21518757, PubMed:9751060). Its binding to scaffolding polyubiquitin plays a key role in IKK activation by multiple signaling receptor pathways (PubMed:16547522, PubMed:18287044, PubMed:19033441, PubMed:19185524, PubMed:21606507, PubMed:27777308, PubMed:33567255). Can recognize and bind both 'Lys-63'-linked and linear polyubiquitin upon cell stimulation, with a much higher affinity for linear polyubiquitin (PubMed:16547522, PubMed:18287044, PubMed:19033441, PubMed:19185524, PubMed:21606507, PubMed:27777308). Could be implicated in NF-kappa-B-mediated protection from cytokine toxicity. Essential for viral activation of IRF3 (PubMed:19854139). Involved in TLR3- and IFIH1-mediated antiviral innate response; this function requires 'Lys-27'-linked polyubiquitination (PubMed:20724660). {ECO:0000269|PubMed:14695475, ECO:0000269|PubMed:16547522, ECO:0000269|PubMed:18287044, ECO:0000269|PubMed:19033441, ECO:0000269|PubMed:19185524, ECO:0000269|PubMed:19854139, ECO:0000269|PubMed:20724660, ECO:0000269|PubMed:21518757, ECO:0000269|PubMed:21606507, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:33567255, ECO:0000269|PubMed:9751060}.; FUNCTION: (Microbial infection) Also considered to be a mediator for HTLV-1 Tax oncoprotein activation of NF-kappa-B. {ECO:0000269|PubMed:10364167, ECO:0000269|PubMed:11064457}. |
Q9Y6W5 | WASF2 | S351 | psp | Actin-binding protein WASF2 (Protein WAVE-2) (Verprolin homology domain-containing protein 2) (Wiskott-Aldrich syndrome protein family member 2) (WASP family protein member 2) | Downstream effector molecule involved in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Promotes formation of actin filaments. Part of the WAVE complex that regulates lamellipodia formation. The WAVE complex regulates actin filament reorganization via its interaction with the Arp2/3 complex. {ECO:0000269|PubMed:10381382, ECO:0000269|PubMed:16275905}. |
Q99626 | CDX2 | S291 | SIGNOR | Homeobox protein CDX-2 (CDX-3) (Caudal-type homeobox protein 2) | Transcription factor which regulates the transcription of multiple genes expressed in the intestinal epithelium (By similarity). Binds to the promoter of the intestinal sucrase-isomaltase SI and activates SI transcription (By similarity). Binds to the DNA sequence 5'-ATAAAAACTTAT-3' in the promoter region of VDR and activates VDR transcription (By similarity). Binds to and activates transcription of LPH (By similarity). Activates transcription of CLDN2 and intestinal mucin MUC2 (By similarity). Binds to the 5'-AATTTTTTACAACACCT-3' DNA sequence in the promoter region of CA1 and activates CA1 transcription (By similarity). Important in broad range of functions from early differentiation to maintenance of the intestinal epithelial lining of both the small and large intestine. Binds preferentially to methylated DNA (PubMed:28473536). {ECO:0000250|UniProtKB:P43241, ECO:0000250|UniProtKB:Q04649, ECO:0000269|PubMed:28473536}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-9842663 | Signaling by LTK | 0.000033 | 4.485 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.000043 | 4.367 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.000059 | 4.231 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.000085 | 4.069 |
R-HSA-201556 | Signaling by ALK | 0.000085 | 4.069 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.000202 | 3.694 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.000258 | 3.588 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.000368 | 3.435 |
R-HSA-2428933 | SHC-related events triggered by IGF1R | 0.000475 | 3.323 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.000486 | 3.314 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.000445 | 3.352 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.000537 | 3.270 |
R-HSA-177929 | Signaling by EGFR | 0.000617 | 3.210 |
R-HSA-193648 | NRAGE signals death through JNK | 0.000617 | 3.210 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.000720 | 3.143 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.000737 | 3.133 |
R-HSA-451927 | Interleukin-2 family signaling | 0.000683 | 3.166 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.000789 | 3.103 |
R-HSA-9022534 | Loss of MECP2 binding ability to 5hmC-DNA | 0.000936 | 3.029 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.000898 | 3.047 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.000937 | 3.028 |
R-HSA-162582 | Signal Transduction | 0.001054 | 2.977 |
R-HSA-9707616 | Heme signaling | 0.001033 | 2.986 |
R-HSA-4839726 | Chromatin organization | 0.001089 | 2.963 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.001295 | 2.888 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.001320 | 2.879 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.001320 | 2.879 |
R-HSA-182971 | EGFR downregulation | 0.001487 | 2.828 |
R-HSA-9827857 | Specification of primordial germ cells | 0.001533 | 2.814 |
R-HSA-9843745 | Adipogenesis | 0.001782 | 2.749 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.001735 | 2.761 |
R-HSA-210993 | Tie2 Signaling | 0.001801 | 2.745 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.001754 | 2.756 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.001981 | 2.703 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.002343 | 2.630 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.002566 | 2.591 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.002847 | 2.546 |
R-HSA-8853659 | RET signaling | 0.002835 | 2.547 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.003123 | 2.505 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.003359 | 2.474 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.003251 | 2.488 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.003393 | 2.469 |
R-HSA-8951911 | RUNX3 regulates RUNX1-mediated transcription | 0.003638 | 2.439 |
R-HSA-9034864 | Activated NTRK3 signals through RAS | 0.003839 | 2.416 |
R-HSA-6804754 | Regulation of TP53 Expression | 0.003638 | 2.439 |
R-HSA-6806834 | Signaling by MET | 0.003680 | 2.434 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.004108 | 2.386 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.003911 | 2.408 |
R-HSA-166520 | Signaling by NTRKs | 0.004191 | 2.378 |
R-HSA-9026519 | Activated NTRK2 signals through RAS | 0.004646 | 2.333 |
R-HSA-428540 | Activation of RAC1 | 0.004646 | 2.333 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.004404 | 2.356 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.005549 | 2.256 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.005549 | 2.256 |
R-HSA-9005895 | Pervasive developmental disorders | 0.005549 | 2.256 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.004914 | 2.309 |
R-HSA-9839394 | TGFBR3 expression | 0.005184 | 2.285 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.005549 | 2.256 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.005549 | 2.256 |
R-HSA-8983432 | Interleukin-15 signaling | 0.005549 | 2.256 |
R-HSA-73887 | Death Receptor Signaling | 0.005336 | 2.273 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.005602 | 2.252 |
R-HSA-1433559 | Regulation of KIT signaling | 0.007651 | 2.116 |
R-HSA-75153 | Apoptotic execution phase | 0.007296 | 2.137 |
R-HSA-9022927 | MECP2 regulates transcription of genes involved in GABA signaling | 0.007952 | 2.100 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 0.007952 | 2.100 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.008855 | 2.053 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.008855 | 2.053 |
R-HSA-2424491 | DAP12 signaling | 0.008662 | 2.062 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 0.008855 | 2.053 |
R-HSA-9008059 | Interleukin-37 signaling | 0.008662 | 2.062 |
R-HSA-186763 | Downstream signal transduction | 0.009503 | 2.022 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 0.010669 | 1.972 |
R-HSA-9022535 | Loss of phosphorylation of MECP2 at T308 | 0.010669 | 1.972 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.010164 | 1.993 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.010669 | 1.972 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.010395 | 1.983 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.010704 | 1.970 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.011340 | 1.945 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.011340 | 1.945 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.013103 | 1.883 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.013103 | 1.883 |
R-HSA-2028269 | Signaling by Hippo | 0.013103 | 1.883 |
R-HSA-8939211 | ESR-mediated signaling | 0.012589 | 1.900 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.013265 | 1.877 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.013265 | 1.877 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.013265 | 1.877 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.013736 | 1.862 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.013736 | 1.862 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.013392 | 1.873 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.014872 | 1.828 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.013392 | 1.873 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.015137 | 1.820 |
R-HSA-1989781 | PPARA activates gene expression | 0.015516 | 1.809 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.016133 | 1.792 |
R-HSA-912631 | Regulation of signaling by CBL | 0.016477 | 1.783 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.017136 | 1.766 |
R-HSA-9022707 | MECP2 regulates transcription factors | 0.020855 | 1.681 |
R-HSA-9031525 | NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake | 0.020855 | 1.681 |
R-HSA-9031528 | NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipo... | 0.020855 | 1.681 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.018330 | 1.737 |
R-HSA-5654704 | SHC-mediated cascade:FGFR3 | 0.020294 | 1.693 |
R-HSA-5654719 | SHC-mediated cascade:FGFR4 | 0.022368 | 1.650 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.020294 | 1.693 |
