Motif 325 (n=1,194)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0A0MRY4 | None | S579 | ochoa | Spermatogenesis-associated protein 13 | None |
A6NEQ0 | RBMY1E | S473 | ochoa | RNA-binding motif protein, Y chromosome, family 1 member E | RNA-binding protein which may be involved in spermatogenesis. Required for sperm development, possibly by participating in pre-mRNA splicing in the testis. |
A8CG34 | POM121C | S323 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
A8CG34 | POM121C | S370 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
A8MVS5 | HIDE1 | S213 | ochoa | Protein HIDE1 | None |
A8MVW0 | FAM171A2 | S422 | ochoa | Protein FAM171A2 | None |
B7ZBB8 | PPP1R3G | S84 | ochoa | Protein phosphatase 1 regulatory subunit 3G | Glycogen-targeting subunit for protein phosphatase 1 (PP1). Involved in the regulation of hepatic glycogenesis in a manner coupled to the fasting-feeding cycle and distinct from other glycogen-targeting subunits (By similarity). {ECO:0000250}. |
E9PCH4 | None | S1485 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
F5H5P2 | None | S371 | ochoa | 2-oxoisovalerate dehydrogenase subunit alpha (EC 1.2.4.4) (Branched-chain alpha-keto acid dehydrogenase E1 component alpha chain) | Together with BCKDHB forms the heterotetrameric E1 subunit of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. The BCKD complex catalyzes the multi-step oxidative decarboxylation of alpha-ketoacids derived from the branched-chain amino-acids valine, leucine and isoleucine producing CO2 and acyl-CoA which is subsequently utilized to produce energy. The E1 subunit catalyzes the first step with the decarboxylation of the alpha-ketoacid forming an enzyme-product intermediate. A reductive acylation mediated by the lipoylamide cofactor of E2 extracts the acyl group from the E1 active site for the next step of the reaction. {ECO:0000256|ARBA:ARBA00037052, ECO:0000256|RuleBase:RU365014}. |
H7C1W4 | None | S23 | ochoa | Uncharacterized protein | None |
O00257 | CBX4 | S432 | ochoa | E3 SUMO-protein ligase CBX4 (EC 2.3.2.-) (Chromobox protein homolog 4) (Polycomb 2 homolog) (Pc2) (hPc2) | E3 SUMO-protein ligase that catalyzes sumoylation of target proteins by promoting the transfer of SUMO from the E2 enzyme to the substrate (PubMed:12679040, PubMed:22825850). Involved in the sumoylation of HNRNPK, a p53/TP53 transcriptional coactivator, hence indirectly regulates p53/TP53 transcriptional activation resulting in p21/CDKN1A expression. Monosumoylates ZNF131 (PubMed:22825850). {ECO:0000269|PubMed:12679040, ECO:0000269|PubMed:22825850}.; FUNCTION: Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:12167701, PubMed:19636380, PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167701, PubMed:19636380, PubMed:21282530). Binds to histone H3 trimethylated at 'Lys-9' (H3K9me3) (By similarity). Plays a role in the lineage differentiation of the germ layers in embryonic development (By similarity). {ECO:0000250|UniProtKB:O55187, ECO:0000269|PubMed:12167701, ECO:0000269|PubMed:19636380, ECO:0000269|PubMed:21282530}. |
O00418 | EEF2K | S462 | ochoa | Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) | Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}. |
O14639 | ABLIM1 | S450 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O14646 | CHD1 | S1096 | ochoa | Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) | ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}. |
O14646 | CHD1 | S1098 | ochoa | Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) | ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}. |
O14646 | CHD1 | S1385 | ochoa | Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) | ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}. |
O14649 | KCNK3 | S373 | ochoa | Potassium channel subfamily K member 3 (Acid-sensitive potassium channel protein TASK-1) (TWIK-related acid-sensitive K(+) channel 1) (Two pore potassium channel KT3.1) (Two pore K(+) channel KT3.1) | K(+) channel that conducts voltage-dependent outward rectifying currents upon membrane depolarization. Voltage sensing is coupled to K(+) electrochemical gradient in an 'ion flux gating' mode where outward but not inward ion flow opens the gate (PubMed:23169818, PubMed:26919430, PubMed:32499642, PubMed:36195757, PubMed:9312005). Changes ion selectivity and becomes permeable to Na(+) ions in response to extracellular acidification. Protonation of the pH sensor His-98 stabilizes C-type inactivation conformation likely converting the channel from outward K(+)-conducting, to inward Na(+)-conducting to nonconductive state (PubMed:22948150). Homo- and heterodimerizes to form functional channels with distinct regulatory and gating properties (PubMed:23169818, PubMed:32499642). Allows K(+) currents with fast-gating kinetics important for the repolarization and hyperpolarization phases of action potentials (By similarity). In cerebellar granule cells, heteromeric KCNK3:KCNK9 channel may hyperpolarize the resting membrane potential to limit intrinsic neuronal excitability, but once the action potential threshold is reached, it may support high-frequency action potential firing and increased neuronal excitability (By similarity). Dispensable for central chemosensory respiration i.e. breathing controlled by brainstem CO2/pH, it rather conducts pH-sensitive currents and controls the firing rate of serotonergic raphe neurons involved in potentiation of the respiratory chemoreflex. Additionally, imparts chemosensitivity to type 1 cells in carotid bodies which respond to a decrease in arterial oxygen pressure or an increase in carbon dioxide pressure or pH to initiate adaptive changes in pulmonary ventilation (By similarity). In adrenal gland, contributes to the maintenance of a hyperpolarized resting membrane potential of aldosterone-producing cells at zona glomerulosa and limits aldosterone release as part of a regulatory mechanism that controls arterial blood pressure and electrolyte homeostasis (By similarity). In brown adipocytes, mediates K(+) efflux that counteracts norepinephrine-induced membrane depolarization, limits Ca(2+) efflux and downstream cAMP and PKA signaling, ultimately attenuating lipid oxidation and adaptive thermogenesis (By similarity). {ECO:0000250|UniProtKB:O35111, ECO:0000250|UniProtKB:O54912, ECO:0000269|PubMed:22948150, ECO:0000269|PubMed:23169818, ECO:0000269|PubMed:26919430, ECO:0000269|PubMed:32499642, ECO:0000269|PubMed:36195757, ECO:0000269|PubMed:9312005}. |
O14654 | IRS4 | S1089 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14965 | AURKA | S51 | ochoa|psp | Aurora kinase A (EC 2.7.11.1) (Aurora 2) (Aurora/IPL1-related kinase 1) (ARK-1) (Aurora-related kinase 1) (Breast tumor-amplified kinase) (Ipl1- and aurora-related kinase 1) (Serine/threonine-protein kinase 15) (Serine/threonine-protein kinase 6) (Serine/threonine-protein kinase Ayk1) (Serine/threonine-protein kinase aurora-A) | Mitotic serine/threonine kinase that contributes to the regulation of cell cycle progression (PubMed:11039908, PubMed:12390251, PubMed:17125279, PubMed:17360485, PubMed:18615013, PubMed:26246606). Associates with the centrosome and the spindle microtubules during mitosis and plays a critical role in various mitotic events including the establishment of mitotic spindle, centrosome duplication, centrosome separation as well as maturation, chromosomal alignment, spindle assembly checkpoint, and cytokinesis (PubMed:14523000, PubMed:26246606). Required for normal spindle positioning during mitosis and for the localization of NUMA1 and DCTN1 to the cell cortex during metaphase (PubMed:27335426). Required for initial activation of CDK1 at centrosomes (PubMed:13678582, PubMed:15128871). Phosphorylates numerous target proteins, including ARHGEF2, BORA, BRCA1, CDC25B, DLGP5, HDAC6, KIF2A, LATS2, NDEL1, PARD3, PPP1R2, PLK1, RASSF1, TACC3, p53/TP53 and TPX2 (PubMed:11551964, PubMed:14702041, PubMed:15128871, PubMed:15147269, PubMed:15987997, PubMed:17604723, PubMed:18056443, PubMed:18615013). Phosphorylates MCRS1 which is required for MCRS1-mediated kinetochore fiber assembly and mitotic progression (PubMed:27192185). Regulates KIF2A tubulin depolymerase activity (PubMed:19351716). Important for microtubule formation and/or stabilization (PubMed:18056443). Required for normal axon formation (PubMed:19812038). Plays a role in microtubule remodeling during neurite extension (PubMed:19668197). Also acts as a key regulatory component of the p53/TP53 pathway, and particularly the checkpoint-response pathways critical for oncogenic transformation of cells, by phosphorylating and destabilizing p53/TP53 (PubMed:14702041). Phosphorylates its own inhibitors, the protein phosphatase type 1 (PP1) isoforms, to inhibit their activity (PubMed:11551964). Inhibits cilia outgrowth (By similarity). Required for cilia disassembly via phosphorylation of HDAC6 and subsequent deacetylation of alpha-tubulin (PubMed:17604723, PubMed:20643351). Regulates protein levels of the anti-apoptosis protein BIRC5 by suppressing the expression of the SCF(FBXL7) E3 ubiquitin-protein ligase substrate adapter FBXL7 through the phosphorylation of the transcription factor FOXP1 (PubMed:28218735). {ECO:0000250|UniProtKB:A0A8I3S724, ECO:0000269|PubMed:11039908, ECO:0000269|PubMed:11551964, ECO:0000269|PubMed:12390251, ECO:0000269|PubMed:13678582, ECO:0000269|PubMed:14523000, ECO:0000269|PubMed:14702041, ECO:0000269|PubMed:15128871, ECO:0000269|PubMed:15147269, ECO:0000269|PubMed:15987997, ECO:0000269|PubMed:17125279, ECO:0000269|PubMed:17360485, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:18615013, ECO:0000269|PubMed:19351716, ECO:0000269|PubMed:19668197, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:20643351, ECO:0000269|PubMed:26246606, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27335426, ECO:0000269|PubMed:28218735}. |
O14981 | BTAF1 | S88 | ochoa | TATA-binding protein-associated factor 172 (EC 3.6.4.-) (ATP-dependent helicase BTAF1) (B-TFIID transcription factor-associated 170 kDa subunit) (TAF(II)170) (TBP-associated factor 172) (TAF-172) | Regulates transcription in association with TATA binding protein (TBP). Removes TBP from the TATA box in an ATP-dependent manner. |
O15085 | ARHGEF11 | S234 | ochoa | Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}. |
O15169 | AXIN1 | S579 | ochoa | Axin-1 (Axis inhibition protein 1) (hAxin) | Component of the beta-catenin destruction complex required for regulating CTNNB1 levels through phosphorylation and ubiquitination, and modulating Wnt-signaling (PubMed:12192039, PubMed:27098453, PubMed:28829046). Controls dorsoventral patterning via two opposing effects; down-regulates CTNNB1 to inhibit the Wnt signaling pathway and ventralize embryos, but also dorsalizes embryos by activating a Wnt-independent JNK signaling pathway (PubMed:12192039). In Wnt signaling, probably facilitates the phosphorylation of CTNNB1 and APC by GSK3B (PubMed:12192039). Likely to function as a tumor suppressor. Enhances TGF-beta signaling by recruiting the RNF111 E3 ubiquitin ligase and promoting the degradation of inhibitory SMAD7 (PubMed:16601693). Also a component of the AXIN1-HIPK2-TP53 complex which controls cell growth, apoptosis and development (PubMed:17210684). Facilitates the phosphorylation of TP53 by HIPK2 upon ultraviolet irradiation (PubMed:17210684). {ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:16601693, ECO:0000269|PubMed:17210684, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:28546513}. |
O15226 | NKRF | S616 | ochoa | NF-kappa-B-repressing factor (NFkB-repressing factor) (NRF) (Protein ITBA4) | Enhances the ATPase activity of DHX15 by acting like a brace that tethers mobile sections of DHX15 together, stabilizing a functional conformation with high RNA affinity of DHX15 (PubMed:12381793). Involved in the constitutive silencing of the interferon beta promoter, independently of the virus-induced signals, and in the inhibition of the basal and cytokine-induced iNOS promoter activity (PubMed:12381793). Also involved in the regulation of IL-8 transcription (PubMed:12381793). May also act as a DNA-binding transcription regulator: interacts with a specific negative regulatory element (NRE) 5'-AATTCCTCTGA-3' to mediate transcriptional repression of certain NK-kappa-B responsive genes (PubMed:10562553). {ECO:0000269|PubMed:10562553, ECO:0000269|PubMed:12381793}. |
O15231 | ZNF185 | S64 | ochoa | Zinc finger protein 185 (LIM domain protein ZNF185) (P1-A) | May be involved in the regulation of cellular proliferation and/or differentiation. |
O15265 | ATXN7 | S842 | ochoa | Ataxin-7 (Spinocerebellar ataxia type 7 protein) | Acts as a component of the SAGA (aka STAGA) transcription coactivator-HAT complex (PubMed:15932940, PubMed:18206972). Mediates the interaction of SAGA complex with the CRX and is involved in CRX-dependent gene activation (PubMed:15932940, PubMed:18206972). Probably involved in tethering the deubiquitination module within the SAGA complex (PubMed:24493646). Necessary for microtubule cytoskeleton stabilization (PubMed:22100762). Involved in neurodegeneration (PubMed:9288099). {ECO:0000269|PubMed:15932940, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:22100762, ECO:0000269|PubMed:24493646, ECO:0000269|PubMed:9288099}. |
O15439 | ABCC4 | S655 | ochoa | ATP-binding cassette sub-family C member 4 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (MRP/cMOAT-related ABC transporter) (Multi-specific organic anion transporter B) (MOAT-B) (Multidrug resistance-associated protein 4) | ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds and xenobiotics from cells. Transports a range of endogenous molecules that have a key role in cellular communication and signaling, including cyclic nucleotides such as cyclic AMP (cAMP) and cyclic GMP (cGMP), bile acids, steroid conjugates, urate, and prostaglandins (PubMed:11856762, PubMed:12523936, PubMed:12835412, PubMed:12883481, PubMed:15364914, PubMed:15454390, PubMed:16282361, PubMed:17959747, PubMed:18300232, PubMed:26721430). Mediates the ATP-dependent efflux of glutathione conjugates such as leukotriene C4 (LTC4) and leukotriene B4 (LTB4) too. The presence of GSH is necessary for the ATP-dependent transport of LTB4, whereas GSH is not required for the transport of LTC4 (PubMed:17959747). Mediates the cotransport of bile acids with reduced glutathione (GSH) (PubMed:12523936, PubMed:12883481, PubMed:16282361). Transports a wide range of drugs and their metabolites, including anticancer, antiviral and antibiotics molecules (PubMed:11856762, PubMed:12105214, PubMed:15454390, PubMed:17344354, PubMed:18300232). Confers resistance to anticancer agents such as methotrexate (PubMed:11106685). {ECO:0000269|PubMed:11106685, ECO:0000269|PubMed:11856762, ECO:0000269|PubMed:12105214, ECO:0000269|PubMed:12523936, ECO:0000269|PubMed:12835412, ECO:0000269|PubMed:12883481, ECO:0000269|PubMed:15364914, ECO:0000269|PubMed:15454390, ECO:0000269|PubMed:16282361, ECO:0000269|PubMed:17344354, ECO:0000269|PubMed:17959747, ECO:0000269|PubMed:18300232, ECO:0000269|PubMed:26721430}. |
O15446 | POLR1G | S64 | ochoa | DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}. |
O43166 | SIPA1L1 | S174 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43166 | SIPA1L1 | S1391 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43182 | ARHGAP6 | S363 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43182 | ARHGAP6 | S635 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43182 | ARHGAP6 | S770 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43194 | GPR39 | S380 | ochoa | G-protein coupled receptor 39 | Zinc-sensing receptor that can sense changes in extracellular Zn(2+), mediate Zn(2+) signal transmission, and participates in the regulation of numerous physiological processes including glucose homeostasis regulation, gastrointestinal mobility, hormone secretion and cell death (PubMed:18180304). Activation by Zn(2+) in keratinocytes increases the intracellular concentration of Ca(2+) and activates the ERK/MAPK and PI3K/AKT signaling pathways leading to epithelial repair (PubMed:20522546). Plays an essential role in normal wound healing by inducing the production of cytokines including the major inflammatory cytokine IL6 via the PKC/MAPK/CEBPB pathway (By similarity). Regulates adipose tissue metabolism, especially lipolysis, and regulates the function of lipases, such as hormone-sensitive lipase and adipose triglyceride lipase (By similarity). Plays a role in the inhibition of cell death and protects against oxidative, endoplasmic reticulum and mitochondrial stress by inducing secretion of the cytoprotective pigment epithelium-derived growth factor (PEDF) and probably other protective transcripts in a GNA13/RHOA/SRE-dependent manner (PubMed:18180304). Forms dynamic heteroreceptor complexes with HTR1A and GALR1 depending on cell type or specific physiological states, resulting in signaling diversity: HTR1A-GPR39 shows additive increase in signaling along the serum response element (SRE) and NF-kappa-B pathways while GALR1 acts as an antagonist blocking SRE (PubMed:26365466). {ECO:0000250|UniProtKB:Q5U431, ECO:0000269|PubMed:18180304, ECO:0000269|PubMed:20522546, ECO:0000269|PubMed:26365466}. |
O43237 | DYNC1LI2 | S203 | ochoa | Cytoplasmic dynein 1 light intermediate chain 2 (Dynein light intermediate chain 2, cytosolic) (LIC-2) (LIC53/55) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. {ECO:0000305|PubMed:36071160}. |
O43353 | RIPK2 | S176 | ochoa|psp | Receptor-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (CARD-containing interleukin-1 beta-converting enzyme-associated kinase) (CARD-containing IL-1 beta ICE-kinase) (RIP-like-interacting CLARP kinase) (Receptor-interacting protein 2) (RIP-2) (Tyrosine-protein kinase RIPK2) (EC 2.7.10.2) | Serine/threonine/tyrosine-protein kinase that plays an essential role in modulation of innate and adaptive immune responses (PubMed:14638696, PubMed:17054981, PubMed:21123652, PubMed:28656966, PubMed:9575181, PubMed:9642260). Acts as a key effector of NOD1 and NOD2 signaling pathways: upon activation by bacterial peptidoglycans, NOD1 and NOD2 oligomerize and recruit RIPK2 via CARD-CARD domains, leading to the formation of RIPK2 filaments (PubMed:17054981, PubMed:17562858, PubMed:21123652, PubMed:22607974, PubMed:28656966, PubMed:29452636, PubMed:30026309). Once recruited, RIPK2 autophosphorylates and undergoes 'Lys-63'-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3, as well as 'Met-1'-linked (linear) polyubiquitination by the LUBAC complex, becoming a scaffolding protein for downstream effectors (PubMed:22607974, PubMed:28545134, PubMed:29452636, PubMed:30026309, PubMed:30279485, PubMed:30478312). 'Met-1'-linked polyubiquitin chains attached to RIPK2 recruit IKBKG/NEMO, which undergoes 'Lys-63'-linked polyubiquitination in a RIPK2-dependent process (PubMed:17562858, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitin chains attached to RIPK2 serve as docking sites for TAB2 and TAB3 and mediate the recruitment of MAP3K7/TAK1 to IKBKG/NEMO, inducing subsequent activation of IKBKB/IKKB (PubMed:18079694). In turn, NF-kappa-B is released from NF-kappa-B inhibitors and translocates into the nucleus where it activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18079694). The protein kinase activity is dispensable for the NOD1 and NOD2 signaling pathways (PubMed:29452636, PubMed:30026309). Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappa-B activation by NOD2 (PubMed:21887730). Also involved in adaptive immunity: plays a role during engagement of the T-cell receptor (TCR) in promoting BCL10 phosphorylation and subsequent NF-kappa-B activation (PubMed:14638696). Plays a role in the inactivation of RHOA in response to NGFR signaling (PubMed:26646181). {ECO:0000269|PubMed:14638696, ECO:0000269|PubMed:17054981, ECO:0000269|PubMed:17562858, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:21123652, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:28545134, ECO:0000269|PubMed:28656966, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:30279485, ECO:0000269|PubMed:30478312, ECO:0000269|PubMed:9575181, ECO:0000269|PubMed:9642260}. |
O43426 | SYNJ1 | S1223 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43524 | FOXO3 | S553 | ochoa | Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) | Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}. |
O43561 | LAT | Y36 | ochoa | Linker for activation of T-cells family member 1 (36 kDa phosphotyrosine adapter protein) (pp36) (p36-38) | Required for TCR (T-cell antigen receptor)- and pre-TCR-mediated signaling, both in mature T-cells and during their development (PubMed:23514740, PubMed:25907557). Involved in FCGR3 (low affinity immunoglobulin gamma Fc region receptor III)-mediated signaling in natural killer cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Couples activation of these receptors and their associated kinases with distal intracellular events such as mobilization of intracellular calcium stores, PKC activation, MAPK activation or cytoskeletal reorganization through the recruitment of PLCG1, GRB2, GRAP2, and other signaling molecules. {ECO:0000269|PubMed:10072481, ECO:0000269|PubMed:23514740, ECO:0000269|PubMed:25907557}. |
O43719 | HTATSF1 | S389 | ochoa | 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}. |
O43896 | KIF1C | S674 | ochoa | Kinesin-like protein KIF1C | Motor required for the retrograde transport of Golgi vesicles to the endoplasmic reticulum. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:9685376}. |
O60238 | BNIP3L | S164 | ochoa | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (Adenovirus E1B19K-binding protein B5) (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3A) (NIP3-like protein X) (NIP3L) | Induces apoptosis. Interacts with viral and cellular anti-apoptosis proteins. Can overcome the suppressors BCL-2 and BCL-XL, although high levels of BCL-XL expression will inhibit apoptosis. Inhibits apoptosis induced by BNIP3. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. May function as a tumor suppressor. {ECO:0000269|PubMed:10381623, ECO:0000269|PubMed:21264228}. |
O60292 | SIPA1L3 | S1160 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60293 | ZFC3H1 | S42 | ochoa | Zinc finger C3H1 domain-containing protein (Coiled-coil domain-containing protein 131) (Proline/serine-rich coiled-coil protein 2) | Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters. {ECO:0000269|PubMed:27871484}. |
O60307 | MAST3 | S153 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60307 | MAST3 | S155 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60307 | MAST3 | Y708 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60749 | SNX2 | S117 | ochoa | Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}. |
O75122 | CLASP2 | S453 | ochoa | CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}. |
O75122 | CLASP2 | S523 | ochoa | CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}. |
O75128 | COBL | S753 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75140 | DEPDC5 | S1530 | ochoa|psp | GATOR1 complex protein DEPDC5 (DEP domain-containing protein 5) | As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:31548394, PubMed:35338845). In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:35338845). In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29769719). Within the GATOR1 complex, DEPDC5 mediates direct interaction with the nucleotide-binding pocket of small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD) and coordinates their nucleotide loading states by promoting RagA/RRAGA or RagB/RRAGB into their GDP-binding state and RagC/RRAGC or RagD/RRAGD into their GTP-binding state (PubMed:29590090, PubMed:35338845). However, it does not execute the GAP activity, which is mediated by NPRL2 (PubMed:29590090). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:29590090, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:35338845}. |
O75179 | ANKRD17 | S207 | ochoa | Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16) | Could play pivotal roles in cell cycle and DNA regulation (PubMed:19150984). Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways (PubMed:22328336). Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too (PubMed:23711367). Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) (PubMed:17276651). Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). {ECO:0000250|UniProtKB:Q99NH0, ECO:0000269|PubMed:17276651, ECO:0000269|PubMed:19150984, ECO:0000269|PubMed:22328336, ECO:0000269|PubMed:23711367}. |
O75400 | PRPF40A | S832 | ochoa | Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) | Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
O75420 | GIGYF1 | S155 | ochoa | GRB10-interacting GYF protein 1 (PERQ amino acid-rich with GYF domain-containing protein 1) | May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling. May increase IGF1 receptor phosphorylation under IGF1 stimulation as well as phosphorylation of IRS1 and SHC1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:12771153}. |
O94761 | RECQL4 | S323 | ochoa | ATP-dependent DNA helicase Q4 (EC 5.6.2.4) (DNA 3'-5' helicase RecQ4) (DNA helicase, RecQ-like type 4) (RecQ4) (RTS) (RecQ protein-like 4) | An ATP-dependent DNA helicase which unwinds dsDNA with a 3'-overhang in a 3'-5' direction (PubMed:28653661). Does not unwind more than 18 bp of dsDNA (PubMed:28653661). May modulate chromosome segregation. The N-terminal domain (residues 1-54) binds DNA Y-shaped DNA better than ss- or dsDNA (PubMed:22730300). The core helicase domain binds ssDNA (PubMed:22730300, PubMed:28653661). {ECO:0000269|PubMed:15317757, ECO:0000269|PubMed:22730300, ECO:0000269|PubMed:28653661}. |
O94776 | MTA2 | S52 | ochoa | Metastasis-associated protein MTA2 (Metastasis-associated 1-like 1) (MTA1-L1 protein) (p53 target protein in deacetylase complex) | May function as a transcriptional coregulator (PubMed:16428440, PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
O94804 | STK10 | S448 | ochoa | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
O94875 | SORBS2 | Y232 | ochoa | Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) | Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}. |
O94875 | SORBS2 | S841 | ochoa | Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) | Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}. |
O94880 | PHF14 | S572 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O94885 | SASH1 | S817 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O94886 | TMEM63A | S100 | ochoa | Mechanosensitive cation channel TMEM63A (Transmembrane protein 63A) (hTMEM63A) | Mechanosensitive cation channel with low conductance and high activation threshold (PubMed:30382938, PubMed:31587869, PubMed:37543036). In contrast to TMEM63B, does not show phospholipid scramblase activity (PubMed:39716028). Acts as a regulator of lysosomal morphology by mediating lysosomal mechanosensitivity (By similarity). Important for the baby's first breath and respiration throughout life (PubMed:38127458). Upon lung inflation conducts cation currents in alveolar type 1 and 2 cells triggering lamellar body exocytosis and surfactant secretion into airspace (PubMed:38127458). Also acts as an osmosensitive cation channel preferentially activated by hypotonic stress (By similarity). {ECO:0000250|UniProtKB:Q91YT8, ECO:0000269|PubMed:30382938, ECO:0000269|PubMed:31587869, ECO:0000269|PubMed:37543036, ECO:0000269|PubMed:38127458, ECO:0000269|PubMed:39716028}. |
O94929 | ABLIM3 | S280 | ochoa | Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
O95155 | UBE4B | S141 | ochoa | Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}. |
O95251 | KAT7 | S100 | ochoa | Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) | Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}. |
O95292 | VAPB | S204 | ochoa | Vesicle-associated membrane protein-associated protein B/C (VAMP-B/VAMP-C) (VAMP-associated protein B/C) (VAP-B/VAP-C) | Endoplasmic reticulum (ER)-anchored protein that mediates the formation of contact sites between the ER and endosomes via interaction with FFAT motif-containing proteins such as STARD3 or WDR44 (PubMed:32344433, PubMed:33124732). Interacts with STARD3 in a FFAT motif phosphorylation dependent manner (PubMed:33124732). Via interaction with WDR44 participates in neosynthesized protein export (PubMed:32344433). Participates in the endoplasmic reticulum unfolded protein response (UPR) by inducing ERN1/IRE1 activity (PubMed:16891305, PubMed:20940299). Involved in cellular calcium homeostasis regulation (PubMed:22131369). {ECO:0000269|PubMed:16891305, ECO:0000269|PubMed:20940299, ECO:0000269|PubMed:22131369, ECO:0000269|PubMed:32344433, ECO:0000269|PubMed:33124732}. |
O95544 | NADK | S44 | ochoa | NAD kinase (EC 2.7.1.23) (Poly(P)/ATP NAD kinase) | None |
O95544 | NADK | S46 | ochoa|psp | NAD kinase (EC 2.7.1.23) (Poly(P)/ATP NAD kinase) | None |
O95696 | BRD1 | S852 | ochoa | Bromodomain-containing protein 1 (BR140-like protein) (Bromodomain and PHD finger-containing protein 2) | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, that acts as a regulator of hematopoiesis (PubMed:16387653, PubMed:21753189, PubMed:21880731). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby promoting erythroid differentiation (PubMed:21753189). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21880731}. |
O95936 | EOMES | S648 | ochoa | Eomesodermin homolog (T-box brain protein 2) (T-brain-2) (TBR-2) | Functions as a transcriptional activator playing a crucial role during development. Functions in trophoblast differentiation and later in gastrulation, regulating both mesoderm delamination and endoderm specification. Plays a role in brain development being required for the specification and the proliferation of the intermediate progenitor cells and their progeny in the cerebral cortex (PubMed:17353897). Required for differentiation and migration of unipolar dendritic brush cells (PubMed:33488348). Also involved in the differentiation of CD8+ T-cells during immune response regulating the expression of lytic effector genes (PubMed:17566017). {ECO:0000269|PubMed:17353897, ECO:0000269|PubMed:17566017, ECO:0000269|PubMed:33488348}. |
P01275 | GCG | S150 | ochoa | Pro-glucagon [Cleaved into: Glicentin; Glicentin-related polypeptide (GRPP); Oxyntomodulin (OXM) (OXY); Glucagon; Glucagon-like peptide 1 (GLP-1) (Incretin hormone); Glucagon-like peptide 1(7-37) (GLP-1(7-37)); Glucagon-like peptide 1(7-36) (GLP-1(7-36)); Glucagon-like peptide 2 (GLP-2)] | [Glucagon]: Plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia. Plays an important role in initiating and maintaining hyperglycemic conditions in diabetes. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12626323}.; FUNCTION: [Glucagon-like peptide 1]: Potent stimulator of glucose-dependent insulin release. Also stimulates insulin release in response to IL6 (PubMed:22037645). Plays important roles on gastric motility and the suppression of plasma glucagon levels. May be involved in the suppression of satiety and stimulation of glucose disposal in peripheral tissues, independent of the actions of insulin. Has growth-promoting activities on intestinal epithelium. May also regulate the hypothalamic pituitary axis (HPA) via effects on LH, TSH, CRH, oxytocin, and vasopressin secretion. Increases islet mass through stimulation of islet neogenesis and pancreatic beta cell proliferation. Inhibits beta cell apoptosis (Probable). {ECO:0000269|PubMed:22037645, ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744, ECO:0000305|PubMed:14719035}.; FUNCTION: [Glucagon-like peptide 2]: Stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, from the stomach to the colon is the principal target for GLP-2 action. Plays a key role in nutrient homeostasis, enhancing nutrient assimilation through enhanced gastrointestinal function, as well as increasing nutrient disposal. Stimulates intestinal glucose transport and decreases mucosal permeability. {ECO:0000305|PubMed:10322410, ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744, ECO:0000305|PubMed:14719035}.; FUNCTION: [Oxyntomodulin]: Significantly reduces food intake. Inhibits gastric emptying in humans. Suppression of gastric emptying may lead to increased gastric distension, which may contribute to satiety by causing a sensation of fullness. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744}.; FUNCTION: [Glicentin]: May modulate gastric acid secretion and the gastro-pyloro-duodenal activity. May play an important role in intestinal mucosal growth in the early period of life. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744}. |
P02545 | LMNA | S301 | ochoa|psp | Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] | [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}. |
P02545 | LMNA | S404 | ochoa|psp | Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] | [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}. |
P05814 | CSN2 | S21 | psp | Beta-casein | Important role in determination of the surface properties of the casein micelles. |
P08559 | PDHA1 | S293 | ochoa|psp | Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial (EC 1.2.4.1) (PDHE1-A type I) | The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle. {ECO:0000269|PubMed:19081061, ECO:0000269|PubMed:7782287}. |
P08648 | ITGA5 | S124 | ochoa | Integrin alpha-5 (CD49 antigen-like family member E) (Fibronectin receptor subunit alpha) (Integrin alpha-F) (VLA-5) (CD antigen CD49e) [Cleaved into: Integrin alpha-5 heavy chain; Integrin alpha-5 light chain] | Integrin alpha-5/beta-1 (ITGA5:ITGB1) is a receptor for fibronectin and fibrinogen. It recognizes the sequence R-G-D in its ligands. ITGA5:ITGB1 binds to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1 (PubMed:18635536, PubMed:25398877). ITGA5:ITGB1 acts as a receptor for fibrillin-1 (FBN1) and mediates R-G-D-dependent cell adhesion to FBN1 (PubMed:12807887, PubMed:17158881). ITGA5:ITGB1 acts as a receptor for fibronectin (FN1) and mediates R-G-D-dependent cell adhesion to FN1 (PubMed:33962943). ITGA5:ITGB1 is a receptor for IL1B and binding is essential for IL1B signaling (PubMed:29030430). ITGA5:ITGB3 is a receptor for soluble CD40LG and is required for CD40/CD40LG signaling (PubMed:31331973). {ECO:0000269|PubMed:12807887, ECO:0000269|PubMed:17158881, ECO:0000269|PubMed:18635536, ECO:0000269|PubMed:25398877, ECO:0000269|PubMed:29030430, ECO:0000269|PubMed:31331973, ECO:0000269|PubMed:33962943}.; FUNCTION: (Microbial infection) Integrin ITGA5:ITGB1 acts as a receptor for Human metapneumovirus. {ECO:0000269|PubMed:12907437}.; FUNCTION: (Microbial infection) Integrin ITGA2:ITGB1 acts as a receptor for Human parvovirus B19. {ECO:0000269|PubMed:24478423}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. {ECO:0000269|PubMed:10397733}. |
P08651 | NFIC | S273 | ochoa | Nuclear factor 1 C-type (NF1-C) (Nuclear factor 1/C) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/C) (NF-I/C) (NFI-C) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
P0C7P1 | RBMY1D | S473 | ochoa | RNA-binding motif protein, Y chromosome, family 1 member D | RNA-binding protein which may be involved in spermatogenesis. Required for sperm development, possibly by participating in pre-mRNA splicing in the testis. |
P0DJD3 | RBMY1A1 | S473 | ochoa | RNA-binding motif protein, Y chromosome, family 1 member A1 (RNA-binding motif protein 1) (RNA-binding motif protein 2) (Y chromosome RNA recognition motif 1) (hRBMY) | RNA-binding protein involved in pre-mRNA splicing. Required for sperm development. Acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN. Binds non-specifically to mRNAs. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:8269511}. |
P0DJD4 | RBMY1C | S473 | ochoa | RNA-binding motif protein, Y chromosome, family 1 member C | RNA-binding protein involved in pre-mRNA splicing. Required for sperm development. Acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN. Binds non-specifically to mRNAs. |
P10070 | GLI2 | S234 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P11166 | SLC2A1 | S473 | ochoa | Solute carrier family 2, facilitated glucose transporter member 1 (Glucose transporter type 1, erythrocyte/brain) (GLUT-1) (HepG2 glucose transporter) | Facilitative glucose transporter, which is responsible for constitutive or basal glucose uptake (PubMed:10227690, PubMed:10954735, PubMed:18245775, PubMed:19449892, PubMed:25982116, PubMed:27078104, PubMed:32860739). Has a very broad substrate specificity; can transport a wide range of aldoses including both pentoses and hexoses (PubMed:18245775, PubMed:19449892). Most important energy carrier of the brain: present at the blood-brain barrier and assures the energy-independent, facilitative transport of glucose into the brain (PubMed:10227690). In association with BSG and NXNL1, promotes retinal cone survival by increasing glucose uptake into photoreceptors (By similarity). Required for mesendoderm differentiation (By similarity). {ECO:0000250|UniProtKB:P17809, ECO:0000250|UniProtKB:P46896, ECO:0000269|PubMed:10227690, ECO:0000269|PubMed:10954735, ECO:0000269|PubMed:18245775, ECO:0000269|PubMed:19449892, ECO:0000269|PubMed:25982116, ECO:0000269|PubMed:27078104, ECO:0000269|PubMed:32860739}. |
P11362 | FGFR1 | S450 | ochoa | Fibroblast growth factor receptor 1 (FGFR-1) (EC 2.7.10.1) (Basic fibroblast growth factor receptor 1) (BFGFR) (bFGF-R-1) (Fms-like tyrosine kinase 2) (FLT-2) (N-sam) (Proto-oncogene c-Fgr) (CD antigen CD331) | Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of embryonic development, cell proliferation, differentiation and migration. Required for normal mesoderm patterning and correct axial organization during embryonic development, normal skeletogenesis and normal development of the gonadotropin-releasing hormone (GnRH) neuronal system. Phosphorylates PLCG1, FRS2, GAB1 and SHB. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Promotes phosphorylation of SHC1, STAT1 and PTPN11/SHP2. In the nucleus, enhances RPS6KA1 and CREB1 activity and contributes to the regulation of transcription. FGFR1 signaling is down-regulated by IL17RD/SEF, and by FGFR1 ubiquitination, internalization and degradation. {ECO:0000250|UniProtKB:P16092, ECO:0000269|PubMed:10830168, ECO:0000269|PubMed:11353842, ECO:0000269|PubMed:12181353, ECO:0000269|PubMed:1379697, ECO:0000269|PubMed:1379698, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17623664, ECO:0000269|PubMed:18480409, ECO:0000269|PubMed:19224897, ECO:0000269|PubMed:19261810, ECO:0000269|PubMed:19665973, ECO:0000269|PubMed:20133753, ECO:0000269|PubMed:20139426, ECO:0000269|PubMed:21765395, ECO:0000269|PubMed:8622701, ECO:0000269|PubMed:8663044}. |
P11388 | TOP2A | S1469 | ochoa|psp | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P12694 | BCKDHA | S337 | ochoa|psp | 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (EC 1.2.4.4) (Branched-chain alpha-keto acid dehydrogenase E1 component alpha chain) (BCKDE1A) (BCKDH E1-alpha) | Together with BCKDHB forms the heterotetrameric E1 subunit of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. The BCKD complex catalyzes the multi-step oxidative decarboxylation of alpha-ketoacids derived from the branched-chain amino-acids valine, leucine and isoleucine producing CO2 and acyl-CoA which is subsequently utilized to produce energy. The E1 subunit catalyzes the first step with the decarboxylation of the alpha-ketoacid forming an enzyme-product intermediate. A reductive acylation mediated by the lipoylamide cofactor of E2 extracts the acyl group from the E1 active site for the next step of the reaction. {ECO:0000269|PubMed:10745006, ECO:0000269|PubMed:7883996, ECO:0000269|PubMed:9582350}. |
P12956 | XRCC6 | S475 | ochoa | X-ray repair cross-complementing protein 6 (EC 3.6.4.-) (EC 4.2.99.-) (5'-deoxyribose-5-phosphate lyase Ku70) (5'-dRP lyase Ku70) (70 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 1) (ATP-dependent DNA helicase II 70 kDa subunit) (CTC box-binding factor 75 kDa subunit) (CTC75) (CTCBF) (DNA repair protein XRCC6) (Lupus Ku autoantigen protein p70) (Ku70) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 6) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). 5'-dRP lyase activity allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Negatively regulates apoptosis by interacting with BAX and sequestering it from the mitochondria (PubMed:15023334). Might have deubiquitination activity, acting on BAX (PubMed:18362350). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:15023334, ECO:0000269|PubMed:18362350, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:20493174, ECO:0000269|PubMed:2466842, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:9742108}. |
P15056 | BRAF | S429 | ochoa|psp | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P16885 | PLCG2 | S677 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-gamma-2) (Phospholipase C-IV) (PLC-IV) (Phospholipase C-gamma-2) (PLC-gamma-2) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. It is a crucial enzyme in transmembrane signaling. {ECO:0000269|PubMed:23000145}. |
P20700 | LMNB1 | S302 | ochoa | Lamin-B1 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:28716252, PubMed:32910914). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:28716252, PubMed:32910914). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:28716252, PubMed:32910914). {ECO:0000269|PubMed:28716252, ECO:0000269|PubMed:32910914}. |
P21333 | FLNA | S1520 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21359 | NF1 | S2599 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P21359 | NF1 | S2817 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P21709 | EPHA1 | S908 | ochoa | Ephrin type-A receptor 1 (hEpha1) (EC 2.7.10.1) (EPH tyrosine kinase) (EPH tyrosine kinase 1) (Erythropoietin-producing hepatoma receptor) (Tyrosine-protein kinase receptor EPH) | Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Binds with a low affinity EFNA3 and EFNA4 and with a high affinity to EFNA1 which most probably constitutes its cognate/functional ligand. Upon activation by EFNA1 induces cell attachment to the extracellular matrix inhibiting cell spreading and motility through regulation of ILK and downstream RHOA and RAC. Also plays a role in angiogenesis and regulates cell proliferation. May play a role in apoptosis. {ECO:0000269|PubMed:17634955, ECO:0000269|PubMed:19118217, ECO:0000269|PubMed:20043122}. |
P21860 | ERBB3 | S1094 | ochoa | Receptor tyrosine-protein kinase erbB-3 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-3) (Tyrosine kinase-type cell surface receptor HER3) | Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins. Binds to neuregulin-1 (NRG1) and is activated by it; ligand-binding increases phosphorylation on tyrosine residues and promotes its association with the p85 subunit of phosphatidylinositol 3-kinase (PubMed:20682778). May also be activated by CSPG5 (PubMed:15358134). Involved in the regulation of myeloid cell differentiation (PubMed:27416908). {ECO:0000269|PubMed:15358134, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:27416908}. |
P23193 | TCEA1 | S137 | ochoa | Transcription elongation factor A protein 1 (Transcription elongation factor S-II protein 1) (Transcription elongation factor TFIIS.o) | Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus. |
P23497 | SP100 | S451 | ochoa | Nuclear autoantigen Sp-100 (Nuclear dot-associated Sp100 protein) (Speckled 100 kDa) | Together with PML, this tumor suppressor is a major constituent of the PML bodies, a subnuclear organelle involved in a large number of physiological processes including cell growth, differentiation and apoptosis. Functions as a transcriptional coactivator of ETS1 and ETS2 according to PubMed:11909962. Under certain conditions, it may also act as a corepressor of ETS1 preventing its binding to DNA according to PubMed:15247905. Through the regulation of ETS1 it may play a role in angiogenesis, controlling endothelial cell motility and invasion. Through interaction with the MRN complex it may be involved in the regulation of telomeres lengthening. May also regulate TP53-mediated transcription and through CASP8AP2, regulate FAS-mediated apoptosis. Also plays a role in infection by viruses, including human cytomegalovirus and Epstein-Barr virus, through mechanisms that may involve chromatin and/or transcriptional regulation. {ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:14647468, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000269|PubMed:15767676, ECO:0000269|PubMed:16177824, ECO:0000269|PubMed:17245429, ECO:0000269|PubMed:21274506, ECO:0000269|PubMed:21880768}. |
P23588 | EIF4B | S309 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P25054 | APC | S1341 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25100 | ADRA1D | S516 | psp | Alpha-1D adrenergic receptor (Alpha-1A adrenergic receptor) (Alpha-1D adrenoreceptor) (Alpha-1D adrenoceptor) (Alpha-adrenergic receptor 1a) | This alpha-adrenergic receptor mediates its effect through the influx of extracellular calcium. |
P27816 | MAP4 | S865 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P27987 | ITPKB | S84 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P27987 | ITPKB | S86 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P29317 | EPHA2 | S899 | ochoa | Ephrin type-A receptor 2 (EC 2.7.10.1) (Epithelial cell kinase) (Tyrosine-protein kinase receptor ECK) | Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:16236711, ECO:0000269|PubMed:18339848, ECO:0000269|PubMed:19573808, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:20861311, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:27385333}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.; FUNCTION: Acts as a receptor for human cytomegalovirus (HCMV) to mediate viral entry and fusion in glioblastoma cells. {ECO:0000269|PubMed:37146061}. |
P29474 | NOS3 | S1177 | ochoa|psp | Nitric oxide synthase 3 (EC 1.14.13.39) (Constitutive NOS) (cNOS) (EC-NOS) (NOS type III) (NOSIII) (Nitric oxide synthase, endothelial) (Endothelial NOS) (eNOS) | Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway (PubMed:1378832). NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. {ECO:0000269|PubMed:1378832}.; FUNCTION: [Isoform eNOS13C]: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1. |
P29590 | PML | S560 | psp | Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) | Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}. |
P29590 | PML | S578 | ochoa | Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) | Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}. |
P29803 | PDHA2 | S291 | ochoa|psp | Pyruvate dehydrogenase E1 component subunit alpha, testis-specific form, mitochondrial (EC 1.2.4.1) (PDHE1-A type II) | The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle. {ECO:0000269|PubMed:16436377}. |
P30414 | NKTR | Y807 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P31321 | PRKAR1B | S73 | ochoa | cAMP-dependent protein kinase type I-beta regulatory subunit | Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. {ECO:0000269|PubMed:20819953}. |
P31629 | HIVEP2 | S1087 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P31943 | HNRNPH1 | S21 | ochoa | Heterogeneous nuclear ribonucleoprotein H (hnRNP H) [Cleaved into: Heterogeneous nuclear ribonucleoprotein H, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG). {ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:16946708}. |
P32249 | GPR183 | S330 | ochoa | G-protein coupled receptor 183 (Epstein-Barr virus-induced G-protein coupled receptor 2) (EBI2) (EBV-induced G-protein coupled receptor 2) (hEBI2) | G-protein coupled receptor expressed in lymphocytes that acts as a chemotactic receptor for B-cells, T-cells, splenic dendritic cells, monocytes/macrophages and astrocytes (By similarity). Receptor for oxysterol 7-alpha,25-dihydroxycholesterol (7-alpha,25-OHC) and other related oxysterols (PubMed:21796212, PubMed:22875855, PubMed:22930711). Mediates cell positioning and movement of a number of cells by binding the 7-alpha,25-OHC ligand that forms a chemotactic gradient (By similarity). Binding of 7-alpha,25-OHC mediates the correct localization of B-cells during humoral immune responses (By similarity). Guides B-cell movement along the B-cell zone-T-cell zone boundary and later to interfollicular and outer follicular regions (By similarity). Its specific expression during B-cell maturation helps position B-cells appropriately for mounting T-dependent antibody responses (By similarity). Collaborates with CXCR5 to mediate B-cell migration; probably by forming a heterodimer with CXCR5 that affects the interaction between of CXCL13 and CXCR5 (PubMed:22913878). Also acts as a chemotactic receptor for some T-cells upon binding to 7-alpha,25-OHC ligand (By similarity). Promotes follicular helper T (Tfh) cells differentiation by positioning activated T-cells at the follicle-T-zone interface, promoting contact of newly activated CD4 T-cells with activated dendritic cells and exposing them to Tfh-cell-promoting inducible costimulator (ICOS) ligand (By similarity). Expression in splenic dendritic cells is required for their homeostasis, localization and ability to induce B- and T-cell responses: GPR183 acts as a chemotactic receptor in dendritic cells that mediates the accumulation of CD4(+) dendritic cells in bridging channels (By similarity). Regulates migration of astrocytes and is involved in communication between astrocytes and macrophages (PubMed:25297897). Promotes osteoclast precursor migration to bone surfaces (By similarity). Signals constitutively through G(i)-alpha, but not G(s)-alpha or G(q)-alpha (PubMed:21673108, PubMed:25297897). Signals constitutively also via MAPK1/3 (ERK1/2) (By similarity). {ECO:0000250|UniProtKB:Q3U6B2, ECO:0000269|PubMed:16540462, ECO:0000269|PubMed:21673108, ECO:0000269|PubMed:21796212, ECO:0000269|PubMed:22875855, ECO:0000269|PubMed:22913878, ECO:0000269|PubMed:22930711, ECO:0000269|PubMed:25297897}. |
P33527 | ABCC1 | S917 | ochoa | Multidrug resistance-associated protein 1 (EC 7.6.2.2) (ATP-binding cassette sub-family C member 1) (Glutathione-S-conjugate-translocating ATPase ABCC1) (EC 7.6.2.3) (Leukotriene C(4) transporter) (LTC4 transporter) | Mediates export of organic anions and drugs from the cytoplasm (PubMed:10064732, PubMed:11114332, PubMed:16230346, PubMed:7961706, PubMed:9281595). Mediates ATP-dependent transport of glutathione and glutathione conjugates, leukotriene C4, estradiol-17-beta-o-glucuronide, methotrexate, antiviral drugs and other xenobiotics (PubMed:10064732, PubMed:11114332, PubMed:16230346, PubMed:7961706, PubMed:9281595). Confers resistance to anticancer drugs by decreasing accumulation of drug in cells, and by mediating ATP- and GSH-dependent drug export (PubMed:9281595). Hydrolyzes ATP with low efficiency (PubMed:16230346). Catalyzes the export of sphingosine 1-phosphate from mast cells independently of their degranulation (PubMed:17050692). Participates in inflammatory response by allowing export of leukotriene C4 from leukotriene C4-synthesizing cells (By similarity). Mediates ATP-dependent, GSH-independent cyclic GMP-AMP (cGAMP) export (PubMed:36070769). Thus, by limiting intracellular cGAMP concentrations negatively regulates the cGAS-STING pathway (PubMed:36070769). Exports S-geranylgeranyl-glutathione (GGG) in lymphoid cells and stromal compartments of lymphoid organs. ABCC1 (via extracellular transport) with GGT5 (via GGG catabolism) establish GGG gradients within lymphoid tissues to position P2RY8-positive lymphocytes at germinal centers in lymphoid follicles and restrict their chemotactic transmigration from blood vessels to the bone marrow parenchyma (By similarity). Mediates basolateral export of GSH-conjugated R- and S-prostaglandin A2 diastereomers in polarized epithelial cells (PubMed:9426231). {ECO:0000250|UniProtKB:O35379, ECO:0000269|PubMed:10064732, ECO:0000269|PubMed:11114332, ECO:0000269|PubMed:16230346, ECO:0000269|PubMed:17050692, ECO:0000269|PubMed:36070769, ECO:0000269|PubMed:7961706, ECO:0000269|PubMed:9281595, ECO:0000269|PubMed:9426231}. |
P35568 | IRS1 | S270 | ochoa|psp | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35568 | IRS1 | S272 | ochoa | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35580 | MYH10 | S1935 | ochoa|psp | Myosin-10 (Cellular myosin heavy chain, type B) (Myosin heavy chain 10) (Myosin heavy chain, non-muscle IIb) (Non-muscle myosin heavy chain B) (NMMHC-B) (Non-muscle myosin heavy chain IIb) (NMMHC II-b) (NMMHC-IIB) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. During cell spreading, plays an important role in cytoskeleton reorganization, focal contacts formation (in the central part but not the margins of spreading cells), and lamellipodial extension; this function is mechanically antagonized by MYH9. {ECO:0000269|PubMed:20052411, ECO:0000269|PubMed:20603131}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000305|PubMed:25428876, ECO:0000305|PubMed:39048823}. |
P35711 | SOX5 | S123 | ochoa | Transcription factor SOX-5 | Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}. |
P38159 | RBMX | S249 | ochoa | RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] | RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}. |
P41587 | VIPR2 | S409 | ochoa | Vasoactive intestinal polypeptide receptor 2 (VIP-R-2) (Helodermin-preferring VIP receptor) (Pituitary adenylate cyclase-activating polypeptide type III receptor) (PACAP type III receptor) (PACAP-R-3) (PACAP-R3) (VPAC2 receptor) (VPAC2R) | G protein-coupled receptor activated by the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (ADCYAP1/PACAP) (PubMed:7811244, PubMed:35477937, PubMed:8933357). Binds VIP and both PACAP27 and PACAP38 bioactive peptides with the following order of potency PACAP38 = VIP > PACAP27 (PubMed:35477937, PubMed:8933357). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors. Activates cAMP-dependent pathway (PubMed:7811244, PubMed:35477937, PubMed:8933357). May be coupled to phospholipase C. {ECO:0000269|PubMed:35477937, ECO:0000269|PubMed:7811244, ECO:0000269|PubMed:8933357}. |
P42166 | TMPO | S291 | ochoa | Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] | May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide. |
P42345 | MTOR | T2446 | ochoa|psp | Serine/threonine-protein kinase mTOR (EC 2.7.11.1) (FK506-binding protein 12-rapamycin complex-associated protein 1) (FKBP12-rapamycin complex-associated protein) (Mammalian target of rapamycin) (mTOR) (Mechanistic target of rapamycin) (Rapamycin and FKBP12 target 1) (Rapamycin target protein 1) (Tyrosine-protein kinase mTOR) (EC 2.7.10.2) | Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:31601708, PubMed:32561715, PubMed:34519269, PubMed:37751742). MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins (PubMed:15268862, PubMed:15467718, PubMed:17517883, PubMed:18372248, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:30171069, PubMed:29236692, PubMed:37751742). Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2) (PubMed:15268862, PubMed:15467718, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:34519269). This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E) (PubMed:24403073, PubMed:29236692). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4 (PubMed:12087098, PubMed:12150925, PubMed:18925875, PubMed:29150432, PubMed:29236692). Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex (PubMed:23429703, PubMed:23429704). Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor (PubMed:20516213). Activates dormant ribosomes by mediating phosphorylation of SERBP1, leading to SERBP1 inactivation and reactivation of translation (PubMed:36691768). In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1 (PubMed:23426360). To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A (By similarity). In the same time, mTORC1 inhibits catabolic pathways: negatively regulates autophagy through phosphorylation of ULK1 (PubMed:32561715). Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1 (PubMed:32561715). Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP (PubMed:20537536). Also prevents autophagy by phosphorylating RUBCNL/Pacer under nutrient-rich conditions (PubMed:30704899). Prevents autophagy by mediating phosphorylation of AMBRA1, thereby inhibiting AMBRA1 ability to mediate ubiquitination of ULK1 and interaction between AMBRA1 and PPP2CA (PubMed:23524951, PubMed:25438055). mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor (PubMed:21659604). Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules (PubMed:12231510). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:24403073, PubMed:31695197). The non-canonical mTORC1 complex, which acts independently of RHEB, specifically mediates phosphorylation of MiT/TFE factors MITF, TFEB and TFE3 in the presence of nutrients, promoting their cytosolic retention and inactivation (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of mTORC1 induces dephosphorylation and nuclear translocation of TFEB and TFE3, promoting their transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670). The mTORC1 complex regulates pyroptosis in macrophages by promoting GSDMD oligomerization (PubMed:34289345). MTOR phosphorylates RPTOR which in turn inhibits mTORC1 (By similarity). As part of the mTORC2 complex, MTOR transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15467718, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:15268862, PubMed:15467718, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957). mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:18925875). mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B (PubMed:15268862). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). May also regulate insulin signaling by acting as a tyrosine protein kinase that catalyzes phosphorylation of IGF1R and INSR; additional evidence are however required to confirm this result in vivo (PubMed:26584640). Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms (By similarity). Plays an important regulatory role in the circadian clock function; regulates period length and rhythm amplitude of the suprachiasmatic nucleus (SCN) and liver clocks (By similarity). {ECO:0000250|UniProtKB:Q9JLN9, ECO:0000269|PubMed:12087098, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12231510, ECO:0000269|PubMed:12718876, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15545625, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:17517883, ECO:0000269|PubMed:18372248, ECO:0000269|PubMed:18497260, ECO:0000269|PubMed:18762023, ECO:0000269|PubMed:18925875, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20537536, ECO:0000269|PubMed:21376236, ECO:0000269|PubMed:21576368, ECO:0000269|PubMed:21659604, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23426360, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:23429704, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:24448649, ECO:0000269|PubMed:24670654, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:25799227, ECO:0000269|PubMed:26018084, ECO:0000269|PubMed:26584640, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:29236692, ECO:0000269|PubMed:29424687, ECO:0000269|PubMed:29567957, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:31112131, ECO:0000269|PubMed:31601708, ECO:0000269|PubMed:31695197, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:34519269, ECO:0000269|PubMed:35926713, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:36691768, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:37751742}. |
P42345 | MTOR | S2448 | ochoa|psp | Serine/threonine-protein kinase mTOR (EC 2.7.11.1) (FK506-binding protein 12-rapamycin complex-associated protein 1) (FKBP12-rapamycin complex-associated protein) (Mammalian target of rapamycin) (mTOR) (Mechanistic target of rapamycin) (Rapamycin and FKBP12 target 1) (Rapamycin target protein 1) (Tyrosine-protein kinase mTOR) (EC 2.7.10.2) | Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:31601708, PubMed:32561715, PubMed:34519269, PubMed:37751742). MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins (PubMed:15268862, PubMed:15467718, PubMed:17517883, PubMed:18372248, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:30171069, PubMed:29236692, PubMed:37751742). Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2) (PubMed:15268862, PubMed:15467718, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:34519269). This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E) (PubMed:24403073, PubMed:29236692). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4 (PubMed:12087098, PubMed:12150925, PubMed:18925875, PubMed:29150432, PubMed:29236692). Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex (PubMed:23429703, PubMed:23429704). Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor (PubMed:20516213). Activates dormant ribosomes by mediating phosphorylation of SERBP1, leading to SERBP1 inactivation and reactivation of translation (PubMed:36691768). In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1 (PubMed:23426360). To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A (By similarity). In the same time, mTORC1 inhibits catabolic pathways: negatively regulates autophagy through phosphorylation of ULK1 (PubMed:32561715). Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1 (PubMed:32561715). Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP (PubMed:20537536). Also prevents autophagy by phosphorylating RUBCNL/Pacer under nutrient-rich conditions (PubMed:30704899). Prevents autophagy by mediating phosphorylation of AMBRA1, thereby inhibiting AMBRA1 ability to mediate ubiquitination of ULK1 and interaction between AMBRA1 and PPP2CA (PubMed:23524951, PubMed:25438055). mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor (PubMed:21659604). Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules (PubMed:12231510). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:24403073, PubMed:31695197). The non-canonical mTORC1 complex, which acts independently of RHEB, specifically mediates phosphorylation of MiT/TFE factors MITF, TFEB and TFE3 in the presence of nutrients, promoting their cytosolic retention and inactivation (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of mTORC1 induces dephosphorylation and nuclear translocation of TFEB and TFE3, promoting their transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670). The mTORC1 complex regulates pyroptosis in macrophages by promoting GSDMD oligomerization (PubMed:34289345). MTOR phosphorylates RPTOR which in turn inhibits mTORC1 (By similarity). As part of the mTORC2 complex, MTOR transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15467718, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:15268862, PubMed:15467718, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957). mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:18925875). mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B (PubMed:15268862). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). May also regulate insulin signaling by acting as a tyrosine protein kinase that catalyzes phosphorylation of IGF1R and INSR; additional evidence are however required to confirm this result in vivo (PubMed:26584640). Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms (By similarity). Plays an important regulatory role in the circadian clock function; regulates period length and rhythm amplitude of the suprachiasmatic nucleus (SCN) and liver clocks (By similarity). {ECO:0000250|UniProtKB:Q9JLN9, ECO:0000269|PubMed:12087098, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12231510, ECO:0000269|PubMed:12718876, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15545625, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:17517883, ECO:0000269|PubMed:18372248, ECO:0000269|PubMed:18497260, ECO:0000269|PubMed:18762023, ECO:0000269|PubMed:18925875, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20537536, ECO:0000269|PubMed:21376236, ECO:0000269|PubMed:21576368, ECO:0000269|PubMed:21659604, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23426360, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:23429704, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:24448649, ECO:0000269|PubMed:24670654, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:25799227, ECO:0000269|PubMed:26018084, ECO:0000269|PubMed:26584640, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:29236692, ECO:0000269|PubMed:29424687, ECO:0000269|PubMed:29567957, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:31112131, ECO:0000269|PubMed:31601708, ECO:0000269|PubMed:31695197, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:34519269, ECO:0000269|PubMed:35926713, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:36691768, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:37751742}. |
P43403 | ZAP70 | Y597 | ochoa|psp | Tyrosine-protein kinase ZAP-70 (EC 2.7.10.2) (70 kDa zeta-chain associated protein) (Syk-related tyrosine kinase) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates motility, adhesion and cytokine expression of mature T-cells, as well as thymocyte development. Also contributes to the development and activation of primary B-lymphocytes. When antigen presenting cells (APC) activate T-cell receptor (TCR), a serie of phosphorylations lead to the recruitment of ZAP70 to the doubly phosphorylated TCR component CD247/CD3Z through ITAM motif at the plasma membrane. This recruitment serves to localization to the stimulated TCR and to relieve its autoinhibited conformation. Release of ZAP70 active conformation is further stabilized by phosphorylation mediated by LCK. Subsequently, ZAP70 phosphorylates at least 2 essential adapter proteins: LAT and LCP2. In turn, a large number of signaling molecules are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation. Furthermore, ZAP70 controls cytoskeleton modifications, adhesion and mobility of T-lymphocytes, thus ensuring correct delivery of effectors to the APC. ZAP70 is also required for TCR-CD247/CD3Z internalization and degradation through interaction with the E3 ubiquitin-protein ligase CBL and adapter proteins SLA and SLA2. Thus, ZAP70 regulates both T-cell activation switch on and switch off by modulating TCR expression at the T-cell surface. During thymocyte development, ZAP70 promotes survival and cell-cycle progression of developing thymocytes before positive selection (when cells are still CD4/CD8 double negative). Additionally, ZAP70-dependent signaling pathway may also contribute to primary B-cells formation and activation through B-cell receptor (BCR). {ECO:0000269|PubMed:11353765, ECO:0000269|PubMed:12051764, ECO:0000269|PubMed:1423621, ECO:0000269|PubMed:20135127, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:38614099, ECO:0000269|PubMed:8124727, ECO:0000269|PubMed:8702662, ECO:0000269|PubMed:9489702}. |
P45973 | CBX5 | S95 | ochoa | Chromobox protein homolog 5 (Antigen p25) (Heterochromatin protein 1 homolog alpha) (HP1 alpha) | Component of heterochromatin that recognizes and binds histone H3 tails methylated at 'Lys-9' (H3K9me), leading to epigenetic repression. In contrast, it is excluded from chromatin when 'Tyr-41' of histone H3 is phosphorylated (H3Y41ph) (PubMed:19783980). May contribute to the association of heterochromatin with the inner nuclear membrane by interactions with the lamin-B receptor (LBR) (PubMed:19783980). Involved in the formation of kinetochore through interaction with the MIS12 complex subunit NSL1 (PubMed:19783980, PubMed:20231385). Required for the formation of the inner centromere (PubMed:20231385). {ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20231385}. |
P45974 | USP5 | S783 | ochoa | Ubiquitin carboxyl-terminal hydrolase 5 (EC 3.4.19.12) (Deubiquitinating enzyme 5) (Isopeptidase T) (Ubiquitin thioesterase 5) (Ubiquitin-specific-processing protease 5) | Deubiquitinating enzyme that participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. Affects thereby important cellular signaling pathways such as NF-kappa-B, Wnt/beta-catenin, and cytokine production by regulating ubiquitin-dependent protein degradation. Participates in the activation of the Wnt signaling pathway by promoting FOXM1 deubiquitination and stabilization that induces the recruitment of beta-catenin to Wnt target gene promoter (PubMed:26912724). Regulates the assembly and disassembly of heat-induced stress granules by mediating the hydrolysis of unanchored ubiquitin chains (PubMed:29567855). Promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein (PubMed:37534934). Affects T-cell biology by stabilizing the inhibitory receptor on T-cells PDC1 (PubMed:37208329). Acts as a negative regulator of autophagy by regulating ULK1 at both protein and mRNA levels (PubMed:37607937). Acts also as a negative regulator of type I interferon production by simultaneously removing both 'Lys-48'-linked unanchored and 'Lys-63'-linked anchored polyubiquitin chains on the transcription factor IRF3 (PubMed:39761299). Modulates the stability of DNA mismatch repair protein MLH1 and counteracts the effect of the ubiquitin ligase UBR4 (PubMed:39032648). Upon activation by insulin, it gets phosphorylated through mTORC1-mediated phosphorylation to enhance YTHDF1 stability by removing 'Lys-11'-linked polyubiquitination (PubMed:39900921). May also deubiquitinate other substrates such as the calcium channel CACNA1H (By similarity). {ECO:0000250|UniProtKB:P56399, ECO:0000269|PubMed:19098288, ECO:0000269|PubMed:26912724, ECO:0000269|PubMed:29567855, ECO:0000269|PubMed:37208329, ECO:0000269|PubMed:37534934, ECO:0000269|PubMed:39032648, ECO:0000269|PubMed:39761299, ECO:0000269|PubMed:39900921}. |
P46013 | MKI67 | S128 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P47710 | CSN1S1 | S31 | psp | Alpha-S1-casein [Cleaved into: Casoxin-D] | Important role in the capacity of milk to transport calcium phosphate.; FUNCTION: Casoxin D acts as opioid antagonist and has vasorelaxing activity mediated by bradykinin B1 receptors. |
P49736 | MCM2 | Y137 | ochoa | DNA replication licensing factor MCM2 (EC 3.6.4.12) (Minichromosome maintenance protein 2 homolog) (Nuclear protein BM28) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (PubMed:8175912). Plays a role in terminally differentiated hair cells development of the cochlea and induces cells apoptosis (PubMed:26196677). {ECO:0000269|PubMed:26196677, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:8175912}. |