R-HSA-2428924 | IGF1R signaling cascade | 0.022456 | 1.649 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.021250 | 1.673 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.020195 | 1.695 |
R-HSA-6807004 | Negative regulation of MET activity | 0.018330 | 1.737 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.020294 | 1.693 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.020294 | 1.693 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.022368 | 1.650 |
R-HSA-1227986 | Signaling by ERBB2 | 0.018089 | 1.743 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.022368 | 1.650 |
R-HSA-186797 | Signaling by PDGF | 0.020195 | 1.695 |
R-HSA-74160 | Gene expression (Transcription) | 0.022629 | 1.645 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.023646 | 1.626 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.024041 | 1.619 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.024418 | 1.612 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.024877 | 1.604 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.025363 | 1.596 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.029186 | 1.535 |
R-HSA-201688 | WNT mediated activation of DVL | 0.029186 | 1.535 |
R-HSA-5654688 | SHC-mediated cascade:FGFR1 | 0.029260 | 1.534 |
R-HSA-2172127 | DAP12 interactions | 0.028808 | 1.540 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.029260 | 1.534 |
R-HSA-5654743 | Signaling by FGFR4 | 0.027105 | 1.567 |
R-HSA-5654741 | Signaling by FGFR3 | 0.030574 | 1.515 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 0.029186 | 1.535 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.027245 | 1.565 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.029186 | 1.535 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.027105 | 1.567 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.031779 | 1.498 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.031779 | 1.498 |
R-HSA-3214842 | HDMs demethylate histones | 0.031779 | 1.498 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.032403 | 1.489 |
R-HSA-9758941 | Gastrulation | 0.033134 | 1.480 |
R-HSA-74749 | Signal attenuation | 0.033768 | 1.471 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.034407 | 1.463 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.034407 | 1.463 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.034407 | 1.463 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.034630 | 1.461 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.034922 | 1.457 |
R-HSA-9031628 | NGF-stimulated transcription | 0.036248 | 1.441 |
R-HSA-211728 | Regulation of PAK-2p34 activity by PS-GAP/RHG10 | 0.043017 | 1.366 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.043699 | 1.360 |
R-HSA-5654699 | SHC-mediated cascade:FGFR2 | 0.037145 | 1.430 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.041133 | 1.386 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.038265 | 1.417 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.043699 | 1.360 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.043699 | 1.360 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.039443 | 1.404 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.042944 | 1.367 |
R-HSA-194138 | Signaling by VEGF | 0.036886 | 1.433 |
R-HSA-199991 | Membrane Trafficking | 0.041381 | 1.383 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 0.042944 | 1.367 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.042944 | 1.367 |
R-HSA-9020558 | Interleukin-2 signaling | 0.038610 | 1.413 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.037145 | 1.430 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.044643 | 1.350 |
R-HSA-72187 | mRNA 3'-end processing | 0.044695 | 1.350 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.046003 | 1.337 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.046003 | 1.337 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.046003 | 1.337 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 0.046003 | 1.337 |
R-HSA-9909396 | Circadian clock | 0.047145 | 1.327 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.049020 | 1.310 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 0.054562 | 1.263 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 0.054562 | 1.263 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.060313 | 1.220 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.049167 | 1.308 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.049167 | 1.308 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.055804 | 1.253 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.055804 | 1.253 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.059274 | 1.227 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.050235 | 1.299 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.054562 | 1.263 |
R-HSA-8851805 | MET activates RAS signaling | 0.049020 | 1.310 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.049020 | 1.310 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.049020 | 1.310 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.060313 | 1.220 |
R-HSA-174490 | Membrane binding and targetting of GAG proteins | 0.054562 | 1.263 |
R-HSA-174495 | Synthesis And Processing Of GAG, GAGPOL Polyproteins | 0.060313 | 1.220 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.059274 | 1.227 |
R-HSA-354192 | Integrin signaling | 0.055804 | 1.253 |
R-HSA-195721 | Signaling by WNT | 0.051144 | 1.291 |
R-HSA-5654736 | Signaling by FGFR1 | 0.054151 | 1.266 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.054562 | 1.263 |
R-HSA-376176 | Signaling by ROBO receptors | 0.059251 | 1.227 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.051970 | 1.284 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.058118 | 1.236 |
R-HSA-180746 | Nuclear import of Rev protein | 0.062844 | 1.202 |
R-HSA-5083628 | Defective POMGNT1 causes MDDGA3, MDDGB3 and MDDGC3 | 0.063828 | 1.195 |
R-HSA-3315487 | SMAD2/3 MH2 Domain Mutants in Cancer | 0.063828 | 1.195 |
R-HSA-5603027 | IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (E... | 0.063828 | 1.195 |
R-HSA-3304347 | Loss of Function of SMAD4 in Cancer | 0.063828 | 1.195 |
R-HSA-3311021 | SMAD4 MH2 Domain Mutants in Cancer | 0.063828 | 1.195 |
R-HSA-5602636 | IKBKB deficiency causes SCID | 0.063828 | 1.195 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.064603 | 1.190 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.064603 | 1.190 |
R-HSA-5683057 | MAPK family signaling cascades | 0.064873 | 1.188 |
R-HSA-180336 | SHC1 events in EGFR signaling | 0.066261 | 1.179 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 0.066261 | 1.179 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 0.066261 | 1.179 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.066261 | 1.179 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.066511 | 1.177 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 0.066511 | 1.177 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 0.066511 | 1.177 |
R-HSA-187687 | Signalling to ERKs | 0.066511 | 1.177 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.067298 | 1.172 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.067370 | 1.172 |
R-HSA-211736 | Stimulation of the cell death response by PAK-2p34 | 0.084189 | 1.075 |
R-HSA-5083633 | Defective POMT1 causes MDDGA1, MDDGB1 and MDDGC1 | 0.084189 | 1.075 |
R-HSA-5083629 | Defective POMT2 causes MDDGA2, MDDGB2 and MDDGC2 | 0.084189 | 1.075 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 0.078704 | 1.104 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.082117 | 1.086 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.086244 | 1.064 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.086244 | 1.064 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.086244 | 1.064 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.072395 | 1.140 |
R-HSA-9664420 | Killing mechanisms | 0.072395 | 1.140 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.078704 | 1.104 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.071711 | 1.144 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.074130 | 1.130 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.068076 | 1.167 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.072395 | 1.140 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.078704 | 1.104 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.070197 | 1.154 |
R-HSA-9682385 | FLT3 signaling in disease | 0.070273 | 1.153 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.086244 | 1.064 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.086244 | 1.064 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.090458 | 1.044 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.078078 | 1.107 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.082117 | 1.086 |
R-HSA-418990 | Adherens junctions interactions | 0.082767 | 1.082 |
R-HSA-1500931 | Cell-Cell communication | 0.070664 | 1.151 |
R-HSA-422475 | Axon guidance | 0.077819 | 1.109 |
R-HSA-9607240 | FLT3 Signaling | 0.090458 | 1.044 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.090458 | 1.044 |
R-HSA-3371556 | Cellular response to heat stress | 0.079859 | 1.098 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.073084 | 1.136 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.091805 | 1.037 |
R-HSA-3928664 | Ephrin signaling | 0.091805 | 1.037 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.091805 | 1.037 |
R-HSA-3214847 | HATs acetylate histones | 0.097474 | 1.011 |
R-HSA-9834899 | Specification of the neural plate border | 0.098578 | 1.006 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.100656 | 0.997 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.101678 | 0.993 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 0.104107 | 0.983 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 0.104107 | 0.983 |
R-HSA-8941237 | Invadopodia formation | 0.104107 | 0.983 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.104107 | 0.983 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.104985 | 0.979 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.106005 | 0.975 |
R-HSA-167044 | Signalling to RAS | 0.112520 | 0.949 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.112520 | 0.949 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.112520 | 0.949 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.112747 | 0.948 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.112747 | 0.948 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.112747 | 0.948 |
R-HSA-1296061 | HCN channels | 0.123594 | 0.908 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 0.123594 | 0.908 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.142658 | 0.846 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.142658 | 0.846 |
R-HSA-9706377 | FLT3 signaling by CBL mutants | 0.142658 | 0.846 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 0.179554 | 0.746 |
R-HSA-9632974 | NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis | 0.197403 | 0.705 |
R-HSA-112412 | SOS-mediated signalling | 0.197403 | 0.705 |
R-HSA-8932506 | DAG1 core M1 glycosylations | 0.197403 | 0.705 |
R-HSA-8932504 | DAG1 core M2 glycosylations | 0.214866 | 0.668 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.214866 | 0.668 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.265013 | 0.577 |
R-HSA-8932505 | DAG1 core M3 glycosylations | 0.265013 | 0.577 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.281009 | 0.551 |
R-HSA-179812 | GRB2 events in EGFR signaling | 0.296657 | 0.528 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 0.311966 | 0.506 |
R-HSA-9861559 | PDH complex synthesizes acetyl-CoA from PYR | 0.311966 | 0.506 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.311966 | 0.506 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.341593 | 0.466 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.123185 | 0.909 |
R-HSA-72172 | mRNA Splicing | 0.225743 | 0.646 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.191821 | 0.717 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 0.197403 | 0.705 |
R-HSA-4641258 | Degradation of DVL | 0.252187 | 0.598 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.311966 | 0.506 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.252187 | 0.598 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.291401 | 0.536 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.291401 | 0.536 |
R-HSA-191650 | Regulation of gap junction activity | 0.123594 | 0.908 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 0.197403 | 0.705 |
R-HSA-8939242 | RUNX1 regulates transcription of genes involved in differentiation of keratinocy... | 0.214866 | 0.668 |
R-HSA-190873 | Gap junction degradation | 0.231950 | 0.635 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.329425 | 0.482 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.195951 | 0.708 |
R-HSA-4641265 | Repression of WNT target genes | 0.296657 | 0.528 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.252321 | 0.598 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 0.142658 | 0.846 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 0.142658 | 0.846 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.326942 | 0.486 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.300725 | 0.522 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.291401 | 0.536 |
R-HSA-202433 | Generation of second messenger molecules | 0.276479 | 0.558 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.114891 | 0.940 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.114891 | 0.940 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.156910 | 0.804 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.164601 | 0.784 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.211968 | 0.674 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.164601 | 0.784 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.211893 | 0.674 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.219912 | 0.658 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.252321 | 0.598 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 0.231950 | 0.635 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.162589 | 0.789 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.189600 | 0.722 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.189600 | 0.722 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.189600 | 0.722 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.189600 | 0.722 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.123594 | 0.908 |
R-HSA-8941333 | RUNX2 regulates genes involved in differentiation of myeloid cells | 0.123594 | 0.908 |
R-HSA-8866376 | Reelin signalling pathway | 0.142658 | 0.846 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 0.161308 | 0.792 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 0.161308 | 0.792 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 0.161308 | 0.792 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 0.214866 | 0.668 |
R-HSA-196025 | Formation of annular gap junctions | 0.214866 | 0.668 |
R-HSA-9927354 | Co-stimulation by ICOS | 0.214866 | 0.668 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.231950 | 0.635 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.126932 | 0.896 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.180171 | 0.744 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.195951 | 0.708 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 0.341593 | 0.466 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.341593 | 0.466 |
R-HSA-6807070 | PTEN Regulation | 0.260778 | 0.584 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.141749 | 0.848 |
R-HSA-5689603 | UCH proteinases | 0.281782 | 0.550 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.227955 | 0.642 |
R-HSA-418885 | DCC mediated attractive signaling | 0.341593 | 0.466 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.227955 | 0.642 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.143563 | 0.843 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.161308 | 0.792 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.197403 | 0.705 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 0.214866 | 0.668 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.248663 | 0.604 |
R-HSA-198203 | PI3K/AKT activation | 0.248663 | 0.604 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.269952 | 0.569 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.332822 | 0.478 |
R-HSA-212436 | Generic Transcription Pathway | 0.145040 | 0.839 |
R-HSA-193697 | p75NTR regulates axonogenesis | 0.231950 | 0.635 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.244098 | 0.612 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.143701 | 0.843 |
R-HSA-9006936 | Signaling by TGFB family members | 0.200507 | 0.698 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.236019 | 0.627 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.126932 | 0.896 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.275860 | 0.559 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.180171 | 0.744 |
R-HSA-9729555 | Sensory perception of sour taste | 0.123594 | 0.908 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 0.248663 | 0.604 |
R-HSA-1483226 | Synthesis of PI | 0.265013 | 0.577 |
R-HSA-9615710 | Late endosomal microautophagy | 0.180171 | 0.744 |
R-HSA-177504 | Retrograde neurotrophin signalling | 0.326942 | 0.486 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 0.341593 | 0.466 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.184106 | 0.735 |
R-HSA-191859 | snRNP Assembly | 0.184106 | 0.735 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.195135 | 0.710 |
R-HSA-4086400 | PCP/CE pathway | 0.293657 | 0.532 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.305564 | 0.515 |
R-HSA-9711123 | Cellular response to chemical stress | 0.301866 | 0.520 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.252187 | 0.598 |
R-HSA-202403 | TCR signaling | 0.281672 | 0.550 |
R-HSA-200425 | Carnitine shuttle | 0.134294 | 0.872 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.141749 | 0.848 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.156910 | 0.804 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.341593 | 0.466 |
R-HSA-1502540 | Signaling by Activin | 0.341593 | 0.466 |
R-HSA-201451 | Signaling by BMP | 0.164601 | 0.784 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 0.179554 | 0.746 |
R-HSA-9028731 | Activated NTRK2 signals through FRS2 and FRS3 | 0.296657 | 0.528 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.326942 | 0.486 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.189600 | 0.722 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.218802 | 0.660 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.341593 | 0.466 |
R-HSA-9842640 | Signaling by LTK in cancer | 0.179554 | 0.746 |
R-HSA-389542 | NADPH regeneration | 0.179554 | 0.746 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.197403 | 0.705 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 0.214866 | 0.668 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.231950 | 0.635 |
R-HSA-937039 | IRAK1 recruits IKK complex | 0.296657 | 0.528 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 0.296657 | 0.528 |
R-HSA-8866427 | VLDLR internalisation and degradation | 0.296657 | 0.528 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.311966 | 0.506 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 0.311966 | 0.506 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 0.326942 | 0.486 |
R-HSA-8875878 | MET promotes cell motility | 0.260283 | 0.585 |
R-HSA-162587 | HIV Life Cycle | 0.190506 | 0.720 |
R-HSA-190236 | Signaling by FGFR | 0.220053 | 0.657 |
R-HSA-5653656 | Vesicle-mediated transport | 0.211239 | 0.675 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.164601 | 0.784 |
R-HSA-5654738 | Signaling by FGFR2 | 0.130753 | 0.884 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.284571 | 0.546 |
R-HSA-9614085 | FOXO-mediated transcription | 0.224666 | 0.648 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 0.156910 | 0.804 |