P49815 | TSC2 | S981 | ochoa|psp | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P49815 | TSC2 | S1130 | ochoa|psp | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P50219 | MNX1 | S77 | ochoa | Motor neuron and pancreas homeobox protein 1 (Homeobox protein HB9) | Transcription factor (By similarity). Recognizes and binds to the regulatory elements of target genes, such as visual system homeobox CHX10, negatively modulating transcription (By similarity). Plays a role in establishing motor neuron identity, in concert with LIM domain transcription factor LMO4 (By similarity). Involved in negatively modulating transcription of interneuron genes in motor neurons, acting, at least in part, by blocking regulatory sequence interactions of the ISL1-LHX3 complex (By similarity). Involved in pancreas development and function; may play a role in pancreatic cell fate specification (By similarity). {ECO:0000250|UniProtKB:Q9QZW9}. |
P51617 | IRAK1 | S371 | ochoa | Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}. |
P52179 | MYOM1 | S67 | ochoa | Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P52569 | SLC7A2 | S462 | ochoa | Cationic amino acid transporter 2 (CAT-2) (CAT2) (Low affinity cationic amino acid transporter 2) (Solute carrier family 7 member 2) | Functions as a permease involved in the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine); the affinity for its substrates differs between isoforms created by alternative splicing (PubMed:28684763, PubMed:9174363). May play a role in classical or alternative activation of macrophages via its role in arginine transport (By similarity). {ECO:0000250|UniProtKB:P18581, ECO:0000269|PubMed:28684763, ECO:0000269|PubMed:9174363}.; FUNCTION: [Isoform 1]: Functions as a permease that mediates the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine). Shows a much higher affinity for L-arginine and L-homoarginine than isoform 2. {ECO:0000269|PubMed:28684763, ECO:0000269|PubMed:9174363}.; FUNCTION: [Isoform 2]: Functions as a low-affinity, high capacity permease involved in the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine). {ECO:0000269|PubMed:28684763, ECO:0000269|PubMed:9174363}. |
P52597 | HNRNPF | S21 | ochoa | Heterogeneous nuclear ribonucleoprotein F (hnRNP F) (Nucleolin-like protein mcs94-1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein F, N-terminally processed] | Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state. {ECO:0000269|PubMed:20526337}. |
P52701 | MSH6 | S254 | ochoa | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P53396 | ACLY | S457 | ochoa | ATP-citrate synthase (EC 2.3.3.8) (ATP-citrate (pro-S-)-lyase) (ACL) (Citrate cleavage enzyme) | Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate in multiple biochemical reactions in protein, carbohydrate and lipid metabolism. {ECO:0000269|PubMed:10653665, ECO:0000269|PubMed:1371749, ECO:0000269|PubMed:19286649, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:39881208, ECO:0000269|PubMed:9116495}. |
P54198 | HIRA | S610 | ochoa | Protein HIRA (TUP1-like enhancer of split protein 1) | Cooperates with ASF1A to promote replication-independent chromatin assembly. Required for the periodic repression of histone gene transcription during the cell cycle. Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit. {ECO:0000269|PubMed:12370293, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15621527}. |
P54920 | NAPA | S24 | ochoa | Alpha-soluble NSF attachment protein (SNAP-alpha) (N-ethylmaleimide-sensitive factor attachment protein alpha) | Required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus (Probable). Together with GNA12 promotes CDH5 localization to plasma membrane (PubMed:15980433). {ECO:0000269|PubMed:15980433, ECO:0000305}. |
P55072 | VCP | S746 | psp | Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) | Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}. |
P55957 | BID | S76 | ochoa|psp | BH3-interacting domain death agonist (p22 BID) (BID) [Cleaved into: BH3-interacting domain death agonist p15 (p15 BID); BH3-interacting domain death agonist p13 (p13 BID); BH3-interacting domain death agonist p11 (p11 BID)] | Induces caspases and apoptosis (PubMed:14583606). Counters the protective effect of BCL2 (By similarity). {ECO:0000250|UniProtKB:P70444, ECO:0000269|PubMed:14583606}.; FUNCTION: [BH3-interacting domain death agonist p15]: Induces caspase activation and apoptosis (PubMed:15661737, PubMed:32029622). Allows the release of cytochrome c (PubMed:32029622). {ECO:0000269|PubMed:15661737, ECO:0000269|PubMed:32029622}.; FUNCTION: [Isoform 1]: Induces ICE-like proteases and apoptosis. {ECO:0000269|PubMed:14583606}.; FUNCTION: [Isoform 2]: Induces ICE-like proteases and apoptosis. {ECO:0000269|PubMed:14583606}.; FUNCTION: [Isoform 3]: Does not induce apoptosis. {ECO:0000269|PubMed:14583606}.; FUNCTION: [Isoform 4]: Induces ICE-like proteases and apoptosis. {ECO:0000269|PubMed:14583606}. |
P57059 | SIK1 | S435 | ochoa|psp | Serine/threonine-protein kinase SIK1 (EC 2.7.11.1) (Salt-inducible kinase 1) (SIK-1) (Serine/threonine-protein kinase SNF1-like kinase 1) (Serine/threonine-protein kinase SNF1LK) | Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, gluconeogenesis and lipogenesis regulation, muscle growth and differentiation and tumor suppression. Phosphorylates HDAC4, HDAC5, PPME1, SREBF1, CRTC1/TORC1. Inhibits CREB activity by phosphorylating and inhibiting activity of TORCs, the CREB-specific coactivators, like CRTC2/TORC2 and CRTC3/TORC3 in response to cAMP signaling (PubMed:29211348). Acts as a tumor suppressor and plays a key role in p53/TP53-dependent anoikis, a type of apoptosis triggered by cell detachment: required for phosphorylation of p53/TP53 in response to loss of adhesion and is able to suppress metastasis. Part of a sodium-sensing signaling network, probably by mediating phosphorylation of PPME1: following increases in intracellular sodium, SIK1 is activated by CaMK1 and phosphorylates PPME1 subunit of protein phosphatase 2A (PP2A), leading to dephosphorylation of sodium/potassium-transporting ATPase ATP1A1 and subsequent increase activity of ATP1A1. Acts as a regulator of muscle cells by phosphorylating and inhibiting class II histone deacetylases HDAC4 and HDAC5, leading to promote expression of MEF2 target genes in myocytes. Also required during cardiomyogenesis by regulating the exit of cardiomyoblasts from the cell cycle via down-regulation of CDKN1C/p57Kip2. Acts as a regulator of hepatic gluconeogenesis by phosphorylating and repressing the CREB-specific coactivators CRTC1/TORC1 and CRTC2/TORC2, leading to inhibit CREB activity. Also regulates hepatic lipogenesis by phosphorylating and inhibiting SREBF1. In concert with CRTC1/TORC1, regulates the light-induced entrainment of the circadian clock by attenuating PER1 induction; represses CREB-mediated transcription of PER1 by phosphorylating and deactivating CRTC1/TORC1 (By similarity). {ECO:0000250|UniProtKB:Q60670, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:16306228, ECO:0000269|PubMed:18348280, ECO:0000269|PubMed:19622832, ECO:0000269|PubMed:29211348}. |
P58340 | MLF1 | S32 | ochoa | Myeloid leukemia factor 1 (Myelodysplasia-myeloid leukemia factor 1) | Involved in lineage commitment of primary hemopoietic progenitors by restricting erythroid formation and enhancing myeloid formation. Interferes with erythropoietin-induced erythroid terminal differentiation by preventing cells from exiting the cell cycle through suppression of CDKN1B/p27Kip1 levels. Suppresses COP1 activity via CSN3 which activates p53 and induces cell cycle arrest. Binds DNA and affects the expression of a number of genes so may function as a transcription factor in the nucleus. {ECO:0000269|PubMed:15861129}. |
P60983 | GMFB | S72 | psp | Glia maturation factor beta (GMF-beta) | This protein causes differentiation of brain cells, stimulation of neural regeneration, and inhibition of proliferation of tumor cells. |
P62995 | TRA2B | S20 | ochoa | Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) | Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:9546399}. |
P78362 | SRPK2 | S494 | ochoa|psp | SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] | Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}. |
P78527 | PRKDC | S3363 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
P78545 | ELF3 | S210 | ochoa | ETS-related transcription factor Elf-3 (E74-like factor 3) (Epithelial-restricted with serine box) (Epithelium-restricted Ets protein ESX) (Epithelium-specific Ets transcription factor 1) (ESE-1) | Transcriptional activator that binds and transactivates ETS sequences containing the consensus nucleotide core sequence GGA[AT]. Acts synergistically with POU2F3 to transactivate the SPRR2A promoter and with RUNX1 to transactivate the ANGPT1 promoter. Also transactivates collagenase, CCL20, CLND7, FLG, KRT8, NOS2, PTGS2, SPRR2B, TGFBR2 and TGM3 promoters. Represses KRT4 promoter activity. Involved in mediating vascular inflammation. May play an important role in epithelial cell differentiation and tumorigenesis. May be a critical downstream effector of the ERBB2 signaling pathway. May be associated with mammary gland development and involution. Plays an important role in the regulation of transcription with TATA-less promoters in preimplantation embryos, which is essential in preimplantation development (By similarity). {ECO:0000250, ECO:0000269|PubMed:10391676, ECO:0000269|PubMed:10644990, ECO:0000269|PubMed:10773884, ECO:0000269|PubMed:11036073, ECO:0000269|PubMed:11313868, ECO:0000269|PubMed:12414801, ECO:0000269|PubMed:12624109, ECO:0000269|PubMed:12682075, ECO:0000269|PubMed:12713734, ECO:0000269|PubMed:14715662, ECO:0000269|PubMed:14767472, ECO:0000269|PubMed:15075319, ECO:0000269|PubMed:15169914, ECO:0000269|PubMed:15794755, ECO:0000269|PubMed:16307850, ECO:0000269|PubMed:17060315, ECO:0000269|PubMed:9129154, ECO:0000269|PubMed:9234700, ECO:0000269|PubMed:9336459, ECO:0000269|PubMed:9395241, ECO:0000269|PubMed:9417054}. |
P98174 | FGD1 | S114 | ochoa | FYVE, RhoGEF and PH domain-containing protein 1 (Faciogenital dysplasia 1 protein) (Rho/Rac guanine nucleotide exchange factor FGD1) (Rho/Rac GEF) (Zinc finger FYVE domain-containing protein 3) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:8969170}. |
Q00872 | MYBPC1 | S904 | ochoa | Myosin-binding protein C, slow-type (Slow MyBP-C) (C-protein, skeletal muscle slow isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. Slow skeletal protein that binds to both myosin and actin (PubMed:31025394, PubMed:31264822). In vitro, binds to native thin filaments and modifies the activity of actin-activated myosin ATPase. May modulate muscle contraction or may play a more structural role. {ECO:0000269|PubMed:31025394, ECO:0000269|PubMed:31264822}. |
Q00987 | MDM2 | S186 | psp | E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) | E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}. |
Q01484 | ANK2 | S29 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q02410 | APBA1 | S566 | ochoa | Amyloid-beta A4 precursor protein-binding family A member 1 (Adapter protein X11alpha) (Neuron-specific X11 protein) (Neuronal Munc18-1-interacting protein 1) (Mint-1) | Putative function in synaptic vesicle exocytosis by binding to Munc18-1, an essential component of the synaptic vesicle exocytotic machinery. May modulate processing of the amyloid-beta precursor protein (APP) and hence formation of APP-beta. Component of the LIN-10-LIN-2-LIN-7 complex, which associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). {ECO:0000250|UniProtKB:B2RUJ5}. |
Q02952 | AKAP12 | S627 | ochoa|psp | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02952 | AKAP12 | S696 | ochoa|psp | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03111 | MLLT1 | S438 | ochoa | Protein ENL (YEATS domain-containing protein 1) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948). Specifically recognizes and binds acetylated and crotonylated histones, with a preference for histones that are crotonylated (PubMed:27105114). Has a slightly higher affinity for binding histone H3 crotonylated at 'Lys-27' (H3K27cr) than 'Lys-20' (H3K9cr20) (PubMed:27105114). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:27105114}.; FUNCTION: Acts as a key chromatin reader in acute myeloid leukemia by recognizing and binding to acetylated histones via its YEATS domain, thereby regulating oncogenic gene transcription. {ECO:0000269|PubMed:28241139, ECO:0000269|PubMed:28241141}. |
Q03164 | KMT2A | S181 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03252 | LMNB2 | S316 | ochoa | Lamin-B2 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:33033404). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:33033404). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:33033404). {ECO:0000269|PubMed:33033404}. |
Q04206 | RELA | S203 | ochoa | Transcription factor p65 (Nuclear factor NF-kappa-B p65 subunit) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 3) | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The heterodimeric RELA-NFKB1 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. The NF-kappa-B heterodimeric RELA-NFKB1 and RELA-REL complexes, for instance, function as transcriptional activators. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. The inhibitory effect of I-kappa-B on NF-kappa-B through retention in the cytoplasm is exerted primarily through the interaction with RELA. RELA shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Besides its activity as a direct transcriptional activator, it is also able to modulate promoters accessibility to transcription factors and thereby indirectly regulate gene expression. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1. Essential for cytokine gene expression in T-cells (PubMed:15790681). The NF-kappa-B homodimeric RELA-RELA complex appears to be involved in invasin-mediated activation of IL-8 expression. Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:10928981, ECO:0000269|PubMed:12748188, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:17000776, ECO:0000269|PubMed:17620405, ECO:0000269|PubMed:19058135, ECO:0000269|PubMed:19103749, ECO:0000269|PubMed:20547752, ECO:0000269|PubMed:33440148}. |
Q04727 | TLE4 | S204 | ochoa | Transducin-like enhancer protein 4 (Grg-4) (Groucho-related protein 4) | Transcriptional corepressor that binds to a number of transcription factors. Inhibits the transcriptional activation mediated by PAX5, and by CTNNB1 and TCF family members in Wnt signaling. The effects of full-length TLE family members may be modulated by association with dominant-negative AES. Essential for the transcriptional repressor activity of SIX3 during retina and lens development and for SIX3 transcriptional auto-repression (By similarity). Involved in transcriptional repression of GNRHR and enhances MSX1-mediated transcriptional repression of CGA/alpha-GSU (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q62441}. |
Q05397 | PTK2 | S390 | ochoa | Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) | Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}. |
Q07157 | TJP1 | S992 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q07352 | ZFP36L1 | S90 | ochoa | mRNA decay activator protein ZFP36L1 (Butyrate response factor 1) (EGF-response factor 1) (ERF-1) (TPA-induced sequence 11b) (Zinc finger protein 36, C3H1 type-like 1) (ZFP36-like 1) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:12198173, PubMed:15467755, PubMed:15538381, PubMed:17030608, PubMed:19179481, PubMed:20702587, PubMed:24700863, PubMed:25014217, PubMed:25106868, PubMed:26542173). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258). Functions by recruiting the CCR4-NOT deadenylase complex and components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:15687258, PubMed:18326031, PubMed:25106868). Also induces the degradation of ARE-containing mRNAs even in absence of poly(A) tail (By similarity). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:12198173, PubMed:15467755, PubMed:15538381, PubMed:17030608, PubMed:19179481, PubMed:20702587, PubMed:24700863, PubMed:25014217, PubMed:25106868, PubMed:26542173). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Promotes ARE-mediated mRNA decay of mineralocorticoid receptor NR3C2 mRNA in response to hypertonic stress (PubMed:24700863). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Positively regulates monocyte/macrophage cell differentiation by promoting ARE-mediated mRNA decay of the cyclin-dependent kinase CDK6 mRNA (PubMed:26542173). Promotes degradation of ARE-containing pluripotency-associated mRNAs in embryonic stem cells (ESCs), such as NANOG, through a fibroblast growth factor (FGF)-induced MAPK-dependent signaling pathway, and hence attenuates ESC self-renewal and positively regulates mesendoderm differentiation (By similarity). May play a role in mediating pro-apoptotic effects in malignant B-cells by promoting ARE-mediated mRNA decay of BCL2 mRNA (PubMed:25014217). In association with ZFP36L2 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination and functional immune cell formation (By similarity). Together with ZFP36L2 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA (By similarity). Participates in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, plays a role in the regulation of nuclear mRNA 3'-end processing; modulates mRNA 3'-end maturation efficiency of the DLL4 mRNA through binding with an ARE embedded in a weak noncanonical polyadenylation (poly(A)) signal in endothelial cells (PubMed:21832157). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (PubMed:15967811). Plays a role in vasculogenesis and endocardial development (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role in myoblast cell differentiation (By similarity). {ECO:0000250|UniProtKB:P17431, ECO:0000250|UniProtKB:P23950, ECO:0000269|PubMed:12198173, ECO:0000269|PubMed:15467755, ECO:0000269|PubMed:15538381, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15967811, ECO:0000269|PubMed:17030608, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18326031, ECO:0000269|PubMed:19179481, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21832157, ECO:0000269|PubMed:24700863, ECO:0000269|PubMed:25014217, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:26542173, ECO:0000269|PubMed:27182009}. |
Q08043 | ACTN3 | S319 | ochoa | Alpha-actinin-3 (Alpha-actinin skeletal muscle isoform 3) (F-actin cross-linking protein) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein. |
Q08170 | SRSF4 | S420 | ochoa | Serine/arginine-rich splicing factor 4 (Pre-mRNA-splicing factor SRP75) (SRP001LB) (Splicing factor, arginine/serine-rich 4) | Plays a role in alternative splice site selection during pre-mRNA splicing. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:15009664}. |
Q08170 | SRSF4 | S446 | ochoa | Serine/arginine-rich splicing factor 4 (Pre-mRNA-splicing factor SRP75) (SRP001LB) (Splicing factor, arginine/serine-rich 4) | Plays a role in alternative splice site selection during pre-mRNA splicing. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:15009664}. |
Q08170 | SRSF4 | S448 | ochoa | Serine/arginine-rich splicing factor 4 (Pre-mRNA-splicing factor SRP75) (SRP001LB) (Splicing factor, arginine/serine-rich 4) | Plays a role in alternative splice site selection during pre-mRNA splicing. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:15009664}. |
Q08357 | SLC20A2 | S432 | ochoa | Sodium-dependent phosphate transporter 2 (Gibbon ape leukemia virus receptor 2) (GLVR-2) (Phosphate transporter 2) (PiT-2) (Pit2) (hPit2) (Solute carrier family 20 member 2) | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion (PubMed:12205090, PubMed:15955065, PubMed:16790504, PubMed:17494632, PubMed:22327515, PubMed:28722801, PubMed:30704756). Plays a critical role in the determination of bone quality and strength by providing phosphate for bone mineralization (By similarity). Required to maintain normal cerebrospinal fluid phosphate levels (By similarity). Mediates phosphate-induced calcification of vascular smooth muscle cells (VCMCs) and can functionally compensate for loss of SLC20A1 in VCMCs (By similarity). {ECO:0000250|UniProtKB:Q80UP8, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:16790504, ECO:0000269|PubMed:17494632, ECO:0000269|PubMed:22327515, ECO:0000269|PubMed:28722801, ECO:0000269|PubMed:30704756}.; FUNCTION: (Microbial infection) Functions as a retroviral receptor and confers human cells susceptibility to infection to amphotropic murine leukemia virus (A-MuLV), 10A1 murine leukemia virus (10A1 MLV) and some feline leukemia virus subgroup B (FeLV-B) variants. {ECO:0000269|PubMed:11435563, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:8302848}. |
Q08AD1 | CAMSAP2 | S462 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q08AD1 | CAMSAP2 | S1019 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q08AE8 | SPIRE1 | S676 | ochoa | Protein spire homolog 1 (Spir-1) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:11747823, PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (PubMed:11747823). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with FMN2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). In addition, promotes innate immune signaling downstream of dsRNA sensing (PubMed:35148361). Mechanistically, contributes to IRF3 phosphorylation and activation downstream of MAVS and upstream of TBK1 (PubMed:35148361). {ECO:0000269|PubMed:11747823, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480, ECO:0000269|PubMed:35148361}. |
Q09666 | AHNAK | S107 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S230 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5782 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12767 | TMEM94 | S513 | ochoa | Transmembrane protein 94 (Endoplasmic reticulum magnesium ATPase) | Could function in the uptake of Mg(2+) from the cytosol into the endoplasmic reticulum and regulate intracellular Mg(2+) homeostasis. {ECO:0000269|PubMed:38513662}. |
Q12802 | AKAP13 | S1898 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12912 | IRAG2 | S459 | ochoa | Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] | Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}. |
Q13009 | TIAM1 | S368 | ochoa | Rho guanine nucleotide exchange factor TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) (TIAM-1) | Guanyl-nucleotide exchange factor that activates RHO-like proteins and connects extracellular signals to cytoskeletal activities. Activates RAC1, CDC42, and to a lesser extent RHOA and their downstream signaling to regulate processes like cell adhesion and cell migration. {ECO:0000269|PubMed:20361982, ECO:0000269|PubMed:25684205}. |
Q13009 | TIAM1 | S1532 | ochoa | Rho guanine nucleotide exchange factor TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) (TIAM-1) | Guanyl-nucleotide exchange factor that activates RHO-like proteins and connects extracellular signals to cytoskeletal activities. Activates RAC1, CDC42, and to a lesser extent RHOA and their downstream signaling to regulate processes like cell adhesion and cell migration. {ECO:0000269|PubMed:20361982, ECO:0000269|PubMed:25684205}. |
Q13085 | ACACA | S23 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13131 | PRKAA1 | S506 | ochoa | 5'-AMP-activated protein kinase catalytic subunit alpha-1 (AMPK subunit alpha-1) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) (Tau-protein kinase PRKAA1) (EC 2.7.11.26) | Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357, PubMed:24563466, PubMed:37821951). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (By similarity). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:18439900, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). In response to nutrient limitation, phosphorylates transcription factor FOXO3 promoting FOXO3 mitochondrial import (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU; however the relevance of such data remains unclear in vivo (By similarity). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Regulates hepatic lipogenesis. Activated via SIRT3, represses sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance. Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:P54645, ECO:0000250|UniProtKB:Q5EG47, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:18439900, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:24563466, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:37821951, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}. |
Q13136 | PPFIA1 | S242 | ochoa | Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}. |
Q13247 | SRSF6 | S299 | ochoa | Serine/arginine-rich splicing factor 6 (Pre-mRNA-splicing factor SRP55) (Splicing factor, arginine/serine-rich 6) | Plays a role in constitutive splicing and modulates the selection of alternative splice sites. Plays a role in the alternative splicing of MAPT/Tau exon 10. Binds to alternative exons of TNC pre-mRNA and promotes the expression of alternatively spliced TNC. Plays a role in wound healing and in the regulation of keratinocyte differentiation and proliferation via its role in alternative splicing. {ECO:0000269|PubMed:12549914, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:22767602, ECO:0000269|PubMed:24440982}. |
Q13263 | TRIM28 | S596 | ochoa | Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) | Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}. |
Q13371 | PDCL | S39 | ochoa | Phosducin-like protein (PHLP) | Acts as a positive regulator of hedgehog signaling and regulates ciliary function. {ECO:0000250|UniProtKB:Q9DBX2}.; FUNCTION: [Isoform 1]: Functions as a co-chaperone for CCT in the assembly of heterotrimeric G protein complexes, facilitates the assembly of both Gbeta-Ggamma and RGS-Gbeta5 heterodimers.; FUNCTION: [Isoform 2]: Acts as a negative regulator of heterotrimeric G proteins assembly by trapping the preloaded G beta subunits inside the CCT chaperonin. |
Q13422 | IKZF1 | S391 | ochoa|psp | DNA-binding protein Ikaros (Ikaros family zinc finger protein 1) (Lymphoid transcription factor LyF-1) | Transcription regulator of hematopoietic cell differentiation (PubMed:17934067). Binds gamma-satellite DNA (PubMed:17135265, PubMed:19141594). Plays a role in the development of lymphocytes, B- and T-cells. Binds and activates the enhancer (delta-A element) of the CD3-delta gene. Repressor of the TDT (fikzfterminal deoxynucleotidyltransferase) gene during thymocyte differentiation. Regulates transcription through association with both HDAC-dependent and HDAC-independent complexes. Targets the 2 chromatin-remodeling complexes, NuRD and BAF (SWI/SNF), in a single complex (PYR complex), to the beta-globin locus in adult erythrocytes. Increases normal apoptosis in adult erythroid cells. Confers early temporal competence to retinal progenitor cells (RPCs) (By similarity). Function is isoform-specific and is modulated by dominant-negative inactive isoforms (PubMed:17135265, PubMed:17934067). {ECO:0000250|UniProtKB:Q03267, ECO:0000269|PubMed:10204490, ECO:0000269|PubMed:17135265, ECO:0000269|PubMed:17934067, ECO:0000269|PubMed:19141594}. |
Q13459 | MYO9B | S1356 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13470 | TNK1 | S500 | ochoa | Non-receptor tyrosine-protein kinase TNK1 (EC 2.7.10.2) (CD38 negative kinase 1) | Involved in negative regulation of cell growth. Has tumor suppressor properties. Plays a negative regulatory role in the Ras-MAPK pathway. May function in signaling pathways utilized broadly during fetal development and more selectively in adult tissues and in cells of the lymphohematopoietic system. Could specifically be involved in phospholipid signal transduction. {ECO:0000269|PubMed:10873601, ECO:0000269|PubMed:18974114}. |
Q13480 | GAB1 | S646 | ochoa | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q13526 | PIN1 | S41 | ochoa | Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (EC 5.2.1.8) (Peptidyl-prolyl cis-trans isomerase Pin1) (PPIase Pin1) (Rotamase Pin1) | Peptidyl-prolyl cis/trans isomerase (PPIase) that binds to and isomerizes specific phosphorylated Ser/Thr-Pro (pSer/Thr-Pro) motifs (PubMed:21497122, PubMed:23623683, PubMed:29686383). By inducing conformational changes in a subset of phosphorylated proteins, acts as a molecular switch in multiple cellular processes (PubMed:21497122, PubMed:22033920, PubMed:23623683). Displays a preference for acidic residues located N-terminally to the proline bond to be isomerized. Regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity. Down-regulates kinase activity of BTK (PubMed:16644721). Can transactivate multiple oncogenes and induce centrosome amplification, chromosome instability and cell transformation. Required for the efficient dephosphorylation and recycling of RAF1 after mitogen activation (PubMed:15664191). Binds and targets PML and BCL6 for degradation in a phosphorylation-dependent manner (PubMed:17828269). Acts as a regulator of JNK cascade by binding to phosphorylated FBXW7, disrupting FBXW7 dimerization and promoting FBXW7 autoubiquitination and degradation: degradation of FBXW7 leads to subsequent stabilization of JUN (PubMed:22608923). May facilitate the ubiquitination and proteasomal degradation of RBBP8/CtIP through CUL3/KLHL15 E3 ubiquitin-protein ligase complex, hence favors DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:23623683, PubMed:27561354). Upon IL33-induced lung inflammation, catalyzes cis-trans isomerization of phosphorylated IRAK3/IRAK-M, inducing IRAK3 stabilization, nuclear translocation and expression of pro-inflammatory genes in dendritic cells (PubMed:29686383). Catalyzes cis-trans isomerization of phosphorylated phosphoglycerate kinase PGK1 under hypoxic conditions to promote its binding to the TOM complex and targeting to the mitochondrion (PubMed:26942675). {ECO:0000269|PubMed:15664191, ECO:0000269|PubMed:16644721, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:21497122, ECO:0000269|PubMed:22033920, ECO:0000269|PubMed:22608923, ECO:0000269|PubMed:23623683, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:27561354, ECO:0000269|PubMed:29686383}. |
Q13586 | STIM1 | S519 | ochoa|psp | Stromal interaction molecule 1 | Acts as a Ca(2+) sensor that gates two major inward rectifying Ca(2+) channels at the plasma membrane: Ca(2+) release-activated Ca(2+) (CRAC) channels and arachidonate-regulated Ca(2+)-selective (ARC) channels (PubMed:15866891, PubMed:16005298, PubMed:16208375, PubMed:16537481, PubMed:16733527, PubMed:16766533, PubMed:16807233, PubMed:18854159, PubMed:19182790, PubMed:19249086, PubMed:19622606, PubMed:19706554, PubMed:22464749, PubMed:24069340, PubMed:24351972, PubMed:24591628, PubMed:25326555, PubMed:26322679, PubMed:28219928, PubMed:32415068). Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates CRAC channel pore-forming subunits ORA1, ORA2 and ORAI3 to generate sustained and oscillatory Ca(2+) entry (PubMed:16208375, PubMed:16537481, PubMed:32415068). Involved in enamel formation (PubMed:24621671). {ECO:0000269|PubMed:15866891, ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16208375, ECO:0000269|PubMed:16537481, ECO:0000269|PubMed:16733527, ECO:0000269|PubMed:16766533, ECO:0000269|PubMed:16807233, ECO:0000269|PubMed:18854159, ECO:0000269|PubMed:19182790, ECO:0000269|PubMed:19249086, ECO:0000269|PubMed:19622606, ECO:0000269|PubMed:19706554, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:24069340, ECO:0000269|PubMed:24351972, ECO:0000269|PubMed:24591628, ECO:0000269|PubMed:24621671, ECO:0000269|PubMed:25326555, ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:28219928, ECO:0000269|PubMed:32415068}. |
Q13671 | RIN1 | S349 | ochoa | Ras and Rab interactor 1 (Ras inhibitor JC99) (Ras interaction/interference protein 1) | Ras effector protein, which may serve as an inhibitory modulator of neuronal plasticity in aversive memory formation. Can affect Ras signaling at different levels. First, by competing with RAF1 protein for binding to activated Ras. Second, by enhancing signaling from ABL1 and ABL2, which regulate cytoskeletal remodeling. Third, by activating RAB5A, possibly by functioning as a guanine nucleotide exchange factor (GEF) for RAB5A, by exchanging bound GDP for free GTP, and facilitating Ras-activated receptor endocytosis. {ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9208849}. |
Q14004 | CDK13 | S358 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14004 | CDK13 | S437 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14157 | UBAP2L | S605 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14160 | SCRIB | S1223 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14161 | GIT2 | S361 | ochoa | ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}. |
Q14162 | SCARF1 | S589 | ochoa | Scavenger receptor class F member 1 (Acetyl LDL receptor) (Scavenger receptor expressed by endothelial cells 1) (SREC-I) | Mediates the binding and degradation of acetylated low density lipoprotein (Ac-LDL). Mediates heterophilic interactions, suggesting a function as adhesion protein. Plays a role in the regulation of neurite-like outgrowth (By similarity). {ECO:0000250}. |
Q14185 | DOCK1 | S1758 | ochoa | Dedicator of cytokinesis protein 1 (180 kDa protein downstream of CRK) (DOCK180) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). Functions as a guanine nucleotide exchange factor (GEF), which activates Rac Rho small GTPases by exchanging bound GDP for free GTP. Its GEF activity may be enhanced by ELMO1 (PubMed:8657152). {ECO:0000269|PubMed:19004829, ECO:0000269|PubMed:8657152}. |
Q14289 | PTK2B | S392 | ochoa | Protein-tyrosine kinase 2-beta (EC 2.7.10.2) (Calcium-dependent tyrosine kinase) (CADTK) (Calcium-regulated non-receptor proline-rich tyrosine kinase) (Cell adhesion kinase beta) (CAK-beta) (CAKB) (Focal adhesion kinase 2) (FADK 2) (Proline-rich tyrosine kinase 2) (Related adhesion focal tyrosine kinase) (RAFTK) | Non-receptor protein-tyrosine kinase that regulates reorganization of the actin cytoskeleton, cell polarization, cell migration, adhesion, spreading and bone remodeling. Plays a role in the regulation of the humoral immune response, and is required for normal levels of marginal B-cells in the spleen and normal migration of splenic B-cells. Required for normal macrophage polarization and migration towards sites of inflammation. Regulates cytoskeleton rearrangement and cell spreading in T-cells, and contributes to the regulation of T-cell responses. Promotes osteoclastic bone resorption; this requires both PTK2B/PYK2 and SRC. May inhibit differentiation and activity of osteoprogenitor cells. Functions in signaling downstream of integrin and collagen receptors, immune receptors, G-protein coupled receptors (GPCR), cytokine, chemokine and growth factor receptors, and mediates responses to cellular stress. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and of the AKT1 signaling cascade. Promotes activation of NOS3. Regulates production of the cellular messenger cGMP. Promotes activation of the MAP kinase signaling cascade, including activation of MAPK1/ERK2, MAPK3/ERK1 and MAPK8/JNK1. Promotes activation of Rho family GTPases, such as RHOA and RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Acts as a scaffold, binding to both PDPK1 and SRC, thereby allowing SRC to phosphorylate PDPK1 at 'Tyr-9, 'Tyr-373', and 'Tyr-376'. Promotes phosphorylation of NMDA receptors by SRC family members, and thereby contributes to the regulation of NMDA receptor ion channel activity and intracellular Ca(2+) levels. May also regulate potassium ion transport by phosphorylation of potassium channel subunits. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ASAP1, NPHP1, KCNA2 and SHC1. Promotes phosphorylation of ASAP2, RHOU and PXN; this requires both SRC and PTK2/PYK2. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:12771146, ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:15050747, ECO:0000269|PubMed:15166227, ECO:0000269|PubMed:17634955, ECO:0000269|PubMed:18086875, ECO:0000269|PubMed:18339875, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18765415, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:19207108, ECO:0000269|PubMed:19244237, ECO:0000269|PubMed:19428251, ECO:0000269|PubMed:19648005, ECO:0000269|PubMed:19880522, ECO:0000269|PubMed:20001213, ECO:0000269|PubMed:20381867, ECO:0000269|PubMed:20521079, ECO:0000269|PubMed:21357692, ECO:0000269|PubMed:21533080, ECO:0000269|PubMed:7544443, ECO:0000269|PubMed:8670418, ECO:0000269|PubMed:8849729}. |
Q14318 | FKBP8 | S294 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP8 (PPIase FKBP8) (EC 5.2.1.8) (38 kDa FK506-binding protein) (38 kDa FKBP) (FKBP-38) (hFKBP38) (FK506-binding protein 8) (FKBP-8) (FKBPR38) (Rotamase) | Constitutively inactive PPiase, which becomes active when bound to calmodulin and calcium. Seems to act as a chaperone for BCL2, targets it to the mitochondria and modulates its phosphorylation state. The BCL2/FKBP8/calmodulin/calcium complex probably interferes with the binding of BCL2 to its targets. The active form of FKBP8 may therefore play a role in the regulation of apoptosis. Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). {ECO:0000269|PubMed:12510191, ECO:0000269|PubMed:15757646, ECO:0000269|PubMed:16176796, ECO:0000269|PubMed:28169297}. |
Q14498 | RBM39 | S334 | ochoa | RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) | RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}. |
Q14680 | MELK | S336 | ochoa|psp | Maternal embryonic leucine zipper kinase (hMELK) (EC 2.7.11.1) (Protein kinase Eg3) (pEg3 kinase) (Protein kinase PK38) (hPK38) (Tyrosine-protein kinase MELK) (EC 2.7.10.2) | Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, self-renewal of stem cells, apoptosis and splicing regulation. Has a broad substrate specificity; phosphorylates BCL2L14, CDC25B, MAP3K5/ASK1 and ZNF622. Acts as an activator of apoptosis by phosphorylating and activating MAP3K5/ASK1. Acts as a regulator of cell cycle, notably by mediating phosphorylation of CDC25B, promoting localization of CDC25B to the centrosome and the spindle poles during mitosis. Plays a key role in cell proliferation and carcinogenesis. Required for proliferation of embryonic and postnatal multipotent neural progenitors. Phosphorylates and inhibits BCL2L14, possibly leading to affect mammary carcinogenesis by mediating inhibition of the pro-apoptotic function of BCL2L14. Also involved in the inhibition of spliceosome assembly during mitosis by phosphorylating ZNF622, thereby contributing to its redirection to the nucleus. May also play a role in primitive hematopoiesis. {ECO:0000269|PubMed:11802789, ECO:0000269|PubMed:12400006, ECO:0000269|PubMed:14699119, ECO:0000269|PubMed:15908796, ECO:0000269|PubMed:16216881, ECO:0000269|PubMed:17280616}. |
Q14694 | USP10 | S78 | ochoa | Ubiquitin carboxyl-terminal hydrolase 10 (EC 3.4.19.12) (Deubiquitinating enzyme 10) (Ubiquitin thioesterase 10) (Ubiquitin-specific-processing protease 10) | Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiquitination of 40S ribosome subunits (PubMed:27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid-liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiquitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed:31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed:19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiquitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGI-mediated MAVS activation. Mechanistically, removes the unanchored 'Lys-63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed:37582970). {ECO:0000269|PubMed:11439350, ECO:0000269|PubMed:18632802, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:20096447, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:24845384, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:31981475, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731, ECO:0000269|PubMed:37582970}. |
Q14940 | SLC9A5 | S618 | psp | Sodium/hydrogen exchanger 5 (Na(+)/H(+) exchanger 5) (NHE-5) (Solute carrier family 9 member 5) | Plasma membrane Na(+)/H(+) antiporter. Mediates the electroneutral exchange of intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry, thus regulating intracellular pH homeostasis, in particular in neural tissues (PubMed:10692428, PubMed:19276089, PubMed:24936055, PubMed:9933641). Acts as a negative regulator of dendritic spine growth (PubMed:21551074). Plays a role in postsynaptic remodeling and signaling (PubMed:21551074, PubMed:24006492). Can also contribute to organellar pH regulation, with consequences for receptor tyrosine kinase trafficking (PubMed:24936055). {ECO:0000269|PubMed:10692428, ECO:0000269|PubMed:19276089, ECO:0000269|PubMed:21551074, ECO:0000269|PubMed:24006492, ECO:0000269|PubMed:24936055, ECO:0000269|PubMed:9933641}. |
Q15139 | PRKD1 | S399 | ochoa | Serine/threonine-protein kinase D1 (EC 2.7.11.13) (Protein kinase C mu type) (Protein kinase D) (nPKC-D1) (nPKC-mu) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response (PubMed:10764790, PubMed:12505989, PubMed:12637538, PubMed:17442957, PubMed:18509061, PubMed:19135240, PubMed:19211839). Phosphorylates the epidermal growth factor receptor (EGFR) on dual threonine residues, which leads to the suppression of epidermal growth factor (EGF)-induced MAPK8/JNK1 activation and subsequent JUN phosphorylation (PubMed:10523301). Phosphorylates RIN1, inducing RIN1 binding to 14-3-3 proteins YWHAB, YWHAE and YWHAZ and increased competition with RAF1 for binding to GTP-bound form of Ras proteins (NRAS, HRAS and KRAS). Acts downstream of the heterotrimeric G-protein beta/gamma-subunit complex to maintain the structural integrity of the Golgi membranes, and is required for protein transport along the secretory pathway. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane. May act by activating the lipid kinase phosphatidylinositol 4-kinase beta (PI4KB) at the TGN for the local synthesis of phosphorylated inositol lipids, which induces a sequential production of DAG, phosphatidic acid (PA) and lyso-PA (LPA) that are necessary for membrane fission and generation of specific transport carriers to the cell surface. Under oxidative stress, is phosphorylated at Tyr-463 via SRC-ABL1 and contributes to cell survival by activating IKK complex and subsequent nuclear translocation and activation of NFKB1 (PubMed:12505989). Involved in cell migration by regulating integrin alpha-5/beta-3 recycling and promoting its recruitment in newly forming focal adhesion. In osteoblast differentiation, mediates the bone morphogenetic protein 2 (BMP2)-induced nuclear export of HDAC7, which results in the inhibition of HDAC7 transcriptional repression of RUNX2 (PubMed:18509061). In neurons, plays an important role in neuronal polarity by regulating the biogenesis of TGN-derived dendritic vesicles, and is involved in the maintenance of dendritic arborization and Golgi structure in hippocampal cells. May potentiate mitogenesis induced by the neuropeptide bombesin or vasopressin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression. Plays an important role in the proliferative response induced by low calcium in keratinocytes, through sustained activation of MAPK1/3 (ERK1/2) pathway. Downstream of novel PKC signaling, plays a role in cardiac hypertrophy by phosphorylating HDAC5, which in turn triggers XPO1/CRM1-dependent nuclear export of HDAC5, MEF2A transcriptional activation and induction of downstream target genes that promote myocyte hypertrophy and pathological cardiac remodeling (PubMed:18332134). Mediates cardiac troponin I (TNNI3) phosphorylation at the PKA sites, which results in reduced myofilament calcium sensitivity, and accelerated crossbridge cycling kinetics. The PRKD1-HDAC5 pathway is also involved in angiogenesis by mediating VEGFA-induced specific subset of gene expression, cell migration, and tube formation (PubMed:19211839). In response to VEGFA, is necessary and required for HDAC7 phosphorylation which induces HDAC7 nuclear export and endothelial cell proliferation and migration. During apoptosis induced by cytarabine and other genotoxic agents, PRKD1 is cleaved by caspase-3 at Asp-378, resulting in activation of its kinase function and increased sensitivity of cells to the cytotoxic effects of genotoxic agents (PubMed:10764790). In epithelial cells, is required for transducing flagellin-stimulated inflammatory responses by binding and phosphorylating TLR5, which contributes to MAPK14/p38 activation and production of inflammatory cytokines (PubMed:17442957). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). May play a role in inflammatory response by mediating activation of NF-kappa-B. May be involved in pain transmission by directly modulating TRPV1 receptor (PubMed:15471852). Plays a role in activated KRAS-mediated stabilization of ZNF304 in colorectal cancer (CRC) cells (PubMed:24623306). Regulates nuclear translocation of transcription factor TFEB in macrophages upon live S.enterica infection (By similarity). {ECO:0000250|UniProtKB:Q62101, ECO:0000269|PubMed:10523301, ECO:0000269|PubMed:10764790, ECO:0000269|PubMed:12505989, ECO:0000269|PubMed:12637538, ECO:0000269|PubMed:15471852, ECO:0000269|PubMed:17442957, ECO:0000269|PubMed:18332134, ECO:0000269|PubMed:18509061, ECO:0000269|PubMed:19135240, ECO:0000269|PubMed:19211839, ECO:0000269|PubMed:24623306}. |
Q15233 | NONO | S147 | ochoa | Non-POU domain-containing octamer-binding protein (NonO protein) (54 kDa nuclear RNA- and DNA-binding protein) (p54(nrb)) (p54nrb) (55 kDa nuclear protein) (NMT55) (DNA-binding p52/p100 complex, 52 kDa subunit) | DNA- and RNA binding protein, involved in several nuclear processes (PubMed:11525732, PubMed:12403470, PubMed:26571461). Binds the conventional octamer sequence in double-stranded DNA (PubMed:11525732, PubMed:12403470, PubMed:26571461). Also binds single-stranded DNA and RNA at a site independent of the duplex site (PubMed:11525732, PubMed:12403470, PubMed:26571461). Involved in pre-mRNA splicing, probably as a heterodimer with SFPQ (PubMed:11525732, PubMed:12403470, PubMed:26571461). Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3' side of U5 snRNA stem 1b (PubMed:12403470). Together with PSPC1, required for the formation of nuclear paraspeckles (PubMed:22416126). The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs (PubMed:11525732). The SFPQ-NONO heteromer may be involved in DNA unwinding by modulating the function of topoisomerase I/TOP1 (PubMed:10858305). The SFPQ-NONO heteromer may be involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination and may stabilize paired DNA ends (PubMed:15590677). In vitro, the complex strongly stimulates DNA end joining, binds directly to the DNA substrates and cooperates with the Ku70/G22P1-Ku80/XRCC5 (Ku) dimer to establish a functional preligation complex (PubMed:15590677). NONO is involved in transcriptional regulation. The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional activity (PubMed:11897684). NONO binds to an enhancer element in long terminal repeats of endogenous intracisternal A particles (IAPs) and activates transcription (By similarity). Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer (By similarity). Important for the functional organization of GABAergic synapses (By similarity). Plays a specific and important role in the regulation of synaptic RNAs and GPHN/gephyrin scaffold structure, through the regulation of GABRA2 transcript (By similarity). Plays a key role during neuronal differentiation by recruiting TET1 to genomic loci and thereby regulating 5-hydroxymethylcytosine levels (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728, PubMed:30270045). Promotes activation of the cGAS-STING pathway in response to HIV-2 infection: acts by interacting with HIV-2 Capsid protein p24, thereby promoting detection of viral DNA by CGAS, leading to CGAS-mediated inmmune activation (PubMed:30270045). In contrast, the weak interaction with HIV-1 Capsid protein p24 does not allow activation of the cGAS-STING pathway (PubMed:30270045). {ECO:0000250|UniProtKB:Q99K48, ECO:0000269|PubMed:10858305, ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:11897684, ECO:0000269|PubMed:12403470, ECO:0000269|PubMed:15590677, ECO:0000269|PubMed:22416126, ECO:0000269|PubMed:26571461, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:30270045}. |
Q15648 | MED1 | S770 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15652 | JMJD1C | S1056 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q16204 | CCDC6 | S325 | ochoa | Coiled-coil domain-containing protein 6 (Papillary thyroid carcinoma-encoded protein) (Protein H4) | None |
Q16566 | CAMK4 | S343 | ochoa | Calcium/calmodulin-dependent protein kinase type IV (CaMK IV) (EC 2.7.11.17) (CaM kinase-GR) | Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK4 signaling cascade and regulates, mainly by phosphorylation, the activity of several transcription activators, such as CREB1, MEF2D, JUN and RORA, which play pivotal roles in immune response, inflammation, and memory consolidation. In the thymus, regulates the CD4(+)/CD8(+) double positive thymocytes selection threshold during T-cell ontogeny. In CD4 memory T-cells, is required to link T-cell antigen receptor (TCR) signaling to the production of IL2, IFNG and IL4 (through the regulation of CREB and MEF2). Regulates the differentiation and survival phases of osteoclasts and dendritic cells (DCs). Mediates DCs survival by linking TLR4 and the regulation of temporal expression of BCL2. Phosphorylates the transcription activator CREB1 on 'Ser-133' in hippocampal neuron nuclei and contribute to memory consolidation and long term potentiation (LTP) in the hippocampus. Can activate the MAP kinases MAPK1/ERK2, MAPK8/JNK1 and MAPK14/p38 and stimulate transcription through the phosphorylation of ELK1 and ATF2. Can also phosphorylate in vitro CREBBP, PRM2, MEF2A and STMN1/OP18. {ECO:0000269|PubMed:10617605, ECO:0000269|PubMed:17909078, ECO:0000269|PubMed:18829949, ECO:0000269|PubMed:7961813, ECO:0000269|PubMed:8065343, ECO:0000269|PubMed:8855261, ECO:0000269|PubMed:8980227, ECO:0000269|PubMed:9154845}. |
Q16799 | RTN1 | S164 | ochoa | Reticulon-1 (Neuroendocrine-specific protein) | Inhibits amyloid precursor protein processing, probably by blocking BACE1 activity. {ECO:0000269|PubMed:15286784}. |
Q27J81 | INF2 | S1227 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q2KHM9 | KIAA0753 | S670 | ochoa | Protein moonraker (MNR) (OFD1- and FOPNL-interacting protein) | Involved in centriole duplication (PubMed:24613305, PubMed:26297806). Positively regulates CEP63 centrosomal localization (PubMed:24613305, PubMed:26297806). Required for WDR62 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:24613305, PubMed:26297806). May play a role in cilium assembly. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:28220259}. |
Q2KHR3 | QSER1 | S234 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q2M1P5 | KIF7 | S456 | ochoa | Kinesin-like protein KIF7 | Essential for hedgehog signaling regulation: acts both as a negative and positive regulator of sonic hedgehog (Shh) and Indian hedgehog (Ihh) pathways, acting downstream of SMO, through both SUFU-dependent and -independent mechanisms (PubMed:21633164). Involved in the regulation of microtubular dynamics. Required for proper organization of the ciliary tip and control of ciliary localization of SUFU-GLI2 complexes (By similarity). Required for localization of GLI3 to cilia in response to Shh. Negatively regulates Shh signaling by preventing inappropriate activation of the transcriptional activator GLI2 in the absence of ligand. Positively regulates Shh signaling by preventing the processing of the transcription factor GLI3 into its repressor form. In keratinocytes, promotes the dissociation of SUFU-GLI2 complexes, GLI2 nuclear translocation and Shh signaling activation (By similarity). Involved in the regulation of epidermal differentiation and chondrocyte development (By similarity). {ECO:0000250|UniProtKB:B7ZNG0, ECO:0000269|PubMed:21633164}. |
Q2M2I3 | FAM83E | S384 | ochoa | Protein FAM83E | May play a role in MAPK signaling. {ECO:0000303|PubMed:24736947}. |
Q2M3G4 | SHROOM1 | S304 | ochoa | Protein Shroom1 (Apical protein 2) | May be involved in the assembly of microtubule arrays during cell elongation. {ECO:0000250}. |
Q2PPJ7 | RALGAPA2 | T715 | ochoa|psp | Ral GTPase-activating protein subunit alpha-2 (250 kDa substrate of Akt) (AS250) (p220) | Catalytic subunit of the heterodimeric RalGAP2 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q32MZ4 | LRRFIP1 | S766 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q32P44 | EML3 | S158 | ochoa | Echinoderm microtubule-associated protein-like 3 (EMAP-3) | Regulates mitotic spindle assembly, microtubule (MT)-kinetochore attachment and chromosome separation via recruitment of HAUS augmin-like complex and TUBG1 to the existing MTs and promoting MT-based MT nucleation (PubMed:30723163). Required for proper alignnment of chromosomes during metaphase (PubMed:18445686). {ECO:0000269|PubMed:18445686, ECO:0000269|PubMed:30723163}. |
Q4AC94 | C2CD3 | S299 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4AC94 | C2CD3 | S2148 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4ADV7 | RIC1 | S1017 | ochoa | Guanine nucleotide exchange factor subunit RIC1 (Connexin-43-interacting protein of 150 kDa) (Protein RIC1 homolog) (RAB6A-GEF complex partner protein 1) | The RIC1-RGP1 complex acts as a guanine nucleotide exchange factor (GEF), which activates RAB6A by exchanging bound GDP for free GTP, and may thereby be required for efficient fusion of endosome-derived vesicles with the Golgi compartment (PubMed:23091056). The RIC1-RGP1 complex participates in the recycling of mannose-6-phosphate receptors (PubMed:23091056). Required for phosphorylation and localization of GJA1 (PubMed:16112082). Is a regulator of procollagen transport and secretion, and is required for correct cartilage morphogenesis and development of the craniofacial skeleton (PubMed:31932796). {ECO:0000269|PubMed:16112082, ECO:0000269|PubMed:23091056, ECO:0000269|PubMed:31932796}. |
Q4ADV7 | RIC1 | S1019 | ochoa | Guanine nucleotide exchange factor subunit RIC1 (Connexin-43-interacting protein of 150 kDa) (Protein RIC1 homolog) (RAB6A-GEF complex partner protein 1) | The RIC1-RGP1 complex acts as a guanine nucleotide exchange factor (GEF), which activates RAB6A by exchanging bound GDP for free GTP, and may thereby be required for efficient fusion of endosome-derived vesicles with the Golgi compartment (PubMed:23091056). The RIC1-RGP1 complex participates in the recycling of mannose-6-phosphate receptors (PubMed:23091056). Required for phosphorylation and localization of GJA1 (PubMed:16112082). Is a regulator of procollagen transport and secretion, and is required for correct cartilage morphogenesis and development of the craniofacial skeleton (PubMed:31932796). {ECO:0000269|PubMed:16112082, ECO:0000269|PubMed:23091056, ECO:0000269|PubMed:31932796}. |
Q4G0A6 | MINDY4 | S235 | ochoa | Probable ubiquitin carboxyl-terminal hydrolase MINDY-4 (EC 3.4.19.12) (Probable deubiquitinating enzyme MINDY-4) | Probable hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins. {ECO:0000250|UniProtKB:Q8NBR6}. |
Q4L180 | FILIP1L | S1051 | ochoa | Filamin A-interacting protein 1-like (130 kDa GPBP-interacting protein) (90 kDa GPBP-interacting protein) (Protein down-regulated in ovarian cancer 1) (DOC-1) | Acts as a regulator of the antiangiogenic activity on endothelial cells. When overexpressed in endothelial cells, leads to inhibition of cell proliferation and migration and an increase in apoptosis. Inhibits melanoma growth When expressed in tumor-associated vasculature. {ECO:0000269|PubMed:18794120}. |
Q53EL6 | PDCD4 | S78 | ochoa | Programmed cell death protein 4 (Neoplastic transformation inhibitor protein) (Nuclear antigen H731-like) (Protein 197/15a) | Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity). {ECO:0000250, ECO:0000269|PubMed:16357133, ECO:0000269|PubMed:16449643, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:18296639, ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291}. |
Q53F19 | NCBP3 | S446 | ochoa | Nuclear cap-binding protein subunit 3 (Protein ELG) | Associates with NCBP1/CBP80 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export. NCBP3 serves as adapter protein linking the capped RNAs (m7GpppG-capped RNA) to NCBP1/CBP80. Unlike the conventional CBC with NCBP2 which binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus, the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role in only mRNA export. The alternative CBC is particularly important in cellular stress situations such as virus infections and the NCBP3 activity is critical to inhibit virus growth (PubMed:26382858). {ECO:0000269|PubMed:26382858}. |
Q53HC0 | CCDC92 | S209 | ochoa | Coiled-coil domain-containing protein 92 (Limkain beta-2) | Interferon-stimulated protein that plays a role in innate immunity. Strongly inhibits ebolavirus transcription and replication. Forms a complex with viral RNA-bound nucleocapsid NP and thereby prevents the transport of NP to the cell surface. {ECO:0000269|PubMed:32528005}. |
Q5JSZ5 | PRRC2B | S416 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTV8 | TOR1AIP1 | S154 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5KSL6 | DGKK | S826 | ochoa | Diacylglycerol kinase kappa (DAG kinase kappa) (DGK-kappa) (EC 2.7.1.107) (142 kDa diacylglycerol kinase) (Diglyceride kinase kappa) | Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:16210324, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable). {ECO:0000269|PubMed:16210324, ECO:0000269|PubMed:23949095, ECO:0000305}. |
Q5SW79 | CEP170 | S354 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SW79 | CEP170 | S879 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T011 | SZT2 | S1386 | ochoa | KICSTOR complex protein SZT2 (Seizure threshold 2 protein homolog) | As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose (PubMed:28199306, PubMed:28199315). May play a role in the cellular response to oxidative stress (By similarity). {ECO:0000250|UniProtKB:A2A9C3, ECO:0000269|PubMed:28199306, ECO:0000269|PubMed:28199315}. |
Q5T1M5 | FKBP15 | S346 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T1R4 | HIVEP3 | S991 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T3F8 | TMEM63B | S113 | ochoa | Mechanosensitive cation channel TMEM63B (Transmembrane protein 63B) (hTMEM63B) | Mechanosensitive cation channel with low conductance and high activation threshold (PubMed:37543036, PubMed:38127458). Osmosensitive cation channel preferentially activated by hypotonic stress (PubMed:37543036, PubMed:38127458). Also acts as a phospholipid scramblase in response to changes in membrane structure: upon changes in membrane curvature and thickness, alters its conformation and translocates phospholipids, such as phosphatidylcholine and sphingomyelin, thereby controlling plasma membrane lipid distribution (PubMed:39217145, PubMed:39424995, PubMed:39716028). Forms a heterodimer with SLC19A2, which mediates phospholipid scramblase activity following Ca(2+) stimulation (By similarity). Expressed in excitatory neurons of the subfornical organ and functions as a thirst receptor that mediates neuronal response to hyperosmolality to drive thirst and drinking behavior (By similarity). Facilitates intestinal motility by promoting proliferation of intestinal stem cells (By similarity). Essential for the baby's first breath and respiration throughout life (PubMed:38127458). Upon lung inflation conducts cation currents in alveolar type 1 and 2 cells triggering lamellar body exocytosis and surfactant secretion into airspace (PubMed:38127458). Acts as an osmosensor in cochlear outer hair cells (OHCs) where it mediates calcium influx and regulatory volume decrease response (By similarity). Required for the maintenance of OHC morphology, OHC survival and normal hearing (By similarity). {ECO:0000250|UniProtKB:Q3TWI9, ECO:0000269|PubMed:37543036, ECO:0000269|PubMed:38127458, ECO:0000269|PubMed:39217145, ECO:0000269|PubMed:39424995, ECO:0000269|PubMed:39716028}. |
Q5T5C0 | STXBP5 | S902 | ochoa | Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) | Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}. |
Q5VT06 | CEP350 | S258 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S709 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT52 | RPRD2 | S785 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VUB5 | FAM171A1 | S358 | ochoa | Protein FAM171A1 (Astroprincin) (APCN) | Involved in the regulation of the cytoskeletal dynamics, plays a role in actin stress fiber formation. {ECO:0000269|PubMed:30312582}. |
Q5VV67 | PPRC1 | S1411 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) | Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}. |
Q684P5 | RAP1GAP2 | S637 | ochoa | Rap1 GTPase-activating protein 2 (Rap1GAP2) (GTPase-activating Rap/Ran-GAP domain-like protein 4) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15632203}. |
Q6BDS2 | BLTP3A | S432 | ochoa | Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) | Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}. |
Q6DN90 | IQSEC1 | S107 | ochoa | IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) | Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}. |
Q6DT37 | CDC42BPG | S1512 | ochoa | Serine/threonine-protein kinase MRCK gamma (EC 2.7.11.1) (CDC42-binding protein kinase gamma) (DMPK-like gamma) (Myotonic dystrophy kinase-related CDC42-binding kinase gamma) (MRCK gamma) (MRCKG) (Myotonic dystrophy protein kinase-like gamma) (Myotonic dystrophy protein kinase-like alpha) | May act as a downstream effector of CDC42 in cytoskeletal reorganization. Contributes to the actomyosin contractility required for cell invasion, through the regulation of MYPT1 and thus MLC2 phosphorylation (By similarity). {ECO:0000250|UniProtKB:Q5VT25, ECO:0000269|PubMed:15194684}. |
Q6GYQ0 | RALGAPA1 | S773 | ochoa | Ral GTPase-activating protein subunit alpha-1 (GAP-related-interacting partner to E12) (GRIPE) (GTPase-activating Rap/Ran-GAP domain-like 1) (Tuberin-like protein 1) (p240) | Catalytic subunit of the heterodimeric RalGAP1 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q6IAA8 | LAMTOR1 | S96 | ochoa | Ragulator complex protein LAMTOR1 (Late endosomal/lysosomal adaptor and MAPK and MTOR activator 1) (Lipid raft adaptor protein p18) (Protein associated with DRMs and endosomes) (p27Kip1-releasing factor from RhoA) (p27RF-Rho) | Key component of the Ragulator complex, a multiprotein complex involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids (PubMed:20381137, PubMed:22980980, PubMed:29158492). Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator plays a dual role for the small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD): it (1) acts as a guanine nucleotide exchange factor (GEF), activating the small GTPases Rag and (2) mediates recruitment of Rag GTPases to the lysosome membrane (PubMed:22980980, PubMed:28935770, PubMed:29158492, PubMed:30181260, PubMed:31001086, PubMed:32686708, PubMed:36476874). Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated (PubMed:20381137, PubMed:22980980, PubMed:29158492). LAMTOR1 is directly responsible for anchoring the Ragulator complex to the lysosomal membrane (PubMed:31001086, PubMed:32686708). LAMTOR1 wraps around the other subunits of the Ragulator complex to hold them in place and interacts with the Rag GTPases, thereby playing a key role in the recruitment of the mTORC1 complex to lysosomes (PubMed:28935770, PubMed:29107538, PubMed:29123114, PubMed:29285400). Also involved in the control of embryonic stem cells differentiation via non-canonical RagC/RRAGC and RagD/RRAGD activation: together with FLCN, it is necessary to recruit and activate RagC/RRAGC and RagD/RRAGD at the lysosomes, and to induce exit of embryonic stem cells from pluripotency via non-canonical, mTOR-independent TFE3 inactivation (By similarity). Also required for late endosomes/lysosomes biogenesis it may regulate both the recycling of receptors through endosomes and the MAPK signaling pathway through recruitment of some of its components to late endosomes (PubMed:20381137, PubMed:22980980). May be involved in cholesterol homeostasis regulating LDL uptake and cholesterol release from late endosomes/lysosomes (PubMed:20544018). May also play a role in RHOA activation (PubMed:19654316). {ECO:0000250|UniProtKB:Q9CQ22, ECO:0000269|PubMed:19654316, ECO:0000269|PubMed:20381137, ECO:0000269|PubMed:20544018, ECO:0000269|PubMed:22980980, ECO:0000269|PubMed:28935770, ECO:0000269|PubMed:29107538, ECO:0000269|PubMed:29123114, ECO:0000269|PubMed:29158492, ECO:0000269|PubMed:29285400, ECO:0000269|PubMed:30181260, ECO:0000269|PubMed:31001086, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:36476874}. |
Q6JBY9 | RCSD1 | S177 | ochoa | CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) | Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}. |
Q6KC79 | NIPBL | S1152 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6P9F7 | LRRC8B | S184 | ochoa | Volume-regulated anion channel subunit LRRC8B (Leucine-rich repeat-containing protein 8B) (T-cell activation leucine repeat-rich protein) (TA-LRRP) | Non-essential component of the volume-regulated anion channel (VRAC, also named VSOAC channel), an anion channel required to maintain a constant cell volume in response to extracellular or intracellular osmotic changes (PubMed:24790029, PubMed:26824658, PubMed:28193731). The VRAC channel conducts iodide better than chloride and can also conduct organic osmolytes like taurine. Channel activity requires LRRC8A plus at least one other family member (LRRC8B, LRRC8C, LRRC8D or LRRC8E); channel characteristics depend on the precise subunit composition (PubMed:24790029, PubMed:26824658, PubMed:28193731). {ECO:0000269|PubMed:24790029, ECO:0000269|PubMed:26824658, ECO:0000269|PubMed:28193731}. |
Q6PCB5 | RSBN1L | S39 | ochoa | Lysine-specific demethylase RSBN1L (EC 1.14.11.-) (Round spermatid basic protein 1-like protein) | Lysine-specific demethylase that specifically demethylates methylated lysine residues of proteins. {ECO:0000250|UniProtKB:Q80T69}. |
Q6PD62 | CTR9 | S1097 | ochoa | RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}. |
Q6PJF5 | RHBDF2 | S115 | ochoa | Inactive rhomboid protein 2 (iRhom2) (Rhomboid 5 homolog 2) (Rhomboid family member 2) (Rhomboid veinlet-like protein 5) (Rhomboid veinlet-like protein 6) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000250|UniProtKB:Q80WQ6}. |
Q6PJF5 | RHBDF2 | S385 | ochoa | Inactive rhomboid protein 2 (iRhom2) (Rhomboid 5 homolog 2) (Rhomboid family member 2) (Rhomboid veinlet-like protein 5) (Rhomboid veinlet-like protein 6) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000250|UniProtKB:Q80WQ6}. |
Q6PKG0 | LARP1 | S849 | ochoa | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6R327 | RICTOR | S1037 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6T4R5 | NHS | S1476 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6Y7W6 | GIGYF2 | S158 | ochoa | GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) | Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}. |
Q6Y7W6 | GIGYF2 | S275 | ochoa | GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) | Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}. |
Q6ZSZ5 | ARHGEF18 | S83 | ochoa | Rho guanine nucleotide exchange factor 18 (114 kDa Rho-specific guanine nucleotide exchange factor) (p114-Rho-GEF) (p114RhoGEF) (Septin-associated RhoGEF) (SA-RhoGEF) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. Its activation induces formation of actin stress fibers. Also acts as a GEF for RAC1, inducing production of reactive oxygen species (ROS). Does not act as a GEF for CDC42. The G protein beta-gamma (Gbetagamma) subunits of heterotrimeric G proteins act as activators, explaining the integrated effects of LPA and other G-protein coupled receptor agonists on actin stress fiber formation, cell shape change and ROS production. Required for EPB41L4B-mediated regulation of the circumferential actomyosin belt in epithelial cells (PubMed:22006950). {ECO:0000269|PubMed:11085924, ECO:0000269|PubMed:14512443, ECO:0000269|PubMed:15558029, ECO:0000269|PubMed:22006950, ECO:0000269|PubMed:28132693}. |
Q6ZTU2 | EP400P1 | S172 | ochoa | Putative EP400-like protein (EP400 pseudogene 1) | None |
Q6ZU80 | CEP128 | S1041 | ochoa | Centrosomal protein of 128 kDa (Cep128) | None |
Q6ZVL6 | KIAA1549L | S1479 | ochoa | UPF0606 protein KIAA1549L | None |
Q70EL1 | USP54 | S1418 | ochoa | Ubiquitin carboxyl-terminal hydrolase 54 (EC 3.4.19.12) (Ubiquitin-specific peptidase 54) | Deubiquitinase that specifically mediates 'Lys-63'-linked deubiquitination of substrates with a polyubiquitin chain composed of at least 3 ubiquitins (PubMed:39587316). Specifically recognizes ubiquitin chain in position S2 and catalyzes cleavage of polyubiquitin within 'Lys-63'-linked chains (PubMed:39587316). Not able to deubiquitinate substrates with shorter ubiquitin chains (PubMed:39587316). Mediates deubiquitination of PLK4, maintaining PLK4 stability by reducing its ubiquitination-mediated degradation (PubMed:36590171). {ECO:0000269|PubMed:36590171, ECO:0000269|PubMed:39587316}. |
Q70EL4 | USP43 | S844 | ochoa | Ubiquitin carboxyl-terminal hydrolase 43 (EC 3.4.19.12) (Deubiquitinating enzyme 43) (Ubiquitin thioesterase 43) (Ubiquitin-specific-processing protease 43) | May recognize and hydrolyze the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins (By similarity). {ECO:0000250}. |
Q70EL4 | USP43 | S846 | ochoa | Ubiquitin carboxyl-terminal hydrolase 43 (EC 3.4.19.12) (Deubiquitinating enzyme 43) (Ubiquitin thioesterase 43) (Ubiquitin-specific-processing protease 43) | May recognize and hydrolyze the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins (By similarity). {ECO:0000250}. |
Q7KZI7 | MARK2 | S533 | ochoa | Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}. |
Q7Z2W4 | ZC3HAV1 | S310 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z3G6 | PRICKLE2 | S693 | ochoa | Prickle-like protein 2 | None |
Q7Z401 | DENND4A | S1531 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z589 | EMSY | S209 | ochoa|psp | BRCA2-interacting transcriptional repressor EMSY | Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin (PubMed:14651845). Its interaction with BRCA2 suggests that it may play a central role in the DNA repair function of BRCA2 (PubMed:14651845). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). {ECO:0000269|PubMed:14651845, ECO:0000269|PubMed:19131338}. |
Q7Z589 | EMSY | S211 | ochoa | BRCA2-interacting transcriptional repressor EMSY | Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin (PubMed:14651845). Its interaction with BRCA2 suggests that it may play a central role in the DNA repair function of BRCA2 (PubMed:14651845). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). {ECO:0000269|PubMed:14651845, ECO:0000269|PubMed:19131338}. |