R-HSA-9610379 | HCMV Late Events | 0.341158 | 0.467 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.201873 | 0.695 |
R-HSA-162906 | HIV Infection | 0.302296 | 0.520 |
R-HSA-68875 | Mitotic Prophase | 0.340572 | 0.468 |
R-HSA-164944 | Nef and signal transduction | 0.179554 | 0.746 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.265013 | 0.577 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.117435 | 0.930 |
R-HSA-9634597 | GPER1 signaling | 0.127024 | 0.896 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.150476 | 0.823 |
R-HSA-3371568 | Attenuation phase | 0.276479 | 0.558 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.258180 | 0.588 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.248082 | 0.605 |
R-HSA-1266738 | Developmental Biology | 0.242506 | 0.615 |
R-HSA-2559583 | Cellular Senescence | 0.151997 | 0.818 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.238649 | 0.622 |
R-HSA-5688426 | Deubiquitination | 0.261153 | 0.583 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 0.161308 | 0.792 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.311966 | 0.506 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.195951 | 0.708 |
R-HSA-446728 | Cell junction organization | 0.125035 | 0.903 |
R-HSA-421270 | Cell-cell junction organization | 0.146637 | 0.834 |
R-HSA-9669938 | Signaling by KIT in disease | 0.126932 | 0.896 |
R-HSA-170968 | Frs2-mediated activation | 0.311966 | 0.506 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.173252 | 0.761 |
R-HSA-9659379 | Sensory processing of sound | 0.299608 | 0.523 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.143701 | 0.843 |
R-HSA-447043 | Neurofascin interactions | 0.179554 | 0.746 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 0.197403 | 0.705 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.248663 | 0.604 |
R-HSA-525793 | Myogenesis | 0.156910 | 0.804 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.211893 | 0.674 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 0.260283 | 0.585 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.234869 | 0.629 |
R-HSA-8854214 | TBC/RABGAPs | 0.308780 | 0.510 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.246481 | 0.608 |
R-HSA-9007101 | Rab regulation of trafficking | 0.164227 | 0.785 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.238649 | 0.622 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.341354 | 0.467 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.249495 | 0.603 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.249495 | 0.603 |
R-HSA-9675108 | Nervous system development | 0.119917 | 0.921 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.260283 | 0.585 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.316816 | 0.499 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.305753 | 0.515 |
R-HSA-8983711 | OAS antiviral response | 0.296657 | 0.528 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 0.326942 | 0.486 |
R-HSA-70171 | Glycolysis | 0.229303 | 0.640 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.197403 | 0.705 |
R-HSA-175474 | Assembly Of The HIV Virion | 0.119671 | 0.922 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.167896 | 0.775 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.244098 | 0.612 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.244098 | 0.612 |
R-HSA-446652 | Interleukin-1 family signaling | 0.319699 | 0.495 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.292654 | 0.534 |
R-HSA-1236394 | Signaling by ERBB4 | 0.269952 | 0.569 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.268382 | 0.571 |
R-HSA-1483255 | PI Metabolism | 0.238649 | 0.622 |
R-HSA-9833110 | RSV-host interactions | 0.252829 | 0.597 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.233965 | 0.631 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.214866 | 0.668 |
R-HSA-9762292 | Regulation of CDH11 function | 0.248663 | 0.604 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.326942 | 0.486 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.254924 | 0.594 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.335630 | 0.474 |
R-HSA-109581 | Apoptosis | 0.207279 | 0.683 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.311160 | 0.507 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.124120 | 0.906 |
R-HSA-5357801 | Programmed Cell Death | 0.126342 | 0.898 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.124120 | 0.906 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.211893 | 0.674 |
R-HSA-211000 | Gene Silencing by RNA | 0.267179 | 0.573 |
R-HSA-70326 | Glucose metabolism | 0.325757 | 0.487 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.231950 | 0.635 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.180704 | 0.743 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.195135 | 0.710 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.308780 | 0.510 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.242848 | 0.615 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.275860 | 0.559 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.262378 | 0.581 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.262636 | 0.581 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.246481 | 0.608 |
R-HSA-1059683 | Interleukin-6 signaling | 0.311966 | 0.506 |
R-HSA-186712 | Regulation of beta-cell development | 0.184106 | 0.735 |
R-HSA-9679506 | SARS-CoV Infections | 0.288467 | 0.540 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.316816 | 0.499 |
R-HSA-157118 | Signaling by NOTCH | 0.347763 | 0.459 |
R-HSA-389356 | Co-stimulation by CD28 | 0.348718 | 0.458 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.348718 | 0.458 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.355408 | 0.449 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 0.355927 | 0.449 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.355927 | 0.449 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.355927 | 0.449 |
R-HSA-169893 | Prolonged ERK activation events | 0.355927 | 0.449 |
R-HSA-9945266 | Differentiation of T cells | 0.355927 | 0.449 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.355927 | 0.449 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.356620 | 0.448 |
R-HSA-9766229 | Degradation of CDH1 | 0.356620 | 0.448 |
R-HSA-162909 | Host Interactions of HIV factors | 0.360354 | 0.443 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.362903 | 0.440 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.369949 | 0.432 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.369949 | 0.432 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.369949 | 0.432 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 0.369949 | 0.432 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.372316 | 0.429 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.380106 | 0.420 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.380106 | 0.420 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.382475 | 0.417 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.383667 | 0.416 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.383667 | 0.416 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 0.383667 | 0.416 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.387856 | 0.411 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.387856 | 0.411 |
R-HSA-445355 | Smooth Muscle Contraction | 0.387856 | 0.411 |
R-HSA-74752 | Signaling by Insulin receptor | 0.388815 | 0.410 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.388815 | 0.410 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.397086 | 0.401 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.397086 | 0.401 |
R-HSA-156711 | Polo-like kinase mediated events | 0.397086 | 0.401 |
R-HSA-428643 | Organic anion transport by SLC5/17/25 transporters | 0.397086 | 0.401 |
R-HSA-1474165 | Reproduction | 0.399826 | 0.398 |
R-HSA-72306 | tRNA processing | 0.401568 | 0.396 |
R-HSA-3214815 | HDACs deacetylate histones | 0.403225 | 0.394 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.410215 | 0.387 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.410215 | 0.387 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.410215 | 0.387 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 0.410215 | 0.387 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.410841 | 0.386 |
R-HSA-75893 | TNF signaling | 0.410841 | 0.386 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.418072 | 0.379 |
R-HSA-112399 | IRS-mediated signalling | 0.418409 | 0.378 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.418409 | 0.378 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.418409 | 0.378 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.418770 | 0.378 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.423058 | 0.374 |
R-HSA-9823730 | Formation of definitive endoderm | 0.423058 | 0.374 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.423058 | 0.374 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 0.423058 | 0.374 |
R-HSA-1181150 | Signaling by NODAL | 0.423058 | 0.374 |
R-HSA-373753 | Nephrin family interactions | 0.423058 | 0.374 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.423870 | 0.373 |
R-HSA-2262752 | Cellular responses to stress | 0.431182 | 0.365 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.434021 | 0.362 |
R-HSA-9939291 | Matriglycan biosynthesis on DAG1 | 0.435623 | 0.361 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.435623 | 0.361 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.435623 | 0.361 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.438866 | 0.358 |
R-HSA-5362517 | Signaling by Retinoic Acid | 0.440809 | 0.356 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.440809 | 0.356 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.447914 | 0.349 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.447914 | 0.349 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.447914 | 0.349 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.447914 | 0.349 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.447914 | 0.349 |
R-HSA-5654706 | FRS-mediated FGFR3 signaling | 0.447914 | 0.349 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.447914 | 0.349 |
R-HSA-947581 | Molybdenum cofactor biosynthesis | 0.447914 | 0.349 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.447914 | 0.349 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.448171 | 0.349 |
R-HSA-1442490 | Collagen degradation | 0.448171 | 0.349 |
R-HSA-449147 | Signaling by Interleukins | 0.451318 | 0.346 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.453326 | 0.344 |
R-HSA-9664407 | Parasite infection | 0.453326 | 0.344 |
R-HSA-9664417 | Leishmania phagocytosis | 0.453326 | 0.344 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.458120 | 0.339 |
R-HSA-5654712 | FRS-mediated FGFR4 signaling | 0.459939 | 0.337 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.459939 | 0.337 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.459939 | 0.337 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.462729 | 0.335 |
R-HSA-8848021 | Signaling by PTK6 | 0.462729 | 0.335 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.468337 | 0.329 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.469923 | 0.328 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.471702 | 0.326 |
R-HSA-3000170 | Syndecan interactions | 0.471702 | 0.326 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.471702 | 0.326 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.471702 | 0.326 |
R-HSA-1234174 | Cellular response to hypoxia | 0.477059 | 0.321 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.477059 | 0.321 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.483210 | 0.316 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.483210 | 0.316 |
R-HSA-429947 | Deadenylation of mRNA | 0.483210 | 0.316 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 0.483210 | 0.316 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.483210 | 0.316 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.484137 | 0.315 |
R-HSA-9620244 | Long-term potentiation | 0.494468 | 0.306 |
R-HSA-5654693 | FRS-mediated FGFR1 signaling | 0.494468 | 0.306 |
R-HSA-1266695 | Interleukin-7 signaling | 0.494468 | 0.306 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.494468 | 0.306 |
R-HSA-5218859 | Regulated Necrosis | 0.498113 | 0.303 |
R-HSA-8953897 | Cellular responses to stimuli | 0.499138 | 0.302 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.505191 | 0.297 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.505482 | 0.296 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.505482 | 0.296 |
R-HSA-5689901 | Metalloprotease DUBs | 0.505482 | 0.296 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.511845 | 0.291 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.514393 | 0.289 |
R-HSA-8953854 | Metabolism of RNA | 0.515902 | 0.287 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.516256 | 0.287 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.516256 | 0.287 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.516256 | 0.287 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.516256 | 0.287 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 0.516256 | 0.287 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 0.516256 | 0.287 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 0.516256 | 0.287 |
R-HSA-3000178 | ECM proteoglycans | 0.518618 | 0.285 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.518618 | 0.285 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.518964 | 0.285 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.525328 | 0.280 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.526796 | 0.278 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.526796 | 0.278 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.526796 | 0.278 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.526796 | 0.278 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.526796 | 0.278 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.526796 | 0.278 |
R-HSA-5654700 | FRS-mediated FGFR2 signaling | 0.526796 | 0.278 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.526796 | 0.278 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.528045 | 0.277 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.537107 | 0.270 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.537107 | 0.270 |
R-HSA-204174 | Regulation of pyruvate dehydrogenase (PDH) complex | 0.537107 | 0.270 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.537107 | 0.270 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.539846 | 0.268 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.540401 | 0.267 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.545078 | 0.264 |
R-HSA-8852135 | Protein ubiquitination | 0.545078 | 0.264 |
R-HSA-114452 | Activation of BH3-only proteins | 0.547194 | 0.262 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.547194 | 0.262 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.551533 | 0.258 |
R-HSA-9020591 | Interleukin-12 signaling | 0.551533 | 0.258 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.557062 | 0.254 |
R-HSA-5694530 | Cargo concentration in the ER | 0.557062 | 0.254 |
R-HSA-2129379 | Molecules associated with elastic fibres | 0.557062 | 0.254 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.557062 | 0.254 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.564249 | 0.249 |
R-HSA-8931838 | DAG1 glycosylations | 0.566715 | 0.247 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.566715 | 0.247 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.576158 | 0.239 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.576158 | 0.239 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.576158 | 0.239 |
R-HSA-159418 | Recycling of bile acids and salts | 0.576158 | 0.239 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.576158 | 0.239 |
R-HSA-9733709 | Cardiogenesis | 0.576158 | 0.239 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.576704 | 0.239 |
R-HSA-9833482 | PKR-mediated signaling | 0.576704 | 0.239 |
R-HSA-2132295 | MHC class II antigen presentation | 0.580399 | 0.236 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.585397 | 0.233 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.585397 | 0.233 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.585397 | 0.233 |
R-HSA-68882 | Mitotic Anaphase | 0.593349 | 0.227 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.594434 | 0.226 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.594434 | 0.226 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.594434 | 0.226 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.594434 | 0.226 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.594434 | 0.226 |
R-HSA-5673000 | RAF activation | 0.594434 | 0.226 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.594434 | 0.226 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.597070 | 0.224 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.600829 | 0.221 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.601600 | 0.221 |
R-HSA-169911 | Regulation of Apoptosis | 0.603275 | 0.219 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.603275 | 0.219 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.603275 | 0.219 |
R-HSA-5689880 | Ub-specific processing proteases | 0.609790 | 0.215 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.612498 | 0.213 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.612498 | 0.213 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.617876 | 0.209 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.618234 | 0.209 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.618234 | 0.209 |
R-HSA-549127 | SLC-mediated transport of organic cations | 0.620385 | 0.207 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.620385 | 0.207 |
R-HSA-8948216 | Collagen chain trimerization | 0.620385 | 0.207 |
R-HSA-438064 | Post NMDA receptor activation events | 0.623905 | 0.205 |
R-HSA-447115 | Interleukin-12 family signaling | 0.623905 | 0.205 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.628662 | 0.202 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.628662 | 0.202 |
R-HSA-1566948 | Elastic fibre formation | 0.628662 | 0.202 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.632345 | 0.199 |
R-HSA-168255 | Influenza Infection | 0.633732 | 0.198 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.636758 | 0.196 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.636758 | 0.196 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.636758 | 0.196 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.640527 | 0.193 |
R-HSA-202424 | Downstream TCR signaling | 0.640527 | 0.193 |
R-HSA-73884 | Base Excision Repair | 0.640527 | 0.193 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.644679 | 0.191 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.644679 | 0.191 |
R-HSA-167169 | HIV Transcription Elongation | 0.644679 | 0.191 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.644679 | 0.191 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.644679 | 0.191 |
R-HSA-5260271 | Diseases of Immune System | 0.644679 | 0.191 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.644679 | 0.191 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.649898 | 0.187 |
R-HSA-9658195 | Leishmania infection | 0.649898 | 0.187 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.651284 | 0.186 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.652428 | 0.185 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 0.652428 | 0.185 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.652428 | 0.185 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.652428 | 0.185 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.652428 | 0.185 |
R-HSA-1474244 | Extracellular matrix organization | 0.653224 | 0.185 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.660008 | 0.180 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.660008 | 0.180 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.660008 | 0.180 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.661784 | 0.179 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.667423 | 0.176 |