Q7Z591 | AKNA | S1159 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z5L9 | IRF2BP2 | S242 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q7Z6L1 | TECPR1 | S386 | ochoa | Tectonin beta-propeller repeat-containing protein 1 | Tethering factor involved in autophagy. Involved in autophagosome maturation by promoting the autophagosome fusion with lysosomes: acts by associating with both the ATG5-ATG12 conjugate and phosphatidylinositol-3-phosphate (PtdIns(3)P) present at the surface of autophagosomes. Also involved in selective autophagy against bacterial pathogens, by being required for phagophore/preautophagosomal structure biogenesis and maturation. {ECO:0000269|PubMed:21575909, ECO:0000269|PubMed:22342342}. |
Q7Z6L1 | TECPR1 | S388 | ochoa | Tectonin beta-propeller repeat-containing protein 1 | Tethering factor involved in autophagy. Involved in autophagosome maturation by promoting the autophagosome fusion with lysosomes: acts by associating with both the ATG5-ATG12 conjugate and phosphatidylinositol-3-phosphate (PtdIns(3)P) present at the surface of autophagosomes. Also involved in selective autophagy against bacterial pathogens, by being required for phagophore/preautophagosomal structure biogenesis and maturation. {ECO:0000269|PubMed:21575909, ECO:0000269|PubMed:22342342}. |
Q7Z7E8 | UBE2Q1 | S266 | ochoa | Ubiquitin-conjugating enzyme E2 Q1 (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme Q1) (Protein NICE-5) (Ubiquitin carrier protein Q1) (Ubiquitin-protein ligase Q1) | Catalyzes the covalent attachment of ubiquitin to other proteins (PubMed:22496338). May be involved in hormonal homeostasis in females. Involved in regulation of B4GALT1 cell surface expression, B4GALT1-mediated cell adhesion to laminin and embryoid body formation (By similarity). {ECO:0000250|UniProtKB:Q7TSS2, ECO:0000269|PubMed:22496338}. |
Q86SQ0 | PHLDB2 | S242 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86SQ0 | PHLDB2 | S415 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86T65 | DAAM2 | S1050 | ochoa | Disheveled-associated activator of morphogenesis 2 | Key regulator of the Wnt signaling pathway, which is required for various processes during development, such as dorsal patterning, determination of left/right symmetry or myelination in the central nervous system. Acts downstream of Wnt ligands and upstream of beta-catenin (CTNNB1). Required for canonical Wnt signaling pathway during patterning in the dorsal spinal cord by promoting the aggregation of Disheveled (Dvl) complexes, thereby clustering and formation of Wnt receptor signalosomes and potentiating Wnt activity. During dorsal patterning of the spinal cord, inhibits oligodendrocytes differentiation via interaction with PIP5K1A. Also regulates non-canonical Wnt signaling pathway. Acts downstream of PITX2 in the developing gut and is required for left/right asymmetry within dorsal mesentery: affects mesenchymal condensation by lengthening cadherin-based junctions through WNT5A and non-canonical Wnt signaling, inducing polarized condensation in the left dorsal mesentery necessary to initiate gut rotation. Together with DAAM1, required for myocardial maturation and sarcomere assembly. Is a regulator of actin nucleation and elongation, filopodia formation and podocyte migration (PubMed:33232676). {ECO:0000250|UniProtKB:Q80U19, ECO:0000269|PubMed:33232676}. |
Q86TI0 | TBC1D1 | S235 | ochoa|psp | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86U86 | PBRM1 | S314 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86V48 | LUZP1 | S820 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86VR2 | RETREG3 | S433 | ochoa | Reticulophagy regulator 3 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Promotes ER membrane curvature and ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes (PubMed:33826365). Required for collagen quality control in a LIR motif-dependent manner (By similarity). Mediates NRF1-enhanced neurite outgrowth (PubMed:26040720). {ECO:0000250|UniProtKB:Q9CQV4, ECO:0000269|PubMed:26040720, ECO:0000269|PubMed:33826365, ECO:0000269|PubMed:34338405}. |
Q86W92 | PPFIBP1 | S636 | ochoa | Liprin-beta-1 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 1) (PTPRF-interacting protein-binding protein 1) (hSGT2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q86WB0 | ZC3HC1 | S407 | ochoa | Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) | Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}. |
Q86XZ4 | SPATS2 | S208 | ochoa | Spermatogenesis-associated serine-rich protein 2 (Serine-rich spermatocytes and round spermatid 59 kDa protein) (p59scr) | None |
Q86YV0 | RASAL3 | S164 | ochoa | RAS protein activator like-3 | Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}. |
Q8IU60 | DCP2 | S247 | ochoa | m7GpppN-mRNA hydrolase (EC 3.6.1.62) (Nucleoside diphosphate-linked moiety X motif 20) (Nudix motif 20) (mRNA-decapping enzyme 2) (hDpc) | Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs (PubMed:12218187, PubMed:12417715, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12486012, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:14527413). Plays a role in replication-dependent histone mRNA degradation (PubMed:18172165). Has higher activity towards mRNAs that lack a poly(A) tail (PubMed:21070968). Has no activity towards a cap structure lacking an RNA moiety (PubMed:21070968). The presence of a N(6)-methyladenosine methylation at the second transcribed position of mRNAs (N(6),2'-O-dimethyladenosine cap; m6A(m)) provides resistance to DCP2-mediated decapping (PubMed:28002401). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts (PubMed:26098573). {ECO:0000269|PubMed:12218187, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:12486012, ECO:0000269|PubMed:12923261, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21070968, ECO:0000269|PubMed:26098573, ECO:0000269|PubMed:28002401}. |
Q8IUW5 | RELL1 | S247 | ochoa | RELT-like protein 1 | Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}. |
Q8IV50 | LYSMD2 | S33 | ochoa | LysM and putative peptidoglycan-binding domain-containing protein 2 | None |
Q8IVF2 | AHNAK2 | S3782 | ochoa | Protein AHNAK2 | None |
Q8IVL0 | NAV3 | S1670 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IVL1 | NAV2 | S1611 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IWZ3 | ANKHD1 | S178 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IXF0 | NPAS3 | S619 | ochoa | Neuronal PAS domain-containing protein 3 (Neuronal PAS3) (Basic-helix-loop-helix-PAS protein MOP6) (Class E basic helix-loop-helix protein 12) (bHLHe12) (Member of PAS protein 6) (PAS domain-containing protein 6) | May play a broad role in neurogenesis. May control regulatory pathways relevant to schizophrenia and to psychotic illness (By similarity). {ECO:0000250}. |
Q8IY92 | SLX4 | S1450 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IYJ3 | SYTL1 | S468 | ochoa | Synaptotagmin-like protein 1 (Exophilin-7) (Protein JFC1) | May play a role in vesicle trafficking (By similarity). Binds phosphatidylinositol 3,4,5-trisphosphate. Acts as a RAB27A effector protein and may play a role in cytotoxic granule exocytosis in lymphocytes (By similarity). {ECO:0000250, ECO:0000269|PubMed:11278853, ECO:0000269|PubMed:18266782}. |
Q8N271 | PROM2 | S815 | ochoa | Prominin-2 (PROM-2) (Prominin-like protein 2) (hPROML2) | None |
Q8N488 | RYBP | S183 | ochoa | RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}. |
Q8N4C8 | MINK1 | S699 | ochoa | Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) | Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration. |
Q8N4Z0 | RAB42 | S83 | psp | Ras-related protein Rab-42 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). The physiological function of RAB42 remains undefined (Probable). {ECO:0000250|UniProtKB:P62820, ECO:0000305}. |
Q8N5C8 | TAB3 | S101 | ochoa | TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 3) (NF-kappa-B-activating protein 1) (TAK1-binding protein 3) (TAB-3) (TGF-beta-activated kinase 1-binding protein 3) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122, PubMed:36593296). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). {ECO:0000269|PubMed:14633987, ECO:0000269|PubMed:14766965, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:36593296}.; FUNCTION: [Isoform 2]: May be an oncogenic factor. {ECO:0000269|PubMed:14766965}. |
Q8N8E3 | CEP112 | S171 | ochoa | Centrosomal protein of 112 kDa (Cep112) (Coiled-coil domain-containing protein 46) | None |
Q8N960 | CEP120 | S345 | ochoa | Centrosomal protein of 120 kDa (Cep120) (Coiled-coil domain-containing protein 100) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors and for proper positioning of neurons during brain development. Also implicated in the migration and selfrenewal of neural progenitors. Required for centriole duplication and maturation during mitosis and subsequent ciliogenesis (By similarity). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000250|UniProtKB:Q7TSG1, ECO:0000269|PubMed:27185865}. |
Q8NB16 | MLKL | S358 | psp | Mixed lineage kinase domain-like protein (hMLKL) | Pseudokinase that plays a key role in TNF-induced necroptosis, a programmed cell death process (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). Does not have protein kinase activity (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). Activated following phosphorylation by RIPK3, leading to homotrimerization, localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). In addition to TNF-induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: following activation by ZBP1, MLKL is phosphorylated by RIPK3 in the nucleus, triggering disruption of the nuclear envelope and leakage of cellular DNA into the cytosol.following ZBP1 activation, which senses double-stranded Z-RNA structures, nuclear RIPK3 catalyzes phosphorylation and activation of MLKL, promoting disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (By similarity). Binds to highly phosphorylated inositol phosphates such as inositolhexakisphosphate (InsP6) which is essential for its necroptotic function (PubMed:29883610). {ECO:0000250|UniProtKB:Q9D2Y4, ECO:0000269|PubMed:22265413, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:22421439, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:29883610}. |
Q8NB49 | ATP11C | S1110 | ochoa | Phospholipid-transporting ATPase IG (EC 7.6.2.1) (ATPase IQ) (ATPase class VI type 11C) (P4-ATPase flippase complex alpha subunit ATP11C) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids, phosphatidylserines (PS) and phosphatidylethanolamines (PE), from the outer to the inner leaflet of the plasma membrane (PubMed:24904167, PubMed:25315773, PubMed:26567335, PubMed:32493773). Major PS-flippase in immune cell subsets. In erythrocyte plasma membrane, it is required to maintain PS in the inner leaflet preventing its exposure on the surface. This asymmetric distribution is critical for the survival of erythrocytes in circulation since externalized PS is a phagocytic signal for erythrocyte clearance by splenic macrophages (PubMed:26944472). Required for B cell differentiation past the pro-B cell stage (By similarity). Seems to mediate PS flipping in pro-B cells (By similarity). May be involved in the transport of cholestatic bile acids (By similarity). {ECO:0000250|UniProtKB:Q9QZW0, ECO:0000269|PubMed:24904167, ECO:0000269|PubMed:25315773, ECO:0000269|PubMed:26944472, ECO:0000269|PubMed:32493773}. |
Q8NBU5 | ATAD1 | S317 | ochoa | Outer mitochondrial transmembrane helix translocase (EC 7.4.2.-) (ATPase family AAA domain-containing protein 1) (hATAD1) (Thorase) | Outer mitochondrial translocase required to remove mislocalized tail-anchored transmembrane proteins on mitochondria (PubMed:24843043). Specifically recognizes and binds tail-anchored transmembrane proteins: acts as a dislocase that mediates the ATP-dependent extraction of mistargeted tail-anchored transmembrane proteins from the mitochondrion outer membrane (By similarity). Also plays a critical role in regulating the surface expression of AMPA receptors (AMPAR), thereby regulating synaptic plasticity and learning and memory (By similarity). Required for NMDA-stimulated AMPAR internalization and inhibition of GRIA1 and GRIA2 recycling back to the plasma membrane; these activities are ATPase-dependent (By similarity). {ECO:0000250|UniProtKB:P28737, ECO:0000250|UniProtKB:Q9D5T0, ECO:0000269|PubMed:24843043}. |
Q8NCF5 | NFATC2IP | S90 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NDX6 | ZNF740 | S70 | ochoa | Zinc finger protein 740 (OriLyt TD-element-binding protein 7) | May be involved in transcriptional regulation. |
Q8NEV8 | EXPH5 | S1821 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NF50 | DOCK8 | S1243 | ochoa | Dedicator of cytokinesis protein 8 | Guanine nucleotide exchange factor (GEF) which specifically activates small GTPase CDC42 by exchanging bound GDP for free GTP (PubMed:22461490, PubMed:28028151). During immune responses, required for interstitial dendritic cell (DC) migration by locally activating CDC42 at the leading edge membrane of DC (By similarity). Required for CD4(+) T-cell migration in response to chemokine stimulation by promoting CDC42 activation at T cell leading edge membrane (PubMed:28028151). Is involved in NK cell cytotoxicity by controlling polarization of microtubule-organizing center (MTOC), and possibly regulating CCDC88B-mediated lytic granule transport to MTOC during cell killing (PubMed:25762780). {ECO:0000250|UniProtKB:Q8C147, ECO:0000269|PubMed:22461490, ECO:0000269|PubMed:25762780, ECO:0000269|PubMed:28028151}. |
Q8NFH8 | REPS2 | S461 | ochoa | RalBP1-associated Eps domain-containing protein 2 (Partner of RalBP1) (RalBP1-interacting protein 2) | Involved in ligand-dependent receptor mediated endocytosis of the EGF and insulin receptors as part of the Ral signaling pathway (PubMed:10393179, PubMed:12771942, PubMed:9422736). By controlling growth factor receptors endocytosis may regulate cell survival (PubMed:12771942). Through ASAP1 may regulate cell adhesion and migration (PubMed:12149250). {ECO:0000269|PubMed:10393179, ECO:0000269|PubMed:12149250, ECO:0000269|PubMed:12771942, ECO:0000269|PubMed:9422736}. |
Q8NI35 | PATJ | S457 | ochoa | InaD-like protein (Inadl protein) (hINADL) (Channel-interacting PDZ domain-containing protein) (Pals1-associated tight junction protein) (Protein associated to tight junctions) | Scaffolding protein that facilitates the localization of proteins to the cell membrane (PubMed:11927608, PubMed:16678097, PubMed:22006950). Required for the correct formation of tight junctions and epithelial apico-basal polarity (PubMed:11927608, PubMed:16678097). Acts (via its L27 domain) as an apical connector and elongation factor for multistranded TJP1/ZO1 condensates that form a tight junction belt, thereby required for the formation of the tight junction-mediated cell barrier (By similarity). Positively regulates epithelial cell microtubule elongation and cell migration, possibly via facilitating localization of PRKCI/aPKC and PAR3D/PAR3 at the leading edge of migrating cells (By similarity). Plays a role in the correct reorientation of the microtubule-organizing center during epithelial migration (By similarity). May regulate the surface expression and/or function of ASIC3 in sensory neurons (By similarity). May recruit ARHGEF18 to apical cell-cell boundaries (PubMed:22006950). {ECO:0000250|UniProtKB:E2QYC9, ECO:0000250|UniProtKB:Q63ZW7, ECO:0000269|PubMed:11927608, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:22006950}. |
Q8NI77 | KIF18A | S836 | ochoa | Kinesin-like protein KIF18A (Marrow stromal KIF18A) (MS-KIF18A) | Microtubule-depolymerizing kinesin which plays a role in chromosome congression by reducing the amplitude of preanaphase oscillations and slowing poleward movement during anaphase, thus suppressing chromosome movements. May stabilize the CENPE-BUB1B complex at the kinetochores during early mitosis and maintains CENPE levels at kinetochores during chromosome congression. {ECO:0000269|PubMed:17346968, ECO:0000269|PubMed:18267093, ECO:0000269|PubMed:18513970, ECO:0000269|PubMed:19625775}. |
Q8TCD5 | NT5C | S182 | ochoa | 5'(3')-deoxyribonucleotidase, cytosolic type (EC 3.1.3.-) (Cytosolic 5',3'-pyrimidine nucleotidase) (Deoxy-5'-nucleotidase 1) (dNT-1) | Dephosphorylates the 5' and 2'(3')-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP. |
Q8TCN5 | ZNF507 | S487 | ochoa | Zinc finger protein 507 | May be involved in transcriptional regulation. |
Q8TDJ6 | DMXL2 | S1402 | ochoa | DmX-like protein 2 (Rabconnectin-3) | May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}. |
Q8TDM6 | DLG5 | S1252 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TDN4 | CABLES1 | S418 | ochoa | CDK5 and ABL1 enzyme substrate 1 (Interactor with CDK3 1) (Ik3-1) | Cyclin-dependent kinase binding protein. Enhances cyclin-dependent kinase tyrosine phosphorylation by nonreceptor tyrosine kinases, such as that of CDK5 by activated ABL1, which leads to increased CDK5 activity and is critical for neuronal development, and that of CDK2 by WEE1, which leads to decreased CDK2 activity and growth inhibition. Positively affects neuronal outgrowth. Plays a role as a regulator for p53/p73-induced cell death (By similarity). {ECO:0000250}. |
Q8TEH3 | DENND1A | S536 | ochoa | DENN domain-containing protein 1A (Connecdenn 1) (Connecdenn) (Protein FAM31A) | Guanine nucleotide exchange factor (GEF) regulating clathrin-mediated endocytosis through RAB35 activation. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form. Regulates clathrin-mediated endocytosis of synaptic vesicles and mediates exit from early endosomes (PubMed:20154091, PubMed:20937701). Binds phosphatidylinositol-phosphates (PtdInsPs), with some preference for PtdIns(3)P (By similarity). {ECO:0000250|UniProtKB:Q8K382, ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701}. |
Q8TEU7 | RAPGEF6 | S1435 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8TEW0 | PARD3 | S715 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8WVM7 | STAG1 | S1065 | ochoa | Cohesin subunit SA-1 (SCC3 homolog 1) (Stromal antigen 1) | Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. |
Q8WWI1 | LMO7 | S1595 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWQ0 | PHIP | S674 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q8WXG6 | MADD | S860 | ochoa | MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) | Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}. |
Q8WXI7 | MUC16 | S9577 | ochoa | Mucin-16 (MUC-16) (Ovarian cancer-related tumor marker CA125) (CA-125) (Ovarian carcinoma antigen CA125) | Thought to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces. {ECO:0000250}. |
Q8WYP5 | AHCTF1 | S1944 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WZ75 | ROBO4 | S894 | ochoa | Roundabout homolog 4 (Magic roundabout) | Receptor for Slit proteins, at least for SLIT2, and seems to be involved in angiogenesis and vascular patterning. May mediate the inhibition of primary endothelial cell migration by Slit proteins (By similarity). Involved in the maintenance of endothelial barrier organization and function (PubMed:30455415). {ECO:0000250, ECO:0000269|PubMed:30455415}. |
Q92574 | TSC1 | S1038 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92576 | PHF3 | S678 | ochoa | PHD finger protein 3 | None |
Q92576 | PHF3 | S680 | ochoa | PHD finger protein 3 | None |
Q92597 | NDRG1 | S330 | ochoa|psp | Protein NDRG1 (Differentiation-related gene 1 protein) (DRG-1) (N-myc downstream-regulated gene 1 protein) (Nickel-specific induction protein Cap43) (Reducing agents and tunicamycin-responsive protein) (RTP) (Rit42) | Stress-responsive protein involved in hormone responses, cell growth, and differentiation. Acts as a tumor suppressor in many cell types. Necessary but not sufficient for p53/TP53-mediated caspase activation and apoptosis. Has a role in cell trafficking, notably of the Schwann cell, and is necessary for the maintenance and development of the peripheral nerve myelin sheath. Required for vesicular recycling of CDH1 and TF. May also function in lipid trafficking. Protects cells from spindle disruption damage. Functions in p53/TP53-dependent mitotic spindle checkpoint. Regulates microtubule dynamics and maintains euploidy. {ECO:0000269|PubMed:15247272, ECO:0000269|PubMed:15377670, ECO:0000269|PubMed:17786215, ECO:0000269|PubMed:9766676}. |
Q92625 | ANKS1A | S626 | ochoa | Ankyrin repeat and SAM domain-containing protein 1A (Odin) | Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}. |
Q92804 | TAF15 | S226 | ochoa | TATA-binding protein-associated factor 2N (68 kDa TATA-binding protein-associated factor) (TAF(II)68) (TAFII68) (RNA-binding protein 56) | RNA and ssDNA-binding protein that may play specific roles during transcription initiation at distinct promoters. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Can enter the preinitiation complex together with the RNA polymerase II (Pol II). {ECO:0000269|PubMed:19124016, ECO:0000269|PubMed:21256132}. |
Q92918 | MAP4K1 | S324 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 1 (EC 2.7.11.1) (Hematopoietic progenitor kinase) (MAPK/ERK kinase kinase kinase 1) (MEK kinase kinase 1) (MEKKK 1) | Serine/threonine-protein kinase, which plays a role in the response to environmental stress (PubMed:24362026). Appears to act upstream of the JUN N-terminal pathway (PubMed:8824585). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). May play a role in hematopoietic lineage decisions and growth regulation (PubMed:24362026, PubMed:8824585). Together with CLNK, it enhances CD3-triggered activation of T-cells and subsequent IL2 production (By similarity). {ECO:0000250|UniProtKB:P70218, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:8824585}. |
Q92930 | RAB8B | S180 | ochoa | Ras-related protein Rab-8B (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). RAB8B may be involved in polarized vesicular trafficking and neurotransmitter release (Probable). May participate in cell junction dynamics in Sertoli cells (By similarity). May also participate in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). {ECO:0000250|UniProtKB:P61006, ECO:0000250|UniProtKB:P70550, ECO:0000269|PubMed:32344433, ECO:0000305}. |
Q92994 | BRF1 | S433 | ochoa | Transcription factor IIIB 90 kDa subunit (TFIIIB90) (hTFIIIB90) (B-related factor 1) (BRF-1) (hBRF) (TAF3B2) (TATA box-binding protein-associated factor, RNA polymerase III, subunit 2) | General activator of RNA polymerase which utilizes different TFIIIB complexes at structurally distinct promoters. The isoform 1 is involved in the transcription of tRNA, adenovirus VA1, 7SL and 5S RNA. Isoform 2 is required for transcription of the U6 promoter. |
Q93075 | TATDN2 | S80 | ochoa | 3'-5' RNA nuclease TATDN2 (EC 3.1.13.-) (TatD DNase domain containing 2) | Mg(2+)-dependent 3'RNA exonuclease and endonuclease that resolves R-loops via specific degradation of R-loop RNA stucture (PubMed:37953292). Shows no activity against D-loop and minimal activity against the RNA strand of an RNA-DNA hybrid duplex oligomer. Has no 3' or 5' exonuclease activity, no uracil glycosylase activity, and no 5' flap endonuclease activity on DNA substrates (PubMed:37953292). May have a role in maintaining genomic stability through its role in R-loop resolution (PubMed:37953292). {ECO:0000269|PubMed:37953292}. |
Q969R5 | L3MBTL2 | S83 | ochoa | Lethal(3)malignant brain tumor-like protein 2 (H-l(3)mbt-like protein 2) (L(3)mbt-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins maintain the transcriptionally repressive state of genes, probably via a modification of chromatin, rendering it heritably changed in its expressibility. Its association with a chromatin-remodeling complex suggests that it may contribute to prevent expression of genes that trigger the cell into mitosis. Binds to monomethylated and dimethylated 'Lys-20' on histone H4. Binds histone H3 peptides that are monomethylated or dimethylated on 'Lys-4', 'Lys-9' or 'Lys-27'. {ECO:0000269|PubMed:19233876}. |
Q96B18 | DACT3 | S424 | ochoa | Dapper homolog 3 (Antagonist of beta-catenin Dapper homolog 3) (Arginine-rich region 1 protein) (Dapper antagonist of catenin 3) | May be involved in regulation of intracellular signaling pathways during development. Specifically thought to play a role in canonical and/or non-canonical Wnt signaling pathways through interaction with DSH (Dishevelled) family proteins. {ECO:0000269|PubMed:18538736}. |
Q96B97 | SH3KBP1 | S181 | ochoa | SH3 domain-containing kinase-binding protein 1 (CD2-binding protein 3) (CD2BP3) (Cbl-interacting protein of 85 kDa) (Human Src family kinase-binding protein 1) (HSB-1) | Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through an association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may be inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Has an essential role in the stimulation of B cell activation (PubMed:29636373). {ECO:0000250, ECO:0000269|PubMed:11894095, ECO:0000269|PubMed:11894096, ECO:0000269|PubMed:12177062, ECO:0000269|PubMed:12734385, ECO:0000269|PubMed:12771190, ECO:0000269|PubMed:15090612, ECO:0000269|PubMed:15707590, ECO:0000269|PubMed:16177060, ECO:0000269|PubMed:16256071, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29636373}. |
Q96E39 | RBMXL1 | S249 | ochoa | RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) | RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}. |
Q96EV8 | DTNBP1 | S297 | ochoa|psp | Dysbindin (Biogenesis of lysosome-related organelles complex 1 subunit 8) (BLOC-1 subunit 8) (Dysbindin-1) (Dystrobrevin-binding protein 1) (Hermansky-Pudlak syndrome 7 protein) (HPS7 protein) | Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes. In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Associates with the BLOC-2 complex to facilitate the transport of TYRP1 independent of AP-3 function. Plays a role in synaptic vesicle trafficking and in neurotransmitter release. Plays a role in the regulation of cell surface exposure of DRD2. May play a role in actin cytoskeleton reorganization and neurite outgrowth. May modulate MAPK8 phosphorylation. Appears to promote neuronal transmission and viability through regulating the expression of SNAP25 and SYN1, modulating PI3-kinase-Akt signaling and influencing glutamatergic release. Regulates the expression of SYN1 through binding to its promoter. Modulates prefrontal cortical activity via the dopamine/D2 pathway. {ECO:0000269|PubMed:15345706, ECO:0000269|PubMed:16837549, ECO:0000269|PubMed:17182842, ECO:0000269|PubMed:17989303, ECO:0000269|PubMed:19094965, ECO:0000269|PubMed:20180862, ECO:0000269|PubMed:20921223}. |
Q96F45 | ZNF503 | S230 | ochoa | Zinc finger protein 503 | May function as a transcriptional repressor. {ECO:0000250}. |
Q96F86 | EDC3 | S161 | ochoa|psp | Enhancer of mRNA-decapping protein 3 (LSM16 homolog) (YjeF N-terminal domain-containing protein 2) (YjeF_N2) (hYjeF_N2) (YjeF domain-containing protein 1) | Binds single-stranded RNA. Involved in the process of mRNA degradation and in the positive regulation of mRNA decapping. May play a role in spermiogenesis and oogenesis. {ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:17533573, ECO:0000269|PubMed:18678652, ECO:0000269|PubMed:25701870}. |
Q96GE4 | CEP95 | S451 | ochoa | Centrosomal protein of 95 kDa (Cep95) (Coiled-coil domain-containing protein 45) | None |
Q96GY3 | LIN37 | S135 | ochoa | Protein lin-37 homolog (Antolefinin) | None |
Q96HA1 | POM121 | S346 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96HA1 | POM121 | S393 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96HP0 | DOCK6 | S882 | ochoa | Dedicator of cytokinesis protein 6 | Acts as a guanine nucleotide exchange factor (GEF) for CDC42 and RAC1 small GTPases. Through its activation of CDC42 and RAC1, may regulate neurite outgrowth (By similarity). {ECO:0000250, ECO:0000269|PubMed:17196961}. |
Q96J92 | WNK4 | S1219 | ochoa | Serine/threonine-protein kinase WNK4 (EC 2.7.11.1) (Protein kinase lysine-deficient 4) (Protein kinase with no lysine 4) | Serine/threonine-protein kinase component of the WNK4-SPAK/OSR1 kinase cascade, which acts as a key regulator of ion transport in the distal nephron and blood pressure (By similarity). The WNK4-SPAK/OSR1 kinase cascade is composed of WNK4, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:16832045). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16832045, PubMed:22989884). Acts as a molecular switch that regulates the balance between renal salt reabsorption and K(+) secretion by modulating the activities of renal transporters and channels, including the Na-Cl cotransporter SLC12A3/NCC and the K(+) channel, KCNJ1/ROMK (By similarity). Regulates NaCl reabsorption in the distal nephron by activating the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney: activates SLC12A3/NCC in a OXSR1/OSR1- and STK39/SPAK-dependent process (By similarity). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels (CFTR, KCNJ1/ROMK, SLC4A4, SLC26A9 and TRPV4) by clathrin-dependent endocytosis (By similarity). Also inhibits the activity of the epithelial Na(+) channel (ENaC) SCNN1A, SCNN1B, SCNN1D in a inase-independent mechanism (By similarity). May also phosphorylate NEDD4L (PubMed:20525693). {ECO:0000250|UniProtKB:Q80UE6, ECO:0000269|PubMed:16832045, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:22989884}. |
Q96JH7 | VCPIP1 | S998 | ochoa|psp | Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) | Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}. |
Q96JZ2 | HSH2D | S296 | ochoa | Hematopoietic SH2 domain-containing protein (Hematopoietic SH2 protein) (Adaptor in lymphocytes of unknown function X) | May be a modulator of the apoptotic response through its ability to affect mitochondrial stability (By similarity). Adapter protein involved in tyrosine kinase and CD28 signaling. Seems to affect CD28-mediated activation of the RE/AP element of the interleukin-2 promoter. {ECO:0000250, ECO:0000269|PubMed:11700021, ECO:0000269|PubMed:12960172, ECO:0000269|PubMed:15284240}. |
Q96L91 | EP400 | S183 | ochoa | E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q96MT3 | PRICKLE1 | S681 | ochoa | Prickle-like protein 1 (REST/NRSF-interacting LIM domain protein 1) | Involved in the planar cell polarity pathway that controls convergent extension during gastrulation and neural tube closure. Convergent extension is a complex morphogenetic process during which cells elongate, move mediolaterally, and intercalate between neighboring cells, leading to convergence toward the mediolateral axis and extension along the anteroposterior axis. Necessary for nuclear localization of REST. May serve as nuclear receptor. {ECO:0000269|PubMed:21901791}. |
Q96N67 | DOCK7 | S898 | ochoa | Dedicator of cytokinesis protein 7 | Functions as a guanine nucleotide exchange factor (GEF), which activates Rac1 and Rac3 Rho small GTPases by exchanging bound GDP for free GTP. Does not have a GEF activity for CDC42. Required for STMN1 'Ser-15' phosphorylation during axon formation and consequently for neuronal polarization (PubMed:16982419). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). Has a role in pigmentation (By similarity). Involved in the regulation of cortical neurogenesis through the control of radial glial cells (RGCs) proliferation versus differentiation; negatively regulates the basal-to-apical interkinetic nuclear migration of RGCs by antagonizing the microtubule growth-promoting function of TACC3 (By similarity). {ECO:0000250|UniProtKB:Q8R1A4, ECO:0000269|PubMed:16982419, ECO:0000269|PubMed:29467281}. |
Q96N96 | SPATA13 | S76 | ochoa | Spermatogenesis-associated protein 13 (APC-stimulated guanine nucleotide exchange factor 2) (Asef2) | Acts as a guanine nucleotide exchange factor (GEF) for RHOA, RAC1 and CDC42 GTPases. Regulates cell migration and adhesion assembly and disassembly through a RAC1, PI3K, RHOA and AKT1-dependent mechanism. Increases both RAC1 and CDC42 activity, but decreases the amount of active RHOA. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Involved in tumor angiogenesis and may play a role in intestinal adenoma formation and tumor progression. {ECO:0000269|PubMed:17145773, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:19934221}. |
Q96NE9 | FRMD6 | S388 | ochoa | FERM domain-containing protein 6 (Willin) | None |
Q96PE2 | ARHGEF17 | S715 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PX1 | RNF157 | S661 | psp | E3 ubiquitin ligase RNF157 (EC 2.3.2.27) (RING finger protein 157) (RING-type E3 ubiquitin transferase RNF157) | E3 ubiquitin ligase that ubiquitinates APBB1 for its degradation by the proteasome and thus prevents apoptosis and promotes survival of neurons (PubMed:25342469). Has a dual role in neurons as it is also required for dendrite growth and maintenance for which its ligase activity is not critical (PubMed:25342469). May act as a scaffold molecule to regulate this process (PubMed:25342469). Acts as a downstream effector of the interconnected PI3K and MAPK signaling pathways and thus participates in the regulation of the cell cycle (PubMed:28655764). {ECO:0000269|PubMed:25342469, ECO:0000269|PubMed:28655764}. |
Q96S38 | RPS6KC1 | S648 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96ST8 | CEP89 | S77 | ochoa | Centrosomal protein of 89 kDa (Cep89) (Centrosomal protein 123) (Cep123) (Coiled-coil domain-containing protein 123) | Required for ciliogenesis. Also plays a role in mitochondrial metabolism where it may modulate complex IV activity. {ECO:0000269|PubMed:23348840, ECO:0000269|PubMed:23575228}. |
Q96T23 | RSF1 | S1247 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T58 | SPEN | S725 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96TA1 | NIBAN2 | S425 | ochoa | Protein Niban 2 (Meg-3) (Melanoma invasion by ERK) (MINERVA) (Niban-like protein 1) (Protein FAM129B) | May play a role in apoptosis suppression. May promote melanoma cell invasion in vitro. {ECO:0000269|PubMed:19362540, ECO:0000269|PubMed:21148485}. |
Q99543 | DNAJC2 | S47 | ochoa|psp | DnaJ homolog subfamily C member 2 (M-phase phosphoprotein 11) (Zuotin-related factor 1) [Cleaved into: DnaJ homolog subfamily C member 2, N-terminally processed] | Acts both as a chaperone in the cytosol and as a chromatin regulator in the nucleus. When cytosolic, acts as a molecular chaperone: component of the ribosome-associated complex (RAC), a complex involved in folding or maintaining nascent polypeptides in a folding-competent state. In the RAC complex, stimulates the ATPase activity of the ribosome-associated pool of Hsp70-type chaperones HSPA14 that bind to the nascent polypeptide chain. When nuclear, mediates the switching from polycomb-repressed genes to an active state: specifically recruited at histone H2A ubiquitinated at 'Lys-119' (H2AK119ub), and promotes the displacement of the polycomb PRC1 complex from chromatin, thereby facilitating transcription activation. {ECO:0000269|PubMed:15802566, ECO:0000269|PubMed:16002468, ECO:0000269|PubMed:21179169}. |
Q99567 | NUP88 | S168 | ochoa | Nuclear pore complex protein Nup88 (88 kDa nucleoporin) (Nucleoporin Nup88) | Component of nuclear pore complex. {ECO:0000269|PubMed:30543681}. |
Q99590 | SCAF11 | S848 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99759 | MAP3K3 | S166 | ochoa | Mitogen-activated protein kinase kinase kinase 3 (EC 2.7.11.25) (MAPK/ERK kinase kinase 3) (MEK kinase 3) (MEKK 3) | Component of a protein kinase signal transduction cascade. Mediates activation of the NF-kappa-B, AP1 and DDIT3 transcriptional regulators. {ECO:0000269|PubMed:12912994, ECO:0000269|PubMed:14661019, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:33729480, ECO:0000269|PubMed:33891857, ECO:0000269|PubMed:9006902}. |
Q99767 | APBA2 | S478 | ochoa | Amyloid-beta A4 precursor protein-binding family A member 2 (Adapter protein X11beta) (Neuron-specific X11L protein) (Neuronal Munc18-1-interacting protein 2) (Mint-2) | Putative function in synaptic vesicle exocytosis by binding to STXBP1, an essential component of the synaptic vesicle exocytotic machinery. May modulate processing of the amyloid-beta precursor protein (APP) and hence formation of APP-beta. |
Q99959 | PKP2 | Y130 | ochoa | Plakophilin-2 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}. |
Q9BR76 | CORO1B | S413 | ochoa | Coronin-1B (Coronin-2) | Regulates leading edge dynamics and cell motility in fibroblasts. May be involved in cytokinesis and signal transduction (By similarity). {ECO:0000250, ECO:0000269|PubMed:16027158}. |
Q9BRG2 | SH2D3A | S145 | ochoa | SH2 domain-containing protein 3A (Novel SH2-containing protein 1) | May play a role in JNK activation. |
Q9BSF8 | BTBD10 | S137 | ochoa | BTB/POZ domain-containing protein 10 (Glucose metabolism-related protein 1) | Plays a major role as an activator of AKT family members by inhibiting PPP2CA-mediated dephosphorylation, thereby keeping AKTs activated. Plays a role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. {ECO:0000250|UniProtKB:Q80X66}. |
Q9BTA9 | WAC | S241 | ochoa | WW domain-containing adapter protein with coiled-coil | Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}. |
Q9BUT9 | MCRIP2 | S80 | ochoa | MAPK regulated corepressor interacting protein 2 (Protein FAM195A) | None |
Q9BUU2 | METTL22 | S132 | ochoa | Methyltransferase-like protein 22 (EC 2.1.1.-) | Protein N-lysine methyltransferase. Trimethylates KIN at Lys-135 (in vitro). {ECO:0000269|PubMed:23349634}. |
Q9BV36 | MLPH | S337 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BVC5 | C2orf49 | S145 | ochoa | Ashwin | None |
Q9BVG8 | KIFC3 | S781 | ochoa | Kinesin-like protein KIFC3 | Minus-end microtubule-dependent motor protein. Involved in apically targeted transport (By similarity). Required for zonula adherens maintenance. {ECO:0000250, ECO:0000269|PubMed:19041755}. |
Q9BW71 | HIRIP3 | S98 | ochoa | HIRA-interacting protein 3 | Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}. |
Q9BW71 | HIRIP3 | S100 | ochoa | HIRA-interacting protein 3 | Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}. |
Q9BY77 | POLDIP3 | S385 | ochoa|psp | Polymerase delta-interacting protein 3 (46 kDa DNA polymerase delta interaction protein) (p46) (S6K1 Aly/REF-like target) (SKAR) | Is involved in regulation of translation. Is preferentially associated with CBC-bound spliced mRNA-protein complexes during the pioneer round of mRNA translation. Contributes to enhanced translational efficiency of spliced over nonspliced mRNAs. Recruits activated ribosomal protein S6 kinase beta-1 I/RPS6KB1 to newly synthesized mRNA. Involved in nuclear mRNA export; probably mediated by association with the TREX complex. {ECO:0000269|PubMed:18423201, ECO:0000269|PubMed:22928037}. |
Q9BY89 | KIAA1671 | S1669 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYW2 | SETD2 | S2080 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZ23 | PANK2 | S143 | ochoa | Pantothenate kinase 2, mitochondrial (hPanK2) (EC 2.7.1.33) (Pantothenic acid kinase 2) [Cleaved into: Pantothenate kinase 2, mitochondrial intermediate form (iPanK2); Pantothenate kinase 2, mitochondrial mature form (mPanK2)] | [Isoform 1]: Mitochondrial isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis (PubMed:15659606, PubMed:16272150, PubMed:17242360, PubMed:17825826). Required for angiogenic activity of umbilical vein of endothelial cells (HUVEC) (PubMed:30221726). {ECO:0000269|PubMed:15659606, ECO:0000269|PubMed:16272150, ECO:0000269|PubMed:17242360, ECO:0000269|PubMed:17825826, ECO:0000269|PubMed:30221726}.; FUNCTION: [Isoform 4]: Cytoplasmic isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis. {ECO:0000269|PubMed:16272150}. |
Q9BZ23 | PANK2 | S169 | ochoa|psp | Pantothenate kinase 2, mitochondrial (hPanK2) (EC 2.7.1.33) (Pantothenic acid kinase 2) [Cleaved into: Pantothenate kinase 2, mitochondrial intermediate form (iPanK2); Pantothenate kinase 2, mitochondrial mature form (mPanK2)] | [Isoform 1]: Mitochondrial isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis (PubMed:15659606, PubMed:16272150, PubMed:17242360, PubMed:17825826). Required for angiogenic activity of umbilical vein of endothelial cells (HUVEC) (PubMed:30221726). {ECO:0000269|PubMed:15659606, ECO:0000269|PubMed:16272150, ECO:0000269|PubMed:17242360, ECO:0000269|PubMed:17825826, ECO:0000269|PubMed:30221726}.; FUNCTION: [Isoform 4]: Cytoplasmic isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis. {ECO:0000269|PubMed:16272150}. |
Q9BZ23 | PANK2 | S189 | ochoa|psp | Pantothenate kinase 2, mitochondrial (hPanK2) (EC 2.7.1.33) (Pantothenic acid kinase 2) [Cleaved into: Pantothenate kinase 2, mitochondrial intermediate form (iPanK2); Pantothenate kinase 2, mitochondrial mature form (mPanK2)] | [Isoform 1]: Mitochondrial isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis (PubMed:15659606, PubMed:16272150, PubMed:17242360, PubMed:17825826). Required for angiogenic activity of umbilical vein of endothelial cells (HUVEC) (PubMed:30221726). {ECO:0000269|PubMed:15659606, ECO:0000269|PubMed:16272150, ECO:0000269|PubMed:17242360, ECO:0000269|PubMed:17825826, ECO:0000269|PubMed:30221726}.; FUNCTION: [Isoform 4]: Cytoplasmic isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis. {ECO:0000269|PubMed:16272150}. |
Q9BZ67 | FRMD8 | S21 | ochoa | FERM domain-containing protein 8 (Band4.1 inhibitor LRP interactor) (Bili) (iRhom tail-associated protein) (iTAP) | Promotes the cell surface stability of iRhom1/RHBDF1 and iRhom2/RHBDF2 and prevents their degradation via the endolysosomal pathway. By acting on iRhoms, involved in ADAM17-mediated shedding of TNF, amphiregulin/AREG, HBEGF and TGFA from the cell surface (PubMed:29897333, PubMed:29897336). Negatively regulates Wnt signaling, possibly by antagonizing the recruitment of AXIN1 to LRP6 (PubMed:19572019). {ECO:0000269|PubMed:19572019, ECO:0000269|PubMed:29897333, ECO:0000269|PubMed:29897336}. |
Q9BZ68 | FRMD8P1 | S21 | ochoa | Putative FERM domain-containing protein FRMD8P1 (FERM domain-containing 8 pseudogene 1) | None |
Q9BZV2 | SLC19A3 | S210 | ochoa | Thiamine transporter 2 (ThTr-2) (ThTr2) (Solute carrier family 19 member 3) | Mediates high affinity thiamine uptake, probably via a proton anti-port mechanism (PubMed:11731220, PubMed:33008889, PubMed:35512554, PubMed:35724964). Has no folate transport activity (PubMed:11731220). Mediates H(+)-dependent pyridoxine transport (PubMed:33008889, PubMed:35512554, PubMed:35724964, PubMed:36456177). {ECO:0000269|PubMed:11731220, ECO:0000269|PubMed:33008889, ECO:0000269|PubMed:35512554, ECO:0000269|PubMed:35724964, ECO:0000269|PubMed:36456177}. |
Q9BZW8 | CD244 | S334 | ochoa | Natural killer cell receptor 2B4 (NK cell activation-inducing ligand) (NAIL) (NK cell type I receptor protein 2B4) (NKR2B4) (h2B4) (SLAM family member 4) (SLAMF4) (Signaling lymphocytic activation molecule 4) (CD antigen CD244) | Heterophilic receptor of the signaling lymphocytic activation molecule (SLAM) family; its ligand is CD48. SLAM receptors triggered by homo- or heterotypic cell-cell interactions are modulating the activation and differentiation of a wide variety of immune cells and thus are involved in the regulation and interconnection of both innate and adaptive immune response. Activities are controlled by presence or absence of small cytoplasmic adapter proteins, SH2D1A/SAP and/or SH2D1B/EAT-2. Acts as activating natural killer (NK) cell receptor (PubMed:10359122, PubMed:11714776, PubMed:8376943). Activating function implicates association with SH2D1A and FYN (PubMed:15713798). Downstreaming signaling involves predominantly VAV1, and, to a lesser degree, INPP5D/SHIP1 and CBL. Signal attenuation in the absence of SH2D1A is proposed to be dependent on INPP5D and to a lesser extent PTPN6/SHP-1 and PTPN11/SHP-2 (PubMed:10934222, PubMed:15713798). Stimulates NK cell cytotoxicity, production of IFN-gamma and granule exocytosis (PubMed:11714776, PubMed:8376943). Optimal expansion and activation of NK cells seems to be dependent on the engagement of CD244 with CD48 expressed on neighboring NK cells (By similarity). Acts as costimulator in NK activation by enhancing signals by other NK receptors such as NCR3 and NCR1 (PubMed:10741393). At early stages of NK cell differentiation may function as an inhibitory receptor possibly ensuring the self-tolerance of developing NK cells (PubMed:11917118). Involved in the regulation of CD8(+) T-cell proliferation; expression on activated T-cells and binding to CD48 provides costimulatory-like function for neighboring T-cells (By similarity). Inhibits inflammatory responses in dendritic cells (DCs) (By similarity). {ECO:0000250|UniProtKB:Q07763, ECO:0000269|PubMed:10359122, ECO:0000269|PubMed:10741393, ECO:0000269|PubMed:10934222, ECO:0000269|PubMed:11714776, ECO:0000269|PubMed:11917118, ECO:0000269|PubMed:8376943, ECO:0000305|PubMed:15713798}. |
Q9C0H5 | ARHGAP39 | S137 | ochoa | Rho GTPase-activating protein 39 | None |
Q9H2P0 | ADNP | S424 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H2Y7 | ZNF106 | S861 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H2Y7 | ZNF106 | S1279 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H3Y8 | PPDPF | S23 | ochoa | Pancreatic progenitor cell differentiation and proliferation factor (Exocrine differentiation and proliferation factor) | Probable regulator of exocrine pancreas development. {ECO:0000250}. |
Q9H4A3 | WNK1 | S83 | ochoa | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H4L4 | SENP3 | S139 | psp | Sentrin-specific protease 3 (EC 3.4.22.-) (SUMO-1-specific protease 3) (Sentrin/SUMO-specific protease SENP3) | Protease that releases SUMO2 and SUMO3 monomers from sumoylated substrates, but has only weak activity against SUMO1 conjugates (PubMed:16608850, PubMed:32832608, PubMed:36050397). Deconjugates SUMO2 from MEF2D, which increases its transcriptional activation capability (PubMed:15743823). Deconjugates SUMO2 and SUMO3 from CDCA8 (PubMed:18946085). Redox sensor that, when redistributed into nucleoplasm, can act as an effector to enhance HIF1A transcriptional activity by desumoylating EP300 (PubMed:19680224). Required for rRNA processing through deconjugation of SUMO2 and SUMO3 from nucleophosmin, NPM1 (PubMed:19015314). Plays a role in the regulation of sumoylation status of ZNF148 (PubMed:18259216). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Deconjugates SUMO2 from KAT5 (PubMed:32832608). Catalyzes desumoylation of MRE11 (PubMed:36050397). {ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:16608850, ECO:0000269|PubMed:18259216, ECO:0000269|PubMed:18946085, ECO:0000269|PubMed:19015314, ECO:0000269|PubMed:19680224, ECO:0000269|PubMed:22872859, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:36050397}. |
Q9H4L7 | SMARCAD1 | S211 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) | DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}. |
Q9H4X1 | RGCC | S67 | ochoa | Regulator of cell cycle RGCC (Response gene to complement 32 protein) (RGC-32) | Modulates the activity of cell cycle-specific kinases. Enhances CDK1 activity. May contribute to the regulation of the cell cycle. May inhibit growth of glioma cells by promoting arrest of mitotic progression at the G2/M transition. Fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation. {ECO:0000269|PubMed:11687586, ECO:0000269|PubMed:17146433, ECO:0000269|PubMed:19158077, ECO:0000269|PubMed:22163048}. |
Q9H7U1 | CCSER2 | S225 | ochoa | Serine-rich coiled-coil domain-containing protein 2 (Coiled-coil serine-rich protein 2) (Protein GCAP14 homolog) | Microtubule-binding protein which might play a role in microtubule bundling. {ECO:0000250|UniProtKB:Q3UHI0}. |
Q9H8G2 | CAAP1 | S92 | ochoa | Caspase activity and apoptosis inhibitor 1 (Conserved anti-apoptotic protein) (CAAP) | Anti-apoptotic protein that modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. {ECO:0000269|PubMed:21980415}. |
Q9H8N7 | ZNF395 | S449 | ochoa | Zinc finger protein 395 (HD-regulating factor 2) (HDRF-2) (Huntington disease gene regulatory region-binding protein 2) (HD gene regulatory region-binding protein 2) (HDBP-2) (Papillomavirus regulatory factor 1) (PRF-1) (Papillomavirus-binding factor) | Plays a role in papillomavirus genes transcription. |
Q9H8W4 | PLEKHF2 | S228 | ochoa | Pleckstrin homology domain-containing family F member 2 (PH domain-containing family F member 2) (Endoplasmic reticulum-associated apoptosis-involved protein containing PH and FYVE domains) (EAPF) (PH and FYVE domain-containing protein 2) (Phafin-2) (Phafin2) (Zinc finger FYVE domain-containing protein 18) | May play a role in early endosome fusion upstream of RAB5, hence regulating receptor trafficking and fluid-phase transport. Enhances cellular sensitivity to TNF-induced apoptosis (PubMed:18288467). {ECO:0000269|PubMed:18288467, ECO:0000269|PubMed:19995552, ECO:0000269|PubMed:22816767}. |
Q9H992 | MARCHF7 | S359 | ochoa | E3 ubiquitin-protein ligase MARCHF7 (EC 2.3.2.27) (Axotrophin) (Membrane-associated RING finger protein 7) (Membrane-associated RING-CH protein VII) (MARCH-VII) (RING finger protein 177) (RING-type E3 ubiquitin transferase MARCHF7) | E3 ubiquitin-protein ligase which may specifically enhance the E2 activity of HIP2. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfer the ubiquitin to targeted substrates (PubMed:16868077). May be involved in T-cell proliferation by regulating LIF secretion (By similarity). May play a role in lysosome homeostasis (PubMed:31270356). Promotes 'Lys-6', 'Lys-11' and 'Lys-63'-linked mixed polyubiquitination on ATG14 leading to the inhibition of autophagy by impairing the interaction between ATG14 and STX7 (PubMed:37632749). Participates in the dopamine-mediated negative regulation of the NLRP3 inflammasome by promoting its uibiquitination and subsequent degradation (PubMed:25594175). {ECO:0000250|UniProtKB:Q9WV66, ECO:0000269|PubMed:16868077, ECO:0000269|PubMed:25594175, ECO:0000269|PubMed:31270356, ECO:0000269|PubMed:37632749}. |
Q9HAU0 | PLEKHA5 | S372 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HCC9 | ZFYVE28 | S392 | ochoa | Lateral signaling target protein 2 homolog (hLst2) (Zinc finger FYVE domain-containing protein 28) | Negative regulator of epidermal growth factor receptor (EGFR) signaling. Acts by promoting EGFR degradation in endosomes when not monoubiquitinated. {ECO:0000269|PubMed:19460345}. |
Q9HCG8 | CWC22 | S864 | ochoa | Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q9HCI7 | MSL2 | S345 | ochoa | E3 ubiquitin-protein ligase MSL2 (EC 2.3.2.27) (Male-specific lethal 2-like 1) (MSL2-like 1) (Male-specific lethal-2 homolog) (MSL-2) (Male-specific lethal-2 homolog 1) (RING finger protein 184) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). MSL2 plays a key role in gene dosage by ensuring biallelic expression of a subset of dosage-sensitive genes, including many haploinsufficient genes (By similarity). Acts by promoting promoter-enhancer contacts, thereby preventing DNA methylation of one allele and creating a methylation-free environment for methylation-sensitive transcription factors such as SP1, KANSL1 and KANSL3 (By similarity). Also acts as an E3 ubiquitin ligase that promotes monoubiquitination of histone H2B at 'Lys-35' (H2BK34Ub), but not that of H2A (PubMed:21726816, PubMed:30930284). This activity is greatly enhanced by heterodimerization with MSL1 (PubMed:21726816, PubMed:30930284). H2B ubiquitination in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). Also involved in the DNA damage response by mediating ubiquitination of TP53/p53 and TP53BP1 (PubMed:19033443, PubMed:23874665). {ECO:0000250|UniProtKB:Q69ZF8, ECO:0000250|UniProtKB:Q9D1P2, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:19033443, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:23874665, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q9HCI7 | MSL2 | S347 | ochoa | E3 ubiquitin-protein ligase MSL2 (EC 2.3.2.27) (Male-specific lethal 2-like 1) (MSL2-like 1) (Male-specific lethal-2 homolog) (MSL-2) (Male-specific lethal-2 homolog 1) (RING finger protein 184) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). MSL2 plays a key role in gene dosage by ensuring biallelic expression of a subset of dosage-sensitive genes, including many haploinsufficient genes (By similarity). Acts by promoting promoter-enhancer contacts, thereby preventing DNA methylation of one allele and creating a methylation-free environment for methylation-sensitive transcription factors such as SP1, KANSL1 and KANSL3 (By similarity). Also acts as an E3 ubiquitin ligase that promotes monoubiquitination of histone H2B at 'Lys-35' (H2BK34Ub), but not that of H2A (PubMed:21726816, PubMed:30930284). This activity is greatly enhanced by heterodimerization with MSL1 (PubMed:21726816, PubMed:30930284). H2B ubiquitination in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). Also involved in the DNA damage response by mediating ubiquitination of TP53/p53 and TP53BP1 (PubMed:19033443, PubMed:23874665). {ECO:0000250|UniProtKB:Q69ZF8, ECO:0000250|UniProtKB:Q9D1P2, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:19033443, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:23874665, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q9HCM1 | RESF1 | S1706 | ochoa | Retroelement silencing factor 1 | Plays a role in the regulation of imprinted gene expression, regulates repressive epigenetic modifications associated with SETDB1. Required for the recruitment or accumulation of SETDB1 to the endogenous retroviruses (ERVs) and maintenance of repressive chromatin configuration, contributing to a subset of the SETDB1-dependent ERV silencing in embryonic stem cells. {ECO:0000250|UniProtKB:Q5DTW7}. |
Q9HCS5 | EPB41L4A | S541 | ochoa | Band 4.1-like protein 4A (Erythrocyte membrane protein band 4.1-like 4A) (Protein NBL4) | None |
Q9NQT8 | KIF13B | S1795 | ochoa | Kinesin-like protein KIF13B (Kinesin-like protein GAKIN) | Involved in reorganization of the cortical cytoskeleton. Regulates axon formation by promoting the formation of extra axons. May be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes. {ECO:0000269|PubMed:20194617}. |
Q9NR46 | SH3GLB2 | S203 | ochoa | Endophilin-B2 (SH3 domain-containing GRB2-like protein B2) | None |
Q9NR48 | ASH1L | S1689 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NR48 | ASH1L | S1691 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NRA0 | SPHK2 | S109 | ochoa | Sphingosine kinase 2 (SK 2) (SPK 2) (EC 2.7.1.91) | Catalyzes the phosphorylation of sphingosine to form sphingosine-1-phosphate (SPP), a lipid mediator with both intra- and extracellular functions. Also acts on D-erythro-dihydrosphingosine, D-erythro-sphingosine and L-threo-dihydrosphingosine. Binds phosphoinositides (PubMed:12954646, PubMed:19168031). In contrast to prosurvival SPHK1, has a positive effect on intracellular ceramide levels, inhibits cells growth and enhances apoptosis (PubMed:16118219). In mitochondria, is important for cytochrome-c oxidase assembly and mitochondrial respiration. The SPP produced in mitochondria binds PHB2 and modulates the regulation via PHB2 of complex IV assembly and respiration (PubMed:20959514). In nucleus, plays a role in epigenetic regulation of gene expression. Interacts with HDAC1 and HDAC2 and, through SPP production, inhibits their enzymatic activity, preventing the removal of acetyl groups from lysine residues with histones. Up-regulates acetylation of histone H3-K9, histone H4-K5 and histone H2B-K12 (PubMed:19729656). In nucleus, may have an inhibitory effect on DNA synthesis and cell cycle (PubMed:12954646, PubMed:16103110). In mast cells, is the main regulator of SPP production which mediates calcium influx, NF-kappa-B activation, cytokine production, such as TNF and IL6, and degranulation of mast cells (By similarity). In dopaminergic neurons, is involved in promoting mitochondrial functions regulating ATP and ROS levels (By similarity). Also involved in the regulation of glucose and lipid metabolism (By similarity). {ECO:0000250|UniProtKB:Q9JIA7, ECO:0000269|PubMed:12954646, ECO:0000269|PubMed:16103110, ECO:0000269|PubMed:16118219, ECO:0000269|PubMed:19168031, ECO:0000269|PubMed:19729656, ECO:0000269|PubMed:20959514}. |
Q9NRA8 | EIF4ENIF1 | S351 | ochoa | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NRY4 | ARHGAP35 | S589 | ochoa | Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) | Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}. |
Q9NS56 | TOPORS | T862 | ochoa | E3 ubiquitin-protein ligase Topors (EC 2.3.2.27) (RING-type E3 ubiquitin transferase Topors) (SUMO1-protein E3 ligase Topors) (Topoisomerase I-binding RING finger protein) (Topoisomerase I-binding arginine/serine-rich protein) (Tumor suppressor p53-binding protein 3) (p53-binding protein 3) (p53BP3) | Functions as an E3 ubiquitin-protein ligase and as an E3 SUMO1-protein ligase. Probable tumor suppressor involved in cell growth, cell proliferation and apoptosis that regulates p53/TP53 stability through ubiquitin-dependent degradation. May regulate chromatin modification through sumoylation of several chromatin modification-associated proteins. May be involved in DNA damage-induced cell death through IKBKE sumoylation. {ECO:0000269|PubMed:15247280, ECO:0000269|PubMed:15735665, ECO:0000269|PubMed:16122737, ECO:0000269|PubMed:17803295, ECO:0000269|PubMed:18077445, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:20188669}. |
Q9NSI8 | SAMSN1 | S34 | ochoa | SAM domain-containing protein SAMSN-1 (Hematopoietic adaptor containing SH3 and SAM domains 1) (Nash1) (SAM domain, SH3 domain and nuclear localization signals protein 1) (SH3-SAM adaptor protein) | Negative regulator of B-cell activation. Down-regulates cell proliferation (in vitro). Promotes RAC1-dependent membrane ruffle formation and reorganization of the actin cytoskeleton. Regulates cell spreading and cell polarization. Stimulates HDAC1 activity. Regulates LYN activity by modulating its tyrosine phosphorylation (By similarity). {ECO:0000250, ECO:0000269|PubMed:15381729}. |
Q9NTI5 | PDS5B | S1257 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NWS0 | PIH1D1 | S173 | ochoa | PIH1 domain-containing protein 1 (Nucleolar protein 17 homolog) | Involved in the assembly of C/D box small nucleolar ribonucleoprotein (snoRNP) particles (PubMed:17636026). Recruits the SWI/SNF complex to the core promoter of rRNA genes and enhances pre-rRNA transcription (PubMed:22368283, PubMed:24036451). Mediates interaction of TELO2 with the R2TP complex which is necessary for the stability of MTOR and SMG1 (PubMed:20864032). Positively regulates the assembly and activity of the mTORC1 complex (PubMed:24036451). {ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:20864032, ECO:0000269|PubMed:22368283, ECO:0000269|PubMed:24036451}. |
Q9NYB0 | TERF2IP | S28 | ochoa | Telomeric repeat-binding factor 2-interacting protein 1 (TERF2-interacting telomeric protein 1) (TRF2-interacting telomeric protein 1) (Dopamine receptor-interacting protein 5) (Repressor/activator protein 1 homolog) (RAP1 homolog) (hRap1) | Acts both as a regulator of telomere function and as a transcription regulator. Involved in the regulation of telomere length and protection as a component of the shelterin complex (telosome). In contrast to other components of the shelterin complex, it is dispensible for telomere capping and does not participate in the protection of telomeres against non-homologous end-joining (NHEJ)-mediated repair. Instead, it is required to negatively regulate telomere recombination and is essential for repressing homology-directed repair (HDR), which can affect telomere length. Does not bind DNA directly: recruited to telomeric double-stranded 5'-TTAGGG-3' repeats via its interaction with TERF2. Independently of its function in telomeres, also acts as a transcription regulator: recruited to extratelomeric 5'-TTAGGG-3' sites via its association with TERF2 or other factors, and regulates gene expression. When cytoplasmic, associates with the I-kappa-B-kinase (IKK) complex and acts as a regulator of the NF-kappa-B signaling by promoting IKK-mediated phosphorylation of RELA/p65, leading to activate expression of NF-kappa-B target genes. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:19763083}. |
Q9NYF3 | FAM53C | S234 | ochoa | Protein FAM53C | None |
Q9NYF3 | FAM53C | S271 | ochoa | Protein FAM53C | None |
Q9NYV4 | CDK12 | S1379 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NZB2 | FAM120A | S1077 | ochoa | Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) | Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}. |
Q9NZJ5 | EIF2AK3 | S1094 | ochoa|psp | Eukaryotic translation initiation factor 2-alpha kinase 3 (EC 2.7.11.1) (PRKR-like endoplasmic reticulum kinase) (Pancreatic eIF2-alpha kinase) (HsPEK) (Protein tyrosine kinase EIF2AK3) (EC 2.7.10.2) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress, such as unfolded protein response (UPR) (PubMed:10026192, PubMed:10677345, PubMed:11907036, PubMed:12086964, PubMed:25925385, PubMed:31023583). Key effector of the integrated stress response (ISR) to unfolded proteins: EIF2AK3/PERK specifically recognizes and binds misfolded proteins, leading to its activation and EIF2S1/eIF-2-alpha phosphorylation (PubMed:10677345, PubMed:27917829, PubMed:31023583). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:10026192, PubMed:10677345, PubMed:31023583, PubMed:33384352). The EIF2AK3/PERK-mediated unfolded protein response increases mitochondrial oxidative phosphorylation by promoting ATF4-mediated expression of COX7A2L/SCAF1, thereby increasing formation of respiratory chain supercomplexes (PubMed:31023583). In contrast to most subcellular compartments, mitochondria are protected from the EIF2AK3/PERK-mediated unfolded protein response due to EIF2AK3/PERK inhibition by ATAD3A at mitochondria-endoplasmic reticulum contact sites (PubMed:39116259). In addition to EIF2S1/eIF-2-alpha, also phosphorylates NFE2L2/NRF2 in response to stress, promoting release of NFE2L2/NRF2 from the BCR(KEAP1) complex, leading to nuclear accumulation and activation of NFE2L2/NRF2 (By similarity). Serves as a critical effector of unfolded protein response (UPR)-induced G1 growth arrest due to the loss of cyclin-D1 (CCND1) (By similarity). Involved in control of mitochondrial morphology and function (By similarity). {ECO:0000250|UniProtKB:Q9Z2B5, ECO:0000269|PubMed:10026192, ECO:0000269|PubMed:10677345, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:12086964, ECO:0000269|PubMed:25925385, ECO:0000269|PubMed:27917829, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:39116259}. |
Q9P0V3 | SH3BP4 | S120 | ochoa | SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) | May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}. |
Q9P1T7 | MDFIC | S138 | ochoa | MyoD family inhibitor domain-containing protein (I-mfa domain-containing protein) (hIC) | Required to control the activity of various transcription factors through their sequestration in the cytoplasm. Retains nuclear Zic proteins ZIC1, ZIC2 and ZIC3 in the cytoplasm and inhibits their transcriptional activation (By similarity). Modulates the expression from cellular promoters. Binds to the axin complex, resulting in an increase in the level of free beta-catenin (PubMed:12192039). Affects axin regulation of the WNT and JNK signaling pathways (PubMed:12192039). Involved in the development of lymphatic vessel valves (By similarity). Required to promote lymphatic endothelial cell migration, in a process that involves down-regulation of integrin beta 1 activation and control of cell adhesion to the extracellular matrix (PubMed:35235341). Regulates the activity of mechanosensitive Piezo channel (PubMed:37590348). {ECO:0000250|UniProtKB:Q8BX65, ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:35235341, ECO:0000269|PubMed:37590348}.; FUNCTION: (Microbial infection) Modulates the expression from viral promoters. Down-regulates Tat-dependent transcription of the human immunodeficiency virus type 1 (HIV-1) LTR by interacting with HIV-1 Tat and Rev and impairing their nuclear import, probably by rendering the NLS domains inaccessible to importin-beta (PubMed:12944466, PubMed:16260749, Ref.6). Also stimulates activation of human T-cell leukemia virus type I (HTLV-I) LTR (PubMed:10671520). {ECO:0000269|PubMed:10671520, ECO:0000269|PubMed:12944466, ECO:0000269|PubMed:16260749, ECO:0000269|Ref.6}. |
Q9P1Y6 | PHRF1 | S1091 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P227 | ARHGAP23 | S332 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P258 | RCC2 | S43 | ochoa | Protein RCC2 (RCC1-like protein TD-60) (Telophase disk protein of 60 kDa) | Multifunctional protein that may affect its functions by regulating the activity of small GTPases, such as RAC1 and RALA (PubMed:12919680, PubMed:25074804, PubMed:26158537, PubMed:28869598). Required for normal progress through the cell cycle, both during interphase and during mitosis (PubMed:12919680, PubMed:23388455, PubMed:26158537). Required for the presence of normal levels of MAD2L1, AURKB and BIRC5 on inner centromeres during mitosis, and for normal attachment of kinetochores to mitotic spindles (PubMed:12919680, PubMed:26158537). Required for normal organization of the microtubule cytoskeleton in interphase cells (PubMed:23388455). Functions as guanine nucleotide exchange factor (GEF) for RALA (PubMed:26158537). Interferes with the activation of RAC1 by guanine nucleotide exchange factors (PubMed:25074804). Prevents accumulation of active, GTP-bound RAC1, and suppresses RAC1-mediated reorganization of the actin cytoskeleton and formation of membrane protrusions (PubMed:25074804, PubMed:28869598). Required for normal cellular responses to contacts with the extracellular matrix of adjacent cells, and for directional cell migration in response to a fibronectin gradient (in vitro) (PubMed:25074804, PubMed:28869598). {ECO:0000269|PubMed:12919680, ECO:0000269|PubMed:23388455, ECO:0000269|PubMed:25074804, ECO:0000269|PubMed:26158537, ECO:0000269|PubMed:28869598}. |
Q9P266 | JCAD | S678 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P2B4 | CTTNBP2NL | S441 | ochoa | CTTNBP2 N-terminal-like protein | Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}. |
Q9P2F5 | STOX2 | S208 | ochoa | Storkhead-box protein 2 | None |
Q9P2T1 | GMPR2 | S26 | ochoa | GMP reductase 2 (GMPR 2) (EC 1.7.1.7) (Guanosine 5'-monophosphate oxidoreductase 2) (Guanosine monophosphate reductase 2) | Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides (PubMed:12009299, PubMed:12669231, PubMed:16359702, PubMed:22037469). Plays a role in modulating cellular differentiation (PubMed:12669231). {ECO:0000255|HAMAP-Rule:MF_03195, ECO:0000269|PubMed:12009299, ECO:0000269|PubMed:12669231, ECO:0000269|PubMed:16359702, ECO:0000269|PubMed:22037469}. |
Q9UBF8 | PI4KB | S275 | ochoa | Phosphatidylinositol 4-kinase beta (PI4K-beta) (PI4Kbeta) (PtdIns 4-kinase beta) (EC 2.7.1.67) (NPIK) (PI4K92) (PI4KIII) | Phosphorylates phosphatidylinositol (PI) in the first committed step in the production of the second messenger inositol-1,4,5,-trisphosphate (PIP). May regulate Golgi disintegration/reorganization during mitosis, possibly via its phosphorylation. Involved in Golgi-to-plasma membrane trafficking (By similarity) (PubMed:10559940, PubMed:11277933, PubMed:12749687, PubMed:9405935). May play an important role in the inner ear development. {ECO:0000250|UniProtKB:O08561, ECO:0000269|PubMed:10559940, ECO:0000269|PubMed:11277933, ECO:0000269|PubMed:12749687, ECO:0000269|PubMed:33358777, ECO:0000269|PubMed:9405935}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication (PubMed:22124328, PubMed:22258260, PubMed:27989622). Recruited by ACBD3 at the viral replication sites (PubMed:22124328, PubMed:27989622). {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}.; FUNCTION: (Microbial infection) Required for cellular spike-mediated entry of human coronavirus SARS-CoV. {ECO:0000269|PubMed:22253445}. |
Q9UBL0 | ARPP21 | S278 | ochoa | cAMP-regulated phosphoprotein 21 (ARPP-21) (Thymocyte cAMP-regulated phosphoprotein) | Isoform 2 may act as a competitive inhibitor of calmodulin-dependent enzymes such as calcineurin in neurons. {ECO:0000250}. |
Q9UDT6 | CLIP2 | S27 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UEY8 | ADD3 | S650 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UGV2 | NDRG3 | S331 | ochoa | Protein NDRG3 (N-myc downstream-regulated gene 3 protein) | None |
Q9UGV2 | NDRG3 | S333 | ochoa | Protein NDRG3 (N-myc downstream-regulated gene 3 protein) | None |
Q9UH99 | SUN2 | S110 | ochoa | SUN domain-containing protein 2 (Protein unc-84 homolog B) (Rab5-interacting protein) (Rab5IP) (Sad1/unc-84 protein-like 2) | As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. Required for interkinetic nuclear migration (INM) and essential for nucleokinesis and centrosome-nucleus coupling during radial neuronal migration in the cerebral cortex and during glial migration. Required for nuclear migration in retinal photoreceptor progenitors implicating association with cytoplasmic dynein-dynactin and kinesin motor complexes, and probably B-type lamins; SUN1 and SUN2 seem to act redundantly. The SUN1/2:KASH5 LINC complex couples telomeres to microtubules during meiosis; SUN1 and SUN2 seem to act at least partial redundantly. Anchors chromosome movement in the prophase of meiosis and is involved in selective gene expression of coding and non-coding RNAs needed for gametogenesis. Required for telomere attachment to nuclear envelope and gametogenesis. May also function on endocytic vesicles as a receptor for RAB5-GDP and participate in the activation of RAB5. {ECO:0000250|UniProtKB:Q8BJS4, ECO:0000269|PubMed:18396275, ECO:0000305}. |
Q9UHB6 | LIMA1 | S371 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UHB7 | AFF4 | S409 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UHK0 | NUFIP1 | S312 | ochoa | FMR1-interacting protein NUFIP1 (Nuclear FMR1-interacting protein 1) (Nuclear FMRP-interacting protein 1) | Binds RNA. {ECO:0000269|PubMed:10556305}. |
Q9UHY8 | FEZ2 | S217 | ochoa | Fasciculation and elongation protein zeta-2 (Zygin II) (Zygin-2) | Involved in axonal outgrowth and fasciculation. {ECO:0000250}. |