R-HSA-73928 | Depyrimidination | 0.667423 | 0.176 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.667423 | 0.176 |
R-HSA-190828 | Gap junction trafficking | 0.681773 | 0.166 |
R-HSA-373752 | Netrin-1 signaling | 0.681773 | 0.166 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.681773 | 0.166 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.684222 | 0.165 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.688715 | 0.162 |
R-HSA-109582 | Hemostasis | 0.694647 | 0.158 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.695506 | 0.158 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.695506 | 0.158 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.695506 | 0.158 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.695506 | 0.158 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.695506 | 0.158 |
R-HSA-6802949 | Signaling by RAS mutants | 0.695506 | 0.158 |
R-HSA-9675135 | Diseases of DNA repair | 0.695506 | 0.158 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.698867 | 0.156 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.701261 | 0.154 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.702149 | 0.154 |
R-HSA-437239 | Recycling pathway of L1 | 0.702149 | 0.154 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.703009 | 0.153 |
R-HSA-9609646 | HCMV Infection | 0.708460 | 0.150 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.708647 | 0.150 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.710513 | 0.148 |
R-HSA-73893 | DNA Damage Bypass | 0.715004 | 0.146 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.715004 | 0.146 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.719525 | 0.143 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.721223 | 0.142 |
R-HSA-109704 | PI3K Cascade | 0.721223 | 0.142 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.721223 | 0.142 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.726207 | 0.139 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.727307 | 0.138 |
R-HSA-9864848 | Complex IV assembly | 0.727307 | 0.138 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.728300 | 0.138 |
R-HSA-73894 | DNA Repair | 0.731021 | 0.136 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.733258 | 0.135 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.733258 | 0.135 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.733258 | 0.135 |
R-HSA-6794361 | Neurexins and neuroligins | 0.733258 | 0.135 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.739079 | 0.131 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.743685 | 0.129 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.744774 | 0.128 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.745154 | 0.128 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.750345 | 0.125 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.755795 | 0.122 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.755795 | 0.122 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.763706 | 0.117 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.764956 | 0.116 |
R-HSA-9033241 | Peroxisomal protein import | 0.771442 | 0.113 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.771442 | 0.113 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.771442 | 0.113 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.771442 | 0.113 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.771442 | 0.113 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.772496 | 0.112 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.772496 | 0.112 |
R-HSA-5619102 | SLC transporter disorders | 0.773232 | 0.112 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.776186 | 0.110 |
R-HSA-9824446 | Viral Infection Pathways | 0.776403 | 0.110 |
R-HSA-983189 | Kinesins | 0.776433 | 0.110 |
R-HSA-373760 | L1CAM interactions | 0.779824 | 0.108 |
R-HSA-450294 | MAP kinase activation | 0.781314 | 0.107 |
R-HSA-211976 | Endogenous sterols | 0.781314 | 0.107 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.781314 | 0.107 |
R-HSA-68886 | M Phase | 0.783557 | 0.106 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.785444 | 0.105 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.785657 | 0.105 |
R-HSA-913531 | Interferon Signaling | 0.785657 | 0.105 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.786090 | 0.105 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.786090 | 0.105 |
R-HSA-5693538 | Homology Directed Repair | 0.786946 | 0.104 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.786946 | 0.104 |
R-HSA-418555 | G alpha (s) signalling events | 0.788410 | 0.103 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.790761 | 0.102 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.790761 | 0.102 |
R-HSA-373755 | Semaphorin interactions | 0.790761 | 0.102 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.791343 | 0.102 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.794101 | 0.100 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.797248 | 0.098 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.797248 | 0.098 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.804174 | 0.095 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.808451 | 0.092 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.808451 | 0.092 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 0.808451 | 0.092 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.808451 | 0.092 |
R-HSA-167172 | Transcription of the HIV genome | 0.812636 | 0.090 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 0.812636 | 0.090 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.816729 | 0.088 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.816950 | 0.088 |
R-HSA-114608 | Platelet degranulation | 0.819591 | 0.086 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.820733 | 0.086 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.820733 | 0.086 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.820733 | 0.086 |
R-HSA-448424 | Interleukin-17 signaling | 0.820733 | 0.086 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.820733 | 0.086 |
R-HSA-1483257 | Phospholipid metabolism | 0.822751 | 0.085 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.824650 | 0.084 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.824650 | 0.084 |
R-HSA-5632684 | Hedgehog 'on' state | 0.824650 | 0.084 |
R-HSA-8978934 | Metabolism of cofactors | 0.824650 | 0.084 |
R-HSA-6798695 | Neutrophil degranulation | 0.826151 | 0.083 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.832229 | 0.080 |
R-HSA-4086398 | Ca2+ pathway | 0.832229 | 0.080 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.833832 | 0.079 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.835895 | 0.078 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.835895 | 0.078 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.835895 | 0.078 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.836962 | 0.077 |
R-HSA-5617833 | Cilium Assembly | 0.838584 | 0.076 |
R-HSA-380287 | Centrosome maturation | 0.839482 | 0.076 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 0.839482 | 0.076 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.839482 | 0.076 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.839706 | 0.076 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.840916 | 0.075 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.849779 | 0.071 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 0.849779 | 0.071 |
R-HSA-216083 | Integrin cell surface interactions | 0.849779 | 0.071 |
R-HSA-9609690 | HCMV Early Events | 0.852144 | 0.069 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.856275 | 0.067 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.857773 | 0.067 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.859417 | 0.066 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.860624 | 0.065 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.868438 | 0.061 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.871315 | 0.060 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.871315 | 0.060 |
R-HSA-416476 | G alpha (q) signalling events | 0.871488 | 0.060 |
R-HSA-8957322 | Metabolism of steroids | 0.875126 | 0.058 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.876882 | 0.057 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.878268 | 0.056 |
R-HSA-70268 | Pyruvate metabolism | 0.879575 | 0.056 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.880370 | 0.055 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.882209 | 0.054 |
R-HSA-156902 | Peptide chain elongation | 0.882209 | 0.054 |
R-HSA-168249 | Innate Immune System | 0.884518 | 0.053 |
R-HSA-1236974 | ER-Phagosome pathway | 0.884786 | 0.053 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.886474 | 0.052 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.889772 | 0.051 |
R-HSA-9609507 | Protein localization | 0.890383 | 0.050 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.892183 | 0.050 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.894542 | 0.048 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.894542 | 0.048 |
R-HSA-9612973 | Autophagy | 0.896012 | 0.048 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.899107 | 0.046 |
R-HSA-1474290 | Collagen formation | 0.899107 | 0.046 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.901315 | 0.045 |
R-HSA-877300 | Interferon gamma signaling | 0.901372 | 0.045 |
R-HSA-1280218 | Adaptive Immune System | 0.902557 | 0.045 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.903475 | 0.044 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.903475 | 0.044 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.903475 | 0.044 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.905588 | 0.043 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.905588 | 0.043 |
R-HSA-1296071 | Potassium Channels | 0.905588 | 0.043 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.905588 | 0.043 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.909675 | 0.041 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.909675 | 0.041 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.909675 | 0.041 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.911653 | 0.040 |
R-HSA-5610787 | Hedgehog 'off' state | 0.913587 | 0.039 |
R-HSA-2408557 | Selenocysteine synthesis | 0.915479 | 0.038 |
R-HSA-9020702 | Interleukin-1 signaling | 0.915479 | 0.038 |
R-HSA-72312 | rRNA processing | 0.915727 | 0.038 |
R-HSA-192823 | Viral mRNA Translation | 0.919140 | 0.037 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.920910 | 0.036 |
R-HSA-5663205 | Infectious disease | 0.923387 | 0.035 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.924336 | 0.034 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.927614 | 0.033 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.929200 | 0.032 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.929200 | 0.032 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.929200 | 0.032 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.929200 | 0.032 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.930751 | 0.031 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.932268 | 0.030 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.932268 | 0.030 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.932268 | 0.030 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.933515 | 0.030 |
R-HSA-388396 | GPCR downstream signalling | 0.935715 | 0.029 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.936623 | 0.028 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.938012 | 0.028 |
R-HSA-69275 | G2/M Transition | 0.940340 | 0.027 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.941999 | 0.026 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.942476 | 0.026 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.943270 | 0.025 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.943270 | 0.025 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.944291 | 0.025 |
R-HSA-2980736 | Peptide hormone metabolism | 0.944513 | 0.025 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.946385 | 0.024 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.946919 | 0.024 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.946919 | 0.024 |
R-HSA-68877 | Mitotic Prometaphase | 0.947504 | 0.023 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.950335 | 0.022 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.950335 | 0.022 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.951424 | 0.022 |
R-HSA-977606 | Regulation of Complement cascade | 0.953531 | 0.021 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.953844 | 0.021 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.955517 | 0.020 |
R-HSA-168256 | Immune System | 0.955542 | 0.020 |
R-HSA-69481 | G2/M Checkpoints | 0.956522 | 0.019 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.959321 | 0.018 |
R-HSA-9717189 | Sensory perception of taste | 0.961086 | 0.017 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.963731 | 0.016 |
R-HSA-397014 | Muscle contraction | 0.963731 | 0.016 |
R-HSA-5173105 | O-linked glycosylation | 0.966685 | 0.015 |
R-HSA-9948299 | Ribosome-associated quality control | 0.967416 | 0.014 |
R-HSA-5358351 | Signaling by Hedgehog | 0.967416 | 0.014 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.972106 | 0.012 |
R-HSA-166658 | Complement cascade | 0.972719 | 0.012 |
R-HSA-372790 | Signaling by GPCR | 0.973174 | 0.012 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.976648 | 0.010 |
R-HSA-9711097 | Cellular response to starvation | 0.979563 | 0.009 |
R-HSA-1640170 | Cell Cycle | 0.980441 | 0.009 |
R-HSA-597592 | Post-translational protein modification | 0.980694 | 0.008 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.982115 | 0.008 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.983269 | 0.007 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.986285 | 0.006 |
R-HSA-611105 | Respiratory electron transport | 0.987189 | 0.006 |
R-HSA-3781865 | Diseases of glycosylation | 0.988791 | 0.005 |
R-HSA-1643685 | Disease | 0.990138 | 0.004 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.992659 | 0.003 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.993249 | 0.003 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.994370 | 0.002 |
R-HSA-112316 | Neuronal System | 0.994579 | 0.002 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.995041 | 0.002 |
R-HSA-8951664 | Neddylation | 0.995195 | 0.002 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.995738 | 0.002 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.995981 | 0.002 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.996069 | 0.002 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.996862 | 0.001 |
R-HSA-9734767 | Developmental Cell Lineages | 0.998120 | 0.001 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.998121 | 0.001 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.998656 | 0.001 |
R-HSA-556833 | Metabolism of lipids | 0.998996 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999230 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 0.999928 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999954 | 0.000 |
R-HSA-72766 | Translation | 0.999956 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999984 | 0.000 |
R-HSA-211859 | Biological oxidations | 0.999995 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999998 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.999999 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | 0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
HIPK4 |
0.807 | 0.357 | 1 | 0.758 |
CLK3 |
0.801 | 0.256 | 1 | 0.783 |
HIPK2 |
0.793 | 0.250 | 1 | 0.685 |
KIS |
0.792 | 0.230 | 1 | 0.715 |
SRPK1 |
0.782 | 0.147 | -3 | 0.742 |
PRKD1 |
0.781 | 0.223 | -3 | 0.832 |
DYRK2 |
0.780 | 0.177 | 1 | 0.745 |
CDC7 |
0.780 | 0.187 | 1 | 0.756 |
NDR2 |
0.779 | 0.130 | -3 | 0.846 |
COT |
0.779 | 0.057 | 2 | 0.452 |
MOS |
0.778 | 0.201 | 1 | 0.749 |
HIPK1 |
0.778 | 0.204 | 1 | 0.745 |
PIM3 |
0.778 | 0.124 | -3 | 0.824 |
CDK18 |
0.777 | 0.188 | 1 | 0.669 |
SKMLCK |
0.776 | 0.155 | -2 | 0.857 |
CDKL5 |
0.775 | 0.127 | -3 | 0.770 |
CLK2 |
0.775 | 0.161 | -3 | 0.742 |
CDK7 |
0.775 | 0.185 | 1 | 0.712 |
PRKD2 |
0.774 | 0.175 | -3 | 0.783 |
ICK |
0.774 | 0.178 | -3 | 0.813 |
MAK |
0.773 | 0.258 | -2 | 0.862 |
CDK19 |
0.772 | 0.163 | 1 | 0.678 |
ERK5 |
0.772 | 0.125 | 1 | 0.781 |
AURC |
0.772 | 0.134 | -2 | 0.658 |
GRK1 |
0.771 | 0.136 | -2 | 0.775 |
NLK |
0.770 | 0.090 | 1 | 0.780 |
CHAK2 |
0.769 | 0.181 | -1 | 0.787 |
MAPKAPK2 |
0.769 | 0.128 | -3 | 0.745 |
RSK2 |
0.769 | 0.085 | -3 | 0.765 |
CDKL1 |
0.769 | 0.091 | -3 | 0.768 |
CDK8 |
0.768 | 0.139 | 1 | 0.700 |
DYRK4 |
0.768 | 0.153 | 1 | 0.698 |
CDK1 |
0.767 | 0.149 | 1 | 0.717 |
P38B |
0.766 | 0.181 | 1 | 0.704 |
SRPK2 |
0.766 | 0.107 | -3 | 0.670 |
P90RSK |
0.765 | 0.075 | -3 | 0.765 |
MTOR |
0.765 | 0.055 | 1 | 0.689 |
DYRK1A |
0.765 | 0.160 | 1 | 0.732 |
MAPKAPK3 |
0.764 | 0.104 | -3 | 0.773 |
CDK17 |
0.764 | 0.149 | 1 | 0.643 |
JNK2 |
0.764 | 0.142 | 1 | 0.683 |
PRPK |
0.763 | -0.004 | -1 | 0.797 |
HIPK3 |
0.762 | 0.172 | 1 | 0.717 |
CDK5 |
0.762 | 0.132 | 1 | 0.722 |
CLK4 |
0.762 | 0.111 | -3 | 0.741 |
P38A |
0.761 | 0.159 | 1 | 0.735 |
CAMK1B |
0.761 | 0.017 | -3 | 0.799 |
CLK1 |
0.761 | 0.115 | -3 | 0.725 |
DYRK1B |
0.761 | 0.151 | 1 | 0.707 |
RSK4 |
0.761 | 0.092 | -3 | 0.760 |
PIM1 |
0.761 | 0.076 | -3 | 0.769 |
LATS2 |
0.761 | 0.058 | -5 | 0.613 |
NDR1 |
0.761 | 0.026 | -3 | 0.812 |
ERK1 |
0.761 | 0.145 | 1 | 0.686 |
ATR |
0.760 | 0.029 | 1 | 0.688 |
P38G |
0.760 | 0.130 | 1 | 0.645 |
CDK13 |
0.759 | 0.116 | 1 | 0.690 |
BMPR1B |
0.759 | 0.143 | 1 | 0.800 |
LATS1 |
0.759 | 0.137 | -3 | 0.863 |
GRK7 |
0.759 | 0.126 | 1 | 0.689 |
AMPKA1 |
0.759 | 0.073 | -3 | 0.823 |
CDK3 |
0.758 | 0.131 | 1 | 0.658 |
DAPK2 |
0.758 | 0.092 | -3 | 0.810 |
PKACB |
0.758 | 0.102 | -2 | 0.665 |
CAMK2A |
0.757 | 0.071 | 2 | 0.415 |
CAMLCK |
0.757 | 0.050 | -2 | 0.822 |
RSK3 |
0.757 | 0.042 | -3 | 0.753 |
AMPKA2 |
0.757 | 0.084 | -3 | 0.803 |
BUB1 |
0.756 | 0.302 | -5 | 0.714 |
CDK14 |
0.756 | 0.130 | 1 | 0.693 |
CDK12 |
0.756 | 0.116 | 1 | 0.673 |
SRPK3 |
0.755 | 0.065 | -3 | 0.699 |
JNK3 |
0.755 | 0.111 | 1 | 0.698 |
PKACG |
0.755 | 0.042 | -2 | 0.728 |
P38D |
0.755 | 0.156 | 1 | 0.627 |
NUAK2 |
0.755 | 0.002 | -3 | 0.811 |
CAMK2D |
0.754 | 0.016 | -3 | 0.796 |
RAF1 |
0.754 | -0.043 | 1 | 0.689 |
PRKX |
0.754 | 0.109 | -3 | 0.706 |
CDK16 |
0.754 | 0.135 | 1 | 0.647 |
TBK1 |
0.754 | -0.043 | 1 | 0.568 |
IKKB |
0.753 | -0.043 | -2 | 0.685 |
CDK10 |
0.753 | 0.121 | 1 | 0.686 |
BMPR2 |
0.753 | -0.054 | -2 | 0.837 |
NIK |
0.753 | -0.004 | -3 | 0.808 |
PKCD |
0.753 | 0.020 | 2 | 0.415 |
PKN3 |
0.753 | -0.021 | -3 | 0.794 |
GRK5 |
0.753 | -0.025 | -3 | 0.755 |
PAK1 |
0.753 | 0.029 | -2 | 0.782 |
TGFBR2 |
0.752 | 0.010 | -2 | 0.749 |
TSSK1 |
0.752 | 0.041 | -3 | 0.849 |
MARK4 |
0.752 | -0.002 | 4 | 0.791 |
MNK2 |
0.752 | 0.046 | -2 | 0.772 |
DYRK3 |
0.751 | 0.110 | 1 | 0.741 |
MOK |
0.751 | 0.186 | 1 | 0.754 |
IKKA |
0.751 | 0.039 | -2 | 0.686 |
PKN2 |
0.751 | -0.033 | -3 | 0.787 |
P70S6KB |
0.750 | 0.019 | -3 | 0.760 |
TSSK2 |
0.750 | 0.006 | -5 | 0.734 |
MNK1 |
0.750 | 0.045 | -2 | 0.777 |
PRKD3 |
0.750 | 0.067 | -3 | 0.734 |
CDK9 |
0.750 | 0.092 | 1 | 0.693 |
WNK1 |
0.750 | -0.063 | -2 | 0.871 |
PKCA |
0.750 | 0.028 | 2 | 0.382 |
PKG2 |
0.749 | 0.060 | -2 | 0.669 |
MLK2 |
0.749 | 0.042 | 2 | 0.450 |
TGFBR1 |
0.749 | 0.078 | -2 | 0.773 |
PKCB |
0.749 | 0.001 | 2 | 0.375 |
MST4 |
0.749 | -0.031 | 2 | 0.479 |
CAMK2B |
0.749 | 0.014 | 2 | 0.396 |
PDHK4 |
0.748 | -0.198 | 1 | 0.709 |
MLK3 |
0.748 | 0.006 | 2 | 0.379 |
NEK6 |
0.748 | -0.000 | -2 | 0.802 |
IKKE |
0.748 | -0.062 | 1 | 0.567 |
CAMK2G |
0.747 | -0.118 | 2 | 0.422 |
GCN2 |
0.747 | -0.144 | 2 | 0.423 |
RIPK3 |
0.747 | -0.091 | 3 | 0.650 |
ALK4 |
0.747 | 0.061 | -2 | 0.798 |
PASK |
0.747 | 0.121 | -3 | 0.844 |
PAK3 |
0.746 | -0.000 | -2 | 0.764 |
MSK1 |
0.746 | 0.040 | -3 | 0.736 |
ULK2 |
0.746 | -0.150 | 2 | 0.419 |