Q9UJ70 | NAGK | S74 | ochoa | N-acetyl-D-glucosamine kinase (N-acetylglucosamine kinase) (EC 2.7.1.59) (GlcNAc kinase) (Muramyl dipeptide kinase) (EC 2.7.1.-) (N-acetyl-D-mannosamine kinase) (EC 2.7.1.60) | Converts endogenous N-acetylglucosamine (GlcNAc), a major component of complex carbohydrates, from lysosomal degradation or nutritional sources into GlcNAc 6-phosphate (PubMed:22692205). Involved in the N-glycolylneuraminic acid (Neu5Gc) degradation pathway: although human is not able to catalyze formation of Neu5Gc due to the inactive CMAHP enzyme, Neu5Gc is present in food and must be degraded (PubMed:22692205). Also has N-acetylmannosamine (ManNAc) kinase activity (By similarity). Also involved in innate immunity by promoting detection of bacterial peptidoglycan by NOD2: acts by catalyzing phosphorylation of muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan, to generate 6-O-phospho-muramyl dipeptide, which acts as a direct ligand for NOD2 (PubMed:36002575). {ECO:0000250|UniProtKB:Q9QZ08, ECO:0000269|PubMed:22692205, ECO:0000269|PubMed:36002575}. |
Q9UJD0 | RIMS3 | S20 | ochoa | Regulating synaptic membrane exocytosis protein 3 (Nim3) (RIM3 gamma) (Rab-3-interacting molecule 3) (RIM 3) | Regulates synaptic membrane exocytosis. {ECO:0000250}. |
Q9UKE5 | TNIK | S729 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKE5 | TNIK | S764 | ochoa|psp | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9ULC8 | ZDHHC8 | S642 | ochoa | Palmitoyltransferase ZDHHC8 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 8) (DHHC-8) (Zinc finger protein 378) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates and therefore functions in several unrelated biological processes (Probable). Through the palmitoylation of ABCA1 regulates the localization of the transporter to the plasma membrane and thereby regulates its function in cholesterol and phospholipid efflux (Probable). Could also pamitoylate the D(2) dopamine receptor DRD2 and regulate its stability and localization to the plasma membrane (Probable). Could also play a role in glutamatergic transmission (By similarity). {ECO:0000250|UniProtKB:Q5Y5T5, ECO:0000305|PubMed:19556522, ECO:0000305|PubMed:23034182, ECO:0000305|PubMed:26535572}.; FUNCTION: (Microbial infection) Able to palmitoylate SARS coronavirus-2/SARS-CoV-2 spike protein following its synthesis in the endoplasmic reticulum (ER). In the infected cell, promotes spike biogenesis by protecting it from premature ER degradation, increases half-life and controls the lipid organization of its immediate membrane environment. Once the virus has formed, spike palmitoylation controls fusion with the target cell. {ECO:0000269|PubMed:34599882}. |
Q9ULD9 | ZNF608 | S964 | ochoa | Zinc finger protein 608 (Renal carcinoma antigen NY-REN-36) | Transcription factor, which represses ZNF609 transcription. {ECO:0000250|UniProtKB:Q56A10}. |
Q9ULG6 | CCPG1 | T184 | ochoa | Cell cycle progression protein 1 (Cell cycle progression restoration protein 8) | Acts as an assembly platform for Rho protein signaling complexes. Limits guanine nucleotide exchange activity of MCF2L toward RHOA, which results in an inhibition of both its transcriptional activation ability and its transforming activity. Does not inhibit activity of MCF2L toward CDC42, or activity of MCF2 toward either RHOA or CDC42 (By similarity). May be involved in cell cycle regulation. {ECO:0000250, ECO:0000269|PubMed:9383053}. |
Q9ULG6 | CCPG1 | S186 | ochoa | Cell cycle progression protein 1 (Cell cycle progression restoration protein 8) | Acts as an assembly platform for Rho protein signaling complexes. Limits guanine nucleotide exchange activity of MCF2L toward RHOA, which results in an inhibition of both its transcriptional activation ability and its transforming activity. Does not inhibit activity of MCF2L toward CDC42, or activity of MCF2 toward either RHOA or CDC42 (By similarity). May be involved in cell cycle regulation. {ECO:0000250, ECO:0000269|PubMed:9383053}. |
Q9ULH0 | KIDINS220 | S1631 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULJ3 | ZBTB21 | S411 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULL8 | SHROOM4 | S1059 | ochoa | Protein Shroom4 (Second homolog of apical protein) | Probable regulator of cytoskeletal architecture that plays an important role in development. May regulate cellular and cytoskeletal architecture by modulating the spatial distribution of myosin II (By similarity). {ECO:0000250, ECO:0000269|PubMed:16684770}. |
Q9UMD9 | COL17A1 | S148 | ochoa | Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] | May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies. |
Q9UN30 | SCML1 | S150 | ochoa | Sex comb on midleg-like protein 1 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. May be involved in spermatogenesis during sexual maturation (By similarity). {ECO:0000250}. |
Q9UN36 | NDRG2 | S350 | ochoa|psp | Protein NDRG2 (N-myc downstream-regulated gene 2 protein) (Protein Syld709613) | Contributes to the regulation of the Wnt signaling pathway. Down-regulates CTNNB1-mediated transcriptional activation of target genes, such as CCND1, and may thereby act as tumor suppressor. May be involved in dendritic cell and neuron differentiation. {ECO:0000269|PubMed:12845671, ECO:0000269|PubMed:16103061, ECO:0000269|PubMed:21247902}. |
Q9UPA5 | BSN | S2583 | ochoa | Protein bassoon (Zinc finger protein 231) | Scaffold protein of the presynaptic cytomatrix at the active zone (CAZ) which is the place in the synapse where neurotransmitter is released (PubMed:12812759). After synthesis, participates in the formation of Golgi-derived membranous organelles termed Piccolo-Bassoon transport vesicles (PTVs) that are transported along axons to sites of nascent synaptic contacts (PubMed:19380881). At the presynaptic active zone, regulates the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis (By similarity). Also functions in processes other than assembly such as the regulation of specific presynaptic protein ubiquitination by interacting with SIAH1 or the regulation of presynaptic autophagy by associating with ATG5 (By similarity). Also mediates synapse to nucleus communication leading to reconfiguration of gene expression by associating with the transcriptional corepressor CTBP1 and by subsequently reducing the size of its pool available for nuclear import (By similarity). Inhibits the activity of the proportion of DAO enzyme that localizes to the presynaptic active zone, which may modulate synaptic transmission (By similarity). {ECO:0000250|UniProtKB:O35078, ECO:0000250|UniProtKB:O88778, ECO:0000269|PubMed:12812759, ECO:0000269|PubMed:19380881}. |
Q9UPN3 | MACF1 | S1376 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPR0 | PLCL2 | S123 | ochoa | Inactive phospholipase C-like protein 2 (PLC-L(2)) (PLC-L2) (Phospholipase C-L2) (Phospholipase C-epsilon-2) (PLC-epsilon-2) | May play an role in the regulation of Ins(1,4,5)P3 around the endoplasmic reticulum. {ECO:0000250}. |
Q9UPU5 | USP24 | S1610 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UPU9 | SAMD4A | S578 | ochoa | Protein Smaug homolog 1 (Smaug 1) (hSmaug1) (Sterile alpha motif domain-containing protein 4A) (SAM domain-containing protein 4A) | Acts as a translational repressor of SRE-containing messengers. {ECO:0000269|PubMed:16221671}. |
Q9UQ35 | SRRM2 | S1142 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S1421 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S1499 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S1519 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S1579 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S1618 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y2F5 | ICE1 | T1852 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2H9 | MAST1 | S161 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2K5 | R3HDM2 | S853 | ochoa | R3H domain-containing protein 2 | None |
Q9Y2K9 | STXBP5L | S820 | ochoa|psp | Syntaxin-binding protein 5-like (Lethal(2) giant larvae protein homolog 4) (Tomosyn-2) | Plays a role in vesicle trafficking and exocytosis inhibition. In pancreatic beta-cells, inhibits insulin secretion probably by interacting with and regulating STX1A and STX4, key t-SNARE proteins involved in the fusion of insulin granules to the plasma membrane. Also plays a role in neurotransmitter release by inhibiting basal acetylcholine release from axon terminals and by preventing synaptic fatigue upon repetitive stimulation (By similarity). Promotes as well axonal outgrowth (PubMed:25504045). {ECO:0000250|UniProtKB:Q5DQR4, ECO:0000269|PubMed:25504045}. |
Q9Y2X7 | GIT1 | S359 | ochoa | ARF GTPase-activating protein GIT1 (ARF GAP GIT1) (Cool-associated and tyrosine-phosphorylated protein 1) (CAT-1) (CAT1) (G protein-coupled receptor kinase-interactor 1) (GRK-interacting protein 1) (p95-APP1) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. Multidomain scaffold protein that interacts with numerous proteins and therefore participates in many cellular functions, including receptor internalization, focal adhesion remodeling, and signaling by both G protein-coupled receptors and tyrosine kinase receptors (By similarity). Through PAK1 activation, positively regulates microtubule nucleation during interphase (PubMed:27012601). Plays a role in the regulation of cytokinesis; for this function, may act in a pathway also involving ENTR1 and PTPN13 (PubMed:23108400). May promote cell motility both by regulating focal complex dynamics and by local activation of RAC1 (PubMed:10938112, PubMed:11896197). May act as scaffold for MAPK1/3 signal transduction in focal adhesions. Recruits MAPK1/3/ERK1/2 to focal adhesions after EGF stimulation via a Src-dependent pathway, hence stimulating cell migration (PubMed:15923189). Plays a role in brain development and function. Involved in the regulation of spine density and synaptic plasticity that is required for processes involved in learning (By similarity). Plays an important role in dendritic spine morphogenesis and synapse formation (PubMed:12695502, PubMed:15800193). In hippocampal neurons, recruits guanine nucleotide exchange factors (GEFs), such as ARHGEF7/beta-PIX, to the synaptic membrane. These in turn locally activate RAC1, which is an essential step for spine morphogenesis and synapse formation (PubMed:12695502). May contribute to the organization of presynaptic active zones through oligomerization and formation of a Piccolo/PCLO-based protein network, which includes ARHGEF7/beta-PIX and FAK1 (By similarity). In neurons, through its interaction with liprin-alpha family members, may be required for AMPA receptor (GRIA2/3) proper targeting to the cell membrane (By similarity). In complex with GABA(A) receptors and ARHGEF7, plays a crucial role in regulating GABA(A) receptor synaptic stability, maintaining GPHN/gephyrin scaffolds and hence GABAergic inhibitory synaptic transmission, by locally coordinating RAC1 and PAK1 downstream effector activity, leading to F-actin stabilization (PubMed:25284783). May also be important for RAC1 downstream signaling pathway through PAK3 and regulation of neuronal inhibitory transmission at presynaptic input (By similarity). Required for successful bone regeneration during fracture healing (By similarity). The function in intramembranous ossification may, at least partly, exerted by macrophages in which GIT1 is a key negative regulator of redox homeostasis, IL1B production, and glycolysis, acting through the ERK1/2/NRF2/NFE2L2 axis (By similarity). May play a role in angiogenesis during fracture healing (By similarity). In this process, may regulate activation of the canonical NF-kappa-B signal in bone mesenchymal stem cells by enhancing the interaction between NEMO and 'Lys-63'-ubiquitinated RIPK1/RIP1, eventually leading to enhanced production of VEGFA and others angiogenic factors (PubMed:31502302). Essential for VEGF signaling through the activation of phospholipase C-gamma and ERK1/2, hence may control endothelial cell proliferation and angiogenesis (PubMed:19273721). {ECO:0000250|UniProtKB:Q68FF6, ECO:0000250|UniProtKB:Q9Z272, ECO:0000269|PubMed:10938112, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12695502, ECO:0000269|PubMed:15800193, ECO:0000269|PubMed:15923189, ECO:0000269|PubMed:19273721, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25284783, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:31502302}. |
Q9Y4G8 | RAPGEF2 | S1156 | ochoa | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}. |
Q9Y4G8 | RAPGEF2 | S1176 | ochoa | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}. |
Q9Y4H2 | IRS2 | S306 | ochoa|psp | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y520 | PRRC2C | S799 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y5B0 | CTDP1 | S839 | ochoa | RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) | Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}. |
Q9Y675 | SNURF | S32 | ochoa | SNRPN upstream reading frame protein | None |
Q9Y6D5 | ARFGEF2 | S277 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) | Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}. |
Q9Y6N7 | ROBO1 | S1604 | ochoa | Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) | Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}. |
Q9Y6Q6 | TNFRSF11A | S511 | ochoa | Tumor necrosis factor receptor superfamily member 11A (Osteoclast differentiation factor receptor) (ODFR) (Receptor activator of NF-KB) (CD antigen CD265) | Receptor for TNFSF11/RANKL/TRANCE/OPGL; essential for RANKL-mediated osteoclastogenesis (PubMed:9878548). Its interaction with EEIG1 promotes osteoclastogenesis via facilitating the transcription of NFATC1 and activation of PLCG2 (By similarity). Involved in the regulation of interactions between T-cells and dendritic cells (By similarity). {ECO:0000250|UniProtKB:O35305, ECO:0000269|PubMed:9878548}. |
Q9H7E2 | TDRD3 | S365 | Sugiyama | Tudor domain-containing protein 3 | Scaffolding protein that specifically recognizes and binds dimethylarginine-containing proteins (PubMed:15955813). Plays a role in the regulation of translation of target mRNAs by binding Arg/Gly-rich motifs (GAR) in dimethylarginine-containing proteins. In nucleus, acts as a coactivator: recognizes and binds asymmetric dimethylation on the core histone tails associated with transcriptional activation (H3R17me2a and H4R3me2a) and recruits proteins at these arginine-methylated loci (PubMed:21172665). In cytoplasm, acts as an antiviral factor that participates in the assembly of stress granules together with G3BP1 (PubMed:35085371). {ECO:0000269|PubMed:15955813, ECO:0000269|PubMed:18632687, ECO:0000269|PubMed:21172665, ECO:0000269|PubMed:35085371}. |
P27797 | CALR | S78 | Sugiyama | Calreticulin (CRP55) (Calregulin) (Endoplasmic reticulum resident protein 60) (ERp60) (HACBP) (grp60) | Calcium-binding chaperone that promotes folding, oligomeric assembly and quality control in the endoplasmic reticulum (ER) via the calreticulin/calnexin cycle. This lectin interacts transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (PubMed:7876246). Interacts with the DNA-binding domain of NR3C1 and mediates its nuclear export (PubMed:11149926). Involved in maternal gene expression regulation. May participate in oocyte maturation via the regulation of calcium homeostasis (By similarity). Present in the cortical granules of non-activated oocytes, is exocytosed during the cortical reaction in response to oocyte activation and might participate in the block to polyspermy (By similarity). {ECO:0000250|UniProtKB:P28491, ECO:0000250|UniProtKB:Q8K3H7, ECO:0000269|PubMed:11149926, ECO:0000269|PubMed:7876246}. |
Q15118 | PDK1 | S25 | EPSD | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 1, mitochondrial (EC 2.7.11.2) (Pyruvate dehydrogenase kinase isoform 1) (PDH kinase 1) | Kinase that plays a key role in regulation of glucose and fatty acid metabolism and homeostasis via phosphorylation of the pyruvate dehydrogenase subunits PDHA1 and PDHA2 (PubMed:7499431, PubMed:18541534, PubMed:22195962, PubMed:26942675, PubMed:17683942). This inhibits pyruvate dehydrogenase activity, and thereby regulates metabolite flux through the tricarboxylic acid cycle, down-regulates aerobic respiration and inhibits the formation of acetyl-coenzyme A from pyruvate (PubMed:18541534, PubMed:22195962, PubMed:26942675). Plays an important role in cellular responses to hypoxia and is important for cell proliferation under hypoxia (PubMed:18541534, PubMed:22195962, PubMed:26942675). {ECO:0000269|PubMed:17683942, ECO:0000269|PubMed:18541534, ECO:0000269|PubMed:22195962, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:7499431}. |
O14974 | PPP1R12A | S894 | Sugiyama | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
Q96D15 | RCN3 | S117 | Sugiyama | Reticulocalbin-3 (EF-hand calcium-binding protein RLP49) | Probable molecular chaperone assisting protein biosynthesis and transport in the endoplasmic reticulum (PubMed:16433634, PubMed:28939891). Required for the proper biosynthesis and transport of pulmonary surfactant-associated protein A/SP-A, pulmonary surfactant-associated protein D/SP-D and the lipid transporter ABCA3 (By similarity). By regulating both the proper expression and the degradation through the endoplasmic reticulum-associated protein degradation pathway of these proteins plays a crucial role in pulmonary surfactant homeostasis (By similarity). Has an anti-fibrotic activity by negatively regulating the secretion of type I and type III collagens (PubMed:28939891). This calcium-binding protein also transiently associates with immature PCSK6 and regulates its secretion (PubMed:16433634). {ECO:0000250|UniProtKB:Q8BH97, ECO:0000269|PubMed:16433634, ECO:0000269|PubMed:28939891}. |
Q96B18 | DACT3 | S422 | Sugiyama | Dapper homolog 3 (Antagonist of beta-catenin Dapper homolog 3) (Arginine-rich region 1 protein) (Dapper antagonist of catenin 3) | May be involved in regulation of intracellular signaling pathways during development. Specifically thought to play a role in canonical and/or non-canonical Wnt signaling pathways through interaction with DSH (Dishevelled) family proteins. {ECO:0000269|PubMed:18538736}. |
P33176 | KIF5B | S55 | Sugiyama | Kinesin-1 heavy chain (Conventional kinesin heavy chain) (Ubiquitous kinesin heavy chain) (UKHC) | Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes. Can induce formation of neurite-like membrane protrusions in non-neuronal cells in a ZFYVE27-dependent manner (By similarity). Regulates centrosome and nuclear positioning during mitotic entry. During the G2 phase of the cell cycle in a BICD2-dependent manner, antagonizes dynein function and drives the separation of nuclei and centrosomes (PubMed:20386726). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). Through binding with PLEKHM2 and ARL8B, directs lysosome movement toward microtubule plus ends (Probable). Involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). {ECO:0000250|UniProtKB:Q2PQA9, ECO:0000250|UniProtKB:Q61768, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:24088571, ECO:0000305|PubMed:22172677, ECO:0000305|PubMed:24088571}. |
P61927 | RPL37 | S50 | Sugiyama | Large ribosomal subunit protein eL37 (60S ribosomal protein L37) (G1.16) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q96RR4 | CAMKK2 | S28 | Sugiyama | Calcium/calmodulin-dependent protein kinase kinase 2 (CaM-KK 2) (CaM-kinase kinase 2) (CaMKK 2) (EC 2.7.11.17) (Calcium/calmodulin-dependent protein kinase kinase beta) (CaM-KK beta) (CaM-kinase kinase beta) (CaMKK beta) | Calcium/calmodulin-dependent protein kinase belonging to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Isoform 1, isoform 2 and isoform 3 phosphorylate CAMK1 and CAMK4. Isoform 3 phosphorylates CAMK1D. Isoform 4, isoform 5 and isoform 6 lacking part of the calmodulin-binding domain are inactive. Efficiently phosphorylates 5'-AMP-activated protein kinase (AMPK) trimer, including that consisting of PRKAA1, PRKAB1 and PRKAG1. This phosphorylation is stimulated in response to Ca(2+) signals (By similarity). Seems to be involved in hippocampal activation of CREB1 (By similarity). May play a role in neurite growth. Isoform 3 may promote neurite elongation, while isoform 1 may promoter neurite branching. {ECO:0000250, ECO:0000269|PubMed:11395482, ECO:0000269|PubMed:12935886, ECO:0000269|PubMed:21957496, ECO:0000269|PubMed:9662074}. |
Q9P2K8 | EIF2AK4 | S205 | Sugiyama | eIF-2-alpha kinase GCN2 (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 4) (GCN2-like protein) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:25329545, PubMed:32610081). Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (PubMed:32610081). Binds uncharged tRNAs (By similarity). Required for the translational induction of protein kinase PRKCH following amino acid starvation (By similarity). Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation (PubMed:26102367). Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory (By similarity). Plays a role in neurite outgrowth inhibition (By similarity). Plays a proapoptotic role in response to glucose deprivation (By similarity). Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways (By similarity). Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication (By similarity). {ECO:0000250|UniProtKB:P15442, ECO:0000250|UniProtKB:Q9QZ05, ECO:0000269|PubMed:25329545, ECO:0000269|PubMed:26102367, ECO:0000269|PubMed:32610081}.; FUNCTION: (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation (PubMed:24310610). {ECO:0000269|PubMed:24310610}. |
A0A075B6Q4 | None | S68 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000256|ARBA:ARBA00043887}. |
A0A0B4J1V8 | PPAN-P2RY11 | S228 | ochoa | HCG2039996 (PPAN-P2RY11 readthrough) | None |
A0A0C4DFX4 | None | S3034 | ochoa | Snf2 related CREBBP activator protein | None |
A0A0J9YX86 | GOLGA8Q | S41 | ochoa | Golgin A8 family member Q | None |
A5D6W6 | FITM1 | S82 | ochoa | Fat storage-inducing transmembrane protein 1 (Fat-inducing protein 1) | Plays an important role in the formation of lipid droplets (LDs) which are storage organelles at the center of lipid and energy homeostasis (By similarity) (PubMed:18160536). Directly binds to diacylglycerol (DAGs) and triacylglycerol (By similarity). {ECO:0000255|HAMAP-Rule:MF_03229, ECO:0000269|PubMed:18160536}. |
A5YKK6 | CNOT1 | S1061 | ochoa | CCR4-NOT transcription complex subunit 1 (CCR4-associated factor 1) (Negative regulator of transcription subunit 1 homolog) (NOT1H) (hNOT1) | Scaffolding component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Its scaffolding function implies its interaction with the catalytic complex module and diverse RNA-binding proteins mediating the complex recruitment to selected mRNA 3'UTRs. Involved in degradation of AU-rich element (ARE)-containing mRNAs probably via association with ZFP36. Mediates the recruitment of the CCR4-NOT complex to miRNA targets and to the RISC complex via association with TNRC6A, TNRC6B or TNRC6C. Acts as a transcriptional repressor. Represses the ligand-dependent transcriptional activation by nuclear receptors. Involved in the maintenance of embryonic stem (ES) cell identity. Plays a role in rapid sperm motility via mediating timely mRNA turnover (By similarity). {ECO:0000250|UniProtKB:Q6ZQ08, ECO:0000269|PubMed:10637334, ECO:0000269|PubMed:16778766, ECO:0000269|PubMed:21278420, ECO:0000269|PubMed:21976065, ECO:0000269|PubMed:21984185, ECO:0000269|PubMed:22367759, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:27558897, ECO:0000269|PubMed:32354837}. |
A8MVW0 | FAM171A2 | S357 | ochoa | Protein FAM171A2 | None |
C9J069 | AJM1 | S448 | ochoa | Apical junction component 1 homolog | May be involved in the control of adherens junction integrity. {ECO:0000250|UniProtKB:A0A1C3NSL9}. |
D6RIA3 | C4orf54 | S687 | ochoa | Uncharacterized protein C4orf54 (Familial obliterative portal venopathy) | None |
E9PSI1 | None | S287 | ochoa | Transmembrane 9 superfamily member | Plays an essential role in autophagy. {ECO:0000256|ARBA:ARBA00037688}. |
G3V325 | ATP5MF-PTCD1 | S154 | ochoa | Pentatricopeptide repeat-containing protein 1, mitochondrial | Mitochondrial protein implicated in negative regulation of leucine tRNA levels, as well as negative regulation of mitochondria-encoded proteins and COX activity. Also affects the 3'-processing of mitochondrial tRNAs. {ECO:0000256|ARBA:ARBA00057159}. |
H0YHG0 | None | S444 | ochoa | DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}. |
H0YJW9 | None | S61 | ochoa | Uncharacterized protein | None |
I6L899 | GOLGA8R | S41 | ochoa | Golgin subfamily A member 8R | None |
O00139 | KIF2A | S100 | ochoa|psp | Kinesin-like protein KIF2A (Kinesin-2) (hK2) | Plus end-directed microtubule-dependent motor required for normal brain development. May regulate microtubule dynamics during axonal growth. Required for normal progression through mitosis. Required for normal congress of chromosomes at the metaphase plate. Required for normal spindle dynamics during mitosis. Promotes spindle turnover. Implicated in formation of bipolar mitotic spindles. Has microtubule depolymerization activity. {ECO:0000269|PubMed:15843429, ECO:0000269|PubMed:17538014, ECO:0000269|PubMed:18411309, ECO:0000269|PubMed:30785839}. |
O00213 | APBB1 | S205 | ochoa | Amyloid beta precursor protein binding family B member 1 (Amyloid-beta A4 precursor protein-binding family B member 1) (Protein Fe65) | Transcription coregulator that can have both coactivator and corepressor functions (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469, PubMed:33938178). Adapter protein that forms a transcriptionally active complex with the gamma-secretase-derived amyloid precursor protein (APP) intracellular domain (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469). Plays a central role in the response to DNA damage by translocating to the nucleus and inducing apoptosis (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469). May act by specifically recognizing and binding histone H2AX phosphorylated on 'Tyr-142' (H2AXY142ph) at double-strand breaks (DSBs), recruiting other pro-apoptosis factors such as MAPK8/JNK1 (PubMed:19234442). Required for histone H4 acetylation at double-strand breaks (DSBs) (PubMed:19234442). Its ability to specifically bind modified histones and chromatin modifying enzymes such as KAT5/TIP60, probably explains its transcription activation activity (PubMed:33938178). Functions in association with TSHZ3, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4 (PubMed:19343227). Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Plays a role in the maintenance of lens transparency (By similarity). May play a role in muscle cell strength (By similarity). Acts as a molecular adapter that functions in neurite outgrowth by activating the RAC1-ARF6 axis upon insulin treatment (PubMed:36250347). {ECO:0000250|UniProtKB:Q9QXJ1, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:18468999, ECO:0000269|PubMed:18922798, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:25342469, ECO:0000269|PubMed:33938178, ECO:0000269|PubMed:36250347}. |
O14818 | PSMA7 | S93 | ochoa | Proteasome subunit alpha type-7 (Proteasome subunit RC6-1) (Proteasome subunit XAPC7) (Proteasome subunit alpha-4) (alpha-4) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). Inhibits the transactivation function of HIF-1A under both normoxic and hypoxia-mimicking conditions. The interaction with EMAP2 increases the proteasome-mediated HIF-1A degradation under the hypoxic conditions. Plays a role in hepatitis C virus internal ribosome entry site-mediated translation. Mediates nuclear translocation of the androgen receptor (AR) and thereby enhances androgen-mediated transactivation. Promotes MAVS degradation and thereby negatively regulates MAVS-mediated innate immune response. {ECO:0000269|PubMed:11389899, ECO:0000269|PubMed:11713272, ECO:0000269|PubMed:12119296, ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:19442227, ECO:0000269|PubMed:19734229, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
O15020 | SPTBN2 | S1964 | ochoa | Spectrin beta chain, non-erythrocytic 2 (Beta-III spectrin) (Spinocerebellar ataxia 5 protein) | Probably plays an important role in neuronal membrane skeleton. |
O15020 | SPTBN2 | S2162 | ochoa | Spectrin beta chain, non-erythrocytic 2 (Beta-III spectrin) (Spinocerebellar ataxia 5 protein) | Probably plays an important role in neuronal membrane skeleton. |
O15067 | PFAS | S128 | ochoa | Phosphoribosylformylglycinamidine synthase (FGAM synthase) (FGAMS) (EC 6.3.5.3) (Formylglycinamide ribonucleotide amidotransferase) (FGAR amidotransferase) (FGAR-AT) (Formylglycinamide ribotide amidotransferase) (Phosphoribosylformylglycineamide amidotransferase) | Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. {ECO:0000305|PubMed:10548741}. |
O15085 | ARHGEF11 | S592 | ochoa | Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}. |
O15321 | TM9SF1 | S78 | ochoa | Transmembrane 9 superfamily member 1 (MP70 protein family member) (hMP70) | Plays an essential role in autophagy. {ECO:0000269|PubMed:19029833}. |
O43166 | SIPA1L1 | S1192 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43488 | AKR7A2 | S255 | ochoa | Aflatoxin B1 aldehyde reductase member 2 (EC 1.1.1.n11) (AFB1 aldehyde reductase 1) (AFB1-AR 1) (Aldoketoreductase 7) (Succinic semialdehyde reductase) (SSA reductase) | Catalyzes the NADPH-dependent reduction of succinic semialdehyde to gamma-hydroxybutyrate. May have an important role in producing the neuromodulator gamma-hydroxybutyrate (GHB). Has broad substrate specificity. Has NADPH-dependent aldehyde reductase activity towards 2-carboxybenzaldehyde, 2-nitrobenzaldehyde and pyridine-2-aldehyde (in vitro). Can reduce 1,2-naphthoquinone and 9,10-phenanthrenequinone (in vitro). Can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol. May be involved in protection of liver against the toxic and carcinogenic effects of AFB1, a potent hepatocarcinogen. {ECO:0000269|PubMed:17591773, ECO:0000269|PubMed:9576847}. |
O43542 | XRCC3 | S225 | psp | DNA repair protein XRCC3 (X-ray repair cross-complementing protein 3) | Involved in the homologous recombination repair (HRR) pathway of double-stranded DNA, thought to repair chromosomal fragmentation, translocations and deletions. Part of the RAD51 paralog protein complex CX3 which acts in the BRCA1-BRCA2-dependent HR pathway. Upon DNA damage, CX3 acts downstream of RAD51 recruitment; the complex binds predominantly to the intersection of the four duplex arms of the Holliday junction (HJ) and to junctions of replication forks. Involved in HJ resolution and thus in processing HR intermediates late in the DNA repair process; the function may be linked to the CX3 complex and seems to involve GEN1 during mitotic cell cycle progression. Part of a PALB2-scaffolded HR complex containing BRCA2 and RAD51C and which is thought to play a role in DNA repair by HR. Plays a role in regulating mitochondrial DNA copy number under conditions of oxidative stress in the presence of RAD51 and RAD51C. {ECO:0000269|PubMed:14716019, ECO:0000269|PubMed:20413593, ECO:0000269|PubMed:23108668, ECO:0000269|PubMed:23149936}. |
O43581 | SYT7 | S102 | ochoa | Synaptotagmin-7 (IPCA-7) (Prostate cancer-associated protein 7) (Synaptotagmin VII) (SytVII) | Ca(2+) sensor involved in Ca(2+)-dependent exocytosis of secretory and synaptic vesicles through Ca(2+) and phospholipid binding to the C2 domain (By similarity). Ca(2+) induces binding of the C2-domains to phospholipid membranes and to assembled SNARE-complexes; both actions contribute to triggering exocytosis (By similarity). SYT7 binds Ca(2+) with high affinity and slow kinetics compared to other synaptotagmins (By similarity). Involved in Ca(2+)-triggered lysosomal exocytosis, a major component of the plasma membrane repair (PubMed:11342594). Ca(2+)-regulated delivery of lysosomal membranes to the cell surface is also involved in the phagocytic uptake of particles by macrophages (By similarity). Ca(2+)-triggered lysosomal exocytosis also plays a role in bone remodeling by regulating secretory pathways in osteoclasts and osteoblasts (By similarity). In case of infection, involved in participates cell invasion by Trypanosoma cruzi via Ca(2+)-triggered lysosomal exocytosis (PubMed:11342594, PubMed:15811535). Involved in cholesterol transport from lysosome to peroxisome by promoting membrane contacts between lysosomes and peroxisomes: probably acts by promoting vesicle fusion by binding phosphatidylinositol-4,5-bisphosphate on peroxisomal membranes (By similarity). Acts as a key mediator of synaptic facilitation, a process also named short-term synaptic potentiation: synaptic facilitation takes place at synapses with a low initial release probability and is caused by influx of Ca(2+) into the axon terminal after spike generation, increasing the release probability of neurotransmitters (By similarity). Probably mediates synaptic facilitation by directly increasing the probability of release (By similarity). May also contribute to synaptic facilitation by regulating synaptic vesicle replenishment, a process required to ensure that synaptic vesicles are ready for the arrival of the next action potential: SYT7 is required for synaptic vesicle replenishment by acting as a sensor for Ca(2+) and by forming a complex with calmodulin (By similarity). Also acts as a regulator of Ca(2+)-dependent insulin and glucagon secretion in beta-cells (By similarity). Triggers exocytosis by promoting fusion pore opening and fusion pore expansion in chromaffin cells (By similarity). Also regulates the secretion of some non-synaptic secretory granules of specialized cells (By similarity). {ECO:0000250|UniProtKB:Q62747, ECO:0000250|UniProtKB:Q9R0N7, ECO:0000269|PubMed:11342594, ECO:0000269|PubMed:15811535}. |
O60503 | ADCY9 | S706 | ochoa | Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) | Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}. |
O75030 | MITF | S405 | psp | Microphthalmia-associated transcription factor (Class E basic helix-loop-helix protein 32) (bHLHe32) | Transcription factor that acts as a master regulator of melanocyte survival and differentiation as well as melanosome biogenesis (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Binds to M-boxes (5'-TCATGTG-3') and symmetrical DNA sequences (E-boxes) (5'-CACGTG-3') found in the promoter of pigmentation genes, such as tyrosinase (TYR) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, MITF phosphorylation by MTOR promotes its inactivation (PubMed:36608670). Upon starvation or lysosomal stress, inhibition of MTOR induces MITF dephosphorylation, resulting in transcription factor activity (PubMed:36608670). Plays an important role in melanocyte development by regulating the expression of tyrosinase (TYR) and tyrosinase-related protein 1 (TYRP1) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Plays a critical role in the differentiation of various cell types, such as neural crest-derived melanocytes, mast cells, osteoclasts and optic cup-derived retinal pigment epithelium (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). {ECO:0000269|PubMed:10587587, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:27889061, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:9647758}. |
O75038 | PLCH2 | S1279 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-2) (Phosphoinositide phospholipase C-like 4) (PLC-L4) (Phospholipase C-like protein 4) (Phospholipase C-eta-2) (PLC-eta2) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes (PubMed:18361507). This phospholipase activity is very sensitive to calcium. May be important for formation and maintenance of the neuronal network in the postnatal brain (By similarity). {ECO:0000250|UniProtKB:A2AP18, ECO:0000269|PubMed:18361507}. |
O75127 | PTCD1 | S105 | ochoa | Pentatricopeptide repeat-containing protein 1, mitochondrial | Mitochondrial protein implicated in negative regulation of leucine tRNA levels, as well as negative regulation of mitochondria-encoded proteins and COX activity. Also affects the 3'-processing of mitochondrial tRNAs. {ECO:0000269|PubMed:21857155}. |
O75943 | RAD17 | S359 | ochoa|psp | Cell cycle checkpoint protein RAD17 (hRad17) (RF-C/activator 1 homolog) | Essential for sustained cell growth, maintenance of chromosomal stability, and ATR-dependent checkpoint activation upon DNA damage (PubMed:10208430, PubMed:11418864, PubMed:11687627, PubMed:11799063, PubMed:12672690, PubMed:14624239, PubMed:15235112). Has a weak ATPase activity required for binding to chromatin (PubMed:10208430, PubMed:11418864, PubMed:11687627, PubMed:11799063, PubMed:12672690, PubMed:14624239, PubMed:15235112). Participates in the recruitment of the 9-1-1 (RAD1-RAD9-HUS1) complex and RHNO1 onto chromatin, and in CHEK1 activation (PubMed:21659603). Involved in homologous recombination by mediating recruitment of the MRN complex to DNA damage sites (PubMed:24534091). May also serve as a sensor of DNA replication progression (PubMed:12578958, PubMed:14500819, PubMed:15538388). {ECO:0000269|PubMed:10208430, ECO:0000269|PubMed:11418864, ECO:0000269|PubMed:11687627, ECO:0000269|PubMed:11799063, ECO:0000269|PubMed:12578958, ECO:0000269|PubMed:12672690, ECO:0000269|PubMed:14500819, ECO:0000269|PubMed:14624239, ECO:0000269|PubMed:15235112, ECO:0000269|PubMed:15538388, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:24534091}. |
O94916 | NFAT5 | S220 | ochoa | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O94979 | SEC31A | S397 | ochoa | Protein transport protein Sec31A (ABP125) (ABP130) (SEC31-like protein 1) (SEC31-related protein A) (Web1-like protein) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER) (PubMed:10788476). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules (By similarity). {ECO:0000250|UniProtKB:Q9Z2Q1, ECO:0000269|PubMed:10788476}. |
O95104 | SCAF4 | S1004 | ochoa | SR-related and CTD-associated factor 4 (CTD-binding SR-like protein RA4) (Splicing factor, arginine/serine-rich 15) | Anti-terminator protein required to prevent early mRNA termination during transcription (PubMed:31104839). Together with SCAF8, acts by suppressing the use of early, alternative poly(A) sites, thereby preventing the accumulation of non-functional truncated proteins (PubMed:31104839). Mechanistically, associates with the phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit (POLR2A), and subsequently binds nascent RNA upstream of early polyadenylation sites to prevent premature mRNA transcript cleavage and polyadenylation (PubMed:31104839). Independently of SCAF8, also acts as a suppressor of transcriptional readthrough (PubMed:31104839). {ECO:0000269|PubMed:31104839}. |
O95210 | STBD1 | S104 | ochoa | Starch-binding domain-containing protein 1 (Genethonin-1) (Glycophagy cargo receptor STBD1) | Acts as a cargo receptor for glycogen. Delivers its cargo to an autophagic pathway called glycophagy, resulting in the transport of glycogen to lysosomes. {ECO:0000269|PubMed:20810658, ECO:0000269|PubMed:21893048, ECO:0000269|PubMed:24837458}. |
O95251 | KAT7 | S80 | ochoa | Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) | Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}. |
O95600 | KLF8 | S48 | psp | Krueppel-like factor 8 (Basic krueppel-like factor 3) (Zinc finger protein 741) | Transcriptional repressor and activator. Binds to CACCC-boxes promoter elements. Also binds the GT-box of cyclin D1 promoter and mediates cell cycle progression at G(1) phase as a downstream target of focal adhesion kinase (FAK). {ECO:0000269|PubMed:10756197, ECO:0000269|PubMed:12820964, ECO:0000269|PubMed:16617055}. |
O96028 | NSD2 | S407 | ochoa | Histone-lysine N-methyltransferase NSD2 (EC 2.1.1.357) (Multiple myeloma SET domain-containing protein) (MMSET) (Nuclear SET domain-containing protein 2) (Protein trithorax-5) (Wolf-Hirschhorn syndrome candidate 1 protein) | Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:19808676, PubMed:22099308, PubMed:27571355, PubMed:29728617, PubMed:33941880). Also monomethylates nucleosomal histone H3 at 'Lys-36' (H3K36me) in vitro (PubMed:22099308). Does not trimethylate nucleosomal histone H3 at 'Lys-36' (H3K36me3) (PubMed:22099308). However, specifically trimethylates histone H3 at 'Lys-36' (H3K36me3) at euchromatic regions in embryonic stem (ES) cells (By similarity). By methylating histone H3 at 'Lys-36', involved in the regulation of gene transcription during various biological processes (PubMed:16115125, PubMed:22099308, PubMed:29728617). In ES cells, associates with developmental transcription factors such as SALL1 and represses inappropriate gene transcription mediated by histone deacetylation (By similarity). During heart development, associates with transcription factor NKX2-5 to repress transcription of NKX2-5 target genes (By similarity). Plays an essential role in adipogenesis, by regulating expression of genes involved in pre-adipocyte differentiation (PubMed:29728617). During T-cell receptor (TCR) and CD28-mediated T-cell activation, promotes the transcription of transcription factor BCL6 which is required for follicular helper T (Tfh) cell differentiation (By similarity). During B-cell development, required for the generation of the B1 lineage (By similarity). During B2 cell activation, may contribute to the control of isotype class switch recombination (CRS), splenic germinal center formation, and the humoral immune response (By similarity). Plays a role in class switch recombination of the immunoglobulin heavy chain (IgH) locus during B-cell activation (By similarity). By regulating the methylation of histone H3 at 'Lys-36' and histone H4 at 'Lys-20' at the IgH locus, involved in TP53BP1 recruitment to the IgH switch region and promotes the transcription of IgA (By similarity). {ECO:0000250|UniProtKB:Q8BVE8, ECO:0000269|PubMed:16115125, ECO:0000269|PubMed:19808676, ECO:0000269|PubMed:22099308, ECO:0000269|PubMed:27571355, ECO:0000269|PubMed:29728617, ECO:0000269|PubMed:33941880}.; FUNCTION: [Isoform 1]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:22099308}.; FUNCTION: [Isoform 4]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:22099308). Methylation of histone H3 at 'Lys-27' is controversial (PubMed:18172012, PubMed:22099308). Mono-, di- or tri-methylates histone H3 at 'Lys-27' (H3K27me, H3K27me2 and H3K27me3) (PubMed:18172012). Does not methylate histone H3 at 'Lys-27' (PubMed:22099308). May act as a transcription regulator that binds DNA and suppresses IL5 transcription through HDAC recruitment (PubMed:11152655, PubMed:18172012). {ECO:0000269|PubMed:11152655, ECO:0000269|PubMed:18172012, ECO:0000269|PubMed:22099308}. |
P00338 | LDHA | S274 | ochoa | L-lactate dehydrogenase A chain (LDH-A) (EC 1.1.1.27) (Cell proliferation-inducing gene 19 protein) (LDH muscle subunit) (LDH-M) (Renal carcinoma antigen NY-REN-59) | Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:11276087}. |
P00367 | GLUD1 | S128 | ochoa | Glutamate dehydrogenase 1, mitochondrial (GDH 1) (EC 1.4.1.3) | Mitochondrial glutamate dehydrogenase that catalyzes the conversion of L-glutamate into alpha-ketoglutarate. Plays a key role in glutamine anaplerosis by producing alpha-ketoglutarate, an important intermediate in the tricarboxylic acid cycle (PubMed:11032875, PubMed:11254391, PubMed:16023112, PubMed:16959573). Plays a role in insulin homeostasis (PubMed:11297618, PubMed:9571255). May be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate (By similarity). {ECO:0000250|UniProtKB:P10860, ECO:0000269|PubMed:11032875, ECO:0000269|PubMed:11254391, ECO:0000269|PubMed:11297618, ECO:0000269|PubMed:16023112, ECO:0000269|PubMed:16959573, ECO:0000269|PubMed:9571255}. |
P00533 | EGFR | S229 | psp | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P04003 | C4BPA | S187 | ochoa | C4b-binding protein alpha chain (C4bp) (Proline-rich protein) (PRP) | Controls the classical pathway of complement activation. It binds as a cofactor to C3b/C4b inactivator (C3bINA), which then hydrolyzes the complement fragment C4b. It also accelerates the degradation of the C4bC2a complex (C3 convertase) by dissociating the complement fragment C2a. Alpha chain binds C4b. It also interacts with anticoagulant protein S and with serum amyloid P component. |
P04004 | VTN | S403 | ochoa | Vitronectin (VN) (S-protein) (Serum-spreading factor) (V75) [Cleaved into: Vitronectin V65 subunit; Vitronectin V10 subunit; Somatomedin-B] | Vitronectin is a cell adhesion and spreading factor found in serum and tissues. Vitronectin interact with glycosaminoglycans and proteoglycans. Is recognized by certain members of the integrin family and serves as a cell-to-substrate adhesion molecule. Inhibitor of the membrane-damaging effect of the terminal cytolytic complement pathway.; FUNCTION: Somatomedin-B is a growth hormone-dependent serum factor with protease-inhibiting activity. |
P04049 | RAF1 | S228 | ochoa | RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) | Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}. |
P04075 | ALDOA | S336 | ochoa | Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase) | Catalyzes the reversible conversion of beta-D-fructose 1,6-bisphosphate (FBP) into two triose phosphate and plays a key role in glycolysis and gluconeogenesis (PubMed:14766013). In addition, may also function as scaffolding protein (By similarity). {ECO:0000250, ECO:0000269|PubMed:14766013}. |
P06213 | INSR | S1348 | psp | Insulin receptor (IR) (EC 2.7.10.1) (CD antigen CD220) [Cleaved into: Insulin receptor subunit alpha; Insulin receptor subunit beta] | Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosine residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin. In adipocytes, inhibits lipolysis (By similarity). {ECO:0000250|UniProtKB:P15208, ECO:0000269|PubMed:12138094, ECO:0000269|PubMed:16314505, ECO:0000269|PubMed:16831875, ECO:0000269|PubMed:8257688, ECO:0000269|PubMed:8276809, ECO:0000269|PubMed:8452530, ECO:0000269|PubMed:9428692}. |
P07355 | ANXA2 | S184 | ochoa | Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) (Protein I) (p36) | Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9 (PubMed:18799458, PubMed:22848640, PubMed:24808179). Binds to endosomes damaged by phagocytosis of particulate wear debris and participates in endosomal membrane stabilization, thereby limiting NLRP3 inflammasome activation (By similarity). Required for endothelial cell surface plasmin generation and may support fibrinolytic surveillance and neoangiogenesis (By similarity). {ECO:0000250|UniProtKB:P07356, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22848640, ECO:0000269|PubMed:24808179}.; FUNCTION: (Microbial infection) Binds M.pneumoniae CARDS toxin, probably serves as one receptor for this pathogen. When ANXA2 is down-regulated by siRNA, less toxin binds to human cells and less vacuolization (a symptom of M.pneumoniae infection) is seen. {ECO:0000269|PubMed:25139904}. |
P07942 | LAMB1 | S1222 | ochoa | Laminin subunit beta-1 (Laminin B1 chain) (Laminin-1 subunit beta) (Laminin-10 subunit beta) (Laminin-12 subunit beta) (Laminin-2 subunit beta) (Laminin-6 subunit beta) (Laminin-8 subunit beta) | Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. Involved in the organization of the laminar architecture of cerebral cortex. It is probably required for the integrity of the basement membrane/glia limitans that serves as an anchor point for the endfeet of radial glial cells and as a physical barrier to migrating neurons. Radial glial cells play a central role in cerebral cortical development, where they act both as the proliferative unit of the cerebral cortex and a scaffold for neurons migrating toward the pial surface. {ECO:0000269|PubMed:23472759}. |
P08034 | GJB1 | S229 | psp | Gap junction beta-1 protein (Connexin-32) (Cx32) (GAP junction 28 kDa liver protein) | One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. |
P08047 | SP1 | S702 | psp | Transcription factor Sp1 | Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Also binds the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component BMAL1 (PubMed:10391891, PubMed:11371615, PubMed:11904305, PubMed:14593115, PubMed:16377629, PubMed:16478997, PubMed:16943418, PubMed:17049555, PubMed:18171990, PubMed:18199680, PubMed:18239466, PubMed:18513490, PubMed:18619531, PubMed:19193796, PubMed:20091743, PubMed:21046154, PubMed:21798247). Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112 (By similarity). {ECO:0000250|UniProtKB:O89090, ECO:0000250|UniProtKB:Q01714, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11371615, ECO:0000269|PubMed:11904305, ECO:0000269|PubMed:14593115, ECO:0000269|PubMed:16377629, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16943418, ECO:0000269|PubMed:17049555, ECO:0000269|PubMed:18171990, ECO:0000269|PubMed:18199680, ECO:0000269|PubMed:18239466, ECO:0000269|PubMed:18513490, ECO:0000269|PubMed:18619531, ECO:0000269|PubMed:19193796, ECO:0000269|PubMed:20091743, ECO:0000269|PubMed:21046154, ECO:0000269|PubMed:21798247}. |
P12814 | ACTN1 | S91 | ochoa | Alpha-actinin-1 (Alpha-actinin cytoskeletal isoform) (F-actin cross-linking protein) (Non-muscle alpha-actinin-1) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000269|PubMed:22689882}. |
P12956 | XRCC6 | S306 | ochoa | X-ray repair cross-complementing protein 6 (EC 3.6.4.-) (EC 4.2.99.-) (5'-deoxyribose-5-phosphate lyase Ku70) (5'-dRP lyase Ku70) (70 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 1) (ATP-dependent DNA helicase II 70 kDa subunit) (CTC box-binding factor 75 kDa subunit) (CTC75) (CTCBF) (DNA repair protein XRCC6) (Lupus Ku autoantigen protein p70) (Ku70) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 6) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). 5'-dRP lyase activity allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Negatively regulates apoptosis by interacting with BAX and sequestering it from the mitochondria (PubMed:15023334). Might have deubiquitination activity, acting on BAX (PubMed:18362350). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:15023334, ECO:0000269|PubMed:18362350, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:20493174, ECO:0000269|PubMed:2466842, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:9742108}. |
P13569 | CFTR | S790 | psp | Cystic fibrosis transmembrane conductance regulator (CFTR) (ATP-binding cassette sub-family C member 7) (Channel conductance-controlling ATPase) (EC 5.6.1.6) (cAMP-dependent chloride channel) | Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis (PubMed:26823428). Mediates the transport of chloride ions across the cell membrane (PubMed:10792060, PubMed:11524016, PubMed:11707463, PubMed:12519745, PubMed:12529365, PubMed:12588899, PubMed:12727866, PubMed:15010471, PubMed:17036051, PubMed:1712898, PubMed:17182731, PubMed:19398555, PubMed:19621064, PubMed:22178883, PubMed:25330774, PubMed:26846474, PubMed:28087700, PubMed:8910473, PubMed:9804160). Possesses an intrinsic ATPase activity and utilizes ATP to gate its channel; the passive flow of anions through the channel is gated by cycles of ATP binding and hydrolysis by the ATP-binding domains (PubMed:11524016, PubMed:15284228, PubMed:26627831, PubMed:8910473). The ion channel is also permeable to HCO(3)(-); selectivity depends on the extracellular chloride concentration (PubMed:15010471, PubMed:19019741). In vitro, mediates ATP-dependent glutathione flux (PubMed:12727866). Exerts its function also by modulating the activity of other ion channels and transporters (PubMed:12403779, PubMed:22121115, PubMed:22178883, PubMed:27941075). Plays an important role in airway fluid homeostasis (PubMed:16645176, PubMed:19621064, PubMed:26823428). Contributes to the regulation of the pH and the ion content of the airway surface fluid layer and thereby plays an important role in defense against pathogens (PubMed:14668433, PubMed:16645176, PubMed:26823428). Modulates the activity of the epithelial sodium channel (ENaC) complex, in part by regulating the cell surface expression of the ENaC complex (PubMed:17182731, PubMed:17434346, PubMed:27941075). Inhibits the activity of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731). Inhibits the activity of the ENaC channel containing subunits SCNN1D, SCNN1B and SCNN1G, but not of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731, PubMed:27941075). May regulate bicarbonate secretion and salvage in epithelial cells by regulating the transporter SLC4A7 (PubMed:12403779). Can inhibit the chloride channel activity of ANO1 (PubMed:22178883). Plays a role in the chloride and bicarbonate homeostasis during sperm epididymal maturation and capacitation (PubMed:19923167, PubMed:27714810, PubMed:29393851). {ECO:0000269|PubMed:10792060, ECO:0000269|PubMed:11524016, ECO:0000269|PubMed:11707463, ECO:0000269|PubMed:12403779, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:12529365, ECO:0000269|PubMed:12588899, ECO:0000269|PubMed:12727866, ECO:0000269|PubMed:14668433, ECO:0000269|PubMed:15010471, ECO:0000269|PubMed:15284228, ECO:0000269|PubMed:16645176, ECO:0000269|PubMed:17036051, ECO:0000269|PubMed:1712898, ECO:0000269|PubMed:17182731, ECO:0000269|PubMed:19019741, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:19621064, ECO:0000269|PubMed:22178883, ECO:0000269|PubMed:25330774, ECO:0000269|PubMed:26627831, ECO:0000269|PubMed:26823428, ECO:0000269|PubMed:26846474, ECO:0000269|PubMed:27714810, ECO:0000269|PubMed:27941075, ECO:0000269|PubMed:28087700, ECO:0000269|PubMed:29393851, ECO:0000269|PubMed:8910473, ECO:0000269|PubMed:9804160, ECO:0000305|PubMed:19923167}. |
P13796 | LCP1 | S406 | ochoa | Plastin-2 (L-plastin) (LC64P) (Lymphocyte cytosolic protein 1) (LCP-1) | Actin-binding protein (PubMed:16636079, PubMed:17294403, PubMed:28493397). Plays a role in the activation of T-cells in response to costimulation through TCR/CD3 and CD2 or CD28 (PubMed:17294403). Modulates the cell surface expression of IL2RA/CD25 and CD69 (PubMed:17294403). {ECO:0000269|PubMed:16636079, ECO:0000269|PubMed:17294403, ECO:0000269|PubMed:28493397}. |
P14618 | PKM | S37 | ochoa|psp | Pyruvate kinase PKM (EC 2.7.1.40) (Cytosolic thyroid hormone-binding protein) (CTHBP) (Opa-interacting protein 3) (OIP-3) (Pyruvate kinase 2/3) (Pyruvate kinase muscle isozyme) (Threonine-protein kinase PKM2) (EC 2.7.11.1) (Thyroid hormone-binding protein 1) (THBP1) (Tumor M2-PK) (Tyrosine-protein kinase PKM2) (EC 2.7.10.2) (p58) | Catalyzes the final rate-limiting step of glycolysis by mediating the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP (PubMed:15996096, PubMed:1854723, PubMed:20847263). The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production (PubMed:15996096, PubMed:1854723, PubMed:20847263). The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival (PubMed:15996096, PubMed:1854723, PubMed:20847263). {ECO:0000269|PubMed:15996096, ECO:0000269|PubMed:1854723, ECO:0000269|PubMed:20847263}.; FUNCTION: [Isoform M2]: Isoform specifically expressed during embryogenesis that has low pyruvate kinase activity by itself and requires allosteric activation by D-fructose 1,6-bisphosphate (FBP) for pyruvate kinase activity (PubMed:18337823, PubMed:20847263). In addition to its pyruvate kinase activity in the cytoplasm, also acts as a regulator of transcription in the nucleus by acting as a protein kinase (PubMed:18191611, PubMed:21620138, PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661). Translocates into the nucleus in response to various signals, such as EGF receptor activation, and homodimerizes, leading to its conversion into a protein threonine- and tyrosine-protein kinase (PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661, PubMed:26787900). Catalyzes phosphorylation of STAT3 at 'Tyr-705' and histone H3 at 'Thr-11' (H3T11ph), leading to activate transcription (PubMed:22306293, PubMed:22901803, PubMed:24120661). Its ability to activate transcription plays a role in cancer cells by promoting cell proliferation and promote tumorigenesis (PubMed:18337823, PubMed:22901803, PubMed:26787900). Promotes the expression of the immune checkpoint protein CD274 in BMAL1-deficient macrophages (By similarity). May also act as a translation regulator for a subset of mRNAs, independently of its pyruvate kinase activity: associates with subpools of endoplasmic reticulum-associated ribosomes, binds directly to the mRNAs translated at the endoplasmic reticulum and promotes translation of these endoplasmic reticulum-destined mRNAs (By similarity). Plays a role in caspase independent cell death of tumor cells (PubMed:17308100). {ECO:0000250|UniProtKB:P52480, ECO:0000269|PubMed:17308100, ECO:0000269|PubMed:18191611, ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263, ECO:0000269|PubMed:21620138, ECO:0000269|PubMed:22056988, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:22901803, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:26787900}.; FUNCTION: [Isoform M1]: Pyruvate kinase isoform expressed in adult tissues, which replaces isoform M2 after birth (PubMed:18337823). In contrast to isoform M2, has high pyruvate kinase activity by itself and does not require allosteric activation by D-fructose 1,6-bisphosphate (FBP) for activity (PubMed:20847263). {ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263}. |
P15498 | VAV1 | S683 | ochoa | Proto-oncogene vav | Couples tyrosine kinase signals with the activation of the Rho/Rac GTPases, thus leading to cell differentiation and/or proliferation. |
P15822 | HIVEP1 | S1036 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P16157 | ANK1 | S781 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P16885 | PLCG2 | S679 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-gamma-2) (Phospholipase C-IV) (PLC-IV) (Phospholipase C-gamma-2) (PLC-gamma-2) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. It is a crucial enzyme in transmembrane signaling. {ECO:0000269|PubMed:23000145}. |
P18583 | SON | S2357 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P18825 | ADRA2C | S352 | ochoa | Alpha-2C adrenergic receptor (Alpha-2 adrenergic receptor subtype C4) (Alpha-2C adrenoreceptor) (Alpha-2C adrenoceptor) (Alpha-2CAR) | Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. |
P19338 | NCL | S609 | ochoa | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
P19429 | TNNI3 | S150 | psp | Troponin I, cardiac muscle (Cardiac troponin I) | Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. |
P19525 | EIF2AK2 | S242 | psp | Interferon-induced, double-stranded RNA-activated protein kinase (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 2) (eIF-2A protein kinase 2) (Interferon-inducible RNA-dependent protein kinase) (P1/eIF-2A protein kinase) (Protein kinase RNA-activated) (PKR) (Protein kinase R) (Tyrosine-protein kinase EIF2AK2) (EC 2.7.10.2) (p68 kinase) | IFN-induced dsRNA-dependent serine/threonine-protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) and plays a key role in the innate immune response to viral infection (PubMed:18835251, PubMed:19189853, PubMed:19507191, PubMed:21072047, PubMed:21123651, PubMed:22381929, PubMed:22948139, PubMed:23229543). Inhibits viral replication via the integrated stress response (ISR): EIF2S1/eIF-2-alpha phosphorylation in response to viral infection converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, resulting to a shutdown of cellular and viral protein synthesis, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4 (PubMed:19189853, PubMed:21123651, PubMed:22948139, PubMed:23229543). Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1) (PubMed:11836380, PubMed:19189853, PubMed:19840259, PubMed:20171114, PubMed:21710204, PubMed:23115276, PubMed:23399035). Also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation: phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11 (PubMed:11836380, PubMed:19229320, PubMed:22214662). In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteasomal degradation (PubMed:20395957). Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding pro-inflammatory cytokines and IFNs (PubMed:22948139, PubMed:23084476, PubMed:23372823). Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6 (PubMed:10848580, PubMed:15121867, PubMed:15229216). Can act as both a positive and negative regulator of the insulin signaling pathway (ISP) (PubMed:20685959). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2) (PubMed:20685959). Can regulate NLRP3 inflammasome assembly and the activation of NLRP3, NLRP1, AIM2 and NLRC4 inflammasomes (PubMed:22801494). Plays a role in the regulation of the cytoskeleton by binding to gelsolin (GSN), sequestering the protein in an inactive conformation away from actin (By similarity). {ECO:0000250|UniProtKB:Q03963, ECO:0000269|PubMed:10848580, ECO:0000269|PubMed:11836380, ECO:0000269|PubMed:15121867, ECO:0000269|PubMed:15229216, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:19189853, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:19507191, ECO:0000269|PubMed:19840259, ECO:0000269|PubMed:20171114, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20685959, ECO:0000269|PubMed:21072047, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:21710204, ECO:0000269|PubMed:22214662, ECO:0000269|PubMed:22381929, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:22948139, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:23115276, ECO:0000269|PubMed:23229543, ECO:0000269|PubMed:23372823, ECO:0000269|PubMed:23399035, ECO:0000269|PubMed:32197074}. |
P20810 | CAST | S414 | ochoa | Calpastatin (Calpain inhibitor) (Sperm BS-17 component) | Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue. |
P21554 | CNR1 | S316 | ochoa | Cannabinoid receptor 1 (CB-R) (CB1) (CANN6) | G-protein coupled receptor for endogenous cannabinoids (eCBs), including N-arachidonoylethanolamide (also called anandamide or AEA) and 2-arachidonoylglycerol (2-AG), as well as phytocannabinoids, such as delta(9)-tetrahydrocannabinol (THC) (PubMed:15620723, PubMed:27768894, PubMed:27851727). Mediates many cannabinoid-induced effects, acting, among others, on food intake, memory loss, gastrointestinal motility, catalepsy, ambulatory activity, anxiety, chronic pain. Signaling typically involves reduction in cyclic AMP (PubMed:1718258, PubMed:21895628, PubMed:27768894). In the hypothalamus, may have a dual effect on mitochondrial respiration depending upon the agonist dose and possibly upon the cell type. Increases respiration at low doses, while decreases respiration at high doses. At high doses, CNR1 signal transduction involves G-protein alpha-i protein activation and subsequent inhibition of mitochondrial soluble adenylate cyclase, decrease in cyclic AMP concentration, inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system, including NDUFS2. In the hypothalamus, inhibits leptin-induced reactive oxygen species (ROS) formation and mediates cannabinoid-induced increase in SREBF1 and FASN gene expression. In response to cannabinoids, drives the release of orexigenic beta-endorphin, but not that of melanocyte-stimulating hormone alpha/alpha-MSH, from hypothalamic POMC neurons, hence promoting food intake. In the hippocampus, regulates cellular respiration and energy production in response to cannabinoids. Involved in cannabinoid-dependent depolarization-induced suppression of inhibition (DSI), a process in which depolarization of CA1 postsynaptic pyramidal neurons mobilizes eCBs, which retrogradely activate presynaptic CB1 receptors, transiently decreasing GABAergic inhibitory neurotransmission. Also reduces excitatory synaptic transmission (By similarity). In superior cervical ganglions and cerebral vascular smooth muscle cells, inhibits voltage-gated Ca(2+) channels in a constitutive, as well as agonist-dependent manner (PubMed:17895407). In cerebral vascular smooth muscle cells, cannabinoid-induced inhibition of voltage-gated Ca(2+) channels leads to vasodilation and decreased vascular tone (By similarity). Induces leptin production in adipocytes and reduces LRP2-mediated leptin clearance in the kidney, hence participating in hyperleptinemia. In adipose tissue, CNR1 signaling leads to increased expression of SREBF1, ACACA and FASN genes (By similarity). In the liver, activation by endocannabinoids leads to increased de novo lipogenesis and reduced fatty acid catabolism, associated with increased expression of SREBF1/SREBP-1, GCK, ACACA, ACACB and FASN genes. May also affect de novo cholesterol synthesis and HDL-cholesteryl ether uptake. Peripherally modulates energy metabolism (By similarity). In high carbohydrate diet-induced obesity, may decrease the expression of mitochondrial dihydrolipoyl dehydrogenase/DLD in striated muscles, as well as that of selected glucose/ pyruvate metabolic enzymes, hence affecting energy expenditure through mitochondrial metabolism (By similarity). In response to cannabinoid anandamide, elicits a pro-inflammatory response in macrophages, which involves NLRP3 inflammasome activation and IL1B and IL18 secretion (By similarity). In macrophages infiltrating pancreatic islets, this process may participate in the progression of type-2 diabetes and associated loss of pancreatic beta-cells (PubMed:23955712). {ECO:0000250|UniProtKB:O02777, ECO:0000250|UniProtKB:P47746, ECO:0000269|PubMed:15620723, ECO:0000269|PubMed:1718258, ECO:0000269|PubMed:17895407, ECO:0000269|PubMed:21895628, ECO:0000269|PubMed:23955712, ECO:0000269|PubMed:27768894, ECO:0000269|PubMed:27851727}.; FUNCTION: [Isoform 1]: Binds both 2-arachidonoylglycerol (2-AG) and anandamide. {ECO:0000269|PubMed:15620723}.; FUNCTION: [Isoform 2]: Only binds 2-arachidonoylglycerol (2-AG) with high affinity. Contrary to its effect on isoform 1, 2-AG behaves as an inverse agonist on isoform 2 in assays measuring GTP binding to membranes. {ECO:0000269|PubMed:15620723}.; FUNCTION: [Isoform 3]: Only binds 2-arachidonoylglycerol (2-AG) with high affinity. Contrary to its effect on isoform 1, 2-AG behaves as an inverse agonist on isoform 3 in assays measuring GTP binding to membranes. {ECO:0000269|PubMed:15620723}. |
P21730 | C5AR1 | S317 | psp | C5a anaphylatoxin chemotactic receptor 1 (C5a anaphylatoxin chemotactic receptor) (C5a-R) (C5aR) (CD antigen CD88) | Receptor for the chemotactic and inflammatory peptide anaphylatoxin C5a (PubMed:10636859, PubMed:15153520, PubMed:1847994, PubMed:29300009, PubMed:7622471, PubMed:8182049, PubMed:9553099). The ligand interacts with at least two sites on the receptor: a high-affinity site on the extracellular N-terminus, and a second site in the transmembrane region which activates downstream signaling events (PubMed:7622471, PubMed:8182049, PubMed:9553099). Receptor activation stimulates chemotaxis, granule enzyme release, intracellular calcium release and superoxide anion production (PubMed:10636859, PubMed:15153520). {ECO:0000269|PubMed:10636859, ECO:0000269|PubMed:15153520, ECO:0000269|PubMed:1847994, ECO:0000269|PubMed:29300009, ECO:0000269|PubMed:7622471, ECO:0000269|PubMed:8182049, ECO:0000269|PubMed:9553099}. |
P23458 | JAK1 | S537 | ochoa | Tyrosine-protein kinase JAK1 (EC 2.7.10.2) (Janus kinase 1) (JAK-1) | Tyrosine kinase of the non-receptor type, involved in the IFN-alpha/beta/gamma signal pathway (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). Kinase partner for the interleukin (IL)-2 receptor (PubMed:11909529) as well as interleukin (IL)-10 receptor (PubMed:12133952). Kinase partner for the type I interferon receptor IFNAR2 (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). In response to interferon-binding to IFNAR1-IFNAR2 heterodimer, phosphorylates and activates its binding partner IFNAR2, creating docking sites for STAT proteins (PubMed:7759950). Directly phosphorylates STAT proteins but also activates STAT signaling through the transactivation of other JAK kinases associated with signaling receptors (PubMed:16239216, PubMed:32750333, PubMed:8232552). {ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:12133952, ECO:0000269|PubMed:16239216, ECO:0000269|PubMed:28111307, ECO:0000269|PubMed:32750333, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:8232552}. |
P23588 | EIF4B | S219 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P26045 | PTPN3 | S335 | ochoa | Tyrosine-protein phosphatase non-receptor type 3 (EC 3.1.3.48) (Protein-tyrosine phosphatase H1) (PTP-H1) | May act at junctions between the membrane and the cytoskeleton. Possesses tyrosine phosphatase activity. |
P27448 | MARK3 | S45 | ochoa | MAP/microtubule affinity-regulating kinase 3 (EC 2.7.11.1) (C-TAK1) (cTAK1) (Cdc25C-associated protein kinase 1) (ELKL motif kinase 2) (EMK-2) (Protein kinase STK10) (Ser/Thr protein kinase PAR-1) (Par-1a) (Serine/threonine-protein kinase p78) | Serine/threonine-protein kinase (PubMed:16822840, PubMed:16980613, PubMed:23666762). Involved in the specific phosphorylation of microtubule-associated proteins for MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Phosphorylates CDC25C on 'Ser-216' (PubMed:12941695). Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus (PubMed:16980613). Regulates localization and activity of MITF by mediating its phosphorylation, promoting subsequent interaction between MITF and 14-3-3 and retention in the cytosol (PubMed:16822840). Negatively regulates the Hippo signaling pathway and antagonizes the phosphorylation of LATS1. Cooperates with DLG5 to inhibit the kinase activity of STK3/MST2 toward LATS1 (PubMed:28087714). Phosphorylates PKP2 and KSR1 (PubMed:12941695). {ECO:0000269|PubMed:12941695, ECO:0000269|PubMed:16822840, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:28087714}. |
P27708 | CAD | S1859 | ochoa|psp | Multifunctional protein CAD (Carbamoyl phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase) [Includes: Glutamine-dependent carbamoyl phosphate synthase (EC 6.3.5.5); Glutamine amidotransferase (GATase) (GLNase) (EC 3.5.1.2); Ammonium-dependent carbamoyl phosphate synthase (CPS) (CPSase) (EC 6.3.4.16); Aspartate carbamoyltransferase (EC 2.1.3.2); Dihydroorotase (EC 3.5.2.3)] | Multifunctional protein that encodes the first 3 enzymatic activities of the de novo pyrimidine pathway: carbamoylphosphate synthetase (CPSase; EC 6.3.5.5), aspartate transcarbamylase (ATCase; EC 2.1.3.2) and dihydroorotase (DHOase; EC 3.5.2.3). The CPSase-function is accomplished in 2 steps, by a glutamine-dependent amidotransferase activity (GATase) that binds and cleaves glutamine to produce ammonia, followed by an ammonium-dependent carbamoyl phosphate synthetase, which reacts with the ammonia, hydrogencarbonate and ATP to form carbamoyl phosphate. The endogenously produced carbamoyl phosphate is sequestered and channeled to the ATCase active site. ATCase then catalyzes the formation of carbamoyl-L-aspartate from L-aspartate and carbamoyl phosphate. In the last step, DHOase catalyzes the cyclization of carbamoyl aspartate to dihydroorotate. {ECO:0000269|PubMed:24332717}. |
P27815 | PDE4A | S125 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4A (EC 3.1.4.53) (DPDE2) (PDE46) (cAMP-specific phosphodiesterase 4A) | Hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:11566027, ECO:0000269|PubMed:2160582}.; FUNCTION: [Isoform 1]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 2]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 3]: Efficiently hydrolyzes cAMP. The phosphodiesterase activity is not affected by calcium, calmodulin or cyclic GMP (cGMP) levels. Does not hydrolyze cGMP. {ECO:0000269|PubMed:7888306}.; FUNCTION: [Isoform 4]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:9677330}.; FUNCTION: [Isoform 6]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310, ECO:0000269|PubMed:17727341}.; FUNCTION: [Isoform 7]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:18095939}. |
P28072 | PSMB6 | S58 | ochoa | Proteasome subunit beta type-6 (EC 3.4.25.1) (Macropain delta chain) (Multicatalytic endopeptidase complex delta chain) (Proteasome delta chain) (Proteasome subunit Y) (Proteasome subunit beta-1) (beta-1) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). Within the 20S core complex, PSMB6 displays a peptidylglutamyl-hydrolizing activity also termed postacidic or caspase-like activity, meaning that the peptides bond hydrolysis occurs directly after acidic residues. {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P29375 | KDM5A | S287 | psp | Lysine-specific demethylase 5A (EC 1.14.11.67) (Histone demethylase JARID1A) (Jumonji/ARID domain-containing protein 1A) (Retinoblastoma-binding protein 2) (RBBP-2) ([histone H3]-trimethyl-L-lysine(4) demethylase 5A) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Regulates specific gene transcription through DNA-binding on 5'-CCGCCC-3' motif (PubMed:18270511). May stimulate transcription mediated by nuclear receptors. Involved in transcriptional regulation of Hox proteins during cell differentiation (PubMed:19430464). May participate in transcriptional repression of cytokines such as CXCL12. Plays a role in the regulation of the circadian rhythm and in maintaining the normal periodicity of the circadian clock. In a histone demethylase-independent manner, acts as a coactivator of the CLOCK-BMAL1-mediated transcriptional activation of PER1/2 and other clock-controlled genes and increases histone acetylation at PER1/2 promoters by inhibiting the activity of HDAC1 (By similarity). Seems to act as a transcriptional corepressor for some genes such as MT1F and to favor the proliferation of cancer cells (PubMed:27427228). {ECO:0000250|UniProtKB:Q3UXZ9, ECO:0000269|PubMed:11358960, ECO:0000269|PubMed:15949438, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17320163, ECO:0000269|PubMed:18270511, ECO:0000269|PubMed:19430464, ECO:0000269|PubMed:27427228}. |
P29466 | CASP1 | S376 | psp | Caspase-1 (CASP-1) (EC 3.4.22.36) (Interleukin-1 beta convertase) (IL-1BC) (Interleukin-1 beta-converting enzyme) (ICE) (IL-1 beta-converting enzyme) (p45) [Cleaved into: Caspase-1 subunit p20; Caspase-1 subunit p10] | Thiol protease involved in a variety of inflammatory processes by proteolytically cleaving other proteins, such as the precursors of the inflammatory cytokines interleukin-1 beta (IL1B) and interleukin 18 (IL18) as well as the pyroptosis inducer Gasdermin-D (GSDMD), into active mature peptides (PubMed:15326478, PubMed:15498465, PubMed:1574116, PubMed:26375003, PubMed:32051255, PubMed:37993714, PubMed:7876192, PubMed:9334240). Plays a key role in cell immunity as an inflammatory response initiator: once activated through formation of an inflammasome complex, it initiates a pro-inflammatory response through the cleavage of the two inflammatory cytokines IL1B and IL18, releasing the mature cytokines which are involved in a variety of inflammatory processes (PubMed:15326478, PubMed:15498465, PubMed:1574116, PubMed:32051255, PubMed:7876192). Cleaves a tetrapeptide after an Asp residue at position P1 (PubMed:15498465, PubMed:1574116, PubMed:7876192). Also initiates pyroptosis, a programmed lytic cell death pathway, through cleavage of GSDMD (PubMed:26375003). In contrast to cleavage of interleukin IL1B, recognition and cleavage of GSDMD is not strictly dependent on the consensus cleavage site but depends on an exosite interface on CASP1 that recognizes and binds the Gasdermin-D, C-terminal (GSDMD-CT) part (PubMed:32051255, PubMed:32109412, PubMed:32553275). Cleaves and activates CASP7 in response to bacterial infection, promoting plasma membrane repair (PubMed:22464733). Upon inflammasome activation, during DNA virus infection but not RNA virus challenge, controls antiviral immunity through the cleavage of CGAS, rendering it inactive (PubMed:28314590). In apoptotic cells, cleaves SPHK2 which is released from cells and remains enzymatically active extracellularly (PubMed:20197547). {ECO:0000269|PubMed:15326478, ECO:0000269|PubMed:15498465, ECO:0000269|PubMed:1574116, ECO:0000269|PubMed:20197547, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:32051255, ECO:0000269|PubMed:32109412, ECO:0000269|PubMed:32553275, ECO:0000269|PubMed:37993714, ECO:0000269|PubMed:7876192, ECO:0000269|PubMed:9334240}.; FUNCTION: [Isoform Delta]: Apoptosis inactive. {ECO:0000269|PubMed:7876192}.; FUNCTION: [Isoform Epsilon]: Apoptosis inactive. {ECO:0000269|PubMed:7876192}. |
P29597 | TYK2 | S430 | ochoa | Non-receptor tyrosine-protein kinase TYK2 (EC 2.7.10.2) | Tyrosine kinase of the non-receptor type involved in numerous cytokines and interferons signaling, which regulates cell growth, development, cell migration, innate and adaptive immunity (PubMed:10542297, PubMed:10995743, PubMed:7657660, PubMed:7813427, PubMed:8232552). Plays both structural and catalytic roles in numerous interleukins and interferons (IFN-alpha/beta) signaling (PubMed:10542297). Associates with heterodimeric cytokine receptor complexes and activates STAT family members including STAT1, STAT3, STAT4 or STAT6 (PubMed:10542297, PubMed:7638186). The heterodimeric cytokine receptor complexes are composed of (1) a TYK2-associated receptor chain (IFNAR1, IL12RB1, IL10RB or IL13RA1), and (2) a second receptor chain associated either with JAK1 or JAK2 (PubMed:10542297, PubMed:25762719, PubMed:7526154, PubMed:7813427). In response to cytokine-binding to receptors, phosphorylates and activates receptors (IFNAR1, IL12RB1, IL10RB or IL13RA1), creating docking sites for STAT members (PubMed:7526154, PubMed:7657660). In turn, recruited STATs are phosphorylated by TYK2 (or JAK1/JAK2 on the second receptor chain), form homo- and heterodimers, translocate to the nucleus, and regulate cytokine/growth factor responsive genes (PubMed:10542297, PubMed:25762719, PubMed:7657660). Negatively regulates STAT3 activity by promototing phosphorylation at a specific tyrosine that differs from the site used for signaling (PubMed:29162862). {ECO:0000269|PubMed:10542297, ECO:0000269|PubMed:10995743, ECO:0000269|PubMed:25762719, ECO:0000269|PubMed:29162862, ECO:0000269|PubMed:7526154, ECO:0000269|PubMed:7638186, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:7813427, ECO:0000269|PubMed:8232552}. |
P30084 | ECHS1 | S186 | ochoa | Enoyl-CoA hydratase, mitochondrial (mECH) (mECH1) (EC 4.2.1.17) (EC 5.3.3.8) (Enoyl-CoA hydratase 1) (ECHS1) (Short-chain enoyl-CoA hydratase) (SCEH) | Converts unsaturated trans-2-enoyl-CoA species ((2E)-enoyl-CoA) to the corresponding (3S)-3hydroxyacyl-CoA species through addition of a water molecule to the double bond (PubMed:25125611, PubMed:26251176). Catalyzes the hydration of medium- and short-chained fatty enoyl-CoA thioesters from 4 carbons long (C4) up to C16 (PubMed:26251176). Has high substrate specificity for crotonyl-CoA ((2E)-butenoyl-CoA) and moderate specificity for acryloyl-CoA, 3-methylcrotonyl-CoA (3-methyl-(2E)-butenoyl-CoA) and methacrylyl-CoA ((2E)-2-methylpropenoyl-CoA) (PubMed:26251176). Can bind tiglyl-CoA (2-methylcrotonoyl-CoA), but hydrates only a small amount of this substrate (PubMed:26251176). Plays a key role in the beta-oxidation spiral of short- and medium-chain fatty acid oxidation (PubMed:25125611, PubMed:26251176). At a lower rate than the hydratase reaction, catalyzes the isomerase reaction of trans-3-enoyl-CoA species (such as (3E)-hexenoyl-CoA) to trans-2-enoyl-CoA species (such as (2E)-hexenoyl-CoA), which are subsequently hydrated to 3(S)-3-hydroxyacyl-CoA species (such as (3S)-hydroxyhexanoyl-CoA) (By similarity). {ECO:0000250|UniProtKB:P14604, ECO:0000269|PubMed:25125611, ECO:0000269|PubMed:26251176}. |
P30305 | CDC25B | S169 | psp | M-phase inducer phosphatase 2 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25B) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner (PubMed:17332740). The three isoforms seem to have a different level of activity (PubMed:1836978). {ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P31645 | SLC6A4 | S149 | psp | Sodium-dependent serotonin transporter (SERT) (5HT transporter) (5HTT) (Solute carrier family 6 member 4) | Serotonin transporter that cotransports serotonin with one Na(+) ion in exchange for one K(+) ion and possibly one proton in an overall electroneutral transport cycle. Transports serotonin across the plasma membrane from the extracellular compartment to the cytosol thus limiting serotonin intercellular signaling (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Essential for serotonin homeostasis in the central nervous system. In the developing somatosensory cortex, acts in glutamatergic neurons to control serotonin uptake and its trophic functions accounting for proper spatial organization of cortical neurons and elaboration of sensory circuits. In the mature cortex, acts primarily in brainstem raphe neurons to mediate serotonin uptake from the synaptic cleft back into the pre-synaptic terminal thus terminating serotonin signaling at the synapse (By similarity). Modulates mucosal serotonin levels in the gastrointestinal tract through uptake and clearance of serotonin in enterocytes. Required for enteric neurogenesis and gastrointestinal reflexes (By similarity). Regulates blood serotonin levels by ensuring rapid high affinity uptake of serotonin from plasma to platelets, where it is further stored in dense granules via vesicular monoamine transporters and then released upon stimulation (PubMed:17506858, PubMed:18317590). Mechanistically, the transport cycle starts with an outward-open conformation having Na1(+) and Cl(-) sites occupied. The binding of a second extracellular Na2(+) ion and serotonin substrate leads to structural changes to outward-occluded to inward-occluded to inward-open, where the Na2(+) ion and serotonin are released into the cytosol. Binding of intracellular K(+) ion induces conformational transitions to inward-occluded to outward-open and completes the cycle by releasing K(+) possibly together with a proton bound to Asp-98 into the extracellular compartment. Na1(+) and Cl(-) ions remain bound throughout the transport cycle (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Additionally, displays serotonin-induced channel-like conductance for monovalent cations, mainly Na(+) ions. The channel activity is uncoupled from the transport cycle and may contribute to the membrane resting potential or excitability (By similarity). {ECO:0000250|UniProtKB:P31652, ECO:0000250|UniProtKB:Q60857, ECO:0000269|PubMed:10407194, ECO:0000269|PubMed:12869649, ECO:0000269|PubMed:17506858, ECO:0000269|PubMed:18317590, ECO:0000269|PubMed:21730057, ECO:0000269|PubMed:27049939, ECO:0000269|PubMed:27756841, ECO:0000269|PubMed:34851672}. |
P33991 | MCM4 | S326 | ochoa | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P35222 | CTNNB1 | S715 | ochoa|psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P35573 | AGL | S64 | ochoa | Glycogen debranching enzyme (Glycogen debrancher) [Includes: 4-alpha-glucanotransferase (EC 2.4.1.25) (Oligo-1,4-1,4-glucantransferase); Amylo-alpha-1,6-glucosidase (Amylo-1,6-glucosidase) (EC 3.2.1.33) (Dextrin 6-alpha-D-glucosidase)] | Multifunctional enzyme acting as 1,4-alpha-D-glucan:1,4-alpha-D-glucan 4-alpha-D-glycosyltransferase and amylo-1,6-glucosidase in glycogen degradation. |
P35749 | MYH11 | S1935 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P37059 | HSD17B2 | S218 | ochoa | 17-beta-hydroxysteroid dehydrogenase type 2 (17-beta-HSD 2) (20 alpha-hydroxysteroid dehydrogenase) (20-alpha-HSD) (E2DH) (Estradiol 17-beta-dehydrogenase 2) (EC 1.1.1.62) (Microsomal 17-beta-hydroxysteroid dehydrogenase) (Short chain dehydrogenase/reductase family 9C member 2) (Testosterone 17-beta-dehydrogenase) (EC 1.1.1.239) | Catalyzes the NAD-dependent oxidation of the highly active 17beta-hydroxysteroids, such as estradiol (E2), testosterone (T), and dihydrotestosterone (DHT), to their less active forms and thus regulates the biological potency of these steroids. Oxidizes estradiol to estrone, testosterone to androstenedione, and dihydrotestosterone to 5alpha-androstan-3,17-dione. Also has 20-alpha-HSD activity. {ECO:0000269|PubMed:10385431, ECO:0000269|PubMed:11940569, ECO:0000269|PubMed:8099587}. |
P38398 | BRCA1 | S956 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P41146 | OPRL1 | S346 | psp | Nociceptin receptor (Kappa-type 3 opioid receptor) (KOR-3) (Orphanin FQ receptor) | G-protein coupled opioid receptor that functions as a receptor for the endogenous neuropeptide nociceptin. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Signaling via G proteins mediates inhibition of adenylate cyclase activity and calcium channel activity. Arrestins modulate signaling via G proteins and mediate the activation of alternative signaling pathways that lead to the activation of MAP kinases. Plays a role in modulating nociception and the perception of pain. Plays a role in the regulation of locomotor activity by the neuropeptide nociceptin. {ECO:0000269|PubMed:11238602, ECO:0000269|PubMed:12568343, ECO:0000269|PubMed:22596163, ECO:0000269|PubMed:23086955, ECO:0000269|PubMed:8137918}. |
P41212 | ETV6 | S165 | ochoa | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P41231 | P2RY2 | S243 | psp | P2Y purinoceptor 2 (P2Y2) (ATP receptor) (P2U purinoceptor 1) (P2U1) (P2U receptor 1) (Purinergic receptor) | Receptor for ATP and UTP coupled to G-proteins that activate a phosphatidylinositol-calcium second messenger system. The affinity range is UTP = ATP > ATP-gamma-S >> 2-methylthio-ATP = ADP. |
P42336 | PIK3CA | S507 | ochoa | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PI3-kinase subunit alpha) (PI3K-alpha) (PI3Kalpha) (PtdIns-3-kinase subunit alpha) (EC 2.7.1.137) (EC 2.7.1.153) (Phosphatidylinositol 4,5-bisphosphate 3-kinase 110 kDa catalytic subunit alpha) (PtdIns-3-kinase subunit p110-alpha) (p110alpha) (Phosphoinositide 3-kinase alpha) (Phosphoinositide-3-kinase catalytic alpha polypeptide) (Serine/threonine protein kinase PIK3CA) (EC 2.7.11.1) | Phosphoinositide-3-kinase (PI3K) phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at position 3 of the inositol ring to produce 3-phosphoinositides (PubMed:15135396, PubMed:23936502, PubMed:28676499). Uses ATP and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) (PubMed:15135396, PubMed:28676499). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to various growth factors. Involved in the activation of AKT1 upon stimulation by receptor tyrosine kinases ligands such as EGF, insulin, IGF1, VEGFA and PDGF. Involved in signaling via insulin-receptor substrate (IRS) proteins. Essential in endothelial cell migration during vascular development through VEGFA signaling, possibly by regulating RhoA activity. Required for lymphatic vasculature development, possibly by binding to RAS and by activation by EGF and FGF2, but not by PDGF. Regulates invadopodia formation through the PDPK1-AKT1 pathway. Participates in cardiomyogenesis in embryonic stem cells through a AKT1 pathway. Participates in vasculogenesis in embryonic stem cells through PDK1 and protein kinase C pathway. In addition to its lipid kinase activity, it displays a serine-protein kinase activity that results in the autophosphorylation of the p85alpha regulatory subunit as well as phosphorylation of other proteins such as 4EBP1, H-Ras, the IL-3 beta c receptor and possibly others (PubMed:23936502, PubMed:28676499). Plays a role in the positive regulation of phagocytosis and pinocytosis (By similarity). {ECO:0000250|UniProtKB:P42337, ECO:0000269|PubMed:15135396, ECO:0000269|PubMed:21708979, ECO:0000269|PubMed:23936502, ECO:0000269|PubMed:26593112, ECO:0000269|PubMed:28676499}. |
P43403 | ZAP70 | S599 | ochoa | Tyrosine-protein kinase ZAP-70 (EC 2.7.10.2) (70 kDa zeta-chain associated protein) (Syk-related tyrosine kinase) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates motility, adhesion and cytokine expression of mature T-cells, as well as thymocyte development. Also contributes to the development and activation of primary B-lymphocytes. When antigen presenting cells (APC) activate T-cell receptor (TCR), a serie of phosphorylations lead to the recruitment of ZAP70 to the doubly phosphorylated TCR component CD247/CD3Z through ITAM motif at the plasma membrane. This recruitment serves to localization to the stimulated TCR and to relieve its autoinhibited conformation. Release of ZAP70 active conformation is further stabilized by phosphorylation mediated by LCK. Subsequently, ZAP70 phosphorylates at least 2 essential adapter proteins: LAT and LCP2. In turn, a large number of signaling molecules are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation. Furthermore, ZAP70 controls cytoskeleton modifications, adhesion and mobility of T-lymphocytes, thus ensuring correct delivery of effectors to the APC. ZAP70 is also required for TCR-CD247/CD3Z internalization and degradation through interaction with the E3 ubiquitin-protein ligase CBL and adapter proteins SLA and SLA2. Thus, ZAP70 regulates both T-cell activation switch on and switch off by modulating TCR expression at the T-cell surface. During thymocyte development, ZAP70 promotes survival and cell-cycle progression of developing thymocytes before positive selection (when cells are still CD4/CD8 double negative). Additionally, ZAP70-dependent signaling pathway may also contribute to primary B-cells formation and activation through B-cell receptor (BCR). {ECO:0000269|PubMed:11353765, ECO:0000269|PubMed:12051764, ECO:0000269|PubMed:1423621, ECO:0000269|PubMed:20135127, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:38614099, ECO:0000269|PubMed:8124727, ECO:0000269|PubMed:8702662, ECO:0000269|PubMed:9489702}. |
P46013 | MKI67 | S1291 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1636 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P47712 | PLA2G4A | S724 | ochoa | Cytosolic phospholipase A2 (cPLA2) (Phospholipase A2 group IVA) [Includes: Phospholipase A2 (EC 3.1.1.4) (Phosphatidylcholine 2-acylhydrolase); Lysophospholipase (EC 3.1.1.5)] | Has primarily calcium-dependent phospholipase and lysophospholipase activities, with a major role in membrane lipid remodeling and biosynthesis of lipid mediators of the inflammatory response (PubMed:10358058, PubMed:14709560, PubMed:16617059, PubMed:17472963, PubMed:18451993, PubMed:27642067, PubMed:7794891, PubMed:8619991, PubMed:8702602, PubMed:9425121). Plays an important role in embryo implantation and parturition through its ability to trigger prostanoid production (By similarity). Preferentially hydrolyzes the ester bond of the fatty acyl group attached at sn-2 position of phospholipids (phospholipase A2 activity) (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:8619991, PubMed:9425121). Selectively hydrolyzes sn-2 arachidonoyl group from membrane phospholipids, providing the precursor for eicosanoid biosynthesis via the cyclooxygenase pathway (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:9425121). In an alternative pathway of eicosanoid biosynthesis, hydrolyzes sn-2 fatty acyl chain of eicosanoid lysophopholipids to release free bioactive eicosanoids (PubMed:27642067). Hydrolyzes the ester bond of the fatty acyl group attached at sn-1 position of phospholipids (phospholipase A1 activity) only if an ether linkage rather than an ester linkage is present at the sn-2 position. This hydrolysis is not stereospecific (PubMed:7794891). Has calcium-independent phospholipase A2 and lysophospholipase activities in the presence of phosphoinositides (PubMed:12672805). Has O-acyltransferase activity. Catalyzes the transfer of fatty acyl chains from phospholipids to a primary hydroxyl group of glycerol (sn-1 or sn-3), potentially contributing to monoacylglycerol synthesis (PubMed:7794891). {ECO:0000250|UniProtKB:P47713, ECO:0000269|PubMed:10358058, ECO:0000269|PubMed:12672805, ECO:0000269|PubMed:14709560, ECO:0000269|PubMed:16617059, ECO:0000269|PubMed:17472963, ECO:0000269|PubMed:18451993, ECO:0000269|PubMed:27642067, ECO:0000269|PubMed:7794891, ECO:0000269|PubMed:8619991, ECO:0000269|PubMed:8702602, ECO:0000269|PubMed:9425121}. |
P48163 | ME1 | S219 | ochoa | NADP-dependent malic enzyme (NADP-ME) (EC 1.1.1.40) (Malic enzyme 1) | Catalyzes the oxidative decarboxylation of (S)-malate in the presence of NADP(+) and divalent metal ions, and decarboxylation of oxaloacetate. {ECO:0000269|PubMed:7622060, ECO:0000269|PubMed:7757881, ECO:0000269|PubMed:8187880, ECO:0000269|PubMed:8804575}. |
P48764 | SLC9A3 | S810 | ochoa | Sodium/hydrogen exchanger 3 (Na(+)/H(+) exchanger 3) (NHE-3) (Solute carrier family 9 member 3) | Plasma membrane Na(+)/H(+) antiporter (PubMed:18829453, PubMed:26358773, PubMed:35613257). Exchanges intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry, playing a key role in salt and fluid absorption and pH homeostasis (By similarity). Major apical Na(+)/H(+) exchanger in kidney and intestine playing an important role in renal and intestine Na(+) absorption and blood pressure regulation (PubMed:24622516, PubMed:26358773). {ECO:0000250|UniProtKB:G3X939, ECO:0000269|PubMed:18829453, ECO:0000269|PubMed:24622516, ECO:0000269|PubMed:26358773, ECO:0000269|PubMed:35613257}. |
P49448 | GLUD2 | S128 | ochoa | Glutamate dehydrogenase 2, mitochondrial (GDH 2) (EC 1.4.1.3) | Important for recycling the chief excitatory neurotransmitter, glutamate, during neurotransmission. |
P49736 | MCM2 | S209 | ochoa | DNA replication licensing factor MCM2 (EC 3.6.4.12) (Minichromosome maintenance protein 2 homolog) (Nuclear protein BM28) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (PubMed:8175912). Plays a role in terminally differentiated hair cells development of the cochlea and induces cells apoptosis (PubMed:26196677). {ECO:0000269|PubMed:26196677, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:8175912}. |
P50402 | EMD | S120 | ochoa | Emerin | Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}. |
P51582 | P2RY4 | S334 | psp | P2Y purinoceptor 4 (P2Y4) (P2P) (Uridine nucleotide receptor) (UNR) | Receptor for UTP and UDP coupled to G-proteins that activate a phosphatidylinositol-calcium second messenger system. Not activated by ATP or ADP. |
P51608 | MECP2 | S116 | ochoa | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P51787 | KCNQ1 | S95 | psp | Potassium voltage-gated channel subfamily KQT member 1 (IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1) (KQT-like 1) (Voltage-gated potassium channel subunit Kv7.1) | Pore-forming subunit of the voltage-gated potassium (Kv) channel involved in the regulation of cardiomyocyte excitability and important in normal development and functions of myocardium, inner ear, stomach and colon (PubMed:10646604, PubMed:25441029). Associates with KCNE beta subunits that modulates current kinetics (PubMed:10646604, PubMed:11101505, PubMed:19687231, PubMed:8900283, PubMed:9108097, PubMed:9312006). Induces a voltage-dependent current by rapidly activating and slowly deactivating potassium-selective outward current (PubMed:10646604, PubMed:11101505, PubMed:25441029, PubMed:8900283, PubMed:9108097, PubMed:9312006). Also promotes a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta-adrenergic receptor stimulation, participates in cardiac repolarization by associating with KCNE1 to form the I(Ks) cardiac potassium current that increases the amplitude and slows down the activation kinetics of outward potassium current I(Ks) (By similarity) (PubMed:10646604, PubMed:11101505, PubMed:8900283, PubMed:9108097, PubMed:9312006). Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current (PubMed:10713961). When associated with KCNE3, forms the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions (PubMed:10646604). This interaction with KCNE3 is reduced by 17beta-estradiol, resulting in the reduction of currents (By similarity). During conditions of increased substrate load, maintains the driving force for proximal tubular and intestinal sodium ions absorption, gastric acid secretion, and cAMP-induced jejunal chloride ions secretion (By similarity). Allows the provision of potassium ions to the luminal membrane of the secretory canaliculus in the resting state as well as during stimulated acid secretion (By similarity). When associated with KCNE2, forms a heterooligomer complex leading to currents with an apparently instantaneous activation, a rapid deactivation process and a linear current-voltage relationship and decreases the amplitude of the outward current (PubMed:11101505). When associated with KCNE4, inhibits voltage-gated potassium channel activity (PubMed:19687231). When associated with KCNE5, this complex only conducts current upon strong and continued depolarization (PubMed:12324418). Also forms a heterotetramer with KCNQ5; has a voltage-gated potassium channel activity (PubMed:24855057). Binds with phosphatidylinositol 4,5-bisphosphate (PubMed:25037568). KCNQ1-KCNE2 channel associates with Na(+)-coupled myo-inositol symporter in the apical membrane of choroid plexus epithelium and regulates the myo-inositol gradient between blood and cerebrospinal fluid with an impact on neuron excitability (By similarity). {ECO:0000250|UniProtKB:P97414, ECO:0000250|UniProtKB:Q9Z0N7, ECO:0000269|PubMed:10646604, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:11101505, ECO:0000269|PubMed:12324418, ECO:0000269|PubMed:19687231, ECO:0000269|PubMed:24595108, ECO:0000269|PubMed:24855057, ECO:0000269|PubMed:25037568, ECO:0000269|PubMed:8900283, ECO:0000269|PubMed:9108097, ECO:0000269|PubMed:9312006}.; FUNCTION: [Isoform 2]: Non-functional alone but modulatory when coexpressed with the full-length isoform 1. {ECO:0000269|PubMed:9305853}. |
P52272 | HNRNPM | S588 | ochoa | Heterogeneous nuclear ribonucleoprotein M (hnRNP M) | Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines. |
P53367 | ARFIP1 | S36 | ochoa | Arfaptin-1 (ADP-ribosylation factor-interacting protein 1) | Plays a role in controlling biogenesis of secretory granules at the trans-Golgi network (PubMed:22981988). Mechanistically, binds ARF-GTP at the neck of a growing secretory granule precursor and forms a protective scaffold (PubMed:22981988, PubMed:9038142). Once the granule precursor has been completely loaded, active PRKD1 phosphorylates ARFIP1 and releases it from ARFs (PubMed:22981988). In turn, ARFs induce fission (PubMed:22981988). Through this mechanism, ensures proper secretory granule formation at the Golgi of pancreatic beta cells (PubMed:22981988). {ECO:0000269|PubMed:22981988, ECO:0000269|PubMed:9038142}. |
P53396 | ACLY | S667 | ochoa | ATP-citrate synthase (EC 2.3.3.8) (ATP-citrate (pro-S-)-lyase) (ACL) (Citrate cleavage enzyme) | Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate in multiple biochemical reactions in protein, carbohydrate and lipid metabolism. {ECO:0000269|PubMed:10653665, ECO:0000269|PubMed:1371749, ECO:0000269|PubMed:19286649, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:39881208, ECO:0000269|PubMed:9116495}. |
P54252 | ATXN3 | S236 | psp | Ataxin-3 (EC 3.4.19.12) (Machado-Joseph disease protein 1) (Spinocerebellar ataxia type 3 protein) | Deubiquitinating enzyme involved in protein homeostasis maintenance, transcription, cytoskeleton regulation, myogenesis and degradation of misfolded chaperone substrates (PubMed:12297501, PubMed:16118278, PubMed:17696782, PubMed:23625928, PubMed:28445460, PubMed:33157014). Binds long polyubiquitin chains and trims them, while it has weak or no activity against chains of 4 or less ubiquitins (PubMed:17696782). Involved in degradation of misfolded chaperone substrates via its interaction with STUB1/CHIP: recruited to monoubiquitinated STUB1/CHIP, and restricts the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (By similarity). Interacts with key regulators of transcription and represses transcription: acts as a histone-binding protein that regulates transcription (PubMed:12297501). Acts as a negative regulator of mTORC1 signaling in response to amino acid deprivation by mediating deubiquitination of RHEB, thereby promoting RHEB inactivation by the TSC-TBC complex (PubMed:33157014). Regulates autophagy via the deubiquitination of 'Lys-402' of BECN1 leading to the stabilization of BECN1 (PubMed:28445460). {ECO:0000250|UniProtKB:Q9CVD2, ECO:0000269|PubMed:12297501, ECO:0000269|PubMed:16118278, ECO:0000269|PubMed:17696782, ECO:0000269|PubMed:23625928, ECO:0000269|PubMed:28445460, ECO:0000269|PubMed:33157014}. |
P54296 | MYOM2 | S627 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54753 | EPHB3 | S591 | ochoa | Ephrin type-B receptor 3 (EC 2.7.10.1) (EPH-like tyrosine kinase 2) (EPH-like kinase 2) (Embryonic kinase 2) (EK2) (hEK2) (Tyrosine-protein kinase TYRO6) | Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Generally has an overlapping and redundant function with EPHB2. Like EPHB2, functions in axon guidance during development regulating for instance the neurons forming the corpus callosum and the anterior commissure, 2 major interhemispheric connections between the temporal lobes of the cerebral cortex. In addition to its role in axon guidance also plays an important redundant role with other ephrin-B receptors in development and maturation of dendritic spines and the formation of excitatory synapses. Controls other aspects of development through regulation of cell migration and positioning. This includes angiogenesis, palate development and thymic epithelium development for instance. Forward and reverse signaling through the EFNB2/EPHB3 complex also regulate migration and adhesion of cells that tubularize the urethra and septate the cloaca. Finally, plays an important role in intestinal epithelium differentiation segregating progenitor from differentiated cells in the crypt. {ECO:0000269|PubMed:15536074}. |
P56524 | HDAC4 | S611 | ochoa | Histone deacetylase 4 (HD4) (EC 3.5.1.98) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation via its interaction with the myocyte enhancer factors such as MEF2A, MEF2C and MEF2D. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Deacetylates HSPA1A and HSPA1B at 'Lys-77' leading to their preferential binding to co-chaperone STUB1 (PubMed:27708256). {ECO:0000269|PubMed:10523670, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:27708256}. |
P62995 | TRA2B | S215 | ochoa | Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) | Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:9546399}. |
P78524 | DENND2B | S637 | ochoa | DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) | [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}. |
P82979 | SARNP | S131 | ochoa | SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}. |
P84243 | H3-3A | S32 | ochoa | Histone H3.3 | Variant histone H3 which replaces conventional H3 in a wide range of nucleosomes in active genes. Constitutes the predominant form of histone H3 in non-dividing cells and is incorporated into chromatin independently of DNA synthesis. Deposited at sites of nucleosomal displacement throughout transcribed genes, suggesting that it represents an epigenetic imprint of transcriptionally active chromatin. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15776021, ECO:0000269|PubMed:16258499}. |
P98161 | PKD1 | S4169 | psp | Polycystin-1 (PC1) (Autosomal dominant polycystic kidney disease 1 protein) | Component of a heteromeric calcium-permeable ion channel formed by PKD1 and PKD2 that is activated by interaction between PKD1 and a Wnt family member, such as WNT3A and WNT9B (PubMed:27214281). Both PKD1 and PKD2 are required for channel activity (PubMed:27214281). Involved in renal tubulogenesis (PubMed:12482949). Involved in fluid-flow mechanosensation by the primary cilium in renal epithelium (By similarity). Acts as a regulator of cilium length, together with PKD2 (By similarity). The dynamic control of cilium length is essential in the regulation of mechanotransductive signaling (By similarity). The cilium length response creates a negative feedback loop whereby fluid shear-mediated deflection of the primary cilium, which decreases intracellular cAMP, leads to cilium shortening and thus decreases flow-induced signaling (By similarity). May be an ion-channel regulator. Involved in adhesive protein-protein and protein-carbohydrate interactions. Likely to be involved with polycystin-1-interacting protein 1 in the detection, sequestration and exocytosis of senescent mitochondria (PubMed:37681898). {ECO:0000250|UniProtKB:O08852, ECO:0000269|PubMed:12482949, ECO:0000269|PubMed:27214281, ECO:0000269|PubMed:37681898}. |
Q00341 | HDLBP | S74 | ochoa | Vigilin (High density lipoprotein-binding protein) (HDL-binding protein) | Appears to play a role in cell sterol metabolism. It may function to protect cells from over-accumulation of cholesterol. |
Q00341 | HDLBP | S756 | ochoa | Vigilin (High density lipoprotein-binding protein) (HDL-binding protein) | Appears to play a role in cell sterol metabolism. It may function to protect cells from over-accumulation of cholesterol. |
Q00534 | CDK6 | S293 | ochoa | Cyclin-dependent kinase 6 (EC 2.7.11.22) (Cell division protein kinase 6) (Serine/threonine-protein kinase PLSTIRE) | Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and negatively regulates cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans. May play a role in the centrosome organization during the cell cycle phases (PubMed:23918663). {ECO:0000269|PubMed:12833137, ECO:0000269|PubMed:14985467, ECO:0000269|PubMed:15254224, ECO:0000269|PubMed:15809340, ECO:0000269|PubMed:17420273, ECO:0000269|PubMed:17431401, ECO:0000269|PubMed:20333249, ECO:0000269|PubMed:20668294, ECO:0000269|PubMed:23918663, ECO:0000269|PubMed:8114739}. |
Q00987 | MDM2 | S188 | psp | E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) | E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}. |
Q02241 | KIF23 | S889 | ochoa | Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}. |
Q02790 | FKBP4 | S78 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4) (EC 5.2.1.8) (51 kDa FK506-binding protein) (FKBP51) (52 kDa FK506-binding protein) (52 kDa FKBP) (FKBP-52) (59 kDa immunophilin) (p59) (FK506-binding protein 4) (FKBP-4) (FKBP59) (HSP-binding immunophilin) (HBI) (Immunophilin FKBP52) (Rotamase) [Cleaved into: Peptidyl-prolyl cis-trans isomerase FKBP4, N-terminally processed] | Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Also acts as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role against oxidative stress in mitochondria. {ECO:0000269|PubMed:1279700, ECO:0000269|PubMed:1376003, ECO:0000269|PubMed:19945390, ECO:0000269|PubMed:21730050, ECO:0000269|PubMed:2378870}. |
Q02878 | RPL6 | S143 | ochoa | Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}. |
Q03188 | CENPC | S261 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q05397 | PTK2 | S574 | ochoa | Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) | Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}. |
Q05397 | PTK2 | S843 | ochoa|psp | Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) | Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}. |
Q06210 | GFPT1 | S235 | psp | Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase 1) (Glutamine:fructose-6-phosphate amidotransferase 1) (GFAT 1) (GFAT1) (Hexosephosphate aminotransferase 1) | Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. Regulates the circadian expression of clock genes BMAL1 and CRY1 (By similarity). Has a role in fine tuning the metabolic fluctuations of cytosolic UDP-GlcNAc and its effects on hyaluronan synthesis that occur during tissue remodeling (PubMed:26887390). {ECO:0000250|UniProtKB:P47856, ECO:0000269|PubMed:26887390}. |
Q07092 | COL16A1 | S260 | ochoa | Collagen alpha-1(XVI) chain | Involved in mediating cell attachment and inducing integrin-mediated cellular reactions, such as cell spreading and alterations in cell morphology. {ECO:0000269|PubMed:16754661}. |
Q07157 | TJP1 | S179 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q07866 | KLC1 | S524 | ochoa | Kinesin light chain 1 (KLC 1) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport (PubMed:21385839). The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250|UniProtKB:P37285, ECO:0000269|PubMed:21385839}. |
Q08379 | GOLGA2 | S981 | ochoa | Golgin subfamily A member 2 (130 kDa cis-Golgi matrix protein) (GM130) (GM130 autoantigen) (Golgin-95) | Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane (Probable) (PubMed:16489344). Required for normal protein transport from the endoplasmic reticulum to the Golgi apparatus and the cell membrane (By similarity). Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter-connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly: phosphorylation at Ser-37 by CDK1 at the onset of mitosis inhibits the interaction with p115/USO1, preventing tethering of COPI vesicles and thereby inhibiting transport through the Golgi apparatus during mitosis (By similarity). Also plays a key role in spindle pole assembly and centrosome organization (PubMed:26165940). Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle: upon phosphorylation at the onset of mitosis, GOLGA2 interacts with importin-alpha via the nuclear localization signal region, leading to recruit importin-alpha to the Golgi membranes and liberate the spindle assembly factor TPX2 from importin-alpha. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle (PubMed:19242490, PubMed:26165940). Regulates the meiotic spindle pole assembly, probably via the same mechanism (By similarity). Also regulates the centrosome organization (PubMed:18045989, PubMed:19109421). Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins (PubMed:16489344, PubMed:17314401). {ECO:0000250|UniProtKB:Q62839, ECO:0000250|UniProtKB:Q921M4, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:17314401, ECO:0000269|PubMed:18045989, ECO:0000269|PubMed:19109421, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:26165940, ECO:0000305|PubMed:26363069}. |
Q12774 | ARHGEF5 | S1136 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q12789 | GTF3C1 | S1962 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12923 | PTPN13 | S348 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12923 | PTPN13 | S890 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12929 | EPS8 | S58 | ochoa|psp | Epidermal growth factor receptor kinase substrate 8 | Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}. |
Q13098 | GPS1 | S240 | ochoa | COP9 signalosome complex subunit 1 (SGN1) (Signalosome subunit 1) (G protein pathway suppressor 1) (GPS-1) (JAB1-containing signalosome subunit 1) (Protein MFH) | Essential component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Suppresses G-protein- and mitogen-activated protein kinase-mediated signal transduction. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:9535219}. |
Q13136 | PPFIA1 | S530 | ochoa | Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}. |
Q13428 | TCOF1 | S1098 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13469 | NFATC2 | S737 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}. |
Q13480 | GAB1 | S402 | ochoa | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q13542 | EIF4EBP2 | S25 | ochoa | Eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) (eIF4E-binding protein 2) | Repressor of translation initiation involved in synaptic plasticity, learning and memory formation (PubMed:30765518). Regulates EIF4E activity by preventing its assembly into the eIF4F complex: hypophosphorylated form of EIF4EBP2 competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repress translation. In contrast, hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation (PubMed:25533957, PubMed:30765518). EIF4EBP2 is enriched in brain and acts as a regulator of synapse activity and neuronal stem cell renewal via its ability to repress translation initiation (By similarity). Mediates the regulation of protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase and mTORC1 pathways (By similarity). {ECO:0000250|UniProtKB:P70445, ECO:0000269|PubMed:25533957, ECO:0000269|PubMed:30765518}. |
Q13555 | CAMK2G | S280 | ochoa|psp | Calcium/calmodulin-dependent protein kinase type II subunit gamma (CaM kinase II subunit gamma) (CaMK-II subunit gamma) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-coupling factor triadin (PubMed:16690701). In the central nervous system, it is involved in the regulation of neurite formation and arborization (PubMed:30184290). It may participate in the promotion of dendritic spine and synapse formation and maintenance of synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q923T9, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:30184290}. |
Q14154 | DELE1 | S473 | ochoa | DAP3-binding cell death enhancer 1 (DAP3-binding cell death enhancer 1, long form) (DELE1(L)) (Death ligand signal enhancer) [Cleaved into: DAP3-binding cell death enhancer 1 short form (DELE1(S)) (S-DELE1) (cDELE1)] | Protein kinase activator that acts as a key activator of the integrated stress response (ISR) following various stresses, such as iron deficiency, mitochondrial stress or mitochondrial DNA breaks (PubMed:32132706, PubMed:32132707, PubMed:35388015, PubMed:37327776, PubMed:37550454, PubMed:37832546, PubMed:38340717). Detects impaired protein import and processing in mitochondria, activating the ISR (PubMed:35388015). May also required for the induction of death receptor-mediated apoptosis through the regulation of caspase activation (PubMed:20563667). {ECO:0000269|PubMed:20563667, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:35388015, ECO:0000269|PubMed:37327776, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:37832546, ECO:0000269|PubMed:38340717}.; FUNCTION: [DAP3-binding cell death enhancer 1]: Protein kinase activator that activates the ISR in response to iron deficiency: iron deficiency impairs mitochondrial import, promoting DELE1 localization at the mitochondrial surface, where it binds and activates EIF2AK1/HRI to trigger the ISR. {ECO:0000269|PubMed:37327776}.; FUNCTION: [DAP3-binding cell death enhancer 1 short form]: Protein kinase activator generated by protein cleavage in response to mitochondrial stress, which accumulates in the cytosol and specifically binds to and activates the protein kinase activity of EIF2AK1/HRI (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:37832546, PubMed:38340717). It thereby activates the integrated stress response (ISR): EIF2AK1/HRI activation promotes eIF-2-alpha (EIF2S1) phosphorylation, leading to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, the master transcriptional regulator of the ISR (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:37832546). Also acts as an activator of PRKN-independent mitophagy: activates the protein kinase activity of EIF2AK1/HRI in response to mitochondrial damage, promoting eIF-2-alpha (EIF2S1) phosphorylation, leading to mitochondrial localization of EIF2S1 followed by induction of mitophagy (PubMed:38340717). {ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:37327776, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:37832546, ECO:0000269|PubMed:38340717}. |
Q14315 | FLNC | S2146 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S2181 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14524 | SCN5A | S528 | psp | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
Q14527 | HLTF | S381 | ochoa | Helicase-like transcription factor (EC 2.3.2.27) (EC 3.6.4.-) (DNA-binding protein/plasminogen activator inhibitor 1 regulator) (HIP116) (RING finger protein 80) (RING-type E3 ubiquitin transferase HLTF) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 3) (Sucrose nonfermenting protein 2-like 3) | Has both helicase and E3 ubiquitin ligase activities. Possesses intrinsic ATP-dependent nucleosome-remodeling activity; This activity may be required for transcriptional activation or repression of specific target promoters (By similarity). These may include the SERPINE1 and HIV-1 promoters and the SV40 enhancer, to which this protein can bind directly. Plays a role in error-free postreplication repair (PRR) of damaged DNA and maintains genomic stability through acting as a ubiquitin ligase for 'Lys-63'-linked polyubiquitination of chromatin-bound PCNA. {ECO:0000250, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:18316726, ECO:0000269|PubMed:18719106, ECO:0000269|PubMed:7876228, ECO:0000269|PubMed:8672239, ECO:0000269|PubMed:9126292}. |
Q14669 | TRIP12 | S1057 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14684 | RRP1B | S278 | ochoa | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q14684 | RRP1B | S662 | ochoa | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q14690 | PDCD11 | S1357 | ochoa | Protein RRP5 homolog (NF-kappa-B-binding protein) (NFBP) (Programmed cell death protein 11) | Essential for the generation of mature 18S rRNA, specifically necessary for cleavages at sites A0, 1 and 2 of the 47S precursor. Directly interacts with U3 snoRNA. {ECO:0000269|PubMed:17654514}.; FUNCTION: Involved in the biogenesis of rRNA. {ECO:0000250}. |
Q14761 | PTPRCAP | S99 | ochoa|psp | Protein tyrosine phosphatase receptor type C-associated protein (PTPRC-associated protein) (CD45-associated protein) (CD45-AP) (Lymphocyte phosphatase-associated phosphoprotein) | None |
Q14764 | MVP | S585 | ochoa | Major vault protein (MVP) (Lung resistance-related protein) | Required for normal vault structure. Vaults are multi-subunit structures that may act as scaffolds for proteins involved in signal transduction. Vaults may also play a role in nucleo-cytoplasmic transport. Down-regulates IFNG-mediated STAT1 signaling and subsequent activation of JAK. Down-regulates SRC activity and signaling through MAP kinases. {ECO:0000269|PubMed:15133037, ECO:0000269|PubMed:16418217, ECO:0000269|PubMed:16441665}. |
Q15003 | NCAPH | S96 | ochoa | Condensin complex subunit 2 (Barren homolog protein 1) (Chromosome-associated protein H) (hCAP-H) (Non-SMC condensin I complex subunit H) (XCAP-H homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases (PubMed:11136719). Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}. |
Q15022 | SUZ12 | S568 | ochoa | Polycomb protein SUZ12 (Chromatin precipitated E2F target 9 protein) (ChET 9 protein) (Joined to JAZF1 protein) (Suppressor of zeste 12 protein homolog) | Polycomb group (PcG) protein. Component of the PRC2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:15231737, PubMed:15385962, PubMed:16618801, PubMed:17344414, PubMed:18285464, PubMed:28229514, PubMed:29499137, PubMed:31959557). The PRC2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems (PubMed:12351676, PubMed:12435631, PubMed:15099518, PubMed:15225548, PubMed:15385962, PubMed:15684044, PubMed:16431907, PubMed:18086877, PubMed:18285464). Genes repressed by the PRC2 complex include HOXC8, HOXA9, MYT1 and CDKN2A (PubMed:15231737, PubMed:16618801, PubMed:17200670, PubMed:31959557). {ECO:0000269|PubMed:12351676, ECO:0000269|PubMed:12435631, ECO:0000269|PubMed:15099518, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:15684044, ECO:0000269|PubMed:16431907, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:17200670, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18086877, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:28229514, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q15149 | PLEC | S4365 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15276 | RABEP1 | S377 | ochoa | Rab GTPase-binding effector protein 1 (Rabaptin-4) (Rabaptin-5) (Rabaptin-5alpha) (Renal carcinoma antigen NY-REN-17) | Rab effector protein acting as linker between gamma-adaptin, RAB4A and RAB5A. Involved in endocytic membrane fusion and membrane trafficking of recycling endosomes. Involved in KCNH1 channels trafficking to and from the cell membrane (PubMed:22841712). Stimulates RABGEF1 mediated nucleotide exchange on RAB5A. Mediates the traffic of PKD1:PKD2 complex from the endoplasmic reticulum through the Golgi to the cilium (By similarity). {ECO:0000250|UniProtKB:O35551, ECO:0000269|PubMed:10698684, ECO:0000269|PubMed:11452015, ECO:0000269|PubMed:12773381, ECO:0000269|PubMed:22841712, ECO:0000269|PubMed:8521472}. |
Q15334 | LLGL1 | S670 | psp | Lethal(2) giant larvae protein homolog 1 (LLGL) (DLG4) (Hugl-1) (Human homolog to the D-lgl gene protein) | Cortical cytoskeleton protein found in a complex involved in maintaining cell polarity and epithelial integrity. Involved in the regulation of mitotic spindle orientation, proliferation, differentiation and tissue organization of neuroepithelial cells. Involved in axonogenesis through RAB10 activation thereby regulating vesicular membrane trafficking toward the axonal plasma membrane. {ECO:0000269|PubMed:15735678, ECO:0000269|PubMed:16170365}. |
Q15545 | TAF7 | S34 | ochoa | Transcription initiation factor TFIID subunit 7 (RNA polymerase II TBP-associated factor subunit F) (Transcription initiation factor TFIID 55 kDa subunit) (TAF(II)55) (TAFII-55) (TAFII55) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10438527, PubMed:33795473). TAF7 forms a promoter DNA binding subcomplex of TFIID, together with TAF1 and TAF2 (PubMed:33795473). Part of a TFIID complex containing TAF10 (TFIID alpha) and a TFIID complex lacking TAF10 (TFIID beta) (PubMed:10438527). {ECO:0000269|PubMed:10438527, ECO:0000269|PubMed:33795473}. |
Q15699 | ALX1 | S69 | ochoa | ALX homeobox protein 1 (Cartilage homeoprotein 1) (CART-1) | Sequence-specific DNA-binding transcription factor that binds palindromic sequences within promoters and may activate or repress the transcription of a subset of genes (PubMed:8756334, PubMed:9753625). Most probably regulates the expression of genes involved in the development of mesenchyme-derived craniofacial structures. Early on in development, it plays a role in forebrain mesenchyme survival (PubMed:20451171). May also induce epithelial to mesenchymal transition (EMT) through the expression of SNAI1 (PubMed:23288509). {ECO:0000269|PubMed:20451171, ECO:0000269|PubMed:23288509, ECO:0000269|PubMed:8756334, ECO:0000269|PubMed:9753625}. |
Q15788 | NCOA1 | S325 | psp | Nuclear receptor coactivator 1 (NCoA-1) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 74) (bHLHe74) (Protein Hin-2) (RIP160) (Renal carcinoma antigen NY-REN-52) (Steroid receptor coactivator 1) (SRC-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:10449719, ECO:0000269|PubMed:12954634, ECO:0000269|PubMed:7481822, ECO:0000269|PubMed:9223281, ECO:0000269|PubMed:9223431, ECO:0000269|PubMed:9296499, ECO:0000269|PubMed:9427757}. |
Q15911 | ZFHX3 | S571 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q16655 | MLANA | S87 | ochoa | Melanoma antigen recognized by T-cells 1 (MART-1) (Antigen LB39-AA) (Antigen SK29-AA) (Protein Melan-A) | Involved in melanosome biogenesis by ensuring the stability of GPR143. Plays a vital role in the expression, stability, trafficking, and processing of melanocyte protein PMEL, which is critical to the formation of stage II melanosomes. {ECO:0000269|PubMed:15695812, ECO:0000269|PubMed:19717472}. |
Q16873 | LTC4S | S36 | ochoa|psp | Leukotriene C4 synthase (LTC4 synthase) (EC 4.4.1.20) (Glutathione S-transferase LTC4) (EC 2.5.1.-) (Leukotriene-C(4) synthase) (Leukotriene-C4 synthase) | Catalyzes the conjugation of leukotriene A4 with reduced glutathione (GSH) to form leukotriene C4 with high specificity (PubMed:23409838, PubMed:27365393, PubMed:27791009, PubMed:7937884, PubMed:9153254). Can also catalyze the transfer of a glutathionyl group from glutathione (GSH) to 13(S),14(S)-epoxy-docosahexaenoic acid to form maresin conjugate in tissue regeneration 1 (MCTR1), a bioactive lipid mediator that possess potent anti-inflammatory and proresolving actions (PubMed:27791009). {ECO:0000269|PubMed:23409838, ECO:0000269|PubMed:27365393, ECO:0000269|PubMed:27791009, ECO:0000269|PubMed:7937884, ECO:0000269|PubMed:9153254}. |
Q17RH5 | RAPGEF2 | S1164 | psp | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (Neural RAP guanine nucleotide exchange protein) (PDZ domain-containing guanine nucleotide exchange factor 1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | None |
Q29RF7 | PDS5A | S1278 | psp | Sister chromatid cohesion protein PDS5 homolog A (Cell proliferation-inducing gene 54 protein) (Sister chromatid cohesion protein 112) (SCC-112) | Probable regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19907496}. |
Q2LD37 | BLTP1 | S1364 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2M3G4 | SHROOM1 | S224 | ochoa | Protein Shroom1 (Apical protein 2) | May be involved in the assembly of microtubule arrays during cell elongation. {ECO:0000250}. |
Q2TAL8 | QRICH1 | S240 | ochoa | Transcriptional regulator QRICH1 (Glutamine-rich protein 1) | Transcriptional regulator that acts as a mediator of the integrated stress response (ISR) through transcriptional control of protein homeostasis under conditions of ER stress (PubMed:33384352). Controls the outcome of the unfolded protein response (UPR) which is an ER-stress response pathway (PubMed:33384352). ER stress induces QRICH1 translation by a ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced QRICH1 regulates a transcriptional program associated with protein translation, protein secretion-mediated proteotoxicity and cell death during the terminal UPR (PubMed:33384352). May cooperate with ATF4 transcription factor signaling to regulate ER homeostasis which is critical for cell viability (PubMed:33384352). Up-regulates CASP3/caspase-3 activity in epithelial cells under ER stress. Central regulator of proteotoxicity associated with ER stress-mediated inflammatory diseases in the intestines and liver (PubMed:33384352). Involved in chondrocyte hypertrophy, a process required for normal longitudinal bone growth (PubMed:30281152). {ECO:0000269|PubMed:30281152, ECO:0000269|PubMed:33384352}. |
Q52WX2 | SBK1 | S209 | ochoa | Serine/threonine-protein kinase SBK1 (EC 2.7.11.1) (SH3 domain-binding kinase 1) | May be involved in signal-transduction pathways related to the control of brain development. {ECO:0000250}. |
Q58DX5 | NAALADL2 | S104 | ochoa | Inactive N-acetylated-alpha-linked acidic dipeptidase-like protein 2 (NAALADase L2) | May be catalytically inactive. |
Q58EX2 | SDK2 | S2101 | ochoa | Protein sidekick-2 | Adhesion molecule that promotes lamina-specific synaptic connections in the retina and is specifically required for the formation of neuronal circuits that detect motion. Acts by promoting formation of synapses between two specific retinal cell types: the retinal ganglion cells W3B-RGCs and the excitatory amacrine cells VG3-ACs. Formation of synapses between these two cells plays a key role in detection of motion. Promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q6V4S5}. |
Q58EX7 | PLEKHG4 | S685 | ochoa | Puratrophin-1 (Pleckstrin homology domain-containing family G member 4) (PH domain-containing family G member 4) (Purkinje cell atrophy-associated protein 1) | Possible role in intracellular signaling and cytoskeleton dynamics at the Golgi. |
Q5BKZ1 | ZNF326 | S91 | ochoa | DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}. |
Q5BKZ1 | ZNF326 | S130 | ochoa | DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}. |
Q5JTV8 | TOR1AIP1 | S60 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5MNZ9 | WIPI1 | S392 | ochoa | WD repeat domain phosphoinositide-interacting protein 1 (WIPI-1) (Atg18 protein homolog) (WD40 repeat protein interacting with phosphoinositides of 49 kDa) (WIPI 49 kDa) | Component of the autophagy machinery that controls the major intracellular degradation process by which cytoplasmic materials are packaged into autophagosomes and delivered to lysosomes for degradation (PubMed:15602573, PubMed:20114074, PubMed:20484055, PubMed:20639694, PubMed:23088497, PubMed:28561066, PubMed:31271352). Plays an important role in starvation- and calcium-mediated autophagy, as well as in mitophagy (PubMed:28561066). Functions downstream of the ULK1 and PI3-kinases that produce phosphatidylinositol 3-phosphate (PtdIns3P) on membranes of the endoplasmic reticulum once activated (PubMed:28561066). Binds phosphatidylinositol 3-phosphate (PtdIns3P), and maybe other phosphoinositides including PtdIns3,5P2 and PtdIns5P, and is recruited to phagophore assembly sites at the endoplasmic reticulum membranes (PubMed:28561066, PubMed:31271352, PubMed:33499712). There, it assists WIPI2 in the recruitment of ATG12-ATG5-ATG16L1, a complex that directly controls the elongation of the nascent autophagosomal membrane (PubMed:28561066). Together with WDR45/WIPI4, promotes ATG2 (ATG2A or ATG2B)-mediated lipid transfer by enhancing ATG2-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31271352). Involved in xenophagy of Staphylococcus aureus (PubMed:22829830). Invading S.aureus cells become entrapped in autophagosome-like WIPI1 positive vesicles targeted for lysosomal degradation (PubMed:22829830). Also plays a distinct role in controlling the transcription of melanogenic enzymes and melanosome maturation, a process that is distinct from starvation-induced autophagy (PubMed:21317285). May also regulate the trafficking of proteins involved in the mannose-6-phosphate receptor (MPR) recycling pathway (PubMed:15020712). {ECO:0000269|PubMed:15020712, ECO:0000269|PubMed:15602573, ECO:0000269|PubMed:20114074, ECO:0000269|PubMed:20484055, ECO:0000269|PubMed:20639694, ECO:0000269|PubMed:21317285, ECO:0000269|PubMed:22829830, ECO:0000269|PubMed:23088497, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:31271352, ECO:0000269|PubMed:33499712}. |
Q5R3F8 | ELFN2 | S741 | ochoa | Protein phosphatase 1 regulatory subunit 29 (Extracellular leucine-rich repeat and fibronectin type III domain-containing protein 2) (Leucine-rich repeat and fibronectin type-III domain-containing protein 6) (Leucine-rich repeat-containing protein 62) | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. {ECO:0000269|PubMed:19389623}. |
Q5SSJ5 | HP1BP3 | S249 | ochoa | Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) | Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}. |
Q5SW79 | CEP170 | S1362 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T5C0 | STXBP5 | S688 | ochoa | Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) | Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}. |
Q5T7B8 | KIF24 | S957 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5VT52 | RPRD2 | S581 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q676U5 | ATG16L1 | S290 | ochoa | Autophagy-related protein 16-1 (APG16-like 1) | Plays an essential role in both canonical and non-canonical autophagy: interacts with ATG12-ATG5 to mediate the lipidation to ATG8 family proteins (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAPL1, GABARAPL2 and GABARAP) (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576, PubMed:29317426, PubMed:30778222, PubMed:33909989). Acts as a molecular hub, coordinating autophagy pathways via distinct domains that support either canonical or non-canonical signaling (PubMed:29317426, PubMed:30778222). During canonical autophagy, interacts with ATG12-ATG5 to mediate the conjugation of phosphatidylethanolamine (PE) to ATG8 proteins, to produce a membrane-bound activated form of ATG8 (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). Thereby, controls the elongation of the nascent autophagosomal membrane (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). As part of the ATG8 conjugation system with ATG5 and ATG12, required for recruitment of LRRK2 to stressed lysosomes and induction of LRRK2 kinase activity in response to lysosomal stress (By similarity). Also involved in non-canonical autophagy, a parallel pathway involving conjugation of ATG8 proteins to single membranes at endolysosomal compartments, probably by catalyzing conjugation of phosphatidylserine (PS) to ATG8 (PubMed:33909989). Non-canonical autophagy plays a key role in epithelial cells to limit lethal infection by influenza A (IAV) virus (By similarity). Regulates mitochondrial antiviral signaling (MAVS)-dependent type I interferon (IFN-I) production (PubMed:22749352, PubMed:25645662). Negatively regulates NOD1- and NOD2-driven inflammatory cytokine response (PubMed:24238340). Instead, promotes an autophagy-dependent antibacterial pathway together with NOD1 or NOD2 (PubMed:20637199). Plays a role in regulating morphology and function of Paneth cell (PubMed:18849966). {ECO:0000250|UniProtKB:Q8C0J2, ECO:0000269|PubMed:18849966, ECO:0000269|PubMed:20637199, ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:23376921, ECO:0000269|PubMed:23392225, ECO:0000269|PubMed:24238340, ECO:0000269|PubMed:24553140, ECO:0000269|PubMed:24954904, ECO:0000269|PubMed:25645662, ECO:0000269|PubMed:27273576, ECO:0000269|PubMed:29317426, ECO:0000269|PubMed:30778222, ECO:0000269|PubMed:33909989}. |
Q684P5 | RAP1GAP2 | S574 | ochoa | Rap1 GTPase-activating protein 2 (Rap1GAP2) (GTPase-activating Rap/Ran-GAP domain-like protein 4) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15632203}. |
Q68DQ2 | CRYBG3 | S2116 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q6F5E8 | CARMIL2 | S1270 | ochoa | Capping protein, Arp2/3 and myosin-I linker protein 2 (Capping protein regulator and myosin 1 linker 2) (F-actin-uncapping protein RLTPR) (Leucine-rich repeat-containing protein 16C) (RGD, leucine-rich repeat, tropomodulin and proline-rich-containing protein) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization (PubMed:26466680). Plays a role in cell protrusion formations; involved in cell polarity, lamellipodial assembly, membrane ruffling and macropinosome formations (PubMed:19846667, PubMed:26466680, PubMed:26578515). Involved as well in cell migration and invadopodia formation during wound healing (PubMed:19846667, PubMed:26466680, PubMed:26578515). Required for CD28-mediated stimulation of NF-kappa-B signaling, involved in naive T cells activation, maturation into T memory cells, and differentiation into T helper and T regulatory cells (PubMed:27647348, PubMed:27647349, PubMed:28112205). {ECO:0000269|PubMed:19846667, ECO:0000269|PubMed:26466680, ECO:0000269|PubMed:26578515, ECO:0000269|PubMed:27647348, ECO:0000269|PubMed:27647349, ECO:0000269|PubMed:28112205}. |
Q6IBW4 | NCAPH2 | S95 | psp | Condensin-2 complex subunit H2 (Chromosome-associated protein H2) (hCAP-H2) (Kleisin-beta) (Non-SMC condensin II complex subunit H2) | Regulatory subunit of the condensin-2 complex, a complex that seems to provide chromosomes with an additional level of organization and rigidity and in establishing mitotic chromosome architecture (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of chromatin bridges at anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (By similarity). Seems to have lineage-specific role in T-cell development (PubMed:14532007). {ECO:0000250|UniProtKB:Q8BSP2, ECO:0000269|PubMed:14532007}. |
Q6IQ23 | PLEKHA7 | S634 | ochoa | Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) | Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}. |
Q6IQ23 | PLEKHA7 | S983 | ochoa | Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) | Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}. |
Q6ISB3 | GRHL2 | S214 | ochoa | Grainyhead-like protein 2 homolog (Brother of mammalian grainyhead) (Transcription factor CP2-like 3) | Transcription factor playing an important role in primary neurulation and in epithelial development (PubMed:25152456, PubMed:29309642). Binds directly to the consensus DNA sequence 5'-AACCGGTT-3' acting as an activator and repressor on distinct target genes (By similarity). During embryogenesis, plays unique and cooperative roles with GRHL3 in establishing distinct zones of primary neurulation. Essential for closure 3 (rostral end of the forebrain), functions cooperatively with GRHL3 in closure 2 (forebrain/midbrain boundary) and posterior neuropore closure (By similarity). Regulates epithelial morphogenesis acting as a target gene-associated transcriptional activator of apical junctional complex components. Up-regulates of CLDN3 and CLDN4, as well as of RAB25, which increases the CLDN4 protein and its localization at tight junctions (By similarity). Comprises an essential component of the transcriptional machinery that establishes appropriate expression levels of CLDN4 and CDH1 in different types of epithelia. Exhibits functional redundancy with GRHL3 in epidermal morphogenetic events and epidermal wound repair (By similarity). In lung, forms a regulatory loop with NKX2-1 that coordinates lung epithelial cell morphogenesis and differentiation (By similarity). In keratinocytes, plays a role in telomerase activation during cellular proliferation, regulates TERT expression by binding to TERT promoter region and inhibiting DNA methylation at the 5'-CpG island, possibly by interfering with DNMT1 enzyme activity (PubMed:19015635, PubMed:20938050). In addition, impairs keratinocyte differentiation and epidermal function by inhibiting the expression of genes clustered at the epidermal differentiation complex (EDC) as well as GRHL1 and GRHL3 through epigenetic mechanisms (PubMed:23254293). {ECO:0000250|UniProtKB:Q8K5C0, ECO:0000269|PubMed:19015635, ECO:0000269|PubMed:20938050, ECO:0000269|PubMed:20978075, ECO:0000269|PubMed:23254293, ECO:0000269|PubMed:25152456, ECO:0000269|PubMed:29309642, ECO:0000305|PubMed:12175488}. |
Q6NUJ5 | PWWP2B | S476 | ochoa | PWWP domain-containing protein 2B | Chromatin-binding protein that acts as an adapter between distinct nucleosome components (H3K36me3 or H2A.Z) and chromatin-modifying complexes, contributing to the regulation of the levels of histone acetylation at actively transcribed genes (PubMed:30228260). Competes with CHD4 and MBD3 for interaction with MTA1 to form a NuRD subcomplex, preventing the formation of full NuRD complex (containing CHD4 and MBD3), leading to recruitment of HDACs to gene promoters resulting in turn in the deacetylation of nearby H3K27 and H2A.Z (PubMed:30228260). Plays a role in facilitating transcriptional elongation through regulation of histone acetylation (By similarity). Negatively regulates brown adipocyte thermogenesis by interacting with and stabilizing HDAC1 at the UCP1 gene promoter, thereby promoting histone deacetylation at the promoter leading to the repression of UCP1 expression (By similarity). {ECO:0000250|UniProtKB:Q69Z61, ECO:0000269|PubMed:30228260}. |
Q6P4F7 | ARHGAP11A | S937 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6PIJ6 | FBXO38 | S792 | ochoa | F-box only protein 38 | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of PDCD1/PD-1, thereby regulating T-cells-mediated immunity (PubMed:30487606). Required for anti-tumor activity of T-cells by promoting the degradation of PDCD1/PD-1; the PDCD1-mediated inhibitory pathway being exploited by tumors to attenuate anti-tumor immunity and facilitate tumor survival (PubMed:30487606). May indirectly stimulate the activity of transcription factor KLF7, a regulator of neuronal differentiation, without promoting KLF7 ubiquitination (By similarity). {ECO:0000250|UniProtKB:Q8BMI0, ECO:0000269|PubMed:30487606}. |
Q6PJF5 | RHBDF2 | S102 | ochoa | Inactive rhomboid protein 2 (iRhom2) (Rhomboid 5 homolog 2) (Rhomboid family member 2) (Rhomboid veinlet-like protein 5) (Rhomboid veinlet-like protein 6) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000250|UniProtKB:Q80WQ6}. |
Q6PJF5 | RHBDF2 | S239 | ochoa | Inactive rhomboid protein 2 (iRhom2) (Rhomboid 5 homolog 2) (Rhomboid family member 2) (Rhomboid veinlet-like protein 5) (Rhomboid veinlet-like protein 6) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000250|UniProtKB:Q80WQ6}. |
Q6PJT7 | ZC3H14 | S132 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6UXT9 | ABHD15 | S429 | ochoa | Protein ABHD15 (Alpha/beta hydrolase domain-containing protein 15) (Abhydrolase domain-containing protein 15) | May regulate adipocyte lipolysis and liver lipid accumulation. {ECO:0000250|UniProtKB:Q5F2F2}. |
Q6ZNE5 | ATG14 | S29 | ochoa|psp | Beclin 1-associated autophagy-related key regulator (Barkor) (Autophagy-related protein 14-like protein) (Atg14L) | Required for both basal and inducible autophagy. Determines the localization of the autophagy-specific PI3-kinase complex PI3KC3-C1 (PubMed:18843052, PubMed:19050071). Plays a role in autophagosome formation and MAP1LC3/LC3 conjugation to phosphatidylethanolamine (PubMed:19270696, PubMed:20713597). Promotes BECN1 translocation from the trans-Golgi network to autophagosomes (PubMed:20713597). Enhances PIK3C3 activity in a BECN1-dependent manner. Essential for the autophagy-dependent phosphorylation of BECN1 (PubMed:23878393). Stimulates the phosphorylation of BECN1, but suppresses the phosphorylation PIK3C3 by AMPK (PubMed:23878393). Binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion (PubMed:25686604, PubMed:37632749). Modulates the hepatic lipid metabolism (By similarity). {ECO:0000250|UniProtKB:Q8CDJ3, ECO:0000269|PubMed:18843052, ECO:0000269|PubMed:19050071, ECO:0000269|PubMed:19270696, ECO:0000269|PubMed:20713597, ECO:0000269|PubMed:23878393, ECO:0000269|PubMed:25686604, ECO:0000269|PubMed:37632749}. |
Q6ZNJ1 | NBEAL2 | S1831 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZNJ1 | NBEAL2 | S2143 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZRS2 | SRCAP | S3211 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q7Z2W4 | ZC3HAV1 | S312 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z3G6 | PRICKLE2 | S546 | ochoa | Prickle-like protein 2 | None |
Q7Z6B7 | SRGAP1 | S865 | ochoa | SLIT-ROBO Rho GTPase-activating protein 1 (srGAP1) (Rho GTPase-activating protein 13) | GTPase-activating protein for RhoA and Cdc42 small GTPases. Together with CDC42 seems to be involved in the pathway mediating the repulsive signaling of Robo and Slit proteins in neuronal migration. SLIT2, probably through interaction with ROBO1, increases the interaction of SRGAP1 with ROBO1 and inactivates CDC42. {ECO:0000269|PubMed:11672528}. |