MPSK1 |
0.746 | 0.176 | 1 | 0.634 |
PRP4 |
0.746 | 0.087 | -3 | 0.690 |
AURB |
0.745 | 0.048 | -2 | 0.651 |
QSK |
0.745 | 0.044 | 4 | 0.772 |
PKCG |
0.745 | -0.015 | 2 | 0.377 |
MASTL |
0.744 | -0.100 | -2 | 0.775 |
AKT2 |
0.743 | 0.051 | -3 | 0.686 |
PHKG1 |
0.743 | -0.005 | -3 | 0.799 |
DLK |
0.743 | -0.055 | 1 | 0.714 |
ERK2 |
0.742 | 0.074 | 1 | 0.714 |
BRSK1 |
0.742 | 0.006 | -3 | 0.769 |
PDHK1 |
0.742 | -0.158 | 1 | 0.676 |
MSK2 |
0.742 | 0.001 | -3 | 0.734 |
MLK1 |
0.742 | -0.139 | 2 | 0.413 |
GRK6 |
0.742 | -0.065 | 1 | 0.747 |
HUNK |
0.742 | -0.138 | 2 | 0.428 |
SGK3 |
0.741 | 0.027 | -3 | 0.750 |
GSK3A |
0.741 | 0.084 | 4 | 0.507 |
PIM2 |
0.741 | 0.053 | -3 | 0.727 |
DSTYK |
0.741 | -0.154 | 2 | 0.455 |
PKCZ |
0.740 | -0.009 | 2 | 0.417 |
DCAMKL1 |
0.740 | 0.025 | -3 | 0.783 |
ACVR2B |
0.740 | 0.071 | -2 | 0.746 |
IRE1 |
0.739 | -0.089 | 1 | 0.641 |
MELK |
0.739 | -0.016 | -3 | 0.779 |
MYLK4 |
0.739 | 0.005 | -2 | 0.749 |
CAMK4 |
0.738 | -0.055 | -3 | 0.779 |
GRK2 |
0.738 | 0.030 | -2 | 0.698 |
PKACA |
0.738 | 0.059 | -2 | 0.621 |
MARK3 |
0.738 | 0.017 | 4 | 0.728 |
VRK2 |
0.737 | -0.032 | 1 | 0.731 |
PAK2 |
0.737 | -0.022 | -2 | 0.757 |
JNK1 |
0.737 | 0.093 | 1 | 0.678 |
FAM20C |
0.737 | -0.060 | 2 | 0.297 |
PAK6 |
0.737 | 0.007 | -2 | 0.675 |
NIM1 |
0.737 | -0.091 | 3 | 0.683 |
ERK7 |
0.737 | 0.016 | 2 | 0.289 |
BRSK2 |
0.737 | -0.023 | -3 | 0.777 |
NUAK1 |
0.736 | -0.019 | -3 | 0.764 |
CHAK1 |
0.736 | -0.011 | 2 | 0.491 |
GRK4 |
0.736 | -0.104 | -2 | 0.796 |
NEK7 |
0.736 | -0.163 | -3 | 0.751 |
RIPK1 |
0.736 | -0.147 | 1 | 0.657 |
ACVR2A |
0.736 | 0.031 | -2 | 0.734 |
TLK2 |
0.735 | 0.003 | 1 | 0.638 |
ULK1 |
0.735 | -0.170 | -3 | 0.713 |
CK1E |
0.735 | -0.009 | -3 | 0.497 |
TTBK2 |
0.735 | -0.157 | 2 | 0.363 |
PKCH |
0.735 | -0.059 | 2 | 0.360 |
BCKDK |
0.735 | -0.139 | -1 | 0.713 |
SIK |
0.734 | 0.005 | -3 | 0.737 |
CHK1 |
0.734 | 0.010 | -3 | 0.814 |
NEK9 |
0.734 | -0.142 | 2 | 0.443 |
SSTK |
0.734 | 0.002 | 4 | 0.747 |
PKR |
0.733 | -0.080 | 1 | 0.685 |
AURA |
0.733 | 0.011 | -2 | 0.628 |
MLK4 |
0.733 | -0.083 | 2 | 0.358 |
GSK3B |
0.732 | 0.040 | 4 | 0.501 |
ANKRD3 |
0.732 | -0.159 | 1 | 0.690 |
CDK2 |
0.732 | 0.016 | 1 | 0.759 |
IRE2 |
0.732 | -0.088 | 2 | 0.388 |
DRAK1 |
0.732 | -0.003 | 1 | 0.737 |
BMPR1A |
0.732 | 0.061 | 1 | 0.765 |
ALK2 |
0.732 | 0.005 | -2 | 0.773 |
MST3 |
0.731 | -0.003 | 2 | 0.461 |
PLK1 |
0.731 | -0.087 | -2 | 0.729 |
SMG1 |
0.731 | -0.029 | 1 | 0.635 |
MEK1 |
0.731 | -0.110 | 2 | 0.469 |
ATM |
0.731 | -0.068 | 1 | 0.628 |
YSK4 |
0.730 | -0.083 | 1 | 0.627 |
QIK |
0.730 | -0.085 | -3 | 0.781 |
LKB1 |
0.730 | 0.181 | -3 | 0.762 |
WNK3 |
0.730 | -0.248 | 1 | 0.639 |
DCAMKL2 |
0.730 | -0.028 | -3 | 0.785 |
CK1D |
0.730 | 0.012 | -3 | 0.448 |
CDK6 |
0.729 | 0.083 | 1 | 0.665 |
CDK4 |
0.728 | 0.089 | 1 | 0.664 |
MARK2 |
0.728 | -0.035 | 4 | 0.698 |
NEK2 |
0.727 | -0.083 | 2 | 0.454 |
DNAPK |
0.727 | -0.032 | 1 | 0.552 |
CAMK1G |
0.727 | -0.046 | -3 | 0.725 |
AKT1 |
0.727 | 0.026 | -3 | 0.709 |
PLK4 |
0.726 | -0.104 | 2 | 0.336 |
MAPKAPK5 |
0.726 | -0.042 | -3 | 0.689 |
PKCE |
0.726 | -0.009 | 2 | 0.374 |
DAPK3 |
0.726 | 0.038 | -3 | 0.777 |
GRK3 |
0.726 | 0.008 | -2 | 0.664 |
TAO3 |
0.725 | 0.012 | 1 | 0.661 |
AKT3 |
0.725 | 0.054 | -3 | 0.648 |
CAMK1D |
0.725 | 0.018 | -3 | 0.681 |
CK1A2 |
0.725 | -0.012 | -3 | 0.449 |
PKCT |
0.723 | -0.050 | 2 | 0.370 |
SMMLCK |
0.723 | -0.026 | -3 | 0.766 |
SGK1 |
0.723 | 0.047 | -3 | 0.623 |
NEK5 |
0.723 | -0.038 | 1 | 0.653 |
GCK |
0.723 | 0.080 | 1 | 0.684 |
ROCK2 |
0.723 | 0.066 | -3 | 0.771 |
SNRK |
0.722 | -0.145 | 2 | 0.373 |
MEK5 |
0.722 | -0.158 | 2 | 0.447 |
P70S6K |
0.722 | -0.013 | -3 | 0.683 |
MARK1 |
0.722 | -0.052 | 4 | 0.738 |
IRAK4 |
0.721 | -0.096 | 1 | 0.624 |
DAPK1 |
0.721 | 0.025 | -3 | 0.756 |
PAK5 |
0.720 | -0.008 | -2 | 0.629 |
PERK |
0.719 | -0.116 | -2 | 0.772 |
PAK4 |
0.719 | -0.006 | -2 | 0.641 |
ZAK |
0.719 | -0.128 | 1 | 0.640 |
SBK |
0.719 | 0.060 | -3 | 0.588 |
PLK3 |
0.719 | -0.126 | 2 | 0.397 |
PKCI |
0.718 | -0.059 | 2 | 0.390 |
CK2A2 |
0.718 | 0.015 | 1 | 0.706 |
WNK4 |
0.718 | -0.141 | -2 | 0.862 |
MEKK2 |
0.718 | -0.147 | 2 | 0.419 |
BRAF |
0.718 | -0.106 | -4 | 0.744 |
MAP3K15 |
0.718 | 0.013 | 1 | 0.615 |
TLK1 |
0.717 | -0.103 | -2 | 0.788 |
CHK2 |
0.717 | 0.021 | -3 | 0.637 |
MEKK1 |
0.716 | -0.145 | 1 | 0.641 |
TNIK |
0.715 | 0.037 | 3 | 0.791 |
CK1G1 |
0.715 | -0.062 | -3 | 0.473 |
NEK11 |
0.715 | -0.092 | 1 | 0.653 |
PDK1 |
0.715 | -0.046 | 1 | 0.623 |
HPK1 |
0.714 | 0.015 | 1 | 0.670 |
PBK |
0.714 | 0.048 | 1 | 0.607 |
KHS1 |
0.714 | 0.061 | 1 | 0.631 |
PINK1 |
0.714 | -0.094 | 1 | 0.714 |
CAMK1A |
0.714 | 0.020 | -3 | 0.655 |
PDHK3_TYR |
0.713 | 0.279 | 4 | 0.844 |
MEKK3 |
0.713 | -0.223 | 1 | 0.676 |
CAMKK2 |
0.713 | 0.015 | -2 | 0.686 |
MRCKB |
0.713 | 0.015 | -3 | 0.713 |
GAK |
0.713 | -0.081 | 1 | 0.698 |
MEKK6 |
0.713 | -0.072 | 1 | 0.657 |
MRCKA |
0.712 | 0.019 | -3 | 0.727 |
KHS2 |
0.712 | 0.040 | 1 | 0.657 |
DMPK1 |
0.711 | 0.041 | -3 | 0.736 |
HGK |
0.711 | -0.014 | 3 | 0.788 |
PKN1 |
0.710 | -0.043 | -3 | 0.702 |
CRIK |
0.710 | 0.058 | -3 | 0.719 |
LOK |
0.710 | 0.001 | -2 | 0.718 |
PHKG2 |
0.710 | -0.105 | -3 | 0.755 |
CK2A1 |
0.710 | 0.011 | 1 | 0.701 |
HRI |
0.710 | -0.193 | -2 | 0.789 |
HASPIN |
0.710 | 0.026 | -1 | 0.692 |
TAO2 |
0.709 | -0.095 | 2 | 0.464 |
LRRK2 |
0.708 | -0.076 | 2 | 0.462 |
EEF2K |
0.708 | -0.083 | 3 | 0.725 |
SLK |
0.708 | 0.002 | -2 | 0.674 |
NEK4 |
0.707 | -0.062 | 1 | 0.621 |
NEK1 |
0.707 | -0.008 | 1 | 0.626 |
CK1A |
0.707 | 0.019 | -3 | 0.361 |
MINK |
0.707 | -0.039 | 1 | 0.638 |
LIMK2_TYR |
0.707 | 0.203 | -3 | 0.824 |
MST2 |
0.707 | -0.075 | 1 | 0.669 |
CAMKK1 |
0.706 | -0.098 | -2 | 0.679 |
NEK8 |
0.706 | -0.158 | 2 | 0.436 |
YANK3 |
0.705 | -0.046 | 2 | 0.226 |
STK33 |
0.705 | -0.110 | 2 | 0.337 |
TESK1_TYR |
0.704 | 0.164 | 3 | 0.807 |
VRK1 |
0.704 | -0.110 | 2 | 0.441 |
TTBK1 |
0.704 | -0.178 | 2 | 0.323 |
PDHK4_TYR |
0.703 | 0.135 | 2 | 0.496 |
PLK2 |
0.701 | -0.073 | -3 | 0.669 |
MAP2K4_TYR |
0.700 | 0.130 | -1 | 0.798 |
TAK1 |
0.700 | -0.126 | 1 | 0.659 |
ROCK1 |
0.700 | 0.007 | -3 | 0.726 |
PKG1 |
0.700 | -0.015 | -2 | 0.591 |
OSR1 |
0.699 | -0.015 | 2 | 0.445 |
PKMYT1_TYR |
0.699 | 0.075 | 3 | 0.784 |
MST1 |
0.699 | -0.068 | 1 | 0.643 |
MAP2K6_TYR |
0.697 | 0.037 | -1 | 0.805 |
YSK1 |
0.696 | -0.100 | 2 | 0.433 |
IRAK1 |
0.695 | -0.266 | -1 | 0.681 |
BMPR2_TYR |
0.694 | 0.012 | -1 | 0.801 |
PDHK1_TYR |
0.694 | 0.026 | -1 | 0.812 |
EPHB4 |
0.693 | 0.064 | -1 | 0.743 |
TXK |
0.693 | 0.116 | 1 | 0.778 |
TTK |
0.693 | -0.049 | -2 | 0.767 |
MAP2K7_TYR |
0.692 | -0.090 | 2 | 0.473 |
TNK2 |
0.692 | 0.094 | 3 | 0.711 |
MYO3B |
0.692 | -0.017 | 2 | 0.471 |
EPHA6 |
0.691 | -0.003 | -1 | 0.780 |
ASK1 |
0.691 | -0.046 | 1 | 0.603 |
ABL2 |
0.690 | 0.098 | -1 | 0.715 |
MEK2 |
0.690 | -0.166 | 2 | 0.452 |
BIKE |
0.688 | -0.023 | 1 | 0.580 |
RET |
0.687 | -0.016 | 1 | 0.645 |
ROS1 |
0.686 | 0.011 | 3 | 0.700 |
ABL1 |
0.686 | 0.066 | -1 | 0.707 |
TYRO3 |
0.685 | -0.026 | 3 | 0.737 |
FGR |
0.685 | 0.017 | 1 | 0.718 |
LIMK1_TYR |
0.684 | -0.061 | 2 | 0.476 |
PINK1_TYR |
0.684 | -0.158 | 1 | 0.704 |
CSF1R |
0.684 | 0.002 | 3 | 0.741 |
AAK1 |
0.684 | 0.026 | 1 | 0.499 |
NEK3 |
0.683 | -0.145 | 1 | 0.585 |
JAK2 |
0.683 | 0.008 | 1 | 0.633 |
MST1R |
0.683 | -0.036 | 3 | 0.762 |
EPHA4 |
0.683 | -0.013 | 2 | 0.415 |
TNK1 |
0.683 | 0.042 | 3 | 0.725 |
ITK |
0.681 | 0.004 | -1 | 0.712 |
TAO1 |
0.681 | -0.081 | 1 | 0.570 |
MYO3A |
0.681 | -0.082 | 1 | 0.635 |
RIPK2 |
0.680 | -0.254 | 1 | 0.580 |
SRMS |
0.680 | -0.008 | 1 | 0.746 |
EPHB1 |
0.680 | -0.009 | 1 | 0.735 |
LCK |
0.679 | 0.040 | -1 | 0.767 |
MERTK |
0.679 | 0.013 | 3 | 0.724 |
JAK1 |
0.679 | 0.073 | 1 | 0.581 |
ALPHAK3 |
0.679 | -0.078 | -1 | 0.698 |
PTK2B |
0.678 | 0.054 | -1 | 0.688 |
EPHB3 |
0.678 | -0.016 | -1 | 0.726 |
FER |
0.678 | -0.052 | 1 | 0.737 |
TYK2 |
0.678 | -0.088 | 1 | 0.629 |
TNNI3K_TYR |
0.677 | 0.001 | 1 | 0.662 |
DDR1 |
0.677 | -0.113 | 4 | 0.743 |
MET |
0.677 | -0.004 | 3 | 0.747 |
YES1 |
0.677 | -0.051 | -1 | 0.776 |
JAK3 |
0.676 | -0.065 | 1 | 0.635 |
INSRR |
0.676 | -0.064 | 3 | 0.674 |
BMX |
0.676 | 0.002 | -1 | 0.646 |
EPHB2 |
0.676 | -0.020 | -1 | 0.719 |
BLK |
0.675 | 0.014 | -1 | 0.762 |
AXL |
0.675 | -0.032 | 3 | 0.719 |
HCK |
0.675 | -0.034 | -1 | 0.755 |
EPHA7 |
0.674 | -0.020 | 2 | 0.414 |
NEK10_TYR |
0.673 | 0.015 | 1 | 0.525 |
KIT |
0.673 | -0.061 | 3 | 0.741 |
KDR |
0.673 | -0.073 | 3 | 0.690 |
DDR2 |
0.673 | 0.014 | 3 | 0.658 |
PTK2 |
0.672 | 0.031 | -1 | 0.730 |
FGFR2 |
0.672 | -0.118 | 3 | 0.721 |
STLK3 |
0.671 | -0.133 | 1 | 0.603 |
PDGFRB |
0.670 | -0.103 | 3 | 0.738 |
FYN |
0.670 | -0.012 | -1 | 0.761 |
ALK |
0.670 | -0.033 | 3 | 0.656 |
YANK2 |
0.669 | -0.069 | 2 | 0.226 |
EPHA3 |
0.668 | -0.065 | 2 | 0.397 |
TEK |
0.668 | -0.117 | 3 | 0.672 |
FGFR1 |
0.667 | -0.113 | 3 | 0.700 |
EPHA1 |
0.667 | -0.052 | 3 | 0.730 |
LTK |
0.665 | -0.077 | 3 | 0.678 |
TEC |
0.664 | -0.073 | -1 | 0.640 |
EPHA8 |
0.663 | -0.038 | -1 | 0.721 |
PDGFRA |
0.663 | -0.120 | 3 | 0.738 |
NTRK3 |
0.663 | -0.035 | -1 | 0.695 |
WEE1_TYR |
0.663 | -0.098 | -1 | 0.682 |
PTK6 |
0.663 | -0.081 | -1 | 0.651 |
EPHA5 |
0.662 | -0.061 | 2 | 0.396 |
SYK |
0.662 | 0.004 | -1 | 0.717 |
FGFR3 |
0.662 | -0.128 | 3 | 0.692 |
FRK |
0.661 | -0.084 | -1 | 0.750 |
FLT3 |
0.661 | -0.172 | 3 | 0.738 |
MATK |
0.660 | -0.069 | -1 | 0.653 |
NTRK1 |
0.660 | -0.119 | -1 | 0.729 |
FLT1 |
0.660 | -0.122 | -1 | 0.745 |
INSR |
0.659 | -0.104 | 3 | 0.658 |
LYN |
0.658 | -0.074 | 3 | 0.653 |
BTK |
0.657 | -0.160 | -1 | 0.678 |
SRC |
0.657 | -0.064 | -1 | 0.746 |
ERBB2 |
0.657 | -0.135 | 1 | 0.629 |
CK1G3 |
0.657 | -0.073 | -3 | 0.316 |
CSK |
0.657 | -0.092 | 2 | 0.416 |
EPHA2 |
0.655 | -0.045 | -1 | 0.686 |
EGFR |
0.655 | -0.082 | 1 | 0.560 |
NTRK2 |
0.654 | -0.144 | 3 | 0.691 |
ZAP70 |
0.653 | 0.019 | -1 | 0.650 |
CK1G2 |
0.652 | -0.052 | -3 | 0.399 |
FGFR4 |
0.652 | -0.092 | -1 | 0.681 |
FLT4 |
0.650 | -0.192 | 3 | 0.674 |
ERBB4 |
0.649 | -0.053 | 1 | 0.615 |
IGF1R |
0.647 | -0.098 | 3 | 0.600 |
MUSK |
0.644 | -0.100 | 1 | 0.541 |
FES |
0.640 | -0.067 | -1 | 0.627 |