Q7Z6R9 | TFAP2D | S222 | ochoa | Transcription factor AP-2-delta (AP2-delta) (Activating enhancer-binding protein 2-delta) (Transcription factor AP-2-beta-like 1) | Sequence-specific DNA-binding protein that interacts with inducible viral and cellular enhancer elements to regulate transcription of selected genes. AP-2 factors bind to the consensus sequence 5'-GCCNNNGGC-3' and activate genes involved in a large spectrum of important biological functions including proper eye, face, body wall, limb and neural tube development. They also suppress a number of genes including MCAM/MUC18, C/EBP alpha and MYC (By similarity). {ECO:0000250}. |
Q86SG6 | NEK8 | S280 | ochoa | Serine/threonine-protein kinase Nek8 (EC 2.7.11.1) (Never in mitosis A-related kinase 8) (NimA-related protein kinase 8) (Nima-related protein kinase 12a) | Required for renal tubular integrity. May regulate local cytoskeletal structure in kidney tubule epithelial cells. May regulate ciliary biogenesis through targeting of proteins to the cilia (PubMed:37598857). Plays a role in organogenesis, and is involved in the regulation of the Hippo signaling pathway (PubMed:26967905). {ECO:0000269|PubMed:23418306, ECO:0000269|PubMed:26967905, ECO:0000269|PubMed:37598857}. |
Q86TI0 | TBC1D1 | S507 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86U44 | METTL3 | S30 | ochoa|psp | N(6)-adenosine-methyltransferase catalytic subunit METTL3 (EC 2.1.1.348) (Methyltransferase-like protein 3) (hMETTL3) (N(6)-adenosine-methyltransferase 70 kDa subunit) (MT-A70) | The METTL3-METTL14 heterodimer forms a N6-methyltransferase complex that methylates adenosine residues at the N(6) position of some RNAs and regulates various processes such as the circadian clock, differentiation of embryonic and hematopoietic stem cells, cortical neurogenesis, response to DNA damage, differentiation of T-cells and primary miRNA processing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:27281194, PubMed:27373337, PubMed:27627798, PubMed:28297716, PubMed:29348140, PubMed:29506078, PubMed:30428350, PubMed:9409616). In the heterodimer formed with METTL14, METTL3 constitutes the catalytic core (PubMed:27281194, PubMed:27373337, PubMed:27627798). N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in mRNA stability, processing, translation efficiency and editing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:28297716, PubMed:9409616). M6A acts as a key regulator of mRNA stability: methylation is completed upon the release of mRNA into the nucleoplasm and promotes mRNA destabilization and degradation (PubMed:28637692). In embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A regulates the length of the circadian clock: acts as an early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also regulates circadian regulation of hepatic lipid metabolism (PubMed:30428350). M6A regulates spermatogonial differentiation and meiosis and is essential for male fertility and spermatogenesis (By similarity). Also required for oogenesis (By similarity). Involved in the response to DNA damage: in response to ultraviolet irradiation, METTL3 rapidly catalyzes the formation of m6A on poly(A) transcripts at DNA damage sites, leading to the recruitment of POLK to DNA damage sites (PubMed:28297716). M6A is also required for T-cell homeostasis and differentiation: m6A methylation of transcripts of SOCS family members (SOCS1, SOCS3 and CISH) in naive T-cells promotes mRNA destabilization and degradation, promoting T-cell differentiation (By similarity). Inhibits the type I interferon response by mediating m6A methylation of IFNB (PubMed:30559377). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates m6A methylation of Xist RNA, thereby participating in random X inactivation: m6A methylation of Xist leads to target YTHDC1 reader on Xist and promote transcription repression activity of Xist (PubMed:27602518). M6A also regulates cortical neurogenesis: m6A methylation of transcripts related to transcription factors, neural stem cells, the cell cycle and neuronal differentiation during brain development promotes their destabilization and decay, promoting differentiation of radial glial cells (By similarity). METTL3 mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998). Acts as a positive regulator of mRNA translation independently of the methyltransferase activity: promotes translation by interacting with the translation initiation machinery in the cytoplasm (PubMed:27117702). Its overexpression in a number of cancer cells suggests that it may participate in cancer cell proliferation by promoting mRNA translation (PubMed:27117702). During human coronavirus SARS-CoV-2 infection, adds m6A modifications in SARS-CoV-2 RNA leading to decreased RIGI binding and subsequently dampening the sensing and activation of innate immune responses (PubMed:33961823). {ECO:0000250|UniProtKB:Q8C3P7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26321680, ECO:0000269|PubMed:26593424, ECO:0000269|PubMed:27117702, ECO:0000269|PubMed:27281194, ECO:0000269|PubMed:27373337, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:27627798, ECO:0000269|PubMed:28297716, ECO:0000269|PubMed:28637692, ECO:0000269|PubMed:29348140, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:33961823, ECO:0000269|PubMed:9409616}. |
Q86V48 | LUZP1 | S531 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86V48 | LUZP1 | S932 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86WP2 | GPBP1 | S50 | ochoa | Vasculin (GC-rich promoter-binding protein 1) (Vascular wall-linked protein) | Functions as a GC-rich promoter-specific transactivating transcription factor. {ECO:0000250|UniProtKB:Q6NXH3}. |
Q86YN6 | PPARGC1B | S381 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) | Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}. |
Q86YR5 | GPSM1 | S413 | ochoa | G-protein-signaling modulator 1 (Activator of G-protein signaling 3) | Guanine nucleotide dissociation inhibitor (GDI) which functions as a receptor-independent activator of heterotrimeric G-protein signaling. Keeps G(i/o) alpha subunit in its GDP-bound form thus uncoupling heterotrimeric G-proteins signaling from G protein-coupled receptors. Controls spindle orientation and asymmetric cell fate of cerebral cortical progenitors. May also be involved in macroautophagy in intestinal cells. May play a role in drug addiction. {ECO:0000269|PubMed:11024022, ECO:0000269|PubMed:12642577}. |
Q8IU60 | DCP2 | S246 | ochoa | m7GpppN-mRNA hydrolase (EC 3.6.1.62) (Nucleoside diphosphate-linked moiety X motif 20) (Nudix motif 20) (mRNA-decapping enzyme 2) (hDpc) | Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs (PubMed:12218187, PubMed:12417715, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12486012, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:14527413). Plays a role in replication-dependent histone mRNA degradation (PubMed:18172165). Has higher activity towards mRNAs that lack a poly(A) tail (PubMed:21070968). Has no activity towards a cap structure lacking an RNA moiety (PubMed:21070968). The presence of a N(6)-methyladenosine methylation at the second transcribed position of mRNAs (N(6),2'-O-dimethyladenosine cap; m6A(m)) provides resistance to DCP2-mediated decapping (PubMed:28002401). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts (PubMed:26098573). {ECO:0000269|PubMed:12218187, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:12486012, ECO:0000269|PubMed:12923261, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21070968, ECO:0000269|PubMed:26098573, ECO:0000269|PubMed:28002401}. |
Q8IWP9 | CCDC28A | S103 | ochoa | Coiled-coil domain-containing protein 28A (CCRL1AP) | None |
Q8IXT5 | RBM12B | S387 | ochoa | RNA-binding protein 12B (RNA-binding motif protein 12B) | None |
Q8N137 | CNTROB | S135 | ochoa | Centrobin (Centrosomal BRCA2-interacting protein) (LYST-interacting protein 8) | Required for centriole duplication. Inhibition of centriole duplication leading to defects in cytokinesis. {ECO:0000269|PubMed:16275750}. |
Q8N3A8 | PARP8 | S343 | ochoa | Protein mono-ADP-ribosyltransferase PARP8 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 16) (ARTD16) (Poly [ADP-ribose] polymerase 8) (PARP-8) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}. |
Q8N587 | ZNF561 | S92 | ochoa | Zinc finger protein 561 | May be involved in transcriptional regulation. |
Q8N699 | MYCT1 | S138 | ochoa | Myc target protein 1 (Myc target in myeloid cells protein 1) | May regulate certain MYC target genes, MYC seems to be a direct upstream transcriptional activator. Does not seem to significantly affect growth cell capacity. Overexpression seems to mediate many of the known phenotypic features associated with MYC, including promotion of apoptosis, alteration of morphology, enhancement of anchorage-independent growth, tumorigenic conversion, promotion of genomic instability, and inhibition of hematopoietic differentiation (By similarity). {ECO:0000250}. |
Q8N7C4 | TMEM217 | S183 | ochoa | Transmembrane protein 217 | None |
Q8N8Z6 | DCBLD1 | S616 | ochoa|psp | Discoidin, CUB and LCCL domain-containing protein 1 | None |
Q8ND76 | CCNY | S83 | ochoa|psp | Cyclin-Y (Cyc-Y) (Cyclin box protein 1) (Cyclin fold protein 1) (cyclin-X) | Positive regulatory subunit of the cyclin-dependent kinases CDK14/PFTK1 and CDK16. Acts as a cell-cycle regulator of Wnt signaling pathway during G2/M phase by recruiting CDK14/PFTK1 to the plasma membrane and promoting phosphorylation of LRP6, leading to the activation of the Wnt signaling pathway. Recruits CDK16 to the plasma membrane. Isoform 3 might play a role in the activation of MYC-mediated transcription. {ECO:0000269|PubMed:18060517, ECO:0000269|PubMed:19524571, ECO:0000269|PubMed:20059949, ECO:0000269|PubMed:22184064}. |
Q8NEV8 | EXPH5 | S1823 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NF91 | SYNE1 | S8277 | ochoa | Nesprin-1 (Enaptin) (KASH domain-containing protein 1) (KASH1) (Myocyte nuclear envelope protein 1) (Myne-1) (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope protein 1) (Syne-1) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. May be involved in nucleus-centrosome attachment and nuclear migration in neural progenitors implicating LINC complex association with SUN1/2 and probably association with cytoplasmic dynein-dynactin motor complexes; SYNE1 and SYNE2 may act redundantly. Required for centrosome migration to the apical cell surface during early ciliogenesis. May be involved in nuclear remodeling during sperm head formation in spermatogenesis; a probable SUN3:SYNE1/KASH1 LINC complex may tether spermatid nuclei to posterior cytoskeletal structures such as the manchette. {ECO:0000250|UniProtKB:Q6ZWR6, ECO:0000269|PubMed:11792814, ECO:0000269|PubMed:18396275}. |
Q8NFA2 | NOXO1 | S162 | ochoa | NADPH oxidase organizer 1 (NADPH oxidase regulatory protein) (Nox organizer 1) (Nox-organizing protein 1) (SH3 and PX domain-containing protein 5) | Constitutively potentiates the superoxide-generating activity of NOX1 and NOX3 and is required for the biogenesis of otoconia/otolith, which are crystalline structures of the inner ear involved in the perception of gravity. Isoform 3 is more potent than isoform 1 in activating NOX3. Together with NOXA1, may also substitute to NCF1/p47phox and NCF2/p67phox in supporting the phagocyte NOX2/gp91phox superoxide-generating activity. {ECO:0000269|PubMed:12657628, ECO:0000269|PubMed:14617635, ECO:0000269|PubMed:15326186, ECO:0000269|PubMed:15824103, ECO:0000269|PubMed:15949904, ECO:0000269|PubMed:16329988, ECO:0000269|PubMed:17126813, ECO:0000269|PubMed:19755710}. |
Q8TAA9 | VANGL1 | S45 | ochoa | Vang-like protein 1 (Loop-tail protein 2 homolog) (LPP2) (Strabismus 2) (Van Gogh-like protein 1) | None |
Q8TAP9 | MPLKIP | S133 | ochoa | M-phase-specific PLK1-interacting protein (TTD non-photosensitive 1 protein) | May play a role in maintenance of cell cycle integrity by regulating mitosis or cytokinesis. {ECO:0000269|PubMed:17310276}. |
Q8TB61 | SLC35B2 | S137 | ochoa | Adenosine 3'-phospho 5'-phosphosulfate transporter 1 (PAPS transporter 1) (Putative MAPK-activating protein PM15) (Putative NF-kappa-B-activating protein 48) (Solute carrier family 35 member B2) | Probably functions as a 3'-phosphoadenylyl sulfate:adenosine 3',5'-bisphosphate antiporter at the Golgi membranes. Mediates the transport from the cytosol into the lumen of the Golgi of 3'-phosphoadenylyl sulfate/adenosine 3'-phospho 5'-phosphosulfate (PAPS), a universal sulfuryl donor for sulfation events that take place in that compartment. {ECO:0000269|PubMed:12716889}. |
Q8TC07 | TBC1D15 | S267 | ochoa | TBC1 domain family member 15 (GTPase-activating protein RAB7) (GAP for RAB7) (Rab7-GAP) | Acts as a GTPase activating protein for RAB7A. Does not act on RAB4, RAB5 or RAB6 (By similarity). {ECO:0000250}. |
Q8TCG5 | CPT1C | S775 | ochoa | Palmitoyl thioesterase CPT1C (EC 3.1.2.22) (Carnitine O-palmitoyltransferase 1, brain isoform) (CPTI-B) (Carnitine palmitoyltransferase 1C) (Carnitine palmitoyltransferase I) (CPT I-C) | Palmitoyl thioesterase specifically expressed in the endoplasmic reticulum of neurons. Modulates the trafficking of the glutamate receptor, AMPAR, to plasma membrane through depalmitoylation of GRIA1 (PubMed:30135643). Also regulates AMPR trafficking through the regulation of SACM1L phosphatidylinositol-3-phosphatase activity by interaction in a malonyl-CoA dependent manner (By similarity). Binds malonyl-CoA and couples malonyl-CoA to ceramide levels, necessary for proper spine maturation and contributing to systemic energy homeostasis and appetite control (PubMed:16651524). Binds to palmitoyl-CoA, but does not have carnitine palmitoyltransferase 1 catalytic activity or at very low levels (PubMed:25751282, PubMed:30135643). {ECO:0000250|UniProtKB:Q8BGD5, ECO:0000269|PubMed:16651524, ECO:0000269|PubMed:25751282, ECO:0000269|PubMed:30135643}. |
Q8TCU6 | PREX1 | S1182 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein (P-Rex1) (PtdIns(3,4,5)-dependent Rac exchanger 1) | Functions as a RAC guanine nucleotide exchange factor (GEF), which activates the Rac proteins by exchanging bound GDP for free GTP. Its activity is synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and the beta gamma subunits of heterotrimeric G protein. May function downstream of heterotrimeric G proteins in neutrophils. |
Q8TDM6 | DLG5 | S1668 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TEA8 | DTD1 | S179 | psp | D-aminoacyl-tRNA deacylase 1 (DTD) (EC 3.1.1.96) (DNA-unwinding element-binding protein B) (DUE-B) (Gly-tRNA(Ala) deacylase) (Histidyl-tRNA synthase-related) | Possible ATPase (PubMed:15653697) involved in DNA replication, may facilitate loading of CDC45 onto pre-replication complexes (PubMed:20065034). {ECO:0000269|PubMed:15653697, ECO:0000269|PubMed:20065034}.; FUNCTION: An aminoacyl-tRNA editing enzyme that deacylates mischarged D-aminoacyl-tRNAs. Also deacylates mischarged glycyl-tRNA(Ala), protecting cells against glycine mischarging by AlaRS. Acts via tRNA-based rather than protein-based catalysis; rejects L-amino acids rather than detecting D-amino acids in the active site. By recycling D-aminoacyl-tRNA to D-amino acids and free tRNA molecules, this enzyme counteracts the toxicity associated with the formation of D-aminoacyl-tRNA entities in vivo and helps enforce protein L-homochirality. {ECO:0000250|UniProtKB:Q8IIS0}. |
Q8TEW0 | PARD3 | S924 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TEW8 | PARD3B | S780 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TF42 | UBASH3B | S20 | ochoa | Ubiquitin-associated and SH3 domain-containing protein B (EC 3.1.3.48) (Cbl-interacting protein p70) (Suppressor of T-cell receptor signaling 1) (STS-1) (T-cell ubiquitin ligand 2) (TULA-2) (Tyrosine-protein phosphatase STS1/TULA2) | Interferes with CBL-mediated down-regulation and degradation of receptor-type tyrosine kinases. Promotes accumulation of activated target receptors, such as T-cell receptors and EGFR, on the cell surface. Exhibits tyrosine phosphatase activity toward several substrates including EGFR, FAK, SYK, and ZAP70. Down-regulates proteins that are dually modified by both protein tyrosine phosphorylation and ubiquitination. {ECO:0000269|PubMed:15159412, ECO:0000269|PubMed:17880946}. |
Q8TF72 | SHROOM3 | S927 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8TF76 | HASPIN | S188 | psp | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8TF76 | HASPIN | S243 | psp | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8WUF5 | PPP1R13L | S335 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WUI4 | HDAC7 | S464 | ochoa | Histone deacetylase 7 (HD7) (EC 3.5.1.98) (Histone deacetylase 7A) (HD7a) (Protein deacetylase HDAC7) (EC 3.5.1.-) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (By similarity). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (By similarity). Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Involved in muscle maturation by repressing transcription of myocyte enhancer factors such as MEF2A, MEF2B and MEF2C (By similarity). During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors (By similarity). May be involved in Epstein-Barr virus (EBV) latency, possibly by repressing the viral BZLF1 gene (PubMed:12239305). Positively regulates the transcriptional repressor activity of FOXP3 (PubMed:17360565). Serves as a corepressor of RARA, causing its deacetylation and inhibition of RARE DNA element binding (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). Also acetylates non-histone proteins, such as ALKBH5 (PubMed:37369679). {ECO:0000250|UniProtKB:Q8C2B3, ECO:0000269|PubMed:12239305, ECO:0000269|PubMed:17360565, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:37369679}. |
Q8WWI1 | LMO7 | S1400 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWW8 | GAB3 | S346 | ochoa | GRB2-associated-binding protein 3 (GRB2-associated binder 3) (Growth factor receptor bound protein 2-associated protein 3) | None |
Q8WWW8 | GAB3 | S371 | ochoa | GRB2-associated-binding protein 3 (GRB2-associated binder 3) (Growth factor receptor bound protein 2-associated protein 3) | None |
Q8WYR1 | PIK3R5 | S507 | ochoa | Phosphoinositide 3-kinase regulatory subunit 5 (PI3-kinase regulatory subunit 5) (PI3-kinase p101 subunit) (Phosphatidylinositol 4,5-bisphosphate 3-kinase regulatory subunit) (PtdIns-3-kinase regulatory subunit) (Protein FOAP-2) (PtdIns-3-kinase p101) (p101-PI3K) | Regulatory subunit of the PI3K gamma complex. Required for recruitment of the catalytic subunit to the plasma membrane via interaction with beta-gamma G protein dimers. Required for G protein-mediated activation of PIK3CG (By similarity). {ECO:0000250}. |
Q92575 | UBXN4 | S330 | ochoa | UBX domain-containing protein 4 (Erasin) (UBX domain-containing protein 2) | Involved in endoplasmic reticulum-associated protein degradation (ERAD). Acts as a platform to recruit both UBQLN1 and VCP to the ER during ERAD (PubMed:19822669). {ECO:0000269|PubMed:16968747, ECO:0000269|PubMed:19822669}. |
Q92616 | GCN1 | S2490 | ochoa | Stalled ribosome sensor GCN1 (GCN1 eIF-2-alpha kinase activator homolog) (GCN1-like protein 1) (General control of amino-acid synthesis 1-like protein 1) (Translational activator GCN1) (HsGCN1) | Ribosome collision sensor that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:32610081, PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Directly binds to the ribosome and acts as a sentinel for colliding ribosomes: activated following ribosome stalling and promotes recruitment of RNF14, which directly ubiquitinates EEF1A1/eEF1A, leading to its degradation (PubMed:36638793, PubMed:37951215, PubMed:37951216). In addition to EEF1A1/eEF1A, the RNF14-RNF25 translation quality control pathway mediates degradation of ETF1/eRF1 and ubiquitination of ribosomal protein (PubMed:36638793, PubMed:37651229). GCN1 also acts as a positive activator of the integrated stress response (ISR) by mediating activation of EIF2AK4/GCN2 in response to amino acid starvation (By similarity). Interaction with EIF2AK4/GCN2 on translating ribosomes stimulates EIF2AK4/GCN2 kinase activity, leading to phosphorylation of eukaryotic translation initiation factor 2 (eIF-2-alpha/EIF2S1) (By similarity). EIF2S1/eIF-2-alpha phosphorylation converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (By similarity). {ECO:0000250|UniProtKB:E9PVA8, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951215, ECO:0000269|PubMed:37951216}. |
Q92620 | DHX38 | S119 | ochoa | Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 (EC 3.6.4.13) (ATP-dependent RNA helicase DHX38) (DEAH box protein 38) | Probable ATP-binding RNA helicase (Probable). Involved in pre-mRNA splicing as component of the spliceosome (PubMed:29301961, PubMed:9524131). {ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:9524131, ECO:0000305}. |
Q92734 | TFG | S100 | ochoa | Protein TFG (TRK-fused gene protein) | Plays a role in the normal dynamic function of the endoplasmic reticulum (ER) and its associated microtubules (PubMed:23479643, PubMed:27813252). Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:21478858). {ECO:0000269|PubMed:21478858, ECO:0000269|PubMed:23479643, ECO:0000269|PubMed:27813252}. |
Q96C57 | CUSTOS | S128 | ochoa | Protein CUSTOS | Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}. |
Q96CC6 | RHBDF1 | S240 | ochoa | Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}. |
Q96CC6 | RHBDF1 | S346 | ochoa | Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}. |
Q96F46 | IL17RA | S554 | ochoa|psp | Interleukin-17 receptor A (IL-17 receptor A) (IL-17RA) (CDw217) (CD antigen CD217) | Receptor for IL17A and IL17F, major effector cytokines of innate and adaptive immune system involved in antimicrobial host defense and maintenance of tissue integrity. Receptor for IL17A (PubMed:17911633, PubMed:9367539). Receptor for IL17F (PubMed:17911633, PubMed:19838198). Binds to IL17A with higher affinity than to IL17F (PubMed:17911633). Binds IL17A and IL17F homodimers as part of a heterodimeric complex with IL17RC (PubMed:16785495). Also binds heterodimers formed by IL17A and IL17F as part of a heterodimeric complex with IL17RC (PubMed:18684971). Cytokine binding triggers homotypic interaction of IL17RA and IL17RC chains with TRAF3IP2 adapter, leading to TRAF6-mediated activation of NF-kappa-B and MAPkinase pathways, ultimately resulting in transcriptional activation of cytokines, chemokines, antimicrobial peptides and matrix metalloproteinases, with potential strong immune inflammation (PubMed:16785495, PubMed:17911633, PubMed:18684971, PubMed:21350122, PubMed:24120361). Involved in antimicrobial host defense primarily promoting neutrophil activation and recruitment at infection sites to destroy extracellular bacteria and fungi (By similarity). In secondary lymphoid organs, contributes to germinal center formation by regulating the chemotactic response of B cells to CXCL12 and CXCL13, enhancing retention of B cells within the germinal centers, B cell somatic hypermutation rate and selection toward plasma cells (By similarity). Plays a role in the maintenance of the integrity of epithelial barriers during homeostasis and pathogen infection. Stimulates the production of antimicrobial beta-defensins DEFB1, DEFB103A, and DEFB104A by mucosal epithelial cells, limiting the entry of microbes through the epithelial barriers (By similarity). Involved in antiviral host defense through various mechanisms. Enhances immunity against West Nile virus by promoting T cell cytotoxicity. Contributes to Influenza virus clearance by driving the differentiation of B-1a B cells, providing for production of virus-specific IgM antibodies at first line of host defense (By similarity). Receptor for IL17C as part of a heterodimeric complex with IL17RE (PubMed:21993848). {ECO:0000250|UniProtKB:Q60943, ECO:0000269|PubMed:16785495, ECO:0000269|PubMed:17911633, ECO:0000269|PubMed:18684971, ECO:0000269|PubMed:19838198, ECO:0000269|PubMed:21350122, ECO:0000269|PubMed:21993848, ECO:0000269|PubMed:24120361, ECO:0000269|PubMed:9367539}.; FUNCTION: (Microbial infection) Receptor for SARS coronavirus-2/SARS-CoV-2 virus protein ORF8, leading to IL17 pathway activation and an increased secretion of pro-inflammatory factors through activating NF-kappa-B signaling pathway. {ECO:0000269|PubMed:33723527}. |
Q96F86 | EDC3 | S233 | ochoa | Enhancer of mRNA-decapping protein 3 (LSM16 homolog) (YjeF N-terminal domain-containing protein 2) (YjeF_N2) (hYjeF_N2) (YjeF domain-containing protein 1) | Binds single-stranded RNA. Involved in the process of mRNA degradation and in the positive regulation of mRNA decapping. May play a role in spermiogenesis and oogenesis. {ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:17533573, ECO:0000269|PubMed:18678652, ECO:0000269|PubMed:25701870}. |
Q96G27 | WBP1 | S212 | ochoa | WW domain-binding protein 1 (WBP-1) | None |
Q96GA3 | LTV1 | S244 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}. |
Q96HA7 | TONSL | S863 | ochoa | Tonsoku-like protein (Inhibitor of kappa B-related protein) (I-kappa-B-related protein) (IkappaBR) (NF-kappa-B inhibitor-like protein 2) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 2) | Component of the MMS22L-TONSL complex, a complex that promotes homologous recombination-mediated repair of double-strand breaks (DSBs) at stalled or collapsed replication forks (PubMed:21055983, PubMed:21055984, PubMed:21055985, PubMed:21113133, PubMed:26527279, PubMed:27338793, PubMed:27797818, PubMed:29478807, PubMed:30773278). The MMS22L-TONSL complex is required to maintain genome integrity during DNA replication (PubMed:21055983, PubMed:21055984, PubMed:21055985). It mediates the assembly of RAD51 filaments on single-stranded DNA (ssDNA): the MMS22L-TONSL complex is recruited to DSBs following histone replacement by histone chaperones and eviction of the replication protein A complex (RPA/RP-A) from DSBs (PubMed:21055983, PubMed:21055984, PubMed:21055985, PubMed:27797818, PubMed:29478807). Following recruitment to DSBs, the TONSL-MMS22L complex promotes recruitment of RAD51 filaments and subsequent homologous recombination (PubMed:27797818, PubMed:29478807). Within the complex, TONSL acts as a histone reader, which recognizes and binds newly synthesized histones following their replacement by histone chaperones (PubMed:27338793, PubMed:29478807). Specifically binds histone H4 lacking methylation at 'Lys-20' (H4K20me0) and histone H3.1 (PubMed:27338793). {ECO:0000269|PubMed:21055983, ECO:0000269|PubMed:21055984, ECO:0000269|PubMed:21055985, ECO:0000269|PubMed:21113133, ECO:0000269|PubMed:26527279, ECO:0000269|PubMed:27338793, ECO:0000269|PubMed:27797818, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30773278}. |
Q96HB5 | CCDC120 | S331 | ochoa | Coiled-coil domain-containing protein 120 | Centriolar protein required for centriole subdistal appendage assembly and microtubule anchoring in interphase cells (PubMed:28422092). Together with CCDC68, cooperate with subdistal appendage components ODF2, NIN and CEP170 for hierarchical subdistal appendage assembly (PubMed:28422092). Recruits NIN and CEP170 to centrosomes (PubMed:28422092). Also required for neurite growth. Localizes CYTH2 to vesicles to allow its transport along neurites, and subsequent ARF6 activation and neurite growth. {ECO:0000269|PubMed:25326380}. |
Q96HW7 | INTS4 | S597 | ochoa | Integrator complex subunit 4 (Int4) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:29471365, PubMed:33243860, PubMed:33548203, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860, PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Within the integrator complex, INTS4 acts as an scaffold that links INTS9 and INTS11 (PubMed:29471365, PubMed:33548203). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:29471365, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:33548203, ECO:0000269|PubMed:38570683}. |
Q96IF1 | AJUBA | S79 | ochoa | LIM domain-containing protein ajuba | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, mitosis, cell-cell adhesion, cell differentiation, proliferation and migration. Contributes to the linking and/or strengthening of epithelia cell-cell junctions in part by linking adhesive receptors to the actin cytoskeleton. May be involved in signal transduction from cell adhesion sites to the nucleus. Plays an important role in regulation of the kinase activity of AURKA for mitotic commitment. Also a component of the IL-1 signaling pathway modulating IL-1-induced NFKB1 activation by influencing the assembly and activity of the PRKCZ-SQSTM1-TRAF6 multiprotein signaling complex. Functions as an HDAC-dependent corepressor for a subset of GFI1 target genes. Acts as a transcriptional corepressor for SNAI1 and SNAI2/SLUG-dependent repression of E-cadherin transcription. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Positively regulates microRNA (miRNA)-mediated gene silencing. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. {ECO:0000269|PubMed:12417594, ECO:0000269|PubMed:13678582, ECO:0000269|PubMed:15870274, ECO:0000269|PubMed:16413547, ECO:0000269|PubMed:17909014, ECO:0000269|PubMed:18805794, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:22286099}. |
Q96IZ0 | PAWR | S162 | ochoa | PRKC apoptosis WT1 regulator protein (Prostate apoptosis response 4 protein) (Par-4) | Pro-apoptotic protein capable of selectively inducing apoptosis in cancer cells, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. Induces apoptosis in certain cancer cells by activation of the Fas prodeath pathway and coparallel inhibition of NF-kappa-B transcriptional activity. Inhibits the transcriptional activation and augments the transcriptional repression mediated by WT1. Down-regulates the anti-apoptotic protein BCL2 via its interaction with WT1. Also seems to be a transcriptional repressor by itself. May be directly involved in regulating the amyloid precursor protein (APP) cleavage activity of BACE1. {ECO:0000269|PubMed:11585763}. |
Q96JB3 | HIC2 | S166 | ochoa | Hypermethylated in cancer 2 protein (Hic-2) (HIC1-related gene on chromosome 22 protein) (Hic-3) (Zinc finger and BTB domain-containing protein 30) | Transcriptional repressor. |
Q96JQ2 | CLMN | S920 | ochoa | Calmin (Calponin-like transmembrane domain protein) | None |
Q96LC7 | SIGLEC10 | S592 | ochoa | Sialic acid-binding Ig-like lectin 10 (Siglec-10) (Siglec-like protein 2) | Putative adhesion molecule that mediates sialic-acid dependent binding to cells. Preferentially binds to alpha-2,3- or alpha-2,6-linked sialic acid (By similarity). The sialic acid recognition site may be masked by cis interactions with sialic acids on the same cell surface. In the immune response, seems to act as an inhibitory receptor upon ligand induced tyrosine phosphorylation by recruiting cytoplasmic phosphatase(s) via their SH2 domain(s) that block signal transduction through dephosphorylation of signaling molecules (PubMed:11284738, PubMed:12163025). Involved in negative regulation of B-cell antigen receptor signaling. The inhibition of B cell activation is dependent on PTPN6/SHP-1 (By similarity). In association with CD24 may be involved in the selective suppression of the immune response to danger-associated molecular patterns (DAMPs) such as HMGB1, HSP70 and HSP90 (By similarity). In association with CD24 may regulate the immune repsonse of natural killer (NK) cells (PubMed:25450598). Plays a role in the control of autoimmunity (By similarity). During initiation of adaptive immune responses by CD8-alpha(+) dendritic cells inhibits cross-presentation by impairing the formation of MHC class I-peptide complexes. The function seems to implicate recruitment of PTPN6/SHP-1, which dephosphorylates NCF1 of the NADPH oxidase complex consequently promoting phagosomal acidification (By similarity). {ECO:0000250|UniProtKB:Q80ZE3, ECO:0000269|PubMed:11284738, ECO:0000269|PubMed:25450598, ECO:0000305|PubMed:12163025}. |
Q96NE9 | FRMD6 | S537 | ochoa | FERM domain-containing protein 6 (Willin) | None |
Q96PC5 | MIA2 | S1239 | ochoa | Melanoma inhibitory activity protein 2 (MIA protein 2) (CTAGE family member 5 ER export factor) (Cutaneous T-cell lymphoma-associated antigen 5) (Meningioma-expressed antigen 6/11) | Plays a role in the transport of cargos that are too large to fit into COPII-coated vesicles and require specific mechanisms to be incorporated into membrane-bound carriers and exported from the endoplasmic reticulum (PubMed:21525241, PubMed:25202031, PubMed:27138255, PubMed:27170179). Plays a role in the secretion of lipoproteins, pre-chylomicrons and pre-VLDLs, by participating in their export from the endoplasmic reticulum (PubMed:27138255). Thereby, may play a role in cholesterol and triglyceride homeostasis (By similarity). Required for collagen VII (COL7A1) secretion by loading COL7A1 into transport carriers and recruiting PREB/SEC12 at the endoplasmic reticulum exit sites (PubMed:21525241, PubMed:25202031, PubMed:27170179). {ECO:0000250|UniProtKB:Q91ZV0, ECO:0000269|PubMed:21525241, ECO:0000269|PubMed:25202031, ECO:0000269|PubMed:27138255, ECO:0000269|PubMed:27170179}. |
Q96PK6 | RBM14 | S612 | ochoa | RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) | Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}. |
Q96RG2 | PASK | S949 | psp | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96RL1 | UIMC1 | S668 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96S53 | TESK2 | S479 | ochoa | Dual specificity testis-specific protein kinase 2 (EC 2.7.12.1) (Testicular protein kinase 2) | Dual specificity protein kinase activity catalyzing autophosphorylation and phosphorylation of exogenous substrates on both serine/threonine and tyrosine residues. Phosphorylates cofilin at 'Ser-3'. May play an important role in spermatogenesis. |
Q96T37 | RBM15 | S604 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T37 | RBM15 | S622 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T58 | SPEN | S635 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S1906 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S2789 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99081 | TCF12 | S508 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99541 | PLIN2 | S224 | ochoa | Perilipin-2 (Adipophilin) (Adipose differentiation-related protein) (ADRP) | Structural component of lipid droplets, which is required for the formation and maintenance of lipid storage droplets. {ECO:0000269|PubMed:34077757}. |
Q99569 | PKP4 | S1135 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99575 | POP1 | S65 | ochoa | Ribonucleases P/MRP protein subunit POP1 (hPOP1) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}. |
Q99640 | PKMYT1 | S120 | ochoa | Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase (EC 2.7.11.1) (Myt1 kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins (PubMed:10373560, PubMed:10504341, PubMed:9001210, PubMed:9268380). Mediates phosphorylation of CDK1 predominantly on 'Thr-14'. Also involved in Golgi fragmentation (PubMed:9001210, PubMed:9268380). May be involved in phosphorylation of CDK1 on 'Tyr-15' to a lesser degree, however tyrosine kinase activity is unclear and may be indirect (PubMed:9001210, PubMed:9268380). {ECO:0000269|PubMed:10373560, ECO:0000269|PubMed:10504341, ECO:0000269|PubMed:9001210, ECO:0000269|PubMed:9268380}. |
Q99684 | GFI1 | S59 | ochoa | Zinc finger protein Gfi-1 (Growth factor independent protein 1) (Zinc finger protein 163) | Transcription repressor essential for hematopoiesis (PubMed:11060035, PubMed:17197705, PubMed:17646546, PubMed:18805794, PubMed:19164764, PubMed:20190815, PubMed:8754800). Functions in a cell-context and development-specific manner (PubMed:11060035, PubMed:17197705, PubMed:17646546, PubMed:18805794, PubMed:19164764, PubMed:20190815, PubMed:8754800). Binds to 5'-TAAATCAC[AT]GCA-3' in the promoter region of a large number of genes (PubMed:11060035, PubMed:17197705, PubMed:17646546, PubMed:18805794, PubMed:19164764, PubMed:20190815, PubMed:8754800). Component of several complexes, including the EHMT2-GFI1-HDAC1, AJUBA-GFI1-HDAC1 and RCOR-GFI-KDM1A-HDAC complexes, that suppress, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (PubMed:16287849). Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte development (PubMed:12778173). Inhibits SPI1 transcriptional activity at macrophage-specific genes, repressing macrophage differentiation of myeloid progenitor cells and promoting granulocyte commitment (By similarity). Mediates, together with U2AF1L4, the alternative splicing of CD45 and controls T-cell receptor signaling (By similarity). Regulates the endotoxin-mediated Toll-like receptor (TLR) inflammatory response by antagonizing RELA (PubMed:20547752). Cooperates with CBFA2T2 to regulate ITGB1-dependent neurite growth (PubMed:19026687). Controls cell-cycle progression by repressing CDKNIA/p21 transcription in response to TGFB1 via recruitment of GFI1 by ZBTB17 to the CDKNIA/p21 and CDKNIB promoters (PubMed:16287849). Required for the maintenance of inner ear hair cells (By similarity). In addition to its role in transcription, acts as a substrate adapter for PRMT1 in the DNA damage response: facilitates the recognition of TP53BP1 and MRE11 substrates by PRMT1, promoting their methylation and the DNA damage response (PubMed:29651020). {ECO:0000250|UniProtKB:P70338, ECO:0000269|PubMed:11060035, ECO:0000269|PubMed:12778173, ECO:0000269|PubMed:16287849, ECO:0000269|PubMed:17197705, ECO:0000269|PubMed:17646546, ECO:0000269|PubMed:18805794, ECO:0000269|PubMed:19026687, ECO:0000269|PubMed:19164764, ECO:0000269|PubMed:20190815, ECO:0000269|PubMed:20547752, ECO:0000269|PubMed:29651020, ECO:0000269|PubMed:8754800}. |
Q99700 | ATXN2 | S637 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99706 | KIR2DL4 | S81 | ochoa | Killer cell immunoglobulin-like receptor 2DL4 (CD158 antigen-like family member D) (G9P) (Killer cell inhibitory receptor 103AS) (KIR-103AS) (MHC class I NK cell receptor KIR103AS) (CD antigen CD158d) | Receptor for non-classical major histocompatibility class Ib HLA-G molecules. Recognizes HLA-G in complex with B2M/beta-2 microglobulin and a nonamer self-peptide (peptide-bound HLA-G-B2M). In decidual NK cells, binds peptide-bound HLA-G-B2M complex and triggers NK cell senescence-associated secretory phenotype as a molecular switch to promote vascular remodeling and fetal growth in early pregnancy (PubMed:16366734, PubMed:23184984, PubMed:29262349). May play a role in balancing tolerance and antiviral-immunity at maternal-fetal interface by keeping in check the effector functions of NK, CD8+ T cells and B cells (PubMed:10190900, PubMed:16366734). Upon interaction with peptide-bound HLA-G-B2M, initiates signaling from the endosomal compartment leading to downstream activation of PRKDC-XRCC5 and AKT1, and ultimately triggering NF-kappa-B-dependent pro-inflammatory response (PubMed:20179272). {ECO:0000269|PubMed:10190900, ECO:0000269|PubMed:16366734, ECO:0000269|PubMed:20179272, ECO:0000269|PubMed:23184984, ECO:0000269|PubMed:29262349}. |
Q99816 | TSG101 | S222 | ochoa | Tumor susceptibility gene 101 protein (ESCRT-I complex subunit TSG101) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Binds to ubiquitinated cargo proteins and is required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies (MVBs). Mediates the association between the ESCRT-0 and ESCRT-I complex. Required for completion of cytokinesis; the function requires CEP55. May be involved in cell growth and differentiation. Acts as a negative growth regulator. Involved in the budding of many viruses through an interaction with viral proteins that contain a late-budding motif P-[ST]-A-P. This interaction is essential for viral particle budding of numerous retroviruses. Required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). It may also play a role in the extracellular release of microvesicles that differ from the exosomes (PubMed:22315426). {ECO:0000269|PubMed:11916981, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:21070952, ECO:0000269|PubMed:21757351, ECO:0000269|PubMed:22315426, ECO:0000269|PubMed:22660413}. |
Q99959 | PKP2 | S71 | ochoa | Plakophilin-2 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}. |
Q99959 | PKP2 | S289 | ochoa | Plakophilin-2 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}. |
Q9BPU6 | DPYSL5 | S531 | ochoa | Dihydropyrimidinase-related protein 5 (DRP-5) (CRMP3-associated molecule) (CRAM) (Collapsin response mediator protein 5) (CRMP-5) (UNC33-like phosphoprotein 6) (ULIP-6) | Involved in the negative regulation of dendrite outgrowth. {ECO:0000269|PubMed:33894126}. |
Q9BPX3 | NCAPG | S959 | ochoa | Condensin complex subunit 3 (Chromosome-associated protein G) (Condensin subunit CAP-G) (hCAP-G) (Melanoma antigen NY-MEL-3) (Non-SMC condensin I complex subunit G) (XCAP-G homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}. |
Q9BX63 | BRIP1 | S1004 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BX66 | SORBS1 | S369 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BXL7 | CARD11 | S652 | psp | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BXL7 | CARD11 | S655 | psp | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BXY0 | MAK16 | S27 | ochoa | Protein MAK16 homolog (NNP78) (Protein RBM13) | None |
Q9BY42 | RTF2 | S272 | ochoa | Replication termination factor 2 (RTF2) (Replication termination factor 2 domain-containing protein 1) | Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA (PubMed:29290612). {ECO:0000269|PubMed:29290612, ECO:0000305|PubMed:29290612}. |
Q9BY89 | KIAA1671 | S1387 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYP7 | WNK3 | S62 | ochoa | Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) | Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}. |
Q9BZ29 | DOCK9 | S1273 | ochoa | Dedicator of cytokinesis protein 9 (Cdc42 guanine nucleotide exchange factor zizimin-1) (Zizimin-1) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 by exchanging bound GDP for free GTP. Overexpression induces filopodia formation. {ECO:0000269|PubMed:12172552, ECO:0000269|PubMed:19745154}. |
Q9BZ67 | FRMD8 | S418 | ochoa | FERM domain-containing protein 8 (Band4.1 inhibitor LRP interactor) (Bili) (iRhom tail-associated protein) (iTAP) | Promotes the cell surface stability of iRhom1/RHBDF1 and iRhom2/RHBDF2 and prevents their degradation via the endolysosomal pathway. By acting on iRhoms, involved in ADAM17-mediated shedding of TNF, amphiregulin/AREG, HBEGF and TGFA from the cell surface (PubMed:29897333, PubMed:29897336). Negatively regulates Wnt signaling, possibly by antagonizing the recruitment of AXIN1 to LRP6 (PubMed:19572019). {ECO:0000269|PubMed:19572019, ECO:0000269|PubMed:29897333, ECO:0000269|PubMed:29897336}. |
Q9BZ71 | PITPNM3 | S345 | ochoa | Membrane-associated phosphatidylinositol transfer protein 3 (Phosphatidylinositol transfer protein, membrane-associated 3) (PITPnm 3) (Pyk2 N-terminal domain-interacting receptor 1) (NIR-1) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro) (By similarity). Binds calcium ions. {ECO:0000250}. |
Q9BZ72 | PITPNM2 | S703 | ochoa | Membrane-associated phosphatidylinositol transfer protein 2 (Phosphatidylinositol transfer protein, membrane-associated 2) (PITPnm 2) (Pyk2 N-terminal domain-interacting receptor 3) (NIR-3) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro). Binds calcium ions. {ECO:0000269|PubMed:10022914}. |
Q9C0C2 | TNKS1BP1 | S1637 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0H2 | TTYH3 | S437 | ochoa | Protein tweety homolog 3 (hTTY3) (Volume-regulated anion channel subunit TTYH3) | Calcium-independent, swelling-dependent volume-regulated anion channel (VRAC-swell) which plays a pivotal role in the process of regulatory volume decrease (RVD) in the brain through the efflux of anions like chloride and organic osmolytes like glutamate (By similarity). Probable large-conductance Ca(2+)-activated chloride channel (PubMed:15010458). {ECO:0000250|UniProtKB:Q6P5F7, ECO:0000269|PubMed:15010458}. |
Q9GZN2 | TGIF2 | S112 | ochoa | Homeobox protein TGIF2 (5'-TG-3'-interacting factor 2) (TGF-beta-induced transcription factor 2) (TGFB-induced factor 2) | Transcriptional repressor, which probably repress transcription by binding directly the 5'-CTGTCAA-3' DNA sequence or by interacting with TGF-beta activated SMAD proteins. Probably represses transcription via the recruitment of histone deacetylase proteins. {ECO:0000269|PubMed:11427533}. |
Q9GZV9 | FGF23 | S180 | psp | Fibroblast growth factor 23 (FGF-23) (Phosphatonin) (Tumor-derived hypophosphatemia-inducing factor) [Cleaved into: Fibroblast growth factor 23 N-terminal peptide; Fibroblast growth factor 23 C-terminal peptide] | Regulator of phosphate homeostasis (PubMed:11062477). Inhibits renal tubular phosphate transport by reducing SLC34A1 levels (PubMed:11409890). Up-regulates EGR1 expression in the presence of KL (By similarity). Acts directly on the parathyroid to decrease PTH secretion (By similarity). Regulator of vitamin-D metabolism (PubMed:15040831). Negatively regulates osteoblast differentiation and matrix mineralization (PubMed:18282132). {ECO:0000250|UniProtKB:Q8VI82, ECO:0000269|PubMed:11062477, ECO:0000269|PubMed:11409890, ECO:0000269|PubMed:15040831, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:18282132}. |
Q9GZY6 | LAT2 | S51 | ochoa | Linker for activation of T-cells family member 2 (Linker for activation of B-cells) (Membrane-associated adapter molecule) (Non-T-cell activation linker) (Williams-Beuren syndrome chromosomal region 15 protein) (Williams-Beuren syndrome chromosomal region 5 protein) | Involved in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. May also be involved in BCR (B-cell antigen receptor)-mediated signaling in B-cells and FCGR1 (high affinity immunoglobulin gamma Fc receptor I)-mediated signaling in myeloid cells. Couples activation of these receptors and their associated kinases with distal intracellular events through the recruitment of GRB2. {ECO:0000269|PubMed:12486104, ECO:0000269|PubMed:12514734, ECO:0000269|PubMed:15010370}. |
Q9H0H5 | RACGAP1 | S274 | ochoa | Rac GTPase-activating protein 1 (Male germ cell RacGap) (MgcRacGAP) (Protein CYK4 homolog) (CYK4) (HsCYK-4) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Required for proper attachment of the midbody to the cell membrane during cytokinesis. Sequentially binds to ECT2 and RAB11FIP3 which regulates cleavage furrow ingression and abscission during cytokinesis (PubMed:18511905). Plays key roles in controlling cell growth and differentiation of hematopoietic cells through mechanisms other than regulating Rac GTPase activity (PubMed:10979956). Has a critical role in erythropoiesis (PubMed:34818416). Also involved in the regulation of growth-related processes in adipocytes and myoblasts. May be involved in regulating spermatogenesis and in the RACGAP1 pathway in neuronal proliferation. Shows strong GAP (GTPase activation) activity towards CDC42 and RAC1 and less towards RHOA. Essential for the early stages of embryogenesis. May play a role in regulating cortical activity through RHOA during cytokinesis. May participate in the regulation of sulfate transport in male germ cells. {ECO:0000269|PubMed:10979956, ECO:0000269|PubMed:11085985, ECO:0000269|PubMed:11278976, ECO:0000269|PubMed:11782313, ECO:0000269|PubMed:14729465, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16129829, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:23235882, ECO:0000269|PubMed:9497316}. |
Q9H1D0 | TRPV6 | S731 | psp | Transient receptor potential cation channel subfamily V member 6 (TrpV6) (CaT-like) (CaT-L) (Calcium transport protein 1) (CaT1) (Epithelial calcium channel 2) (ECaC2) | Calcium selective cation channel that mediates Ca(2+) uptake in various tissues, including the intestine (PubMed:11097838, PubMed:11248124, PubMed:11278579, PubMed:15184369, PubMed:23612980, PubMed:29258289). Important for normal Ca(2+) ion homeostasis in the body, including bone and skin (By similarity). The channel is activated by low internal calcium level, probably including intracellular calcium store depletion, and the current exhibits an inward rectification (PubMed:15184369). Inactivation includes both a rapid Ca(2+)-dependent and a slower Ca(2+)-calmodulin-dependent mechanism; the latter may be regulated by phosphorylation. In vitro, is slowly inhibited by Mg(2+) in a voltage-independent manner. Heteromeric assembly with TRPV5 seems to modify channel properties. TRPV5-TRPV6 heteromultimeric concatemers exhibit voltage-dependent gating. {ECO:0000250|UniProtKB:Q91WD2, ECO:0000269|PubMed:11097838, ECO:0000269|PubMed:11248124, ECO:0000269|PubMed:11278579, ECO:0000269|PubMed:15184369, ECO:0000269|PubMed:23612980, ECO:0000269|PubMed:29258289, ECO:0000269|PubMed:29861107}. |
Q9H1J1 | UPF3A | S401 | ochoa | Regulator of nonsense transcripts 3A (Nonsense mRNA reducing factor 3A) (Up-frameshift suppressor 3 homolog A) (hUpf3) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. However, UPF3A is shown to be only marginally active in NMD as compared to UPF3B. Binds spliced mRNA upstream of exon-exon junctions. In vitro, weakly stimulates translation. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:16601204}. |
Q9H1Z4 | WDR13 | S81 | ochoa | WD repeat-containing protein 13 | None |
Q9H4B6 | SAV1 | S36 | psp | Protein salvador homolog 1 (45 kDa WW domain protein) (hWW45) | Regulator of STK3/MST2 and STK4/MST1 in the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:29063833). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. SAV1 is required for STK3/MST2 and STK4/MST1 activation and promotes cell-cycle exit and terminal differentiation in developing epithelial tissues. Plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosomes, and its ability to phosphorylate CROCC and CEP250. In conjunction with STK3/MST2, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation. {ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:19212654, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:29063833}. |
Q9H7F0 | ATP13A3 | S130 | ochoa | Polyamine-transporting ATPase 13A3 (ATPase family homolog up-regulated in senescence cells 1) (Putrescine transporting ATPase) (EC 7.6.2.16) | ATP-driven pump involved in endocytosis-dependent polyamine transport. Uses ATP as an energy source to transfer polyamine precursor putrescine from the endosomal compartment to the cytosol. {ECO:0000269|PubMed:27429841, ECO:0000269|PubMed:33310703}. |
Q9HAU0 | PLEKHA5 | S568 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HBR0 | SLC38A10 | S806 | ochoa | Solute carrier family 38 member 10 (Amino acid transporter SLC38A10) | Facilitates bidirectional transport of amino acids. May act as a glutamate sensor that regulates glutamate-glutamine cycle and mTOR signaling in the brain. The transport mechanism remains to be elucidated. {ECO:0000250|UniProtKB:Q5I012}. |
Q9HCB6 | SPON1 | S740 | ochoa | Spondin-1 (F-spondin) (Vascular smooth muscle cell growth-promoting factor) | Cell adhesion protein that promotes the attachment of spinal cord and sensory neuron cells and the outgrowth of neurites in vitro. May contribute to the growth and guidance of axons in both the spinal cord and the PNS (By similarity). Major factor for vascular smooth muscle cell. {ECO:0000250}. |
Q9HCD5 | NCOA5 | S96 | ochoa | Nuclear receptor coactivator 5 (NCoA-5) (Coactivator independent of AF-2) (CIA) | Nuclear receptor coregulator that can have both coactivator and corepressor functions. Interacts with nuclear receptors for steroids (ESR1 and ESR2) independently of the steroid binding domain (AF-2) of the ESR receptors, and with the orphan nuclear receptor NR1D2. Involved in the coactivation of nuclear steroid receptors (ER) as well as the corepression of MYC in response to 17-beta-estradiol (E2). {ECO:0000269|PubMed:15073177}. |
Q9HCD5 | NCOA5 | S378 | ochoa | Nuclear receptor coactivator 5 (NCoA-5) (Coactivator independent of AF-2) (CIA) | Nuclear receptor coregulator that can have both coactivator and corepressor functions. Interacts with nuclear receptors for steroids (ESR1 and ESR2) independently of the steroid binding domain (AF-2) of the ESR receptors, and with the orphan nuclear receptor NR1D2. Involved in the coactivation of nuclear steroid receptors (ER) as well as the corepression of MYC in response to 17-beta-estradiol (E2). {ECO:0000269|PubMed:15073177}. |
Q9NQ55 | PPAN | S228 | ochoa | Suppressor of SWI4 1 homolog (Ssf-1) (Brix domain-containing protein 3) (Peter Pan homolog) | May have a role in cell growth. |
Q9NQW6 | ANLN | S385 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NRD9 | DUOX1 | S637 | ochoa | Dual oxidase 1 (EC 1.11.1.-) (EC 1.6.3.1) (Large NOX 1) (Long NOX 1) (NADPH thyroid oxidase 1) (Thyroid oxidase 1) | Generates hydrogen peroxide which is required for the activity of thyroid peroxidase/TPO and lactoperoxidase/LPO. Plays a role in thyroid hormones synthesis and lactoperoxidase-mediated antimicrobial defense at the surface of mucosa. May have its own peroxidase activity through its N-terminal peroxidase-like domain. {ECO:0000269|PubMed:11514595, ECO:0000269|PubMed:12824283}. |
Q9NRR3 | CDC42SE2 | S27 | ochoa | CDC42 small effector protein 2 (Small effector of CDC42 protein 2) | Probably involved in the organization of the actin cytoskeleton by acting downstream of CDC42, inducing actin filament assembly. Alters CDC42-induced cell shape changes. In activated T-cells, may play a role in CDC42-mediated F-actin accumulation at the immunological synapse. May play a role in early contractile events in phagocytosis in macrophages. {ECO:0000269|PubMed:10816584, ECO:0000269|PubMed:15840583}. |
Q9NS56 | TOPORS | S718 | psp | E3 ubiquitin-protein ligase Topors (EC 2.3.2.27) (RING-type E3 ubiquitin transferase Topors) (SUMO1-protein E3 ligase Topors) (Topoisomerase I-binding RING finger protein) (Topoisomerase I-binding arginine/serine-rich protein) (Tumor suppressor p53-binding protein 3) (p53-binding protein 3) (p53BP3) | Functions as an E3 ubiquitin-protein ligase and as an E3 SUMO1-protein ligase. Probable tumor suppressor involved in cell growth, cell proliferation and apoptosis that regulates p53/TP53 stability through ubiquitin-dependent degradation. May regulate chromatin modification through sumoylation of several chromatin modification-associated proteins. May be involved in DNA damage-induced cell death through IKBKE sumoylation. {ECO:0000269|PubMed:15247280, ECO:0000269|PubMed:15735665, ECO:0000269|PubMed:16122737, ECO:0000269|PubMed:17803295, ECO:0000269|PubMed:18077445, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:20188669}. |
Q9NUQ6 | SPATS2L | S526 | ochoa | SPATS2-like protein (DNA polymerase-transactivated protein 6) (Stress granule and nucleolar protein) (SGNP) | None |
Q9NW64 | RBM22 | S128 | ochoa | Pre-mRNA-splicing factor RBM22 (RNA-binding motif protein 22) (Zinc finger CCCH domain-containing protein 16) | Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154). Involved in the first step of pre-mRNA splicing. Binds directly to the internal stem-loop (ISL) domain of the U6 snRNA and to the pre-mRNA intron near the 5' splice site during the activation and catalytic phases of the spliceosome cycle. Involved in both translocations of the nuclear SLU7 to the cytoplasm and the cytosolic calcium-binding protein PDCD6 to the nucleus upon cellular stress responses. {ECO:0000269|PubMed:17045351, ECO:0000269|PubMed:21122810, ECO:0000269|PubMed:22246180, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154}. |
Q9NY59 | SMPD3 | S203 | ochoa | Sphingomyelin phosphodiesterase 3 (EC 3.1.4.12) (Neutral sphingomyelinase 2) (nSMase-2) (nSMase2) (Neutral sphingomyelinase II) | Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization (PubMed:10823942, PubMed:14741383, PubMed:15051724). Binds to anionic phospholipids (APLs) such as phosphatidylserine (PS) and phosphatidic acid (PA) that modulate enzymatic activity and subcellular location. May be involved in IL-1-beta-induced JNK activation in hepatocytes (By similarity). May act as a mediator in transcriptional regulation of NOS2/iNOS via the NF-kappa-B activation under inflammatory conditions (By similarity). {ECO:0000250|UniProtKB:O35049, ECO:0000250|UniProtKB:Q9JJY3, ECO:0000269|PubMed:10823942, ECO:0000269|PubMed:14741383, ECO:0000269|PubMed:15051724}. |
Q9NYF3 | FAM53C | S299 | ochoa | Protein FAM53C | None |
Q9NYZ1 | TVP23B | S184 | ochoa | Golgi apparatus membrane protein TVP23 homolog B | None |
Q9NZ56 | FMN2 | S461 | ochoa | Formin-2 | Actin-binding protein that is involved in actin cytoskeleton assembly and reorganization (PubMed:21730168, PubMed:22330775). Acts as an actin nucleation factor and promotes assembly of actin filaments together with SPIRE1 and SPIRE2 (PubMed:21730168, PubMed:22330775). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning, asymmetric oocyte division and polar body extrusion during female germ cell meiosis (By similarity). Plays a role in responses to DNA damage, cellular stress and hypoxia by protecting CDKN1A against degradation, and thereby plays a role in stress-induced cell cycle arrest (PubMed:23375502). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). Protects cells against apoptosis by protecting CDKN1A against degradation (PubMed:23375502). {ECO:0000250|UniProtKB:Q9JL04, ECO:0000269|PubMed:21730168, ECO:0000269|PubMed:22330775, ECO:0000269|PubMed:23375502, ECO:0000269|PubMed:26287480}. |
Q9P0J7 | KCMF1 | S145 | ochoa | E3 ubiquitin-protein ligase KCMF1 (EC 2.3.2.27) (FGF-induced in gastric cancer) (Potassium channel modulatory factor) (PCMF) (ZZ-type zinc finger-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme and then transfers it to targeted substrates, promoting their degradation by the proteasome (PubMed:15581609, PubMed:25582440, PubMed:34893540, PubMed:37891180, PubMed:38297121). Together with UBR4, component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR4, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). {ECO:0000269|PubMed:15581609, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38297121}. |
Q9P206 | NHSL3 | S161 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P273 | TENM3 | S26 | ochoa | Teneurin-3 (Ten-3) (Protein Odd Oz/ten-m homolog 3) (Tenascin-M3) (Ten-m3) (Teneurin transmembrane protein 3) | Involved in neural development by regulating the establishment of proper connectivity within the nervous system. Acts in both pre- and postsynaptic neurons in the hippocampus to control the assembly of a precise topographic projection: required in both CA1 and subicular neurons for the precise targeting of proximal CA1 axons to distal subiculum, probably by promoting homophilic cell adhesion. Required for proper dendrite morphogenesis and axon targeting in the vertebrate visual system, thereby playing a key role in the development of the visual pathway. Regulates the formation in ipsilateral retinal mapping to both the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). May also be involved in the differentiation of the fibroblast-like cells in the superficial layer of mandibular condylar cartilage into chondrocytes. {ECO:0000250|UniProtKB:Q9WTS6}. |
Q9P2R6 | RERE | S580 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9UBN4 | TRPC4 | S688 | psp | Short transient receptor potential channel 4 (TrpC4) (Trp-related protein 4) (hTrp-4) (hTrp4) | Forms a receptor-activated non-selective calcium permeant cation channel (PubMed:11042129, PubMed:11713258, PubMed:16144838, PubMed:39478185). Acts as a cell-cell contact-dependent endothelial calcium entry channel (PubMed:19996314). Forms a homomeric ion channel or a heteromeric ion channel with TRPC1; the heteromeric ion channel has reduced calcium permeability compared to the homomeric channel (PubMed:39478185). Also permeable to monovalent ions including sodium, lithium and cesium ions (PubMed:39478185). {ECO:0000250|UniProtKB:Q9QUQ5, ECO:0000269|PubMed:11042129, ECO:0000269|PubMed:11713258, ECO:0000269|PubMed:16144838, ECO:0000269|PubMed:19996314, ECO:0000269|PubMed:39478185}.; FUNCTION: [Isoform Beta]: Forms a receptor-activated non-selective calcium permeant cation channel. {ECO:0000269|PubMed:11713258}. |
Q9UBZ4 | APEX2 | S227 | ochoa | DNA-(apurinic or apyrimidinic site) endonuclease 2 (EC 3.1.11.2) (AP endonuclease XTH2) (APEX nuclease 2) (APEX nuclease-like 2) (Apurinic-apyrimidinic endonuclease 2) (AP endonuclease 2) | Functions as a weak apurinic/apyrimidinic (AP) endodeoxyribonuclease in the DNA base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents (PubMed:16687656). Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5'-deoxyribose phosphate and 3'-hydroxyl ends. Also displays double-stranded DNA 3'-5' exonuclease, 3'-phosphodiesterase activities (PubMed:16687656, PubMed:19443450, PubMed:32516598). Shows robust 3'-5' exonuclease activity on 3'-recessed heteroduplex DNA and is able to remove mismatched nucleotides preferentially (PubMed:16687656, PubMed:19443450). Also exhibits 3'-5' exonuclease activity on a single nucleotide gap containing heteroduplex DNA and on blunt-ended substrates (PubMed:16687656). Shows fairly strong 3'-phosphodiesterase activity involved in the removal of 3'-damaged termini formed in DNA by oxidative agents (PubMed:16687656, PubMed:19443450). In the nucleus functions in the PCNA-dependent BER pathway (PubMed:11376153). Plays a role in reversing blocked 3' DNA ends, problematic lesions that preclude DNA synthesis (PubMed:32516598). Required for somatic hypermutation (SHM) and DNA cleavage step of class switch recombination (CSR) of immunoglobulin genes (By similarity). Required for proper cell cycle progression during proliferation of peripheral lymphocytes (By similarity). {ECO:0000250|UniProtKB:Q68G58, ECO:0000269|PubMed:11376153, ECO:0000269|PubMed:16687656, ECO:0000269|PubMed:19443450, ECO:0000269|PubMed:32516598}. |
Q9UER7 | DAXX | S402 | ochoa | Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) | Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}. |
Q9UGU0 | TCF20 | S1167 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHD8 | SEPTIN9 | S111 | ochoa | Septin-9 (MLL septin-like fusion protein MSF-A) (MLL septin-like fusion protein) (Ovarian/Breast septin) (Ov/Br septin) (Septin D1) | Filament-forming cytoskeletal GTPase (By similarity). May play a role in cytokinesis (Potential). May play a role in the internalization of 2 intracellular microbial pathogens, Listeria monocytogenes and Shigella flexneri. {ECO:0000250, ECO:0000305}. |
Q9UIC8 | LCMT1 | S78 | ochoa | Leucine carboxyl methyltransferase 1 (EC 2.1.1.233) (Protein-leucine O-methyltransferase) ([Phosphatase 2A protein]-leucine-carboxy methyltransferase 1) | Methylates the carboxyl group of the C-terminal leucine residue of protein phosphatase 2A catalytic subunits to form alpha-leucine ester residues. {ECO:0000269|PubMed:10600115}. |
Q9UIK4 | DAPK2 | S318 | ochoa|psp | Death-associated protein kinase 2 (DAP kinase 2) (EC 2.7.11.1) (DAP-kinase-related protein 1) (DRP-1) | Calcium/calmodulin-dependent serine/threonine kinase involved in multiple cellular signaling pathways that trigger cell survival, apoptosis, and autophagy. Regulates both type I apoptotic and type II autophagic cell death signals, depending on the cellular setting. The former is caspase-dependent, while the latter is caspase-independent and is characterized by the accumulation of autophagic vesicles. Acts as a mediator of anoikis and a suppressor of beta-catenin-dependent anchorage-independent growth of malignant epithelial cells. May play a role in granulocytic maturation (PubMed:17347302). Regulates granulocytic motility by controlling cell spreading and polarization (PubMed:24163421). {ECO:0000269|PubMed:17347302, ECO:0000269|PubMed:24163421, ECO:0000269|PubMed:26047703}.; FUNCTION: Isoform 2 is not regulated by calmodulin. It can phosphorylate MYL9. It can induce membrane blebbing and autophagic cell death. |
Q9UJS0 | SLC25A13 | S472 | ochoa | Electrogenic aspartate/glutamate antiporter SLC25A13, mitochondrial (Calcium-binding mitochondrial carrier protein Aralar2) (ARALAR-related gene 2) (ARALAR2) (Citrin) (Mitochondrial aspartate glutamate carrier 2) (Solute carrier family 25 member 13) | Mitochondrial electrogenic aspartate/glutamate antiporter that favors efflux of aspartate and entry of glutamate and proton within the mitochondria as part of the malate-aspartate shuttle (PubMed:11566871, PubMed:38945283). Also mediates the uptake of L-cysteinesulfinate (3-sulfino-L-alanine) by mitochondria in exchange of L-glutamate and proton (PubMed:11566871). Can also exchange L-cysteinesulfinate with aspartate in their anionic form without any proton translocation (PubMed:11566871). Lacks transport activity towards gamma-aminobutyric acid (GABA) (PubMed:38945283). {ECO:0000269|PubMed:11566871, ECO:0000269|PubMed:38945283}. |
Q9UKE5 | TNIK | S954 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKS7 | IKZF2 | S375 | ochoa | Zinc finger protein Helios (Ikaros family zinc finger protein 2) | Transcriptional regulator required for outer hair cells (OHC) maturation and, consequently, for hearing. {ECO:0000250|UniProtKB:P81183}. |
Q9UKV5 | AMFR | S601 | ochoa | E3 ubiquitin-protein ligase AMFR (EC 2.3.2.36) (Autocrine motility factor receptor) (AMF receptor) (RING finger protein 45) (gp78) | E3 ubiquitin-protein ligase that mediates the polyubiquitination of lysine and cysteine residues on target proteins, such as CD3D, CYP3A4, CFTR, INSIG1, SOAT2/ACAT2 and APOB for proteasomal degradation (PubMed:10456327, PubMed:11724934, PubMed:12670940, PubMed:19103148, PubMed:24424410, PubMed:28604676). Component of a VCP/p97-AMFR/gp78 complex that participates in the final step of endoplasmic reticulum-associated degradation (ERAD) (PubMed:10456327, PubMed:11724934, PubMed:19103148, PubMed:24424410). The VCP/p97-AMFR/gp78 complex is involved in the sterol-accelerated ERAD degradation of HMGCR through binding to the HMGCR-INSIG1 complex at the ER membrane (PubMed:16168377, PubMed:22143767). In addition, interaction of AMFR with AUP1 facilitates interaction of AMFR with ubiquitin-conjugating enzyme UBE2G2 and ubiquitin ligase RNF139, leading to sterol-induced HMGCR ubiquitination (PubMed:23223569). The ubiquitinated HMGCR is then released from the ER into the cytosol for subsequent destruction (PubMed:16168377, PubMed:22143767, PubMed:23223569). In addition to ubiquitination on lysine residues, catalyzes ubiquitination on cysteine residues: together with INSIG1, mediates polyubiquitination of SOAT2/ACAT2 at 'Cys-277', leading to its degradation when the lipid levels are low (PubMed:28604676). Catalyzes ubiquitination and subsequent degradation of INSIG1 when cells are depleted of sterols (PubMed:17043353). Mediates polyubiquitination of INSIG2 at 'Cys-215' in some tissues, leading to its degradation (PubMed:31953408). Also regulates ERAD through the ubiquitination of UBL4A a component of the BAG6/BAT3 complex (PubMed:21636303). Also acts as a scaffold protein to assemble a complex that couples ubiquitination, retranslocation and deglycosylation (PubMed:21636303). Mediates tumor invasion and metastasis as a receptor for the GPI/autocrine motility factor (PubMed:10456327). In association with LMBR1L and UBAC2, negatively regulates the canonical Wnt signaling pathway in the lymphocytes by promoting the ubiquitin-mediated degradation of CTNNB1 and Wnt receptors FZD6 and LRP6 (PubMed:31073040). Regulates NF-kappa-B and MAPK signaling pathways by mediating 'Lys-27'-linked polyubiquitination of TAB3 and promoting subsequent TAK1/MAP3K7 activation (PubMed:36593296). Required for proper lipid homeostasis (PubMed:37119330). {ECO:0000269|PubMed:10456327, ECO:0000269|PubMed:11724934, ECO:0000269|PubMed:12670940, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:17043353, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:22143767, ECO:0000269|PubMed:23223569, ECO:0000269|PubMed:24424410, ECO:0000269|PubMed:28604676, ECO:0000269|PubMed:31073040, ECO:0000269|PubMed:31953408, ECO:0000269|PubMed:36593296, ECO:0000269|PubMed:37119330}. |
Q9UL62 | TRPC5 | S796 | psp | Short transient receptor potential channel 5 (TrpC5) (Transient receptor protein 5) (TRP-5) (hTRP-5) (hTRP5) | Forms a receptor-activated non-selective calcium permeant cation channel (PubMed:16284075, PubMed:38959890, PubMed:37137991). Mediates calcium-dependent phosphatidylserine externalization and apoptosis in neurons via its association with PLSCR1 (By similarity). Acts on distinct neuronal populations in the hypothalamus to regulate innate behaviors including feeding, anxiety (flight/fight/fear), socialization, and maternal care (By similarity). {ECO:0000250|UniProtKB:Q9QX29, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:37137991, ECO:0000269|PubMed:38959890}. |
Q9ULI4 | KIF26A | S1571 | ochoa | Kinesin-like protein KIF26A | Atypical kinesin that plays a key role in enteric neuron development. Acts by repressing a cell growth signaling pathway in the enteric nervous system development, possibly via its interaction with GRB2 that prevents GRB2-binding to SHC, thereby attenating the GDNF-Ret signaling (By similarity). Binds to microtubules but lacks microtubule-based motility due to the absence of ATPase activity (By similarity). Plays a critical role in cerebral cortical development. It probably acts as a microtubule stabilizer that regulates neurite growth and radial migration of cortical excitatory neurons (PubMed:36228617). {ECO:0000250|UniProtKB:Q52KG5, ECO:0000269|PubMed:36228617}. |
Q9ULS5 | TMCC3 | S242 | ochoa | Transmembrane and coiled-coil domain protein 3 | None |
Q9UNF1 | MAGED2 | S244 | ochoa | Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) | Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}. |
Q9UP65 | PLA2G4C | S339 | ochoa | Cytosolic phospholipase A2 gamma (cPLA2-gamma) (EC 3.1.1.4) (Cytosolic lysophospholipase) (EC 3.1.1.5) (Cytosolic lysophospholipid O-acyltransferase) (EC 2.3.1.-) (Phospholipase A2 group IVC) | Calcium-independent phospholipase, lysophospholipase and O-acyltransferase involved in phospholipid remodeling with implications in endoplasmic reticulum membrane homeostasis and lipid droplet biogenesis (PubMed:10085124, PubMed:10358058, PubMed:19501189, PubMed:28336330, PubMed:9705332). Preferentially hydrolyzes the ester bond of the fatty acyl group attached at the sn-2 position of phospholipids with choline and ethanolamine head groups, producing lysophospholipids that are used in deacylation-reacylation cycles (PubMed:10085124, PubMed:10358058, PubMed:19501189, PubMed:28336330, PubMed:9705332). Transfers the sn-1 fatty acyl from one lysophospholipid molecule to the sn-2 position of another lysophospholipid to form diacyl, alkylacyl and alkenylacyl glycerophospholipids. Cleaves ester bonds but not alkyl or alkenyl ether bonds at sn-1 position of lysophospholipids (PubMed:15944408, PubMed:19501189). Catalyzes sn-2 fatty acyl transfer from phospholipids to the sn-2 position of 1-O-alkyl or 1-O-alkenyl lysophospholipids with lower efficiency (PubMed:15944408, PubMed:19501189). In response to dietary fatty acids, may play a role in the formation of nascent lipid droplets from the endoplasmic reticulum likely by regulating the phospholipid composition of these organelles (PubMed:28336330). {ECO:0000269|PubMed:10085124, ECO:0000269|PubMed:10358058, ECO:0000269|PubMed:15944408, ECO:0000269|PubMed:19501189, ECO:0000269|PubMed:28336330, ECO:0000269|PubMed:9705332}.; FUNCTION: (Microbial infection) May play a role in replication and assembly of human hepatitis C virus (HCV) (PubMed:23015700, PubMed:28336330). In response to HCV infection, promotes remodeling of host endoplasmic reticulum membranes to form organelle-like structures called membranous web, where HCV replication occur (PubMed:23015700). Can further mediate translocation of replication complexes to lipid droplets to enable virion assembly (PubMed:23015700, PubMed:28336330). {ECO:0000269|PubMed:23015700, ECO:0000269|PubMed:28336330}.; FUNCTION: (Microbial infection) May facilitate human T-lymphotropic virus type 1 (HTLV-1) infection by promoting leukotriene B4 (LTB4) biosynthesis. LTB4 acts as a chemoattractant for HTLV-1-infected CD4-positive T cells and favors cell to cell viral transmission. {ECO:0000269|PubMed:28639618}. |
Q9UPN4 | CEP131 | S116 | ochoa | Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) | Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}. |
Q9UPQ3 | AGAP1 | S607 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1 (AGAP-1) (Centaurin-gamma-2) (Cnt-g2) (GTP-binding and GTPase-activating protein 1) (GGAP1) | GTPase-activating protein for ARF1 and, to a lesser extent, ARF5. Directly and specifically regulates the adapter protein 3 (AP-3)-dependent trafficking of proteins in the endosomal-lysosomal system. {ECO:0000269|PubMed:12640130}. |
Q9Y283 | INVS | S865 | psp | Inversin (Inversion of embryo turning homolog) (Nephrocystin-2) | Required for normal renal development and establishment of left-right axis. Probably acts as a molecular switch between different Wnt signaling pathways. Inhibits the canonical Wnt pathway by targeting cytoplasmic disheveled (DVL1) for degradation by the ubiquitin-proteasome. This suggests that it is required in renal development to oppose the repression of terminal differentiation of tubular epithelial cells by Wnt signaling. Involved in the organization of apical junctions in kidney cells together with NPHP1, NPHP4 and RPGRIP1L/NPHP8 (By similarity). Does not seem to be strictly required for ciliogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:15852005, ECO:0000269|PubMed:18371931}. |
Q9Y289 | SLC5A6 | S585 | ochoa | Sodium-dependent multivitamin transporter (Na(+)-dependent multivitamin transporter) (hSMVT) (Solute carrier family 5 member 6) | Sodium-dependent multivitamin transporter that mediates the electrogenic transport of pantothenate, biotin, lipoate and iodide (PubMed:10329687, PubMed:15561972, PubMed:19211916, PubMed:20980265, PubMed:21570947, PubMed:22015582, PubMed:25809983, PubMed:25971966, PubMed:27904971, PubMed:28052864, PubMed:31754459). Functions as a Na(+)-coupled substrate symporter where the stoichiometry of Na(+):substrate is 2:1, creating an electrochemical Na(+) gradient used as driving force for substrate uptake (PubMed:10329687, PubMed:20980265). Required for biotin and pantothenate uptake in the intestine across the brush border membrane (PubMed:19211916). Plays a role in the maintenance of intestinal mucosa integrity, by providing the gut mucosa with biotin (By similarity). Contributes to the luminal uptake of biotin and pantothenate into the brain across the blood-brain barrier (PubMed:25809983). {ECO:0000250|UniProtKB:Q5U4D8, ECO:0000269|PubMed:10329687, ECO:0000269|PubMed:15561972, ECO:0000269|PubMed:19211916, ECO:0000269|PubMed:20980265, ECO:0000269|PubMed:21570947, ECO:0000269|PubMed:22015582, ECO:0000269|PubMed:25809983, ECO:0000269|PubMed:25971966, ECO:0000269|PubMed:27904971, ECO:0000269|PubMed:28052864, ECO:0000269|PubMed:31754459}. |
Q9Y2H0 | DLGAP4 | S405 | ochoa | Disks large-associated protein 4 (DAP-4) (PSD-95/SAP90-binding protein 4) (SAP90/PSD-95-associated protein 4) (SAPAP-4) | May play a role in the molecular organization of synapses and neuronal cell signaling. Could be an adapter protein linking ion channel to the subsynaptic cytoskeleton. May induce enrichment of PSD-95/SAP90 at the plasma membrane. |
Q9Y2H2 | INPP5F | S878 | ochoa | Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) | Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}. |
Q9Y2L6 | FRMD4B | S856 | ochoa | FERM domain-containing protein 4B (GRP1-binding protein GRSP1) | Member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling. May function as a scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex. Plays a redundant role with FRMD4A in epithelial polarization. {ECO:0000250|UniProtKB:Q920B0}. |
Q9Y2S7 | POLDIP2 | S290 | ochoa | Polymerase delta-interacting protein 2 (38 kDa DNA polymerase delta interaction protein) (p38) | Involved in DNA damage tolerance by regulating translesion synthesis (TLS) of templates carrying DNA damage lesions such as 8oxoG and abasic sites (PubMed:24191025). May act by stimulating activity of DNA polymerases involved in TLS, such as PRIMPOL and polymerase delta (POLD1) (PubMed:24191025, PubMed:26984527). {ECO:0000269|PubMed:24191025, ECO:0000269|PubMed:26984527}. |
Q9Y2X9 | ZNF281 | S198 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y388 | RBMX2 | S121 | ochoa | RNA-binding motif protein, X-linked 2 | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9Y3M8 | STARD13 | S457 | ochoa | StAR-related lipid transfer protein 13 (46H23.2) (Deleted in liver cancer 2 protein) (DLC-2) (Rho GTPase-activating protein) (START domain-containing protein 13) (StARD13) | GTPase-activating protein for RhoA, and perhaps for Cdc42. May be involved in regulation of cytoskeletal reorganization, cell proliferation and cell motility. Acts a tumor suppressor in hepatocellular carcinoma cells. {ECO:0000269|PubMed:14697242, ECO:0000269|PubMed:16217026}. |
Q9Y4F1 | FARP1 | S833 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 1 (Chondrocyte-derived ezrin-like protein) (FERM, RhoGEF and pleckstrin domain-containing protein 1) (Pleckstrin homology domain-containing family C member 2) (PH domain-containing family C member 2) | Functions as a guanine nucleotide exchange factor for RAC1. May play a role in semaphorin signaling. Plays a role in the assembly and disassembly of dendritic filopodia, the formation of dendritic spines, regulation of dendrite length and ultimately the formation of synapses (By similarity). {ECO:0000250}. |
Q9Y4G6 | TLN2 | S1666 | ochoa | Talin-2 | As a major component of focal adhesion plaques that links integrin to the actin cytoskeleton, may play an important role in cell adhesion. Recruits PIP5K1C to focal adhesion plaques and strongly activates its kinase activity (By similarity). {ECO:0000250}. |
Q9Y5S9 | RBM8A | S56 | ochoa | RNA-binding protein 8A (Binder of OVCA1-1) (BOV-1) (RNA-binding motif protein 8A) (RNA-binding protein Y14) (Ribonucleoprotein RBM8A) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). The MAGOH-RBM8A heterodimer inhibits the ATPase activity of EIF4A3, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The MAGOH-RBM8A heterodimer interacts with the EJC key regulator PYM1 leading to EJC disassembly in the cytoplasm and translation enhancement of EJC-bearing spliced mRNAs by recruiting them to the ribosomal 48S preinitiation complex. Its removal from cytoplasmic mRNAs requires translation initiation from EJC-bearing spliced mRNAs. Associates preferentially with mRNAs produced by splicing. Does not interact with pre-mRNAs, introns, or mRNAs produced from intronless cDNAs. Associates with both nuclear mRNAs and newly exported cytoplasmic mRNAs. The MAGOH-RBM8A heterodimer is a component of the nonsense mediated decay (NMD) pathway. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly. {ECO:0000269|PubMed:12121612, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:12730685, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:19409878, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
Q9Y613 | FHOD1 | S1137 | psp | FH1/FH2 domain-containing protein 1 (Formin homolog overexpressed in spleen 1) (FHOS) (Formin homology 2 domain-containing protein 1) | Required for the assembly of F-actin structures, such as stress fibers. Depends on the Rho-ROCK cascade for its activity. Contributes to the coordination of microtubules with actin fibers and plays a role in cell elongation. Acts synergistically with ROCK1 to promote SRC-dependent non-apoptotic plasma membrane blebbing. {ECO:0000269|PubMed:14576350, ECO:0000269|PubMed:15878344, ECO:0000269|PubMed:18694941}. |
Q9Y698 | CACNG2 | S240 | psp | Voltage-dependent calcium channel gamma-2 subunit (Neuronal voltage-gated calcium channel gamma-2 subunit) (Transmembrane AMPAR regulatory protein gamma-2) (TARP gamma-2) | Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state. {ECO:0000269|PubMed:20805473}. |
P05787 | KRT8 | S280 | Sugiyama | Keratin, type II cytoskeletal 8 (Cytokeratin-8) (CK-8) (Keratin-8) (K8) (Type-II keratin Kb8) | Together with KRT19, helps to link the contractile apparatus to dystrophin at the costameres of striated muscle. {ECO:0000269|PubMed:16000376}. |
P13798 | APEH | S175 | Sugiyama | Acylamino-acid-releasing enzyme (AARE) (EC 3.4.19.1) (Acyl-peptide hydrolase) (APH) (Acylaminoacyl-peptidase) (Oxidized protein hydrolase) (OPH) | This enzyme catalyzes the hydrolysis of the N-terminal peptide bond of an N-acetylated peptide to generate an N-acetylated amino acid and a peptide with a free N-terminus (PubMed:10719179, PubMed:1740429, PubMed:2006156). It preferentially cleaves off Ac-Ala, Ac-Met and Ac-Ser (By similarity). Also, involved in the degradation of oxidized and glycated proteins (PubMed:10719179). {ECO:0000250|UniProtKB:P13676, ECO:0000269|PubMed:10719179, ECO:0000269|PubMed:1740429, ECO:0000269|PubMed:2006156}. |
P13798 | APEH | S27 | Sugiyama | Acylamino-acid-releasing enzyme (AARE) (EC 3.4.19.1) (Acyl-peptide hydrolase) (APH) (Acylaminoacyl-peptidase) (Oxidized protein hydrolase) (OPH) | This enzyme catalyzes the hydrolysis of the N-terminal peptide bond of an N-acetylated peptide to generate an N-acetylated amino acid and a peptide with a free N-terminus (PubMed:10719179, PubMed:1740429, PubMed:2006156). It preferentially cleaves off Ac-Ala, Ac-Met and Ac-Ser (By similarity). Also, involved in the degradation of oxidized and glycated proteins (PubMed:10719179). {ECO:0000250|UniProtKB:P13676, ECO:0000269|PubMed:10719179, ECO:0000269|PubMed:1740429, ECO:0000269|PubMed:2006156}. |
P50454 | SERPINH1 | S138 | Sugiyama | Serpin H1 (47 kDa heat shock protein) (Arsenic-transactivated protein 3) (AsTP3) (Cell proliferation-inducing gene 14 protein) (Collagen-binding protein) (Colligin) (Rheumatoid arthritis-related antigen RA-A47) | Binds specifically to collagen. Could be involved as a chaperone in the biosynthetic pathway of collagen. |
P62979 | RPS27A | S123 | Sugiyama | Ubiquitin-ribosomal protein eS31 fusion protein (Ubiquitin carboxyl extension protein 80) [Cleaved into: Ubiquitin; Small ribosomal subunit protein eS31 (40S ribosomal protein S27a)] | [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.; FUNCTION: [Small ribosomal subunit protein eS31]: Component of the 40S subunit of the ribosome (PubMed:23636399, PubMed:9582194). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:23636399, PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797, ECO:0000305|PubMed:9582194}. |
P33316 | DUT | S120 | Sugiyama | Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial (dUTPase) (EC 3.6.1.23) (dUTP pyrophosphatase) | Catalyzes the cleavage of 2'-deoxyuridine 5'-triphosphate (dUTP) into 2'-deoxyuridine 5'-monophosphate (dUMP) and inorganic pyrophosphate and through its action efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis (PubMed:17880943, PubMed:8631816, PubMed:8805593). Inhibits peroxisome proliferator-activated receptor (PPAR) activity by binding of its N-terminal to PPAR, preventing the latter's dimerization with retinoid X receptor (By similarity). Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:P70583, ECO:0000250|UniProtKB:Q9CQ43, ECO:0000269|PubMed:17880943, ECO:0000269|PubMed:8631816, ECO:0000269|PubMed:8805593}. |
P04818 | TYMS | S120 | Sugiyama | Thymidylate synthase (TS) (TSase) (EC 2.1.1.45) | Catalyzes the reductive methylation of 2'-deoxyuridine 5'-monophosphate (dUMP) to thymidine 5'-monophosphate (dTMP), using the cosubstrate, 5,10- methylenetetrahydrofolate (CH2H4folate) as a 1-carbon donor and reductant and contributes to the de novo mitochondrial thymidylate biosynthesis pathway. {ECO:0000269|PubMed:11278511, ECO:0000269|PubMed:21876188}. |
P11047 | LAMC1 | S335 | Sugiyama | Laminin subunit gamma-1 (Laminin B2 chain) (Laminin-1 subunit gamma) (Laminin-10 subunit gamma) (Laminin-11 subunit gamma) (Laminin-2 subunit gamma) (Laminin-3 subunit gamma) (Laminin-4 subunit gamma) (Laminin-6 subunit gamma) (Laminin-7 subunit gamma) (Laminin-8 subunit gamma) (Laminin-9 subunit gamma) (S-laminin subunit gamma) (S-LAM gamma) | Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. |
P47897 | QARS1 | S750 | Sugiyama | Glutamine--tRNA ligase (EC 6.1.1.18) (Glutaminyl-tRNA synthetase) (GlnRS) | Glutamine--tRNA ligase (PubMed:26869582). Plays a critical role in brain development (PubMed:24656866). {ECO:0000269|PubMed:24656866, ECO:0000269|PubMed:26869582}. |
P46779 | RPL28 | S76 | Sugiyama | Large ribosomal subunit protein eL28 (60S ribosomal protein L28) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
P00519 | ABL1 | S750 | Sugiyama | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P05129 | PRKCG | S145 | Sugiyama | Protein kinase C gamma type (PKC-gamma) (EC 2.7.11.13) | Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays diverse roles in neuronal cells and eye tissues, such as regulation of the neuronal receptors GRIA4/GLUR4 and GRIN1/NMDAR1, modulation of receptors and neuronal functions related to sensitivity to opiates, pain and alcohol, mediation of synaptic function and cell survival after ischemia, and inhibition of gap junction activity after oxidative stress. Binds and phosphorylates GRIA4/GLUR4 glutamate receptor and regulates its function by increasing plasma membrane-associated GRIA4 expression. In primary cerebellar neurons treated with the agonist 3,5-dihyidroxyphenylglycine, functions downstream of the metabotropic glutamate receptor GRM5/MGLUR5 and phosphorylates GRIN1/NMDAR1 receptor which plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. May be involved in the regulation of hippocampal long-term potentiation (LTP), but may be not necessary for the process of synaptic plasticity. May be involved in desensitization of mu-type opioid receptor-mediated G-protein activation in the spinal cord, and may be critical for the development and/or maintenance of morphine-induced reinforcing effects in the limbic forebrain. May modulate the functionality of mu-type-opioid receptors by participating in a signaling pathway which leads to the phosphorylation and degradation of opioid receptors. May also contributes to chronic morphine-induced changes in nociceptive processing. Plays a role in neuropathic pain mechanisms and contributes to the maintenance of the allodynia pain produced by peripheral inflammation. Plays an important role in initial sensitivity and tolerance to ethanol, by mediating the behavioral effects of ethanol as well as the effects of this drug on the GABA(A) receptors. During and after cerebral ischemia modulate neurotransmission and cell survival in synaptic membranes, and is involved in insulin-induced inhibition of necrosis, an important mechanism for minimizing ischemic injury. Required for the elimination of multiple climbing fibers during innervation of Purkinje cells in developing cerebellum. Is activated in lens epithelial cells upon hydrogen peroxide treatment, and phosphorylates connexin-43 (GJA1/CX43), resulting in disassembly of GJA1 gap junction plaques and inhibition of gap junction activity which could provide a protective effect against oxidative stress (By similarity). Phosphorylates p53/TP53 and promotes p53/TP53-dependent apoptosis in response to DNA damage. Involved in the phase resetting of the cerebral cortex circadian clock during temporally restricted feeding. Stabilizes the core clock component BMAL1 by interfering with its ubiquitination, thus suppressing its degradation, resulting in phase resetting of the cerebral cortex clock (By similarity). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P63318, ECO:0000250|UniProtKB:P63319, ECO:0000269|PubMed:16377624, ECO:0000269|PubMed:36040231}. |
Q14697 | GANAB | S190 | Sugiyama | Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) | Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}. |
P12931 | SRC | S225 | Sugiyama | Proto-oncogene tyrosine-protein kinase Src (EC 2.7.10.2) (Proto-oncogene c-Src) (pp60c-src) (p60-Src) | Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors (PubMed:34234773). Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates such as AFAP1. Phosphorylation of AFAP1 allows the SRC SH2 domain to bind AFAP1 and to localize to actin filaments. Cytoskeletal reorganization is also controlled through the phosphorylation of cortactin (CTTN) (Probable). When cells adhere via focal adhesions to the extracellular matrix, signals are transmitted by integrins into the cell resulting in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN) (PubMed:21411625). In addition to phosphorylating focal adhesion proteins, SRC is also active at the sites of cell-cell contact adherens junctions and phosphorylates substrates such as beta-catenin (CTNNB1), delta-catenin (CTNND1), and plakoglobin (JUP). Another type of cell-cell junction, the gap junction, is also a target for SRC, which phosphorylates connexin-43 (GJA1). SRC is implicated in regulation of pre-mRNA-processing and phosphorylates RNA-binding proteins such as KHDRBS1 (Probable). Phosphorylates PKP3 at 'Tyr-195' in response to reactive oxygen species, which may cause the release of PKP3 from desmosome cell junctions into the cytoplasm (PubMed:25501895). Also plays a role in PDGF-mediated tyrosine phosphorylation of both STAT1 and STAT3, leading to increased DNA binding activity of these transcription factors (By similarity). Involved in the RAS pathway through phosphorylation of RASA1 and RASGRF1 (PubMed:11389730). Plays a role in EGF-mediated calcium-activated chloride channel activation (PubMed:18586953). Required for epidermal growth factor receptor (EGFR) internalization through phosphorylation of clathrin heavy chain (CLTC and CLTCL1) at 'Tyr-1477'. Involved in beta-arrestin (ARRB1 and ARRB2) desensitization through phosphorylation and activation of GRK2, leading to beta-arrestin phosphorylation and internalization. Has a critical role in the stimulation of the CDK20/MAPK3 mitogen-activated protein kinase cascade by epidermal growth factor (Probable). Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus (PubMed:7853507). Plays an important role in osteoclastic bone resorption in conjunction with PTK2B/PYK2. Both the formation of a SRC-PTK2B/PYK2 complex and SRC kinase activity are necessary for this function. Recruited to activated integrins by PTK2B/PYK2, thereby phosphorylating CBL, which in turn induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14585963, PubMed:8755529). Promotes energy production in osteoclasts by activating mitochondrial cytochrome C oxidase (PubMed:12615910). Phosphorylates DDR2 on tyrosine residues, thereby promoting its subsequent autophosphorylation (PubMed:16186108). Phosphorylates RUNX3 and COX2 on tyrosine residues, TNK2 on 'Tyr-284' and CBL on 'Tyr-731' (PubMed:20100835, PubMed:21309750). Enhances RIGI-elicited antiviral signaling (PubMed:19419966). Phosphorylates PDPK1 at 'Tyr-9', 'Tyr-373' and 'Tyr-376' (PubMed:14585963). Phosphorylates BCAR1 at 'Tyr-128' (PubMed:22710723). Phosphorylates CBLC at multiple tyrosine residues, phosphorylation at 'Tyr-341' activates CBLC E3 activity (PubMed:20525694). Phosphorylates synaptic vesicle protein synaptophysin (SYP) (By similarity). Involved in anchorage-independent cell growth (PubMed:19307596). Required for podosome formation (By similarity). Mediates IL6 signaling by activating YAP1-NOTCH pathway to induce inflammation-induced epithelial regeneration (PubMed:25731159). Phosphorylates OTUB1, promoting deubiquitination of RPTOR (PubMed:35927303). Phosphorylates caspase CASP8 at 'Tyr-380' which negatively regulates CASP8 processing and activation, down-regulating CASP8 proapoptotic function (PubMed:16619028). {ECO:0000250|UniProtKB:P05480, ECO:0000250|UniProtKB:Q9WUD9, ECO:0000269|PubMed:11389730, ECO:0000269|PubMed:12615910, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:16186108, ECO:0000269|PubMed:16619028, ECO:0000269|PubMed:18586953, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:19419966, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:21309750, ECO:0000269|PubMed:21411625, ECO:0000269|PubMed:22710723, ECO:0000269|PubMed:25501895, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:34234773, ECO:0000269|PubMed:35927303, ECO:0000269|PubMed:7853507, ECO:0000269|PubMed:8755529, ECO:0000269|PubMed:8759729, ECO:0000305|PubMed:11964124, ECO:0000305|PubMed:8672527, ECO:0000305|PubMed:9442882}.; FUNCTION: [Isoform 1]: Non-receptor protein tyrosine kinase which phosphorylates synaptophysin with high affinity. {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 2]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in L1CAM-mediated neurite elongation, possibly by acting downstream of L1CAM to drive cytoskeletal rearrangements involved in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 3]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in neurite elongation (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}. |
P31327 | CPS1 | S808 | Sugiyama | Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) | Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. |
P07384 | CAPN1 | S418 | EPSD|PSP | Calpain-1 catalytic subunit (EC 3.4.22.52) (Calcium-activated neutral proteinase 1) (CANP 1) (Calpain mu-type) (Calpain-1 large subunit) (Cell proliferation-inducing gene 30 protein) (Micromolar-calpain) (muCANP) | Calcium-regulated non-lysosomal thiol-protease which catalyzes limited proteolysis of substrates involved in cytoskeletal remodeling and signal transduction (PubMed:19617626, PubMed:21531719, PubMed:2400579). Proteolytically cleaves CTBP1 at 'Asn-375', 'Gly-387' and 'His-409' (PubMed:23707407). Cleaves and activates caspase-7 (CASP7) (PubMed:19617626). {ECO:0000269|PubMed:19617626, ECO:0000269|PubMed:21531719, ECO:0000269|PubMed:23707407, ECO:0000269|PubMed:2400579}. |
Q15910 | EZH2 | S690 | EPSD|PSP | Histone-lysine N-methyltransferase EZH2 (EC 2.1.1.356) (ENX-1) (Enhancer of zeste homolog 2) (Lysine N-methyltransferase 6) | Polycomb group (PcG) protein. Catalytic subunit of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene. Able to mono-, di- and trimethylate 'Lys-27' of histone H3 to form H3K27me1, H3K27me2 and H3K27me3, respectively. Displays a preference for substrates with less methylation, loses activity when progressively more methyl groups are incorporated into H3K27, H3K27me0 > H3K27me1 > H3K27me2 (PubMed:22323599, PubMed:30923826). Compared to EZH1-containing complexes, it is more abundant in embryonic stem cells and plays a major role in forming H3K27me3, which is required for embryonic stem cell identity and proper differentiation. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1, CDKN2A and retinoic acid target genes. EZH2 can also methylate non-histone proteins such as the transcription factor GATA4 and the nuclear receptor RORA. Regulates the circadian clock via histone methylation at the promoter of the circadian genes. Essential for the CRY1/2-mediated repression of the transcriptional activation of PER1/2 by the CLOCK-BMAL1 heterodimer; involved in the di and trimethylation of 'Lys-27' of histone H3 on PER1/2 promoters which is necessary for the CRY1/2 proteins to inhibit transcription. {ECO:0000269|PubMed:14532106, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:16179254, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:16717091, ECO:0000269|PubMed:16936726, ECO:0000269|PubMed:17210787, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:19026781, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:22323599, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:24474760, ECO:0000269|PubMed:30026490, ECO:0000269|PubMed:30923826}. |
Q8WYR1 | PIK3R5 | S446 | Sugiyama | Phosphoinositide 3-kinase regulatory subunit 5 (PI3-kinase regulatory subunit 5) (PI3-kinase p101 subunit) (Phosphatidylinositol 4,5-bisphosphate 3-kinase regulatory subunit) (PtdIns-3-kinase regulatory subunit) (Protein FOAP-2) (PtdIns-3-kinase p101) (p101-PI3K) | Regulatory subunit of the PI3K gamma complex. Required for recruitment of the catalytic subunit to the plasma membrane via interaction with beta-gamma G protein dimers. Required for G protein-mediated activation of PIK3CG (By similarity). {ECO:0000250}. |
P49760 | CLK2 | S167 | Sugiyama | Dual specificity protein kinase CLK2 (EC 2.7.12.1) (CDC-like kinase 2) | Dual specificity kinase acting on both serine/threonine and tyrosine-containing substrates. Phosphorylates serine- and arginine-rich (SR) proteins of the spliceosomal complex. May be a constituent of a network of regulatory mechanisms that enable SR proteins to control RNA splicing and can cause redistribution of SR proteins from speckles to a diffuse nucleoplasmic distribution. Acts as a suppressor of hepatic gluconeogenesis and glucose output by repressing PPARGC1A transcriptional activity on gluconeogenic genes via its phosphorylation. Phosphorylates PPP2R5B thereby stimulating the assembly of PP2A phosphatase with the PPP2R5B-AKT1 complex leading to dephosphorylation of AKT1. Phosphorylates: PTPN1, SRSF1 and SRSF3. Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Phosphorylates PAGE4 at several serine and threonine residues and this phosphorylation attenuates the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:28289210). {ECO:0000269|PubMed:10480872, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:28289210, ECO:0000269|PubMed:8910305, ECO:0000269|PubMed:9637771}. |
Q92841 | DDX17 | S601 | Sugiyama | Probable ATP-dependent RNA helicase DDX17 (EC 3.6.4.13) (DEAD box protein 17) (DEAD box protein p72) (DEAD box protein p82) (RNA-dependent helicase p72) | As an RNA helicase, unwinds RNA and alters RNA structures through ATP binding and hydrolysis. Involved in multiple cellular processes, including pre-mRNA splicing, alternative splicing, ribosomal RNA processing and miRNA processing, as well as transcription regulation. Regulates the alternative splicing of exons exhibiting specific features (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). For instance, promotes the inclusion of AC-rich alternative exons in CD44 transcripts (PubMed:12138182). This function requires the RNA helicase activity (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). Affects NFAT5 and histone macro-H2A.1/MACROH2A1 alternative splicing in a CDK9-dependent manner (PubMed:22266867, PubMed:26209609). In NFAT5, promotes the introduction of alternative exon 4, which contains 2 stop codons and may target NFAT5 exon 4-containing transcripts to nonsense-mediated mRNA decay, leading to the down-regulation of NFAT5 protein (PubMed:22266867). Affects splicing of mediators of steroid hormone signaling pathway, including kinases that phosphorylates ESR1, such as CDK2, MAPK1 and GSK3B, and transcriptional regulators, such as CREBBP, MED1, NCOR1 and NCOR2. By affecting GSK3B splicing, participates in ESR1 and AR stabilization (PubMed:24275493). In myoblasts and epithelial cells, cooperates with HNRNPH1 to control the splicing of specific subsets of exons (PubMed:24910439). In addition to binding mature mRNAs, also interacts with certain pri-microRNAs, including MIR663/miR-663a, MIR99B/miR-99b, and MIR6087/miR-6087 (PubMed:25126784). Binds pri-microRNAs on the 3' segment flanking the stem loop via the 5'-[ACG]CAUC[ACU]-3' consensus sequence (PubMed:24581491). Required for the production of subsets of microRNAs, including MIR21 and MIR125B1 (PubMed:24581491, PubMed:27478153). May be involved not only in microRNA primary transcript processing, but also stabilization (By similarity). Participates in MYC down-regulation at high cell density through the production of MYC-targeting microRNAs (PubMed:24581491). Along with DDX5, may be involved in the processing of the 32S intermediate into the mature 28S ribosomal RNA (PubMed:17485482). Promoter-specific transcription regulator, functioning as a coactivator or corepressor depending on the context of the promoter and the transcriptional complex in which it exists (PubMed:15298701). Enhances NFAT5 transcriptional activity (PubMed:22266867). Synergizes with TP53 in the activation of the MDM2 promoter; this activity requires acetylation on lysine residues (PubMed:17226766, PubMed:19995069, PubMed:20663877). May also coactivate MDM2 transcription through a TP53-independent pathway (PubMed:17226766). Coactivates MMP7 transcription (PubMed:17226766). Along with CTNNB1, coactivates MYC, JUN, FOSL1 and cyclin D1/CCND1 transcription (PubMed:17699760). Alone or in combination with DDX5 and/or SRA1 non-coding RNA, plays a critical role in promoting the assembly of proteins required for the formation of the transcription initiation complex and chromatin remodeling leading to coactivation of MYOD1-dependent transcription. This helicase-independent activity is required for skeletal muscle cells to properly differentiate into myotubes (PubMed:17011493, PubMed:24910439). During epithelial-to-mesenchymal transition, coregulates SMAD-dependent transcriptional activity, directly controlling key effectors of differentiation, including miRNAs which in turn directly repress its expression (PubMed:24910439). Plays a role in estrogen and testosterone signaling pathway at several levels. Mediates the use of alternative promoters in estrogen-responsive genes and regulates transcription and splicing of a large number of steroid hormone target genes (PubMed:19995069, PubMed:20406972, PubMed:20663877, PubMed:24275493). Contrary to splicing regulation activity, transcriptional coregulation of the estrogen receptor ESR1 is helicase-independent (PubMed:19718048, PubMed:24275493). Plays a role in innate immunity. Specifically restricts bunyavirus infection, including Rift Valley fever virus (RVFV) or La Crosse virus (LACV), but not vesicular stomatitis virus (VSV), in an interferon- and DROSHA-independent manner (PubMed:25126784). Binds to RVFV RNA, likely via structured viral RNA elements (PubMed:25126784). Promotes mRNA degradation mediated by the antiviral zinc-finger protein ZC3HAV1, in an ATPase-dependent manner (PubMed:18334637). {ECO:0000250|UniProtKB:Q501J6, ECO:0000269|PubMed:12138182, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17226766, ECO:0000269|PubMed:17485482, ECO:0000269|PubMed:17699760, ECO:0000269|PubMed:18334637, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:19995069, ECO:0000269|PubMed:20406972, ECO:0000269|PubMed:20663877, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:23022728, ECO:0000269|PubMed:24275493, ECO:0000269|PubMed:24581491, ECO:0000269|PubMed:24910439, ECO:0000269|PubMed:25126784, ECO:0000269|PubMed:26209609, ECO:0000269|PubMed:27478153, ECO:0000305}. |
P05556 | ITGB1 | S503 | Sugiyama | Integrin beta-1 (Fibronectin receptor subunit beta) (Glycoprotein IIa) (GPIIA) (VLA-4 subunit beta) (CD antigen CD29) | Integrins alpha-1/beta-1, alpha-2/beta-1, alpha-10/beta-1 and alpha-11/beta-1 are receptors for collagen. Integrins alpha-1/beta-1 and alpha-2/beta-2 recognize the proline-hydroxylated sequence G-F-P-G-E-R in collagen. Integrins alpha-2/beta-1, alpha-3/beta-1, alpha-4/beta-1, alpha-5/beta-1, alpha-8/beta-1, alpha-10/beta-1, alpha-11/beta-1 and alpha-V/beta-1 are receptors for fibronectin. Alpha-4/beta-1 recognizes one or more domains within the alternatively spliced CS-1 and CS-5 regions of fibronectin. Integrin alpha-5/beta-1 is a receptor for fibrinogen. Integrin alpha-1/beta-1, alpha-2/beta-1, alpha-6/beta-1 and alpha-7/beta-1 are receptors for lamimin. Integrin alpha-6/beta-1 (ITGA6:ITGB1) is present in oocytes and is involved in sperm-egg fusion (By similarity). Integrin alpha-4/beta-1 is a receptor for VCAM1. It recognizes the sequence Q-I-D-S in VCAM1. Integrin alpha-9/beta-1 is a receptor for VCAM1, cytotactin and osteopontin. It recognizes the sequence A-E-I-D-G-I-E-L in cytotactin. Integrin alpha-3/beta-1 is a receptor for epiligrin, thrombospondin and CSPG4. Alpha-3/beta-1 may mediate with LGALS3 the stimulation by CSPG4 of endothelial cells migration. Integrin alpha-V/beta-1 is a receptor for vitronectin. Beta-1 integrins recognize the sequence R-G-D in a wide array of ligands. When associated with alpha-7 integrin, regulates cell adhesion and laminin matrix deposition. Involved in promoting endothelial cell motility and angiogenesis. Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process and the formation of mineralized bone nodules. May be involved in up-regulation of the activity of kinases such as PKC via binding to KRT1. Together with KRT1 and RACK1, serves as a platform for SRC activation or inactivation. Plays a mechanistic adhesive role during telophase, required for the successful completion of cytokinesis. Integrin alpha-3/beta-1 provides a docking site for FAP (seprase) at invadopodia plasma membranes in a collagen-dependent manner and hence may participate in the adhesion, formation of invadopodia and matrix degradation processes, promoting cell invasion. ITGA4:ITGB1 binds to fractalkine (CX3CL1) and may act as its coreceptor in CX3CR1-dependent fractalkine signaling (PubMed:23125415, PubMed:24789099). ITGA4:ITGB1 and ITGA5:ITGB1 bind to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1 (PubMed:18635536, PubMed:25398877). ITGA5:ITGB1 acts as a receptor for fibrillin-1 (FBN1) and mediates R-G-D-dependent cell adhesion to FBN1 (PubMed:12807887, PubMed:17158881). ITGA5:ITGB1 acts as a receptor for fibronectin FN1 and mediates R-G-D-dependent cell adhesion to FN1 (PubMed:33962943). ITGA5:ITGB1 is a receptor for IL1B and binding is essential for IL1B signaling (PubMed:29030430). ITGA5:ITGB3 is a receptor for soluble CD40LG and is required for CD40/CD40LG signaling (PubMed:31331973). Plays an important role in myoblast differentiation and fusion during skeletal myogenesis (By similarity). ITGA9:ITGB1 may play a crucial role in SVEP1/polydom-mediated myoblast cell adhesion (By similarity). Integrins ITGA9:ITGB1 and ITGA4:ITGB1 repress PRKCA-mediated L-type voltage-gated channel Ca(2+) influx and ROCK-mediated calcium sensitivity in vascular smooth muscle cells via their interaction with SVEP1, thereby inhibit vasocontraction (PubMed:35802072). {ECO:0000250|UniProtKB:P07228, ECO:0000250|UniProtKB:P09055, ECO:0000269|PubMed:10455171, ECO:0000269|PubMed:12473654, ECO:0000269|PubMed:12807887, ECO:0000269|PubMed:16256741, ECO:0000269|PubMed:17158881, ECO:0000269|PubMed:18635536, ECO:0000269|PubMed:18804435, ECO:0000269|PubMed:19064666, ECO:0000269|PubMed:21768292, ECO:0000269|PubMed:23125415, ECO:0000269|PubMed:24789099, ECO:0000269|PubMed:25398877, ECO:0000269|PubMed:29030430, ECO:0000269|PubMed:31331973, ECO:0000269|PubMed:33962943, ECO:0000269|PubMed:35802072, ECO:0000269|PubMed:7523423}.; FUNCTION: [Isoform 2]: Interferes with isoform 1 resulting in a dominant negative effect on cell adhesion and migration (in vitro). {ECO:0000305|PubMed:2249781}.; FUNCTION: [Isoform 5]: Isoform 5 displaces isoform 1 in striated muscles. {ECO:0000250|UniProtKB:P09055}.; FUNCTION: (Microbial infection) Integrin ITGA2:ITGB1 acts as a receptor for Human echoviruses 1 and 8. {ECO:0000269|PubMed:8411387}.; FUNCTION: (Microbial infection) Acts as a receptor for Cytomegalovirus/HHV-5. {ECO:0000269|PubMed:20660204}.; FUNCTION: (Microbial infection) Acts as a receptor for Epstein-Barr virus/HHV-4. {ECO:0000269|PubMed:17945327}.; FUNCTION: (Microbial infection) Integrin ITGA5:ITGB1 acts as a receptor for Human parvovirus B19. {ECO:0000269|PubMed:12907437}.; FUNCTION: (Microbial infection) Integrin ITGA2:ITGB1 acts as a receptor for Human rotavirus. {ECO:0000269|PubMed:12941907}.; FUNCTION: (Microbial infection) Acts as a receptor for Mammalian reovirus. {ECO:0000269|PubMed:16501085}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, integrin ITGA5:ITGB1 binding to extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. {ECO:0000269|PubMed:10397733}.; FUNCTION: (Microbial infection) Interacts with CotH proteins expressed by fungi of the order mucorales, the causative agent of mucormycosis, which plays an important role in epithelial cell invasion by the fungi (PubMed:32487760). Integrin ITGA3:ITGB1 may act as a receptor for R.delemar CotH7 in alveolar epithelial cells, which may be an early step in pulmonary mucormycosis disease progression (PubMed:32487760). {ECO:0000269|PubMed:32487760}.; FUNCTION: (Microbial infection) May serve as a receptor for adhesin A (nadA) of N.meningitidis. {ECO:0000305|PubMed:21471204}.; FUNCTION: (Microbial infection) Facilitates rabies infection in a fibronectin-dependent manner and participates in rabies virus traffic after internalization. {ECO:0000269|PubMed:31666383}. |
P54646 | PRKAA2 | S54 | Sugiyama | 5'-AMP-activated protein kinase catalytic subunit alpha-2 (AMPK subunit alpha-2) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) | Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (PubMed:7959015). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). Involved in insulin receptor/INSR internalization (PubMed:25687571). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Plays an important role in the differential regulation of pro-autophagy (composed of PIK3C3, BECN1, PIK3R4 and UVRAG or ATG14) and non-autophagy (composed of PIK3C3, BECN1 and PIK3R4) complexes, in response to glucose starvation (By similarity). Can inhibit the non-autophagy complex by phosphorylating PIK3C3 and can activate the pro-autophagy complex by phosphorylating BECN1 (By similarity). Upon glucose starvation, promotes ARF6 activation in a kinase-independent manner leading to cell migration (PubMed:36017701). Upon glucose deprivation mediates the phosphorylation of ACSS2 at 'Ser-659', which exposes the nuclear localization signal of ACSS2, required for its interaction with KPNA1 and nuclear translocation (PubMed:28552616). Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:Q09137, ECO:0000250|UniProtKB:Q8BRK8, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36017701, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:7959015, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}. |
Q13131 | PRKAA1 | S65 | Sugiyama | 5'-AMP-activated protein kinase catalytic subunit alpha-1 (AMPK subunit alpha-1) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) (Tau-protein kinase PRKAA1) (EC 2.7.11.26) | Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357, PubMed:24563466, PubMed:37821951). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (By similarity). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:18439900, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). In response to nutrient limitation, phosphorylates transcription factor FOXO3 promoting FOXO3 mitochondrial import (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU; however the relevance of such data remains unclear in vivo (By similarity). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Regulates hepatic lipogenesis. Activated via SIRT3, represses sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance. Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:P54645, ECO:0000250|UniProtKB:Q5EG47, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:18439900, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:24563466, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:37821951, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}. |
P20020 | ATP2B1 | S52 | Sugiyama | Plasma membrane calcium-transporting ATPase 1 (EC 7.2.2.10) (Plasma membrane calcium ATPase isoform 1) (PMCA1) (Plasma membrane calcium pump isoform 1) | Catalyzes the hydrolysis of ATP coupled with the transport of calcium from the cytoplasm to the extracellular space thereby maintaining intracellular calcium homeostasis (PubMed:35358416). Plays a role in blood pressure regulation through regulation of intracellular calcium concentration and nitric oxide production leading to regulation of vascular smooth muscle cells vasoconstriction. Positively regulates bone mineralization through absorption of calcium from the intestine. Plays dual roles in osteoclast differentiation and survival by regulating RANKL-induced calcium oscillations in preosteoclasts and mediating calcium extrusion in mature osteoclasts (By similarity). Regulates insulin sensitivity through calcium/calmodulin signaling pathway by regulating AKT1 activation and NOS3 activation in endothelial cells (PubMed:29104511). May play a role in synaptic transmission by modulating calcium and proton dynamics at the synaptic vesicles. {ECO:0000250|UniProtKB:G5E829, ECO:0000269|PubMed:29104511, ECO:0000269|PubMed:35358416}. |
Q14432 | PDE3A | S273 | Sugiyama | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) | Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}. |
Q12851 | MAP4K2 | S39 | Sugiyama | Mitogen-activated protein kinase kinase kinase kinase 2 (EC 2.7.11.1) (B lymphocyte serine/threonine-protein kinase) (Germinal center kinase) (GC kinase) (MAPK/ERK kinase kinase kinase 2) (MEK kinase kinase 2) (MEKKK 2) (Rab8-interacting protein) | Serine/threonine-protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Acts as a MAPK kinase kinase kinase (MAP4K) and is an upstream activator of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway and to a lesser extent of the p38 MAPKs signaling pathway. Required for the efficient activation of JNKs by TRAF6-dependent stimuli, including pathogen-associated molecular patterns (PAMPs) such as polyinosine-polycytidine (poly(IC)), lipopolysaccharides (LPS), lipid A, peptidoglycan (PGN), or bacterial flagellin. To a lesser degree, IL-1 and engagement of CD40 also stimulate MAP4K2-mediated JNKs activation. The requirement for MAP4K2/GCK is most pronounced for LPS signaling, and extends to LPS stimulation of c-Jun phosphorylation and induction of IL-8. Enhances MAP3K1 oligomerization, which may relieve N-terminal mediated MAP3K1 autoinhibition and lead to activation following autophosphorylation. Also mediates the SAP/JNK signaling pathway and the p38 MAPKs signaling pathway through activation of the MAP3Ks MAP3K10/MLK2 and MAP3K11/MLK3. May play a role in the regulation of vesicle targeting or fusion. regulation of vesicle targeting or fusion. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:11784851, ECO:0000269|PubMed:15456887, ECO:0000269|PubMed:17584736, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:7477268, ECO:0000269|PubMed:7515885, ECO:0000269|PubMed:9712898}. |
Q14152 | EIF3A | S215 | Sugiyama | Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
Q15818 | NPTX1 | S93 | Sugiyama | Neuronal pentraxin-1 (NP1) (Neuronal pentraxin I) (NP-I) | May be involved in mediating uptake of synaptic material during synapse remodeling or in mediating the synaptic clustering of AMPA glutamate receptors at a subset of excitatory synapses. {ECO:0000250|UniProtKB:P47971}. |
Q15208 | STK38 | S398 | Sugiyama | Serine/threonine-protein kinase 38 (EC 2.7.11.1) (NDR1 protein kinase) (Nuclear Dbf2-related kinase 1) | Serine/threonine-protein kinase that acts as a negative regulator of MAP3K1/2 signaling (PubMed:12493777, PubMed:15197186, PubMed:17906693, PubMed:7761441). Converts MAP3K2 from its phosphorylated form to its non-phosphorylated form and inhibits autophosphorylation of MAP3K2 (PubMed:12493777, PubMed:15197186, PubMed:17906693, PubMed:7761441). Acts as an ufmylation 'reader' in a kinase-independent manner: specifically recognizes and binds mono-ufmylated histone H4 in response to DNA damage, promoting the recruitment of SUV39H1 to the double-strand breaks, resulting in ATM activation (PubMed:32537488). {ECO:0000269|PubMed:12493777, ECO:0000269|PubMed:15197186, ECO:0000269|PubMed:17906693, ECO:0000269|PubMed:32537488, ECO:0000269|PubMed:7761441}. |
P23381 | WARS1 | S139 | Sugiyama | Tryptophan--tRNA ligase, cytoplasmic (EC 6.1.1.2) (Interferon-induced protein 53) (IFP53) (Tryptophanyl-tRNA synthetase) (TrpRS) (hWRS) [Cleaved into: T1-TrpRS; T2-TrpRS] | Catalyzes the attachment of tryptophan to tRNA(Trp) in a two-step reaction: tryptophan is first activated by ATP to form Trp-AMP and then transferred to the acceptor end of the tRNA(Trp). {ECO:0000269|PubMed:1373391, ECO:0000269|PubMed:1761529, ECO:0000269|PubMed:28369220}.; FUNCTION: [Isoform 1]: Has no angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}.; FUNCTION: [T2-TrpRS]: Possesses an angiostatic activity but has no aminoacylation activity (PubMed:11773625, PubMed:11773626, PubMed:14630953). Inhibits fluid shear stress-activated responses of endothelial cells (PubMed:14630953). Regulates ERK, Akt, and eNOS activation pathways that are associated with angiogenesis, cytoskeletal reorganization and shear stress-responsive gene expression (PubMed:14630953). {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626, ECO:0000269|PubMed:14630953}.; FUNCTION: [Isoform 2]: Has an angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}. |
Q15569 | TESK1 | S50 | Sugiyama | Dual specificity testis-specific protein kinase 1 (EC 2.7.12.1) (Testicular protein kinase 1) | Dual specificity protein kinase activity catalyzing autophosphorylation and phosphorylation of exogenous substrates on both serine/threonine and tyrosine residues (By similarity). Regulates the cellular cytoskeleton by enhancing actin stress fiber formation via phosphorylation of cofilin and by preventing microtubule breakdown via inhibition of TAOK1/MARKK kinase activity (By similarity). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Positively regulates integrin-mediated cell spreading, via phosphorylation of cofilin (PubMed:15584898). Suppresses ciliogenesis via multiple pathways; phosphorylation of CFL1, suppression of ciliary vesicle directional trafficking to the ciliary base, and by facilitating YAP1 nuclear localization where it acts as a transcriptional corepressor of the TEAD4 target genes AURKA and PLK1 (PubMed:25849865). Probably plays a central role at and after the meiotic phase of spermatogenesis (By similarity). {ECO:0000250|UniProtKB:O70146, ECO:0000250|UniProtKB:Q63572, ECO:0000269|PubMed:15584898, ECO:0000269|PubMed:25849865}. |
Q5S007 | LRRK2 | S1403 | SIGNOR|EPSD|PSP | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
P50851 | LRBA | S1725 | Sugiyama | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
O60749 | SNX2 | S264 | Sugiyama | Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}. |
Q6XUX3 | DSTYK | S58 | Sugiyama | Dual serine/threonine and tyrosine protein kinase (EC 2.7.12.1) (Dusty protein kinase) (Dusty PK) (RIP-homologous kinase) (Receptor-interacting serine/threonine-protein kinase 5) (Sugen kinase 496) (SgK496) | Acts as a positive regulator of ERK phosphorylation downstream of fibroblast growth factor-receptor activation (PubMed:23862974, PubMed:28157540). Involved in the regulation of both caspase-dependent apoptosis and caspase-independent cell death (PubMed:15178406). In the skin, it plays a predominant role in suppressing caspase-dependent apoptosis in response to UV stress in a range of dermal cell types (PubMed:28157540). {ECO:0000269|PubMed:15178406, ECO:0000269|PubMed:23862974, ECO:0000269|PubMed:28157540}. |
Q96CU9 | FOXRED1 | S357 | Sugiyama | FAD-dependent oxidoreductase domain-containing protein 1 (EC 1.-.-.-) | Required for the assembly of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) (PubMed:20858599, PubMed:25678554). Involved in mid-late stages of complex I assembly (PubMed:25678554). {ECO:0000269|PubMed:20858599, ECO:0000269|PubMed:25678554}. |
Q8TD19 | NEK9 | S76 | Sugiyama | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
P13798 | APEH | S94 | Sugiyama | Acylamino-acid-releasing enzyme (AARE) (EC 3.4.19.1) (Acyl-peptide hydrolase) (APH) (Acylaminoacyl-peptidase) (Oxidized protein hydrolase) (OPH) | This enzyme catalyzes the hydrolysis of the N-terminal peptide bond of an N-acetylated peptide to generate an N-acetylated amino acid and a peptide with a free N-terminus (PubMed:10719179, PubMed:1740429, PubMed:2006156). It preferentially cleaves off Ac-Ala, Ac-Met and Ac-Ser (By similarity). Also, involved in the degradation of oxidized and glycated proteins (PubMed:10719179). {ECO:0000250|UniProtKB:P13676, ECO:0000269|PubMed:10719179, ECO:0000269|PubMed:1740429, ECO:0000269|PubMed:2006156}. |
Q96PY6 | NEK1 | S251 | Sugiyama | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q99558 | MAP3K14 | S410 | Sugiyama | Mitogen-activated protein kinase kinase kinase 14 (EC 2.7.11.25) (NF-kappa-beta-inducing kinase) (HsNIK) (Serine/threonine-protein kinase NIK) | Lymphotoxin beta-activated kinase which seems to be exclusively involved in the activation of NF-kappa-B and its transcriptional activity. Phosphorylates CHUK/IKKA, thereby promoting proteolytic processing of NFKB2/P100, which leads to NF-kappa-B activation via the non-canonical pathway (PubMed:25406581, PubMed:29230214). Has an essential role in the non-canonical NF-kappa-B signaling that regulates genes encoding molecules involved in B-cell survival, lymphoid organogenesis, and immune response (PubMed:25406581). Could act in a receptor-selective manner. {ECO:0000269|PubMed:15084608, ECO:0000269|PubMed:25406581}. |
Q99558 | MAP3K14 | S826 | Sugiyama | Mitogen-activated protein kinase kinase kinase 14 (EC 2.7.11.25) (NF-kappa-beta-inducing kinase) (HsNIK) (Serine/threonine-protein kinase NIK) | Lymphotoxin beta-activated kinase which seems to be exclusively involved in the activation of NF-kappa-B and its transcriptional activity. Phosphorylates CHUK/IKKA, thereby promoting proteolytic processing of NFKB2/P100, which leads to NF-kappa-B activation via the non-canonical pathway (PubMed:25406581, PubMed:29230214). Has an essential role in the non-canonical NF-kappa-B signaling that regulates genes encoding molecules involved in B-cell survival, lymphoid organogenesis, and immune response (PubMed:25406581). Could act in a receptor-selective manner. {ECO:0000269|PubMed:15084608, ECO:0000269|PubMed:25406581}. |
Q96LD4 | TRIM47 | S180 | Sugiyama | E3 ubiquitin-protein ligase TRIM47 (EC 2.3.2.27) (Gene overexpressed in astrocytoma protein) (RING finger protein 100) (Tripartite motif-containing protein 47) | E3 ubiquitin-protein ligase that mediates the ubiquitination and proteasomal degradation of CYLD. {ECO:0000269|PubMed:29291351}. |
P10646 | TFPI | S237 | Sugiyama | Tissue factor pathway inhibitor (TFPI) (Extrinsic pathway inhibitor) (EPI) (Lipoprotein-associated coagulation inhibitor) (LACI) | Inhibits factor X (X(a)) directly and, in a Xa-dependent way, inhibits VIIa/tissue factor activity, presumably by forming a quaternary Xa/LACI/VIIa/TF complex. It possesses an antithrombotic action and also the ability to associate with lipoproteins in plasma. {ECO:0000269|PubMed:20676107}. |
P56192 | MARS1 | S472 | EPSD|PSP | Methionine--tRNA ligase, cytoplasmic (EC 6.1.1.10) (Methionyl-tRNA synthetase) (MetRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:11714285). Plays a role in the synthesis of ribosomal RNA in the nucleolus (PubMed:10791971). {ECO:0000269|PubMed:10791971, ECO:0000269|PubMed:11714285, ECO:0000269|PubMed:33909043}. |
Q9UK32 | RPS6KA6 | S547 | Sugiyama | Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) | Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}. |
Q14524 | SCN5A | S20 | PSP | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
P49750 | YLPM1 | S304 | Sugiyama | YLP motif-containing protein 1 (Nuclear protein ZAP3) (ZAP113) | Plays a role in the reduction of telomerase activity during differentiation of embryonic stem cells by binding to the core promoter of TERT and controlling its down-regulation. {ECO:0000250}. |
P00492 | HPRT1 | S92 | Sugiyama | Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (HGPRTase) (EC 2.4.2.8) | Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5-phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway. |
A0A0A6YYC7 | ZFP91-CNTF | S85 | ochoa | E3 ubiquitin-protein ligase ZFP91 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase ZFP91) (Zinc finger protein 91 homolog) | Atypical E3 ubiquitin-protein ligase that mediates 'Lys-63'-linked ubiquitination of MAP3K14/NIK, leading to stabilize and activate MAP3K14/NIK. It thereby acts as an activator of the non-canonical NF-kappa-B2/NFKB2 pathway. May also play an important role in cell proliferation and/or anti-apoptosis. {ECO:0000256|ARBA:ARBA00054990}. |
A0A0A6YYC7 | ZFP91-CNTF | S296 | ochoa | E3 ubiquitin-protein ligase ZFP91 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase ZFP91) (Zinc finger protein 91 homolog) | Atypical E3 ubiquitin-protein ligase that mediates 'Lys-63'-linked ubiquitination of MAP3K14/NIK, leading to stabilize and activate MAP3K14/NIK. It thereby acts as an activator of the non-canonical NF-kappa-B2/NFKB2 pathway. May also play an important role in cell proliferation and/or anti-apoptosis. {ECO:0000256|ARBA:ARBA00054990}. |
A1L170 | C1orf226 | S73 | ochoa | Uncharacterized protein C1orf226 | None |
A1L170 | C1orf226 | S225 | ochoa | Uncharacterized protein C1orf226 | None |
A1L390 | PLEKHG3 | S743 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A7KAX9 | ARHGAP32 | S732 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A8K0R7 | ZNF839 | T318 | ochoa | Zinc finger protein 839 (Renal carcinoma antigen NY-REN-50) | None |
A8MVW0 | FAM171A2 | S792 | ochoa | Protein FAM171A2 | None |
J3QQQ9 | None | S32 | ochoa | KOW domain-containing protein | None |
O14497 | ARID1A | S1516 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14641 | DVL2 | S638 | ochoa | Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) | Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}. |
O14974 | PPP1R12A | S509 | ochoa|psp | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O15014 | ZNF609 | S416 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15047 | SETD1A | T224 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15234 | CASC3 | S358 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O43166 | SIPA1L1 | S1130 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43303 | CCP110 | S383 | ochoa | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43379 | WDR62 | S49 | ochoa|psp | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43491 | EPB41L2 | S676 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O60242 | ADGRB3 | S1420 | ochoa | Adhesion G protein-coupled receptor B3 (Brain-specific angiogenesis inhibitor 3) | Receptor that plays a role in the regulation of synaptogenesis and dendritic spine formation at least partly via interaction with ELMO1 and RAC1 activity (By similarity). Promotes myoblast fusion through ELMO/DOCK1 (PubMed:24567399). {ECO:0000250|UniProtKB:Q80ZF8, ECO:0000269|PubMed:24567399}. |
O60307 | MAST3 | S1183 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60343 | TBC1D4 | S644 | ochoa | TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) | May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}. |
O60716 | CTNND1 | S312 | psp | Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) | Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}. |
O75140 | DEPDC5 | S1533 | ochoa | GATOR1 complex protein DEPDC5 (DEP domain-containing protein 5) | As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:31548394, PubMed:35338845). In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:35338845). In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29769719). Within the GATOR1 complex, DEPDC5 mediates direct interaction with the nucleotide-binding pocket of small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD) and coordinates their nucleotide loading states by promoting RagA/RRAGA or RagB/RRAGB into their GDP-binding state and RagC/RRAGC or RagD/RRAGD into their GTP-binding state (PubMed:29590090, PubMed:35338845). However, it does not execute the GAP activity, which is mediated by NPRL2 (PubMed:29590090). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:29590090, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:35338845}. |
O75151 | PHF2 | S1059 | ochoa | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75152 | ZC3H11A | S761 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75400 | PRPF40A | S37 | ochoa | Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) | Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
O75494 | SRSF10 | S160 | ochoa | Serine/arginine-rich splicing factor 10 (40 kDa SR-repressor protein) (SRrp40) (FUS-interacting serine-arginine-rich protein 1) (Splicing factor SRp38) (Splicing factor, arginine/serine-rich 13A) (TLS-associated protein with Ser-Arg repeats) (TASR) (TLS-associated protein with SR repeats) (TLS-associated serine-arginine protein) (TLS-associated SR protein) | Splicing factor that in its dephosphorylated form acts as a general repressor of pre-mRNA splicing (PubMed:11684676, PubMed:12419250, PubMed:14765198). Seems to interfere with the U1 snRNP 5'-splice recognition of SNRNP70 (PubMed:14765198). Required for splicing repression in M-phase cells and after heat shock (PubMed:14765198). Also acts as a splicing factor that specifically promotes exon skipping during alternative splicing (PubMed:26876937). Interaction with YTHDC1, a RNA-binding protein that recognizes and binds N6-methyladenosine (m6A)-containing RNAs, prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May be involved in regulation of alternative splicing in neurons, with isoform 1 acting as a positive and isoform 3 as a negative regulator (PubMed:12419250). {ECO:0000269|PubMed:11684676, ECO:0000269|PubMed:12419250, ECO:0000269|PubMed:14765198, ECO:0000269|PubMed:26876937}. |
O75896 | TUSC2 | Y53 | ochoa | Tumor suppressor candidate 2 (Fusion 1 protein) (Fus-1 protein) (PDGFA-associated protein 2) | May function as a tumor suppressor, inhibiting colony formation, causing G1 arrest and ultimately inducing apoptosis in homozygous 3p21.3 120-kb region-deficient cells. |
O94776 | MTA2 | S54 | ochoa | Metastasis-associated protein MTA2 (Metastasis-associated 1-like 1) (MTA1-L1 protein) (p53 target protein in deacetylase complex) | May function as a transcriptional coregulator (PubMed:16428440, PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
O94806 | PRKD3 | S216 | ochoa | Serine/threonine-protein kinase D3 (EC 2.7.11.13) (Protein kinase C nu type) (Protein kinase EPK2) (nPKC-nu) | Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity). {ECO:0000250}. |
O94921 | CDK14 | S122 | ochoa | Cyclin-dependent kinase 14 (EC 2.7.11.22) (Cell division protein kinase 14) (Serine/threonine-protein kinase PFTAIRE-1) (hPFTAIRE1) | Serine/threonine-protein kinase involved in the control of the eukaryotic cell cycle, whose activity is controlled by an associated cyclin. Acts as a cell-cycle regulator of Wnt signaling pathway during G2/M phase by mediating the phosphorylation of LRP6 at 'Ser-1490', leading to the activation of the Wnt signaling pathway. Acts as a regulator of cell cycle progression and cell proliferation via its interaction with CCDN3. Phosphorylates RB1 in vitro, however the relevance of such result remains to be confirmed in vivo. May also play a role in meiosis, neuron differentiation and may indirectly act as a negative regulator of insulin-responsive glucose transport. {ECO:0000269|PubMed:16461467, ECO:0000269|PubMed:17517622, ECO:0000269|PubMed:19524571, ECO:0000269|PubMed:20059949}. |
O95359 | TACC2 | S2075 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95747 | OXSR1 | S325 | ochoa|psp | Serine/threonine-protein kinase OSR1 (EC 2.7.11.1) (Oxidative stress-responsive 1 protein) | Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:17721439, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:17721439). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Also acts as a regulator of angiogenesis in endothelial cells downstream of WNK1 (PubMed:23386621, PubMed:25362046). Acts as an activator of inward rectifier potassium channels KCNJ2/Kir2.1 and KCNJ4/Kir2.3 downstream of WNK1: recognizes and binds the RXFXV/I variant motif on KCNJ2/Kir2.1 and KCNJ4/Kir2.3 and regulates their localization to the cell membrane without mediating their phosphorylation (PubMed:29581290). Phosphorylates RELL1, RELL2 and RELT (PubMed:16389068, PubMed:28688764). Phosphorylates PAK1 (PubMed:14707132). Phosphorylates PLSCR1 in the presence of RELT (PubMed:22052202). {ECO:0000269|PubMed:14707132, ECO:0000269|PubMed:16389068, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:17721439, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22052202, ECO:0000269|PubMed:23386621, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:28688764, ECO:0000269|PubMed:29581290, ECO:0000269|PubMed:34289367}. |
P01106 | MYC | S86 | psp | Myc proto-oncogene protein (Class E basic helix-loop-helix protein 39) (bHLHe39) (Proto-oncogene c-Myc) (Transcription factor p64) | Transcription factor that binds DNA in a non-specific manner, yet also specifically recognizes the core sequence 5'-CAC[GA]TG-3' (PubMed:24940000, PubMed:25956029). Activates the transcription of growth-related genes (PubMed:24940000, PubMed:25956029). Binds to the VEGFA promoter, promoting VEGFA production and subsequent sprouting angiogenesis (PubMed:24940000, PubMed:25956029). Regulator of somatic reprogramming, controls self-renewal of embryonic stem cells (By similarity). Functions with TAF6L to activate target gene expression through RNA polymerase II pause release (By similarity). Positively regulates transcription of HNRNPA1, HNRNPA2 and PTBP1 which in turn regulate splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). {ECO:0000250|UniProtKB:P01108, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:25956029}. |
P07359 | GP1BA | S632 | ochoa|psp | Platelet glycoprotein Ib alpha chain (GP-Ib alpha) (GPIb-alpha) (GPIbA) (Glycoprotein Ibalpha) (Antigen CD42b-alpha) (CD antigen CD42b) [Cleaved into: Glycocalicin] | GP-Ib, a surface membrane protein of platelets, participates in the formation of platelet plugs by binding to the A1 domain of vWF, which is already bound to the subendothelium. |
P10070 | GLI2 | S811 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P10070 | GLI2 | S839 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P10071 | GLI3 | S880 | ochoa | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P10645 | CHGA | S397 | ochoa | Chromogranin-A (CgA) (Pituitary secretory protein I) (SP-I) [Cleaved into: Vasostatin-1 (Vasostatin I); Vasostatin-2 (Vasostatin II); EA-92; ES-43; Pancreastatin; SS-18; WA-8; WE-14; LF-19; Catestatin (SL21); AL-11; GV-19; GR-44; ER-37; GE-25; Serpinin-RRG; Serpinin; p-Glu serpinin precursor] | [Pancreastatin]: Strongly inhibits glucose induced insulin release from the pancreas.; FUNCTION: [Catestatin]: Inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist (PubMed:15326220). Displays antibacterial activity against Gram-positive bacteria S.aureus and M.luteus, and Gram-negative bacteria E.coli and P.aeruginosa (PubMed:15723172, PubMed:24723458). Can induce mast cell migration, degranulation and production of cytokines and chemokines (PubMed:21214543). Acts as a potent scavenger of free radicals in vitro (PubMed:24723458). May play a role in the regulation of cardiac function and blood pressure (PubMed:18541522). {ECO:0000269|PubMed:15326220, ECO:0000269|PubMed:15723172, ECO:0000269|PubMed:21214543, ECO:0000269|PubMed:24723458, ECO:0000303|PubMed:18541522}.; FUNCTION: [Serpinin]: Regulates granule biogenesis in endocrine cells by up-regulating the transcription of protease nexin 1 (SERPINE2) via a cAMP-PKA-SP1 pathway. This leads to inhibition of granule protein degradation in the Golgi complex which in turn promotes granule formation. {ECO:0000250|UniProtKB:P26339}. |
P17612 | PRKACA | S140 | ochoa|psp | cAMP-dependent protein kinase catalytic subunit alpha (PKA C-alpha) (EC 2.7.11.11) | Phosphorylates a large number of substrates in the cytoplasm and the nucleus (PubMed:15642694, PubMed:15905176, PubMed:16387847, PubMed:17333334, PubMed:17565987, PubMed:17693412, PubMed:18836454, PubMed:19949837, PubMed:20356841, PubMed:21085490, PubMed:21514275, PubMed:21812984, PubMed:31112131). Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA, SOX9 and VASP (PubMed:15642694, PubMed:15905176, PubMed:16387847, PubMed:17333334, PubMed:17565987, PubMed:17693412, PubMed:18836454, PubMed:19949837, PubMed:20356841, PubMed:21085490, PubMed:21514275, PubMed:21812984). Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis (PubMed:21423175). RORA is activated by phosphorylation (PubMed:21514275). Required for glucose-mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts (PubMed:19949837). Involved in chondrogenesis by mediating phosphorylation of SOX9 (By similarity). Involved in the regulation of platelets in response to thrombin and collagen; maintains circulating platelets in a resting state by phosphorylating proteins in numerous platelet inhibitory pathways when in complex with NF-kappa-B (NFKB1 and NFKB2) and I-kappa-B-alpha (NFKBIA), but thrombin and collagen disrupt these complexes and free active PRKACA stimulates platelets and leads to platelet aggregation by phosphorylating VASP (PubMed:15642694, PubMed:20356841). Prevents the antiproliferative and anti-invasive effects of alpha-difluoromethylornithine in breast cancer cells when activated (PubMed:17333334). RYR2 channel activity is potentiated by phosphorylation in presence of luminal Ca(2+), leading to reduced amplitude and increased frequency of store overload-induced Ca(2+) release (SOICR) characterized by an increased rate of Ca(2+) release and propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+) (PubMed:17693412). PSMC5/RPT6 activation by phosphorylation stimulates proteasome (PubMed:17565987). Negatively regulates tight junctions (TJs) in ovarian cancer cells via CLDN3 phosphorylation (PubMed:15905176). NFKB1 phosphorylation promotes NF-kappa-B p50-p50 DNA binding (PubMed:15642694). Required for phosphorylation of GLI transcription factors which inhibits them and prevents transcriptional activation of Hedgehog signaling pathway target genes (By similarity). GLI transcription factor phosphorylation is inhibited by interaction of PRKACA with SMO which sequesters PRKACA at the cell membrane (By similarity). Involved in embryonic development by down-regulating the Hedgehog (Hh) signaling pathway that determines embryo pattern formation and morphogenesis most probably through the regulation of OFD1 in ciliogenesis (PubMed:33934390). Prevents meiosis resumption in prophase-arrested oocytes via CDC25B inactivation by phosphorylation (By similarity). May also regulate rapid eye movement (REM) sleep in the pedunculopontine tegmental (PPT) (By similarity). Phosphorylates APOBEC3G and AICDA (PubMed:16387847, PubMed:18836454). Phosphorylates HSF1; this phosphorylation promotes HSF1 nuclear localization and transcriptional activity upon heat shock (PubMed:21085490). Acts as a negative regulator of mTORC1 by mediating phosphorylation of RPTOR (PubMed:31112131). {ECO:0000250|UniProtKB:P05132, ECO:0000250|UniProtKB:P27791, ECO:0000269|PubMed:15642694, ECO:0000269|PubMed:15905176, ECO:0000269|PubMed:16387847, ECO:0000269|PubMed:17333334, ECO:0000269|PubMed:17565987, ECO:0000269|PubMed:17693412, ECO:0000269|PubMed:18836454, ECO:0000269|PubMed:19949837, ECO:0000269|PubMed:20356841, ECO:0000269|PubMed:21085490, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:21514275, ECO:0000269|PubMed:21812984, ECO:0000269|PubMed:31112131, ECO:0000269|PubMed:33934390}.; FUNCTION: [Isoform 2]: Phosphorylates and activates ABL1 in sperm flagellum to promote spermatozoa capacitation. {ECO:0000250|UniProtKB:P05132}. |
P18615 | NELFE | S131 | ochoa | Negative elongation factor E (NELF-E) (RNA-binding protein RD) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}. |
P19429 | TNNI3 | Y26 | psp | Troponin I, cardiac muscle (Cardiac troponin I) | Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. |
P21333 | FLNA | S2339 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P22234 | PAICS | S107 | ochoa | Bifunctional phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) [Includes: Phosphoribosylaminoimidazole carboxylase (EC 4.1.1.21) (AIR carboxylase) (AIRC); Phosphoribosylaminoimidazole succinocarboxamide synthetase (EC 6.3.2.6) (SAICAR synthetase)] | Bifunctional phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazole succinocarboxamide synthetase catalyzing two reactions of the de novo purine biosynthetic pathway. {ECO:0000269|PubMed:17224163, ECO:0000269|PubMed:2183217, ECO:0000269|PubMed:31600779}. |
P22694 | PRKACB | S140 | ochoa | cAMP-dependent protein kinase catalytic subunit beta (PKA C-beta) (EC 2.7.11.11) | Mediates cAMP-dependent signaling triggered by receptor binding to GPCRs (PubMed:12420224, PubMed:21423175, PubMed:31112131). PKA activation regulates diverse cellular processes such as cell proliferation, the cell cycle, differentiation and regulation of microtubule dynamics, chromatin condensation and decondensation, nuclear envelope disassembly and reassembly, as well as regulation of intracellular transport mechanisms and ion flux (PubMed:12420224, PubMed:21423175). Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis (PubMed:12420224, PubMed:21423175). Phosphorylates GPKOW which regulates its ability to bind RNA (PubMed:21880142). Acts as a negative regulator of mTORC1 by mediating phosphorylation of RPTOR (PubMed:31112131). {ECO:0000269|PubMed:12420224, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:21880142, ECO:0000269|PubMed:31112131}. |
P23588 | EIF4B | S445 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P28347 | TEAD1 | S61 | ochoa | Transcriptional enhancer factor TEF-1 (NTEF-1) (Protein GT-IIC) (TEA domain family member 1) (TEAD-1) (Transcription factor 13) (TCF-13) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and cooperatively to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription in vivo in a cell-specific manner. The activation function appears to be mediated by a limiting cell-specific transcriptional intermediary factor (TIF). Involved in cardiac development. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
P29353 | SHC1 | S213 | psp | SHC-transforming protein 1 (SHC-transforming protein 3) (SHC-transforming protein A) (Src homology 2 domain-containing-transforming protein C1) (SH2 domain protein C1) | Signaling adapter that couples activated growth factor receptors to signaling pathways. Participates in a signaling cascade initiated by activated KIT and KITLG/SCF. Isoform p46Shc and isoform p52Shc, once phosphorylated, couple activated receptor tyrosine kinases to Ras via the recruitment of the GRB2/SOS complex and are implicated in the cytoplasmic propagation of mitogenic signals. Isoform p46Shc and isoform p52Shc may thus function as initiators of the Ras signaling cascade in various non-neuronal systems. Isoform p66Shc does not mediate Ras activation, but is involved in signal transduction pathways that regulate the cellular response to oxidative stress and life span. Isoform p66Shc acts as a downstream target of the tumor suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. The expression of isoform p66Shc has been correlated with life span (By similarity). Participates in signaling downstream of the angiopoietin receptor TEK/TIE2, and plays a role in the regulation of endothelial cell migration and sprouting angiogenesis. {ECO:0000250, ECO:0000269|PubMed:14665640}. |
P29375 | KDM5A | S225 | ochoa|psp | Lysine-specific demethylase 5A (EC 1.14.11.67) (Histone demethylase JARID1A) (Jumonji/ARID domain-containing protein 1A) (Retinoblastoma-binding protein 2) (RBBP-2) ([histone H3]-trimethyl-L-lysine(4) demethylase 5A) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Regulates specific gene transcription through DNA-binding on 5'-CCGCCC-3' motif (PubMed:18270511). May stimulate transcription mediated by nuclear receptors. Involved in transcriptional regulation of Hox proteins during cell differentiation (PubMed:19430464). May participate in transcriptional repression of cytokines such as CXCL12. Plays a role in the regulation of the circadian rhythm and in maintaining the normal periodicity of the circadian clock. In a histone demethylase-independent manner, acts as a coactivator of the CLOCK-BMAL1-mediated transcriptional activation of PER1/2 and other clock-controlled genes and increases histone acetylation at PER1/2 promoters by inhibiting the activity of HDAC1 (By similarity). Seems to act as a transcriptional corepressor for some genes such as MT1F and to favor the proliferation of cancer cells (PubMed:27427228). {ECO:0000250|UniProtKB:Q3UXZ9, ECO:0000269|PubMed:11358960, ECO:0000269|PubMed:15949438, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17320163, ECO:0000269|PubMed:18270511, ECO:0000269|PubMed:19430464, ECO:0000269|PubMed:27427228}. |
P29992 | GNA11 | S154 | psp | Guanine nucleotide-binding protein subunit alpha-11 (G alpha-11) (G-protein subunit alpha-11) (EC 3.6.5.-) (Guanine nucleotide-binding protein G(y) subunit alpha) | Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades (PubMed:31073061). The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state (PubMed:31073061). Signaling by an activated GPCR promotes GDP release and GTP binding (PubMed:31073061). The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal (PubMed:31073061). Both GDP release and GTP hydrolysis are modulated by numerous regulatory proteins (PubMed:31073061). Signaling is mediated via phospholipase C-beta-dependent inositol lipid hydrolysis for signal propagation: activates phospholipase C-beta: following GPCR activation, GNA11 activates PLC-beta (PLCB1, PLCB2, PLCB3 or PLCB4), leading to production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:31073061). Transduces FFAR4 signaling in response to long-chain fatty acids (LCFAs) (PubMed:27852822). Together with GNAQ, required for heart development (By similarity). In the respiratory epithelium, transmits OXGR1-dependent signals that lead to downstream intracellular Ca(2+) release and mucocilliary clearance of airborne pathogens. {ECO:0000250|UniProtKB:P21278, ECO:0000269|PubMed:27852822, ECO:0000269|PubMed:31073061, ECO:0000269|PubMed:36919698}. |
P31270 | HOXA11 | S220 | ochoa | Homeobox protein Hox-A11 (Homeobox protein Hox-1I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P35408 | PTGER4 | T225 | ochoa | Prostaglandin E2 receptor EP4 subtype (PGE receptor EP4 subtype) (PGE2 receptor EP4 subtype) (Prostanoid EP4 receptor) | Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. Has a relaxing effect on smooth muscle. May play an important role in regulating renal hemodynamics, intestinal epithelial transport, adrenal aldosterone secretion, and uterine function. |
P35568 | IRS1 | T1103 | ochoa | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P38159 | RBMX | S208 | ochoa | RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] | RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}. |
P39880 | CUX1 | S1218 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P42694 | HELZ | S1766 | ochoa | Probable helicase with zinc finger domain (EC 3.6.4.-) (Down-regulated in human cancers protein) | May act as a helicase that plays a role in RNA metabolism in multiple tissues and organs within the developing embryo. |
P48634 | PRRC2A | S458 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S1106 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49768 | PSEN1 | S313 | psp | Presenilin-1 (PS-1) (EC 3.4.23.-) (Protein S182) [Cleaved into: Presenilin-1 NTF subunit; Presenilin-1 CTF subunit; Presenilin-1 CTF12 (PS1-CTF12)] | Catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein) (PubMed:10206644, PubMed:10545183, PubMed:10593990, PubMed:10811883, PubMed:10899933, PubMed:12679784, PubMed:12740439, PubMed:15274632, PubMed:20460383, PubMed:25043039, PubMed:26280335, PubMed:28269784, PubMed:30598546, PubMed:30630874). Requires the presence of the other members of the gamma-secretase complex for protease activity (PubMed:15274632, PubMed:25043039, PubMed:26280335, PubMed:30598546, PubMed:30630874). Plays a role in Notch and Wnt signaling cascades and regulation of downstream processes via its role in processing key regulatory proteins, and by regulating cytosolic CTNNB1 levels (PubMed:10593990, PubMed:10811883, PubMed:10899933, PubMed:9738936). Stimulates cell-cell adhesion via its interaction with CDH1; this stabilizes the complexes between CDH1 (E-cadherin) and its interaction partners CTNNB1 (beta-catenin), CTNND1 and JUP (gamma-catenin) (PubMed:11953314). Under conditions of apoptosis or calcium influx, cleaves CDH1 (PubMed:11953314). This promotes the disassembly of the complexes between CDH1 and CTNND1, JUP and CTNNB1, increases the pool of cytoplasmic CTNNB1, and thereby negatively regulates Wnt signaling (PubMed:11953314, PubMed:9738936). Required for normal embryonic brain and skeleton development, and for normal angiogenesis (By similarity). Mediates the proteolytic cleavage of EphB2/CTF1 into EphB2/CTF2 (PubMed:17428795, PubMed:28269784). The holoprotein functions as a calcium-leak channel that allows the passive movement of calcium from endoplasmic reticulum to cytosol and is therefore involved in calcium homeostasis (PubMed:16959576, PubMed:25394380). Involved in the regulation of neurite outgrowth (PubMed:15004326, PubMed:20460383). Is a regulator of presynaptic facilitation, spike transmission and synaptic vesicles replenishment in a process that depends on gamma-secretase activity. It acts through the control of SYT7 presynaptic expression (By similarity). {ECO:0000250|UniProtKB:P49769, ECO:0000269|PubMed:10206644, ECO:0000269|PubMed:10545183, ECO:0000269|PubMed:10593990, ECO:0000269|PubMed:10811883, ECO:0000269|PubMed:10899933, ECO:0000269|PubMed:11953314, ECO:0000269|PubMed:12679784, ECO:0000269|PubMed:12740439, ECO:0000269|PubMed:15004326, ECO:0000269|PubMed:15274632, ECO:0000269|PubMed:15341515, ECO:0000269|PubMed:16305624, ECO:0000269|PubMed:16959576, ECO:0000269|PubMed:17428795, ECO:0000269|PubMed:20460383, ECO:0000269|PubMed:25043039, ECO:0000269|PubMed:25394380, ECO:0000269|PubMed:26280335, ECO:0000269|PubMed:28269784, ECO:0000269|PubMed:30598546, ECO:0000269|PubMed:30630874, ECO:0000269|PubMed:9738936}. |
P50148 | GNAQ | S154 | psp | Guanine nucleotide-binding protein G(q) subunit alpha (EC 3.6.5.-) (Guanine nucleotide-binding protein alpha-q) | Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades (PubMed:37991948). The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state (PubMed:37991948). Signaling by an activated GPCR promotes GDP release and GTP binding (PubMed:37991948). The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal (PubMed:37991948). Both GDP release and GTP hydrolysis are modulated by numerous regulatory proteins (PubMed:37991948). Signaling is mediated via phospholipase C-beta-dependent inositol lipid hydrolysis for signal propagation: activates phospholipase C-beta: following GPCR activation, GNAQ activates PLC-beta (PLCB1, PLCB2, PLCB3 or PLCB4), leading to production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:37991948). Required for platelet activation (By similarity). Regulates B-cell selection and survival and is required to prevent B-cell-dependent autoimmunity (By similarity). Regulates chemotaxis of BM-derived neutrophils and dendritic cells (in vitro) (By similarity). Transduces FFAR4 signaling in response to long-chain fatty acids (LCFAs) (PubMed:27852822). Together with GNA11, required for heart development (By similarity). {ECO:0000250|UniProtKB:P21279, ECO:0000269|PubMed:27852822, ECO:0000269|PubMed:37991948}. |
P50402 | EMD | S52 | ochoa | Emerin | Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}. |
P50548 | ERF | S185 | ochoa | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P50579 | METAP2 | S45 | ochoa | Methionine aminopeptidase 2 (MAP 2) (MetAP 2) (EC 3.4.11.18) (Initiation factor 2-associated 67 kDa glycoprotein) (p67) (p67eIF2) (Peptidase M) | Cotranslationally removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). The catalytic activity of human METAP2 toward Met-Val peptides is consistently two orders of magnitude higher than that of METAP1, suggesting that it is responsible for processing proteins containing N-terminal Met-Val and Met-Thr sequences in vivo.; FUNCTION: Protects eukaryotic initiation factor EIF2S1 from translation-inhibiting phosphorylation by inhibitory kinases such as EIF2AK2/PKR and EIF2AK1/HCR. Plays a critical role in the regulation of protein synthesis. |
P50851 | LRBA | S2201 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P52179 | MYOM1 | S68 | ochoa | Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54252 | ATXN3 | S256 | psp | Ataxin-3 (EC 3.4.19.12) (Machado-Joseph disease protein 1) (Spinocerebellar ataxia type 3 protein) | Deubiquitinating enzyme involved in protein homeostasis maintenance, transcription, cytoskeleton regulation, myogenesis and degradation of misfolded chaperone substrates (PubMed:12297501, PubMed:16118278, PubMed:17696782, PubMed:23625928, PubMed:28445460, PubMed:33157014). Binds long polyubiquitin chains and trims them, while it has weak or no activity against chains of 4 or less ubiquitins (PubMed:17696782). Involved in degradation of misfolded chaperone substrates via its interaction with STUB1/CHIP: recruited to monoubiquitinated STUB1/CHIP, and restricts the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (By similarity). Interacts with key regulators of transcription and represses transcription: acts as a histone-binding protein that regulates transcription (PubMed:12297501). Acts as a negative regulator of mTORC1 signaling in response to amino acid deprivation by mediating deubiquitination of RHEB, thereby promoting RHEB inactivation by the TSC-TBC complex (PubMed:33157014). Regulates autophagy via the deubiquitination of 'Lys-402' of BECN1 leading to the stabilization of BECN1 (PubMed:28445460). {ECO:0000250|UniProtKB:Q9CVD2, ECO:0000269|PubMed:12297501, ECO:0000269|PubMed:16118278, ECO:0000269|PubMed:17696782, ECO:0000269|PubMed:23625928, ECO:0000269|PubMed:28445460, ECO:0000269|PubMed:33157014}. |
P57737 | CORO7 | S24 | ochoa | Coronin-7 (Crn7) (70 kDa WD repeat tumor rejection antigen homolog) | F-actin regulator involved in anterograde Golgi to endosome transport: upon ubiquitination via 'Lys-33'-linked ubiquitin chains by the BCR(KLHL20) E3 ubiquitin ligase complex, interacts with EPS15 and localizes to the trans-Golgi network, where it promotes actin polymerization, thereby facilitating post-Golgi trafficking. May play a role in the maintenance of the Golgi apparatus morphology. {ECO:0000269|PubMed:16905771, ECO:0000269|PubMed:24768539}. |
P61254 | RPL26 | S32 | ochoa | Large ribosomal subunit protein uL24 (60S ribosomal protein L26) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:26100019, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:26100019, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:26100019}. |
P78352 | DLG4 | S480 | ochoa | Disks large homolog 4 (Postsynaptic density protein 95) (PSD-95) (Synapse-associated protein 90) (SAP-90) (SAP90) | Postsynaptic scaffolding protein that plays a critical role in synaptogenesis and synaptic plasticity by providing a platform for the postsynaptic clustering of crucial synaptic proteins. Interacts with the cytoplasmic tail of NMDA receptor subunits and shaker-type potassium channels. Required for synaptic plasticity associated with NMDA receptor signaling. Overexpression or depletion of DLG4 changes the ratio of excitatory to inhibitory synapses in hippocampal neurons. May reduce the amplitude of ASIC3 acid-evoked currents by retaining the channel intracellularly. May regulate the intracellular trafficking of ADR1B. Also regulates AMPA-type glutamate receptor (AMPAR) immobilization at postsynaptic density keeping the channels in an activated state in the presence of glutamate and preventing synaptic depression (By similarity). Under basal conditions, cooperates with FYN to stabilize palmitoyltransferase ZDHHC5 at the synaptic membrane through FYN-mediated phosphorylation of ZDHHC5 and its subsequent inhibition of association with endocytic proteins (PubMed:26334723). {ECO:0000250|UniProtKB:Q62108, ECO:0000269|PubMed:26334723}. |
P78524 | DENND2B | S515 | ochoa | DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) | [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}. |
P82970 | HMGN5 | S24 | ochoa | High mobility group nucleosome-binding domain-containing protein 5 (Nucleosome-binding protein 1) | Preferentially binds to euchromatin and modulates cellular transcription by counteracting linker histone-mediated chromatin compaction. {ECO:0000250}. |
P98082 | DAB2 | S449 | ochoa | Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) | Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}. |
P98153 | DGCR2 | S381 | ochoa | Integral membrane protein DGCR2/IDD | Putative adhesion receptor, that could be involved in cell-cell or cell-matrix interactions required for normal cell differentiation and migration. |
P98175 | RBM10 | S89 | ochoa|psp | RNA-binding protein 10 (G patch domain-containing protein 9) (RNA-binding motif protein 10) (RNA-binding protein S1-1) (S1-1) | Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May be involved in post-transcriptional processing, most probably in mRNA splicing (PubMed:18315527). Binds to RNA homopolymers, with a preference for poly(G) and poly(U) and little for poly(A) (By similarity). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000250|UniProtKB:P70501, ECO:0000269|PubMed:18315527, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:28431233}. |
Q01974 | ROR2 | S447 | ochoa | Tyrosine-protein kinase transmembrane receptor ROR2 (EC 2.7.10.1) (Neurotrophic tyrosine kinase, receptor-related 2) | Tyrosine-protein kinase receptor which may be involved in the early formation of the chondrocytes. It seems to be required for cartilage and growth plate development (By similarity). Phosphorylates YWHAB, leading to induction of osteogenesis and bone formation (PubMed:17717073). In contrast, has also been shown to have very little tyrosine kinase activity in vitro. May act as a receptor for wnt ligand WNT5A which may result in the inhibition of WNT3A-mediated signaling (PubMed:25029443). {ECO:0000250|UniProtKB:Q9Z138, ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:25029443}. |
Q03001 | DST | S7513 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q04637 | EIF4G1 | S1144 | ochoa | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q06587 | RING1 | S163 | ochoa | E3 ubiquitin-protein ligase RING1 (EC 2.3.2.27) (Polycomb complex protein RING1) (RING finger protein 1) (RING-type E3 ubiquitin transferase RING1) (Really interesting new gene 1 protein) | Constitutes one of the E3 ubiquitin-protein ligases that mediate monoubiquitination of 'Lys-119' of histone H2A, thereby playing a central role in histone code and gene regulation. H2A 'Lys-119' ubiquitination gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility. Compared to RNF2/RING2, it does not have the main E3 ubiquitin ligase activity on histone H2A, and it may rather act as a modulator of RNF2/RING2 activity. {ECO:0000269|PubMed:16359901}. |
Q07864 | POLE | S2022 | ochoa | DNA polymerase epsilon catalytic subunit A (EC 2.7.7.7) (3'-5' exodeoxyribonuclease) (EC 3.1.11.-) (DNA polymerase II subunit A) | Catalytic component of the DNA polymerase epsilon complex (PubMed:10801849). Participates in chromosomal DNA replication (By similarity). Required during synthesis of the leading DNA strands at the replication fork, binds at/or near replication origins and moves along DNA with the replication fork (By similarity). Has 3'-5' proofreading exonuclease activity that corrects errors arising during DNA replication (By similarity). Involved in DNA synthesis during DNA repair (PubMed:20227374, PubMed:27573199). Along with DNA polymerase POLD1 and DNA polymerase POLK, has a role in excision repair (NER) synthesis following UV irradiation (PubMed:20227374). {ECO:0000250|UniProtKB:P21951, ECO:0000269|PubMed:10801849, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:27573199}. |
Q08209 | PPP3CA | S492 | ochoa | Protein phosphatase 3 catalytic subunit alpha (EC 3.1.3.16) (CAM-PRP catalytic subunit) (Calcineurin A alpha) (Calmodulin-dependent calcineurin A subunit alpha isoform) (CNA alpha) (Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform) | Calcium-dependent, calmodulin-stimulated protein phosphatase which plays an essential role in the transduction of intracellular Ca(2+)-mediated signals (PubMed:15671020, PubMed:18838687, PubMed:19154138, PubMed:23468591, PubMed:30254215). Many of the substrates contain a PxIxIT motif and/or a LxVP motif (PubMed:17498738, PubMed:17502104, PubMed:22343722, PubMed:23468591, PubMed:27974827). In response to increased Ca(2+) levels, dephosphorylates and activates phosphatase SSH1 which results in cofilin dephosphorylation (PubMed:15671020). In response to increased Ca(2+) levels following mitochondrial depolarization, dephosphorylates DNM1L inducing DNM1L translocation to the mitochondrion (PubMed:18838687). Positively regulates the CACNA1B/CAV2.2-mediated Ca(2+) release probability at hippocampal neuronal soma and synaptic terminals (By similarity). Dephosphorylates heat shock protein HSPB1 (By similarity). Dephosphorylates and activates transcription factor NFATC1 (PubMed:19154138). In response to increased Ca(2+) levels, regulates NFAT-mediated transcription probably by dephosphorylating NFAT and promoting its nuclear translocation (PubMed:26248042). Dephosphorylates and inactivates transcription factor ELK1 (PubMed:19154138). Dephosphorylates DARPP32 (PubMed:19154138). May dephosphorylate CRTC2 at 'Ser-171' resulting in CRTC2 dissociation from 14-3-3 proteins (PubMed:30611118). Dephosphorylates transcription factor TFEB at 'Ser-211' following Coxsackievirus B3 infection, promoting nuclear translocation (PubMed:33691586). Required for postnatal development of the nephrogenic zone and superficial glomeruli in the kidneys, cell cycle homeostasis in the nephrogenic zone, and ultimately normal kidney function (By similarity). Plays a role in intracellular AQP2 processing and localization to the apical membrane in the kidney, may thereby be required for efficient kidney filtration (By similarity). Required for secretion of salivary enzymes amylase, peroxidase, lysozyme and sialic acid via formation of secretory vesicles in the submandibular glands (By similarity). Required for calcineurin activity and homosynaptic depotentiation in the hippocampus (By similarity). Required for normal differentiation and survival of keratinocytes and therefore required for epidermis superstructure formation (By similarity). Positively regulates osteoblastic bone formation, via promotion of osteoblast differentiation (By similarity). Positively regulates osteoclast differentiation, potentially via NFATC1 signaling (By similarity). May play a role in skeletal muscle fiber type specification, potentially via NFATC1 signaling (By similarity). Negatively regulates MAP3K14/NIK signaling via inhibition of nuclear translocation of the transcription factors RELA and RELB (By similarity). Required for antigen-specific T-cell proliferation response (By similarity). Dephosphorylates KLHL3, promoting the interaction between KLHL3 and WNK4 and subsequent degradation of WNK4 (PubMed:30718414). Negatively regulates SLC9A1 activity (PubMed:31375679). {ECO:0000250|UniProtKB:P48452, ECO:0000250|UniProtKB:P63328, ECO:0000250|UniProtKB:P63329, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:17498738, ECO:0000269|PubMed:17502104, ECO:0000269|PubMed:18838687, ECO:0000269|PubMed:19154138, ECO:0000269|PubMed:22343722, ECO:0000269|PubMed:23468591, ECO:0000269|PubMed:26248042, ECO:0000269|PubMed:27974827, ECO:0000269|PubMed:30254215, ECO:0000269|PubMed:30611118, ECO:0000269|PubMed:30718414, ECO:0000269|PubMed:31375679, ECO:0000269|PubMed:33691586}. |
Q08AD1 | CAMSAP2 | S418 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q12767 | TMEM94 | S801 | ochoa | Transmembrane protein 94 (Endoplasmic reticulum magnesium ATPase) | Could function in the uptake of Mg(2+) from the cytosol into the endoplasmic reticulum and regulate intracellular Mg(2+) homeostasis. {ECO:0000269|PubMed:38513662}. |
Q12789 | GTF3C1 | S1868 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12912 | IRAG2 | S378 | ochoa | Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] | Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}. |
Q12955 | ANK3 | S1462 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q13370 | PDE3B | S299 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13370 | PDE3B | S445 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13563 | PKD2 | S832 | ochoa | Polycystin-2 (PC2) (Autosomal dominant polycystic kidney disease type II protein) (Polycystic kidney disease 2 protein) (Polycystwin) (R48321) (Transient receptor potential cation channel subfamily P member 2) | Forms a nonselective cation channel (PubMed:11854751, PubMed:11991947, PubMed:15692563, PubMed:26269590, PubMed:27071085, PubMed:31441214, PubMed:39009345). Can function as a homotetrameric ion channel or can form heteromer with PKD1 (PubMed:31441214, PubMed:33164752). Displays distinct function depending on its subcellular localization and regulation by its binding partners (PubMed:11854751, PubMed:11991947, PubMed:27214281, PubMed:29899465). In primary cilium functions as a cation channel, with a preference for monovalent cations over divalent cations that allows K(+), Na(+) and Ca(2+) influx, with low selectivity for Ca(2+) (PubMed:27071085). Involved in fluid-flow mechanosensation by the primary cilium in renal epithelium (By similarity). In the endoplasmic reticulum, likely functions as a K(+) channel to facilitate Ca(2+) release (By similarity). The heterotetrameric PKD1/PKD2 channel has higher Ca(2+) permeability than homomeric PKD2 channel and acts as a primarily Ca(2+)-permeable channel (PubMed:31441214). Interacts with and acts as a regulator of a number of other channels, such as TRPV4, TRPC1, IP3R, RYR2, ultimately further affecting intracellular signaling, to modulate intracellular Ca(2+) signaling (PubMed:11854751, PubMed:11991947, PubMed:27214281, PubMed:29899465). Together with TRPV4, forms mechano- and thermosensitive channels in cilium (PubMed:18695040). In cardiomyocytes, PKD2 modulates Ca(2+) release from stimulated RYR2 receptors through direct association (By similarity). Also involved in left-right axis specification via its role in sensing nodal flow; forms a complex with PKD1L1 in cilia to facilitate flow detection in left-right patterning (By similarity). Acts as a regulator of cilium length together with PKD1 (By similarity). Mediates systemic blood pressure and contributes to the myogenic response in cerebral arteries though vasoconstriction (By similarity). {ECO:0000250|UniProtKB:O35245, ECO:0000269|PubMed:11854751, ECO:0000269|PubMed:11991947, ECO:0000269|PubMed:15692563, ECO:0000269|PubMed:18695040, ECO:0000269|PubMed:26269590, ECO:0000269|PubMed:27071085, ECO:0000269|PubMed:27214281, ECO:0000269|PubMed:29899465, ECO:0000269|PubMed:31441214, ECO:0000269|PubMed:33164752, ECO:0000269|PubMed:39009345}. |
Q13835 | PKP1 | S121 | ochoa|psp | Plakophilin-1 (Band 6 protein) (B6P) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}. |
Q13905 | RAPGEF1 | S338 | ochoa | Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) | Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}. |
Q14123 | PDE1C | S472 | ochoa | Dual specificity calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1C (Cam-PDE 1C) (EC 3.1.4.17) (Hcam3) | Calmodulin-dependent cyclic nucleotide phosphodiesterase with a dual specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:29860631, PubMed:8557689). Has a high affinity for both cAMP and cGMP (PubMed:8557689). Modulates the amplitude and duration of the cAMP signal in sensory cilia in response to odorant stimulation, hence contributing to the generation of action potentials. Regulates smooth muscle cell proliferation. Regulates the stability of growth factor receptors, including PDGFRB (Probable). {ECO:0000269|PubMed:29860631, ECO:0000269|PubMed:8557689, ECO:0000305|PubMed:29860631}. |
Q14149 | MORC3 | S549 | ochoa | MORC family CW-type zinc finger protein 3 (Nuclear matrix protein 2) (Zinc finger CW-type coiled-coil domain protein 3) | Nuclear matrix protein which forms MORC3-NBs (nuclear bodies) via an ATP-dependent mechanism and plays a role in innate immunity by restricting different viruses through modulation of the IFN response (PubMed:27440897, PubMed:34759314). Mechanistically, possesses a primary antiviral function through a MORC3-regulated element that activates IFNB1, and this function is guarded by a secondary IFN-repressing function (PubMed:34759314). Sumoylated MORC3-NBs associates with PML-NBs and recruits TP53 and SP100, thus regulating TP53 activity (PubMed:17332504, PubMed:20501696). Binds RNA in vitro (PubMed:11927593). Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:11927593, ECO:0000269|PubMed:17332504, ECO:0000269|PubMed:20501696, ECO:0000269|PubMed:26933034, ECO:0000269|PubMed:27440897, ECO:0000269|PubMed:34759314}.; FUNCTION: (Microbial infection) May be required for influenza A transcription during viral infection (PubMed:26202233). {ECO:0000269|PubMed:26202233}. |
Q14511 | NEDD9 | S298 | ochoa|psp | Enhancer of filamentation 1 (hEF1) (CRK-associated substrate-related protein) (CAS-L) (CasL) (Cas scaffolding protein family member 2) (CASS2) (Neural precursor cell expressed developmentally down-regulated protein 9) (NEDD-9) (Renal carcinoma antigen NY-REN-12) (p105) [Cleaved into: Enhancer of filamentation 1 p55] | Scaffolding protein which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion (PubMed:24574519). As a focal adhesion protein, plays a role in embryonic fibroblast migration (By similarity). May play an important role in integrin beta-1 or B cell antigen receptor (BCR) mediated signaling in B- and T-cells. Integrin beta-1 stimulation leads to recruitment of various proteins including CRKL and SHPTP2 to the tyrosine phosphorylated form (PubMed:9020138). Promotes adhesion and migration of lymphocytes; as a result required for the correct migration of lymphocytes to the spleen and other secondary lymphoid organs (PubMed:17174122). Plays a role in the organization of T-cell F-actin cortical cytoskeleton and the centralization of T-cell receptor microclusters at the immunological synapse (By similarity). Negatively regulates cilia outgrowth in polarized cysts (By similarity). Modulates cilia disassembly via activation of AURKA-mediated phosphorylation of HDAC6 and subsequent deacetylation of alpha-tubulin (PubMed:17604723). Positively regulates RANKL-induced osteoclastogenesis (By similarity). Required for the maintenance of hippocampal dendritic spines in the dentate gyrus and CA1 regions, thereby involved in spatial learning and memory (By similarity). {ECO:0000250|UniProtKB:A0A8I3PDQ1, ECO:0000250|UniProtKB:O35177, ECO:0000269|PubMed:17174122, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:24574519, ECO:0000269|PubMed:9020138}. |
Q14674 | ESPL1 | S1475 | ochoa | Separin (EC 3.4.22.49) (Caspase-like protein ESPL1) (Extra spindle poles-like 1 protein) (Separase) | Caspase-like protease, which plays a central role in the chromosome segregation by cleaving the SCC1/RAD21 subunit of the cohesin complex at the onset of anaphase. During most of the cell cycle, it is inactivated by different mechanisms. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11509732}. |
Q14739 | LBR | S101 | ochoa | Delta(14)-sterol reductase LBR (Delta-14-SR) (EC 1.3.1.70) (3-beta-hydroxysterol Delta (14)-reductase) (C-14 sterol reductase) (C14SR) (Integral nuclear envelope inner membrane protein) (LMN2R) (Lamin-B receptor) (Sterol C14-reductase) | Catalyzes the reduction of the C14-unsaturated bond of lanosterol, as part of the metabolic pathway leading to cholesterol biosynthesis (PubMed:12618959, PubMed:16784888, PubMed:21327084, PubMed:27336722, PubMed:9630650). Plays a critical role in myeloid cell cholesterol biosynthesis which is essential to both myeloid cell growth and functional maturation (By similarity). Mediates the activation of NADPH oxidases, perhaps by maintaining critical levels of cholesterol required for membrane lipid raft formation during neutrophil differentiation (By similarity). Anchors the lamina and the heterochromatin to the inner nuclear membrane (PubMed:10828963). {ECO:0000250|UniProtKB:Q3U9G9, ECO:0000269|PubMed:10828963, ECO:0000269|PubMed:12618959, ECO:0000269|PubMed:16784888, ECO:0000269|PubMed:21327084, ECO:0000269|PubMed:27336722, ECO:0000269|PubMed:9630650}. |
Q15020 | SART3 | S650 | ochoa | Spliceosome associated factor 3, U4/U6 recycling protein (Squamous cell carcinoma antigen recognized by T-cells 3) (SART-3) (Tat-interacting protein of 110 kDa) (Tip110) (p110 nuclear RNA-binding protein) | U6 snRNP-binding protein that functions as a recycling factor of the splicing machinery. Promotes the initial reassembly of U4 and U6 snRNPs following their ejection from the spliceosome during its maturation (PubMed:12032085). Also binds U6atac snRNPs and may function as a recycling factor for U4atac/U6atac spliceosomal snRNP, an initial step in the assembly of U12-type spliceosomal complex. The U12-type spliceosomal complex plays a role in the splicing of introns with non-canonical splice sites (PubMed:14749385). May also function as a substrate-targeting factor for deubiquitinases like USP4 and USP15. Recruits USP4 to ubiquitinated PRPF3 within the U4/U5/U6 tri-snRNP complex, promoting PRPF3 deubiquitination and thereby regulating the spliceosome U4/U5/U6 tri-snRNP spliceosomal complex disassembly (PubMed:20595234). May also recruit the deubiquitinase USP15 to histone H2B and mediate histone deubiquitination, thereby regulating gene expression and/or DNA repair (PubMed:24526689). May play a role in hematopoiesis probably through transcription regulation of specific genes including MYC (By similarity). {ECO:0000250|UniProtKB:Q9JLI8, ECO:0000269|PubMed:12032085, ECO:0000269|PubMed:14749385, ECO:0000269|PubMed:20595234, ECO:0000269|PubMed:24526689}.; FUNCTION: Regulates Tat transactivation activity through direct interaction. May be a cellular factor for HIV-1 gene expression and viral replication. {ECO:0000269|PubMed:11959860}. |
Q15029 | EFTUD2 | S944 | ochoa | 116 kDa U5 small nuclear ribonucleoprotein component (Elongation factor Tu GTP-binding domain-containing protein 2) (SNU114 homolog) (hSNU114) (U5 snRNP-specific protein, 116 kDa) (U5-116 kDa) | Required for pre-mRNA splicing as component of the spliceosome, including pre-catalytic, catalytic and post-catalytic spliceosomal complexes (PubMed:25092792, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30315277, PubMed:30705154). Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome (PubMed:16723661). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:16723661, ECO:0000269|PubMed:25092792, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:30705154, ECO:0000305|PubMed:33509932}. |
Q15139 | PRKD1 | S208 | ochoa|psp | Serine/threonine-protein kinase D1 (EC 2.7.11.13) (Protein kinase C mu type) (Protein kinase D) (nPKC-D1) (nPKC-mu) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response (PubMed:10764790, PubMed:12505989, PubMed:12637538, PubMed:17442957, PubMed:18509061, PubMed:19135240, PubMed:19211839). Phosphorylates the epidermal growth factor receptor (EGFR) on dual threonine residues, which leads to the suppression of epidermal growth factor (EGF)-induced MAPK8/JNK1 activation and subsequent JUN phosphorylation (PubMed:10523301). Phosphorylates RIN1, inducing RIN1 binding to 14-3-3 proteins YWHAB, YWHAE and YWHAZ and increased competition with RAF1 for binding to GTP-bound form of Ras proteins (NRAS, HRAS and KRAS). Acts downstream of the heterotrimeric G-protein beta/gamma-subunit complex to maintain the structural integrity of the Golgi membranes, and is required for protein transport along the secretory pathway. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane. May act by activating the lipid kinase phosphatidylinositol 4-kinase beta (PI4KB) at the TGN for the local synthesis of phosphorylated inositol lipids, which induces a sequential production of DAG, phosphatidic acid (PA) and lyso-PA (LPA) that are necessary for membrane fission and generation of specific transport carriers to the cell surface. Under oxidative stress, is phosphorylated at Tyr-463 via SRC-ABL1 and contributes to cell survival by activating IKK complex and subsequent nuclear translocation and activation of NFKB1 (PubMed:12505989). Involved in cell migration by regulating integrin alpha-5/beta-3 recycling and promoting its recruitment in newly forming focal adhesion. In osteoblast differentiation, mediates the bone morphogenetic protein 2 (BMP2)-induced nuclear export of HDAC7, which results in the inhibition of HDAC7 transcriptional repression of RUNX2 (PubMed:18509061). In neurons, plays an important role in neuronal polarity by regulating the biogenesis of TGN-derived dendritic vesicles, and is involved in the maintenance of dendritic arborization and Golgi structure in hippocampal cells. May potentiate mitogenesis induced by the neuropeptide bombesin or vasopressin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression. Plays an important role in the proliferative response induced by low calcium in keratinocytes, through sustained activation of MAPK1/3 (ERK1/2) pathway. Downstream of novel PKC signaling, plays a role in cardiac hypertrophy by phosphorylating HDAC5, which in turn triggers XPO1/CRM1-dependent nuclear export of HDAC5, MEF2A transcriptional activation and induction of downstream target genes that promote myocyte hypertrophy and pathological cardiac remodeling (PubMed:18332134). Mediates cardiac troponin I (TNNI3) phosphorylation at the PKA sites, which results in reduced myofilament calcium sensitivity, and accelerated crossbridge cycling kinetics. The PRKD1-HDAC5 pathway is also involved in angiogenesis by mediating VEGFA-induced specific subset of gene expression, cell migration, and tube formation (PubMed:19211839). In response to VEGFA, is necessary and required for HDAC7 phosphorylation which induces HDAC7 nuclear export and endothelial cell proliferation and migration. During apoptosis induced by cytarabine and other genotoxic agents, PRKD1 is cleaved by caspase-3 at Asp-378, resulting in activation of its kinase function and increased sensitivity of cells to the cytotoxic effects of genotoxic agents (PubMed:10764790). In epithelial cells, is required for transducing flagellin-stimulated inflammatory responses by binding and phosphorylating TLR5, which contributes to MAPK14/p38 activation and production of inflammatory cytokines (PubMed:17442957). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). May play a role in inflammatory response by mediating activation of NF-kappa-B. May be involved in pain transmission by directly modulating TRPV1 receptor (PubMed:15471852). Plays a role in activated KRAS-mediated stabilization of ZNF304 in colorectal cancer (CRC) cells (PubMed:24623306). Regulates nuclear translocation of transcription factor TFEB in macrophages upon live S.enterica infection (By similarity). {ECO:0000250|UniProtKB:Q62101, ECO:0000269|PubMed:10523301, ECO:0000269|PubMed:10764790, ECO:0000269|PubMed:12505989, ECO:0000269|PubMed:12637538, ECO:0000269|PubMed:15471852, ECO:0000269|PubMed:17442957, ECO:0000269|PubMed:18332134, ECO:0000269|PubMed:18509061, ECO:0000269|PubMed:19135240, ECO:0000269|PubMed:19211839, ECO:0000269|PubMed:24623306}. |
Q15345 | LRRC41 | S330 | ochoa | Leucine-rich repeat-containing protein 41 (Protein Muf1) | Probable substrate recognition component of an ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. {ECO:0000269|PubMed:15601820}. |
Q15561 | TEAD4 | S69 | ochoa | Transcriptional enhancer factor TEF-3 (TEA domain family member 4) (TEAD-4) (Transcription factor 13-like 1) (Transcription factor RTEF-1) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and non-cooperatively to the Sph and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q15562 | TEAD2 | S71 | ochoa | Transcriptional enhancer factor TEF-4 (TEA domain family member 2) (TEAD-2) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3'). May be involved in the gene regulation of neural development. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q15697 | ZNF174 | S173 | ochoa | Zinc finger protein 174 (AW-1) (Zinc finger and SCAN domain-containing protein 8) | Transcriptional repressor. {ECO:0000269|PubMed:7673192}. |
Q15751 | HERC1 | S2723 | ochoa | Probable E3 ubiquitin-protein ligase HERC1 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 1) (HECT-type E3 ubiquitin transferase HERC1) (p532) (p619) | Involved in membrane trafficking via some guanine nucleotide exchange factor (GEF) activity and its ability to bind clathrin. Acts as a GEF for Arf and Rab, by exchanging bound GDP for free GTP. Binds phosphatidylinositol 4,5-bisphosphate, which is required for GEF activity. May also act as a E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:15642342, ECO:0000269|PubMed:8861955, ECO:0000269|PubMed:9233772}. |
Q15811 | ITSN1 | S315 | ochoa | Intersectin-1 (SH3 domain-containing protein 1A) (SH3P17) | Adapter protein that provides a link between the endocytic membrane traffic and the actin assembly machinery (PubMed:11584276, PubMed:29887380). Acts as a guanine nucleotide exchange factor (GEF) for CDC42, and thereby stimulates actin nucleation mediated by WASL and the ARP2/3 complex (PubMed:11584276). Plays a role in the assembly and maturation of clathrin-coated vesicles (By similarity). Recruits FCHSD2 to clathrin-coated pits (PubMed:29887380). Involved in endocytosis of activated EGFR, and probably also other growth factor receptors (By similarity). Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR may involve association with DAB2 (PubMed:22648170). Promotes ubiquitination and subsequent degradation of EGFR, and thereby contributes to the down-regulation of EGFR-dependent signaling pathways. In chromaffin cells, required for normal exocytosis of catecholamines. Required for rapid replenishment of release-ready synaptic vesicles at presynaptic active zones (By similarity). Inhibits ARHGAP31 activity toward RAC1 (PubMed:11744688). {ECO:0000250|UniProtKB:Q9WVE9, ECO:0000250|UniProtKB:Q9Z0R4, ECO:0000269|PubMed:11584276, ECO:0000269|PubMed:11744688, ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:29887380}.; FUNCTION: [Isoform 1]: Plays a role in synaptic vesicle endocytosis in brain neurons. {ECO:0000250|UniProtKB:Q9Z0R4}. |
Q16584 | MAP3K11 | S556 | psp | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q16637 | SMN1 | S28 | ochoa|psp | Survival motor neuron protein (Component of gems 1) (Gemin-1) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9845364). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Within the SMN complex, SMN1 acts as a structural backbone and together with GEMIN2 it gathers the Sm complex subunits (PubMed:17178713, PubMed:21816274, PubMed:22101937). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development (PubMed:23063131). Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:17178713, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:22101937, ECO:0000269|PubMed:23063131, ECO:0000269|PubMed:26700805, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9845364}. |
Q2PPJ7 | RALGAPA2 | S376 | ochoa | Ral GTPase-activating protein subunit alpha-2 (250 kDa substrate of Akt) (AS250) (p220) | Catalytic subunit of the heterodimeric RalGAP2 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q32MZ4 | LRRFIP1 | S68 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q32P44 | EML3 | S159 | ochoa | Echinoderm microtubule-associated protein-like 3 (EMAP-3) | Regulates mitotic spindle assembly, microtubule (MT)-kinetochore attachment and chromosome separation via recruitment of HAUS augmin-like complex and TUBG1 to the existing MTs and promoting MT-based MT nucleation (PubMed:30723163). Required for proper alignnment of chromosomes during metaphase (PubMed:18445686). {ECO:0000269|PubMed:18445686, ECO:0000269|PubMed:30723163}. |
Q4G0A6 | MINDY4 | S236 | ochoa | Probable ubiquitin carboxyl-terminal hydrolase MINDY-4 (EC 3.4.19.12) (Probable deubiquitinating enzyme MINDY-4) | Probable hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins. {ECO:0000250|UniProtKB:Q8NBR6}. |
Q59EK9 | RUNDC3A | S369 | ochoa | RUN domain-containing protein 3A (Rap2-interacting protein 8) (RPIP-8) | May act as an effector of RAP2A in neuronal cells. {ECO:0000250}. |
Q5D1E8 | ZC3H12A | S362 | ochoa | Endoribonuclease ZC3H12A (EC 3.1.-.-) (Monocyte chemotactic protein-induced protein 1) (MCP-induced protein 1) (MCPIP-1) (Regnase-1) (Reg1) (Zinc finger CCCH domain-containing protein 12A) | Endoribonuclease involved in various biological functions such as cellular inflammatory response and immune homeostasis, glial differentiation of neuroprogenitor cells, cell death of cardiomyocytes, adipogenesis and angiogenesis. Functions as an endoribonuclease involved in mRNA decay (PubMed:19909337). Modulates the inflammatory response by promoting the degradation of a set of translationally active cytokine-induced inflammation-related mRNAs, such as IL6 and IL12B, during the early phase of inflammation (PubMed:26320658). Prevents aberrant T-cell-mediated immune reaction by degradation of multiple mRNAs controlling T-cell activation, such as those encoding cytokines (IL6 and IL2), cell surface receptors (ICOS, TNFRSF4 and TNFR2) and transcription factor (REL) (By similarity). Inhibits cooperatively with ZC3H12A the differentiation of helper T cells Th17 in lungs. They repress target mRNA encoding the Th17 cell-promoting factors IL6, ICOS, REL, IRF4, NFKBID and NFKBIZ. The cooperation requires RNA-binding by RC3H1 and the nuclease activity of ZC3H12A (By similarity). Together with RC3H1, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Self regulates by destabilizing its own mRNA (By similarity). Cleaves mRNA harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-dependent manner (PubMed:19909337, PubMed:22561375, PubMed:26134560, PubMed:26320658). Plays a role in the inhibition of microRNAs (miRNAs) biogenesis (PubMed:22055188). Cleaves the terminal loop of a set of precursor miRNAs (pre-miRNAs) important for the regulation of the inflammatory response leading to their degradation, and thus preventing the biosynthesis of mature miRNAs (PubMed:22055188). Also plays a role in promoting angiogenesis in response to inflammatory cytokines by inhibiting the production of antiangiogenic microRNAs via its anti-dicer RNase activity (PubMed:24048733). Affects the overall ubiquitination of cellular proteins (By similarity). Positively regulates deubiquitinase activity promoting the cleavage at 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains on TNF receptor-associated factors (TRAFs), preventing JNK and NF-kappa-B signaling pathway activation, and hence negatively regulating macrophage-mediated inflammatory response and immune homeostasis (By similarity). Also induces deubiquitination of the transcription factor HIF1A, probably leading to its stabilization and nuclear import, thereby positively regulating the expression of proangiogenic HIF1A-targeted genes (PubMed:24048733). Involved in a TANK-dependent negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Prevents stress granule (SGs) formation and promotes macrophage apoptosis under stress conditions, including arsenite-induced oxidative stress, heat shock and energy deprivation (By similarity). Plays a role in the regulation of macrophage polarization; promotes IL4-induced polarization of macrophages M1 into anti-inflammatory M2 state (By similarity). May also act as a transcription factor that regulates the expression of multiple genes involved in inflammatory response, angiogenesis, adipogenesis and apoptosis (PubMed:16574901, PubMed:18364357). Functions as a positive regulator of glial differentiation of neuroprogenitor cells through an amyloid precursor protein (APP)-dependent signaling pathway (PubMed:19185603). Attenuates septic myocardial contractile dysfunction in response to lipopolysaccharide (LPS) by reducing I-kappa-B-kinase (IKK)-mediated NF-kappa-B activation, and hence myocardial pro-inflammatory cytokine production (By similarity). {ECO:0000250|UniProtKB:Q5D1E7, ECO:0000269|PubMed:16574901, ECO:0000269|PubMed:18364357, ECO:0000269|PubMed:19185603, ECO:0000269|PubMed:19909337, ECO:0000269|PubMed:22055188, ECO:0000269|PubMed:22561375, ECO:0000269|PubMed:24048733, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:26134560, ECO:0000269|PubMed:26320658}.; FUNCTION: (Microbial infection) Binds to Japanese encephalitis virus (JEV) and Dengue virus (DEN) RNAs. {ECO:0000269|PubMed:23355615}.; FUNCTION: (Microbial infection) Exhibits antiviral activity against HIV-1 in lymphocytes by decreasing the abundance of HIV-1 viral RNA species. {ECO:0000269|PubMed:24191027}. |
Q5JRA6 | MIA3 | S1702 | ochoa | Transport and Golgi organization protein 1 homolog (TANGO1) (C219-reactive peptide) (D320) (Melanoma inhibitory activity protein 3) | Plays a role in the transport of cargos that are too large to fit into COPII-coated vesicles and require specific mechanisms to be incorporated into membrane-bound carriers and exported from the endoplasmic reticulum. This protein is required for collagen VII (COL7A1) secretion by loading COL7A1 into transport carriers. It may participate in cargo loading of COL7A1 at endoplasmic reticulum exit sites by binding to COPII coat subunits Sec23/24 and guiding SH3-bound COL7A1 into a growing carrier. Does not play a role in global protein secretion and is apparently specific to COL7A1 cargo loading. However, it may participate in secretion of other proteins in cells that do not secrete COL7A1. It is also specifically required for the secretion of lipoproteins by participating in their export from the endoplasmic reticulum (PubMed:19269366, PubMed:27138255). Required for correct assembly of COPII coat components at endoplasmic reticulum exit sites (ERES) and for the localization of SEC16A and membrane-bound ER-resident complexes consisting of MIA2 and PREB/SEC12 to ERES (PubMed:28442536). {ECO:0000269|PubMed:19269366, ECO:0000269|PubMed:27138255, ECO:0000269|PubMed:28442536}. |
Q5JSZ5 | PRRC2B | S1153 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JSZ5 | PRRC2B | S1395 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5SNT2 | TMEM201 | S444 | ochoa | Transmembrane protein 201 (Spindle-associated membrane protein 1) | Critical regulator of angiogenesis and endothelial cell (EC) migration (PubMed:35311970). Promotes the migration of endothelial cells, which is essential for angiogenesis (PubMed:35311970). Interacts with the linker of nucleoskeleton and cytoskeleton (LINC) complex, which plays a vital role in connecting the cell's cytoskeleton to the nuclear envelope (PubMed:35311970). This interaction is essential for maintaining cellular structure and facilitating the movement of endothelial cells, which is critical for proper vascular development (PubMed:35311970). Involved in nuclear movement during fibroblast polarization and migration (By similarity). Overexpression can recruit Ran GTPase to the nuclear periphery (PubMed:27541860). {ECO:0000250|UniProtKB:A2A8U2, ECO:0000269|PubMed:35311970, ECO:0000305|PubMed:27541860}.; FUNCTION: [Isoform 2]: May define a distinct membrane domain in the vicinity of the mitotic spindle (PubMed:19494128). Involved in the organization of the nuclear envelope implicating EMD, SUN1 and A-type lamina (PubMed:21610090). {ECO:0000269|PubMed:19494128, ECO:0000269|PubMed:21610090}. |
Q5T200 | ZC3H13 | S1282 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T4S7 | UBR4 | S4117 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5TBA9 | FRY | S2490 | ochoa | Protein furry homolog | Plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting PLK1 activity at the spindle poles in early mitosis. May function as a scaffold promoting the interaction between AURKA and PLK1, thereby enhancing AURKA-mediated PLK1 phosphorylation. {ECO:0000269|PubMed:22753416}. |
Q5TC82 | RC3H1 | S462 | ochoa | Roquin-1 (Roquin) (EC 2.3.2.27) (RING finger and C3H zinc finger protein 1) (RING finger and CCCH-type zinc finger domain-containing protein 1) (RING finger protein 198) | Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF, TNFRSF4 and in many more mRNAs (PubMed:25026078, PubMed:31636267). Cleaves translationally inactive mRNAs harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-independent manner (By similarity). Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs (By similarity). In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity (By similarity). In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression (By similarity). Also recognizes CDE in its own mRNA and in that of paralogous RC3H2, possibly leading to feedback loop regulation (By similarity). Recognizes and binds mRNAs containing a hexaloop stem-loop motif, called alternative decay element (ADE) (By similarity). Together with ZC3H12A, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Able to interact with double-stranded RNA (dsRNA) (PubMed:25026078, PubMed:25504471). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406, PubMed:31636267). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2A, UBE2B, UBE2D2, UBE2F, UBE2G1, UBE2G2 and UBE2L3 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). {ECO:0000250|UniProtKB:Q4VGL6, ECO:0000269|PubMed:25026078, ECO:0000269|PubMed:25504471, ECO:0000269|PubMed:25697406, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:31636267}. |
Q5TC82 | RC3H1 | S863 | ochoa | Roquin-1 (Roquin) (EC 2.3.2.27) (RING finger and C3H zinc finger protein 1) (RING finger and CCCH-type zinc finger domain-containing protein 1) (RING finger protein 198) | Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF, TNFRSF4 and in many more mRNAs (PubMed:25026078, PubMed:31636267). Cleaves translationally inactive mRNAs harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-independent manner (By similarity). Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs (By similarity). In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity (By similarity). In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression (By similarity). Also recognizes CDE in its own mRNA and in that of paralogous RC3H2, possibly leading to feedback loop regulation (By similarity). Recognizes and binds mRNAs containing a hexaloop stem-loop motif, called alternative decay element (ADE) (By similarity). Together with ZC3H12A, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Able to interact with double-stranded RNA (dsRNA) (PubMed:25026078, PubMed:25504471). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406, PubMed:31636267). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2A, UBE2B, UBE2D2, UBE2F, UBE2G1, UBE2G2 and UBE2L3 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). {ECO:0000250|UniProtKB:Q4VGL6, ECO:0000269|PubMed:25026078, ECO:0000269|PubMed:25504471, ECO:0000269|PubMed:25697406, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:31636267}. |
Q5U5Q3 | MEX3C | S540 | ochoa | RNA-binding E3 ubiquitin-protein ligase MEX3C (EC 2.3.2.27) (RING finger and KH domain-containing protein 2) (RING finger protein 194) (RING-type E3 ubiquitin transferase MEX3C) | E3 ubiquitin ligase responsible for the post-transcriptional regulation of common HLA-A allotypes. Binds to the 3' UTR of HLA-A2 mRNA, and regulates its levels by promoting mRNA decay. RNA binding is sufficient to prevent translation, but ubiquitin ligase activity is required for mRNA degradation. {ECO:0000269|PubMed:22863774, ECO:0000269|PubMed:23446422}. |
Q68CZ2 | TNS3 | S944 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q6IQ23 | PLEKHA7 | S608 | ochoa | Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) | Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}. |
Q6IQ26 | DENND5A | S1096 | ochoa | DENN domain-containing protein 5A (Rab6-interacting protein 1) (Rab6IP1) | Guanine nucleotide exchange factor (GEF) which may activate RAB6A and RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. Involved in the negative regulation of neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:G3V7Q0, ECO:0000269|PubMed:20937701}. |
Q6NZ67 | MZT2B | S34 | ochoa | Mitotic-spindle organizing protein 2B (Mitotic-spindle organizing protein associated with a ring of gamma-tubulin 2B) | Required for the recruitment and the assembly of the gamma-tubulin ring complex (gTuRC) at the centrosome (PubMed:20360068, PubMed:39321809). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:39321809). {ECO:0000269|PubMed:20360068, ECO:0000269|PubMed:39321809}. |
Q6P597 | KLC3 | S176 | ochoa | Kinesin light chain 3 (KLC2-like) (kinesin light chain 2) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport. Plays a role during spermiogenesis in the development of the sperm tail midpiece and in the normal function of spermatozoa (By similarity). May play a role in the formation of the mitochondrial sheath formation in the developing spermatid midpiece (By similarity). {ECO:0000250|UniProtKB:Q91W40}. |
Q6P597 | KLC3 | S433 | ochoa | Kinesin light chain 3 (KLC2-like) (kinesin light chain 2) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport. Plays a role during spermiogenesis in the development of the sperm tail midpiece and in the normal function of spermatozoa (By similarity). May play a role in the formation of the mitochondrial sheath formation in the developing spermatid midpiece (By similarity). {ECO:0000250|UniProtKB:Q91W40}. |
Q6P6C2 | ALKBH5 | S364 | ochoa | RNA demethylase ALKBH5 (EC 1.14.11.53) (Alkylated DNA repair protein alkB homolog 5) (Alpha-ketoglutarate-dependent dioxygenase alkB homolog 5) | Dioxygenase that specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes (PubMed:23177736, PubMed:24489119, PubMed:24616105, PubMed:24778178, PubMed:34048572, PubMed:36944332, PubMed:37257451, PubMed:37369679). Demethylates RNA by oxidative demethylation, which requires molecular oxygen, alpha-ketoglutarate and iron (PubMed:21264265, PubMed:23177736, PubMed:24489119, PubMed:24616105, PubMed:24778178). Demethylation of m6A mRNA affects mRNA processing, translation and export (PubMed:23177736, PubMed:34048572, PubMed:36944332, PubMed:37257451). Can also demethylate N(6)-methyladenosine in single-stranded DNA (in vitro) (PubMed:24616105). Required for the late meiotic and haploid phases of spermatogenesis by mediating m6A demethylation in spermatocytes and round spermatids: m6A demethylation of target transcripts is required for correct splicing and the production of longer 3'-UTR mRNAs in male germ cells (By similarity). Involved in paraspeckle assembly, a nuclear membraneless organelle, by undergoing liquid-liquid phase separation (PubMed:37369679, PubMed:37474102). Paraspeckle assembly is coupled with m6A demethylation of RNAs, such as NEAT1 non-coding RNA (PubMed:37474102). Also acts as a negative regulator of T-cell development: inhibits gamma-delta T-cell proliferation via demethylation of JAG1 and NOTCH2 transcripts (By similarity). Inhibits regulatory T-cell (Treg) recruitment by mediating demethylation and destabilization of CCL28 mRNAs (By similarity). {ECO:0000250|UniProtKB:Q3TSG4, ECO:0000269|PubMed:21264265, ECO:0000269|PubMed:23177736, ECO:0000269|PubMed:24489119, ECO:0000269|PubMed:24616105, ECO:0000269|PubMed:24778178, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:36944332, ECO:0000269|PubMed:37257451, ECO:0000269|PubMed:37369679, ECO:0000269|PubMed:37474102}. |
Q6UUV9 | CRTC1 | S153 | ochoa | CREB-regulated transcription coactivator 1 (Mucoepidermoid carcinoma translocated protein 1) (Transducer of regulated cAMP response element-binding protein 1) (TORC-1) (Transducer of CREB protein 1) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PGC1alpha and inducer of mitochondrial biogenesis in muscle cells. In the hippocampus, involved in late-phase long-term potentiation (L-LTP) maintenance at the Schaffer collateral-CA1 synapses. May be required for dendritic growth of developing cortical neurons (By similarity). In concert with SIK1, regulates the light-induced entrainment of the circadian clock. In response to light stimulus, coactivates the CREB-mediated transcription of PER1 which plays an important role in the photic entrainment of the circadian clock. {ECO:0000250|UniProtKB:Q157S1, ECO:0000250|UniProtKB:Q68ED7, ECO:0000269|PubMed:23699513}.; FUNCTION: (Microbial infection) Plays a role of coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:16809310}. |
Q6WCQ1 | MPRIP | S381 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q6WCQ1 | MPRIP | S540 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q6WKZ4 | RAB11FIP1 | S438 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6ZNL6 | FGD5 | S703 | ochoa | FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}. |
Q6ZS17 | RIPOR1 | S427 | ochoa | Rho family-interacting cell polarization regulator 1 | Downstream effector protein for Rho-type small GTPases that plays a role in cell polarity and directional migration (PubMed:27807006). Acts as an adapter protein, linking active Rho proteins to STK24 and STK26 kinases, and hence positively regulates Golgi reorientation in polarized cell migration upon Rho activation (PubMed:27807006). Involved in the subcellular relocation of STK26 from the Golgi to cytoplasm punctae in a Rho- and PDCD10-dependent manner upon serum stimulation (PubMed:27807006). {ECO:0000269|PubMed:27807006}. |
Q6ZUT9 | DENND5B | S1079 | ochoa | DENN domain-containing protein 5B (Rab6IP1-like protein) | Guanine nucleotide exchange factor (GEF) which may activate RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}. |
Q70CQ2 | USP34 | S1461 | ochoa | Ubiquitin carboxyl-terminal hydrolase 34 (EC 3.4.19.12) (Deubiquitinating enzyme 34) (Ubiquitin thioesterase 34) (Ubiquitin-specific-processing protease 34) | Ubiquitin hydrolase that can remove conjugated ubiquitin from AXIN1 and AXIN2, thereby acting as a regulator of Wnt signaling pathway. Acts as an activator of the Wnt signaling pathway downstream of the beta-catenin destruction complex by deubiquitinating and stabilizing AXIN1 and AXIN2, leading to promote nuclear accumulation of AXIN1 and AXIN2 and positively regulate beta-catenin (CTNBB1)-mediated transcription. Recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins. {ECO:0000269|PubMed:21383061}. |
Q717R9 | CYS1 | S20 | ochoa | Cystin-1 (Cilia-associated protein) | None |
Q7KZF4 | SND1 | S238 | ochoa | Staphylococcal nuclease domain-containing protein 1 (EC 3.1.31.1) (100 kDa coactivator) (EBNA2 coactivator p100) (Tudor domain-containing protein 11) (p100 co-activator) | Endonuclease that mediates miRNA decay of both protein-free and AGO2-loaded miRNAs (PubMed:18453631, PubMed:28546213). As part of its function in miRNA decay, regulates mRNAs involved in G1-to-S phase transition (PubMed:28546213). Functions as a bridging factor between STAT6 and the basal transcription factor (PubMed:12234934). Plays a role in PIM1 regulation of MYB activity (PubMed:9809063). Functions as a transcriptional coactivator for STAT5 (By similarity). {ECO:0000250|UniProtKB:Q78PY7, ECO:0000269|PubMed:12234934, ECO:0000269|PubMed:18453631, ECO:0000269|PubMed:28546213, ECO:0000269|PubMed:9809063}.; FUNCTION: (Microbial infection) Functions as a transcriptional coactivator for the Epstein-Barr virus nuclear antigen 2 (EBNA2). {ECO:0000269|PubMed:7651391}.; FUNCTION: (Microbial infection) Promotes SARS-CoV-2 RNA synthesis by binding to negative-sense RNA and the viral protein nsp9. {ECO:0000269|PubMed:37794589}. |
Q7L2J0 | MEPCE | S175 | ochoa | 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) | S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}. |
Q7Z2Z1 | TICRR | S838 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z3C6 | ATG9A | S738 | ochoa | Autophagy-related protein 9A (APG9-like 1) (mATG9) | Phospholipid scramblase involved in autophagy by mediating autophagosomal membrane expansion (PubMed:22456507, PubMed:27510922, PubMed:29437695, PubMed:32513819, PubMed:32610138, PubMed:33106659, PubMed:33468622, PubMed:33850023). Cycles between the preautophagosomal structure/phagophore assembly site (PAS) and the cytoplasmic vesicle pool and supplies membrane for the growing autophagosome (PubMed:16940348, PubMed:22456507, PubMed:33106659). Lipid scramblase activity plays a key role in preautophagosomal structure/phagophore assembly by distributing the phospholipids that arrive through ATG2 (ATG2A or ATG2B) from the cytoplasmic to the luminal leaflet of the bilayer, thereby driving autophagosomal membrane expansion (PubMed:33106659). Also required to supply phosphatidylinositol 4-phosphate to the autophagosome initiation site by recruiting the phosphatidylinositol 4-kinase beta (PI4KB) in a process dependent on ARFIP2, but not ARFIP1 (PubMed:30917996). In addition to autophagy, also plays a role in necrotic cell death (By similarity). {ECO:0000250|UniProtKB:Q68FE2, ECO:0000269|PubMed:16940348, ECO:0000269|PubMed:22456507, ECO:0000269|PubMed:27510922, ECO:0000269|PubMed:29437695, ECO:0000269|PubMed:30917996, ECO:0000269|PubMed:32513819, ECO:0000269|PubMed:32610138, ECO:0000269|PubMed:33106659, ECO:0000269|PubMed:33468622, ECO:0000269|PubMed:33850023}. |
Q7Z460 | CLASP1 | S649 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q7Z628 | NET1 | S21 | ochoa | Neuroepithelial cell-transforming gene 1 protein (Proto-oncogene p65 Net1) (Rho guanine nucleotide exchange factor 8) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPase. May be involved in activation of the SAPK/JNK pathway Stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:21373644}. |
Q7Z628 | NET1 | S24 | ochoa | Neuroepithelial cell-transforming gene 1 protein (Proto-oncogene p65 Net1) (Rho guanine nucleotide exchange factor 8) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPase. May be involved in activation of the SAPK/JNK pathway Stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:21373644}. |
Q7Z628 | NET1 | S542 | ochoa | Neuroepithelial cell-transforming gene 1 protein (Proto-oncogene p65 Net1) (Rho guanine nucleotide exchange factor 8) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPase. May be involved in activation of the SAPK/JNK pathway Stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:21373644}. |
Q7Z6B7 | SRGAP1 | S917 | ochoa | SLIT-ROBO Rho GTPase-activating protein 1 (srGAP1) (Rho GTPase-activating protein 13) | GTPase-activating protein for RhoA and Cdc42 small GTPases. Together with CDC42 seems to be involved in the pathway mediating the repulsive signaling of Robo and Slit proteins in neuronal migration. SLIT2, probably through interaction with ROBO1, increases the interaction of SRGAP1 with ROBO1 and inactivates CDC42. {ECO:0000269|PubMed:11672528}. |
Q7Z6E9 | RBBP6 | S945 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6J6 | FRMD5 | S375 | ochoa | FERM domain-containing protein 5 | May be involved in regulation of cell migration (PubMed:22846708, PubMed:25448675). May regulate cell-matrix interactions via its interaction with ITGB5 and modifying ITGB5 cytoplasmic tail interactions such as with FERMT2 and TLN1. May regulate ROCK1 kinase activity possibly involved in regulation of actin stress fiber formation (PubMed:25448675). |
Q86UU0 | BCL9L | T918 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86VP3 | PACS2 | S437 | psp | Phosphofurin acidic cluster sorting protein 2 (PACS-2) (PACS1-like protein) | Multifunctional sorting protein that controls the endoplasmic reticulum (ER)-mitochondria communication, including the apposition of mitochondria with the ER and ER homeostasis. In addition, in response to apoptotic inducer, translocates BIB to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated BID, the release of cytochrome c, the activation of caspase-3 thereby causing cell death. May also be involved in ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments. {ECO:0000269|PubMed:15692563, ECO:0000269|PubMed:15692567}. |
Q86VR2 | RETREG3 | S28 | ochoa | Reticulophagy regulator 3 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Promotes ER membrane curvature and ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes (PubMed:33826365). Required for collagen quality control in a LIR motif-dependent manner (By similarity). Mediates NRF1-enhanced neurite outgrowth (PubMed:26040720). {ECO:0000250|UniProtKB:Q9CQV4, ECO:0000269|PubMed:26040720, ECO:0000269|PubMed:33826365, ECO:0000269|PubMed:34338405}. |
Q86X51 | EZHIP | S365 | ochoa | EZH inhibitory protein | Inhibits PRC2/EED-EZH1 and PRC2/EED-EZH2 complex function by inhibiting EZH1/EZH2 methyltransferase activity, thereby causing down-regulation of histone H3 trimethylation on 'Lys-27' (H3K27me3) (PubMed:29909548, PubMed:30923826, PubMed:31086175, PubMed:31451685). Probably inhibits methyltransferase activity by limiting the stimulatory effect of cofactors such as AEBP2 and JARID2 (PubMed:30923826). Inhibits H3K27me3 deposition during spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B1B0V2, ECO:0000269|PubMed:29909548, ECO:0000269|PubMed:30923826, ECO:0000269|PubMed:31086175, ECO:0000269|PubMed:31451685}. |
Q8IV36 | HID1 | S673 | ochoa | Protein HID1 (Down-regulated in multiple cancers 1) (HID1 domain-containing protein) (Protein hid-1 homolog) | May play an important role in the development of cancers in a broad range of tissues. {ECO:0000269|PubMed:11281419}. |
Q8IYB1 | MB21D2 | S436 | ochoa | Nucleotidyltransferase MB21D2 (EC 2.7.7.-) (Mab-21 domain-containing protein 2) (hMB21D2) | Probable nucleotidyltransferase that catalyzes the formation of cyclic dinucleotide second messenger in response to some unknown stimulus. {ECO:0000305|PubMed:34261127}. |
Q8N103 | TAGAP | S71 | ochoa | T-cell activation Rho GTPase-activating protein (T-cell activation GTPase-activating protein) | May function as a GTPase-activating protein and may play important roles during T-cell activation. {ECO:0000269|PubMed:15177553}. |
Q8N1G0 | ZNF687 | S1085 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N370 | SLC43A2 | S277 | ochoa | Large neutral amino acids transporter small subunit 4 (L-type amino acid transporter 4) (Solute carrier family 43 member 2) | Uniporter that mediates the transport of the stereospecific L-phenylalanine, L-methionine and L-branched-chain amino acids, between the extracellular space and the cytoplasm and may control the transepithelial (re)absorption of neutral amino acid in kidney and small intestine (PubMed:15659399, PubMed:30379325). The transport activity is mediated through facilitated diffusion and is sodium ions-, chloride ions- and pH-independent (PubMed:15659399). {ECO:0000269|PubMed:15659399, ECO:0000269|PubMed:30379325}. |
Q8N3A8 | PARP8 | S459 | ochoa | Protein mono-ADP-ribosyltransferase PARP8 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 16) (ARTD16) (Poly [ADP-ribose] polymerase 8) (PARP-8) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}. |
Q8N3C7 | CLIP4 | T583 | ochoa | CAP-Gly domain-containing linker protein 4 (Restin-like protein 2) | None |
Q8N3V7 | SYNPO | S623 | ochoa | Synaptopodin | Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}. |
Q8N4N8 | KIF2B | S201 | psp | Kinesin-like protein KIF2B | Plus end-directed microtubule-dependent motor required for spindle assembly and chromosome movement. Has microtubule depolymerization activity (PubMed:17538014). Plays a role in chromosome congression (PubMed:23891108). {ECO:0000269|PubMed:17538014, ECO:0000269|PubMed:23891108}. |
Q8N5V2 | NGEF | S606 | ochoa | Ephexin-1 (Eph-interacting exchange protein) (Neuronal guanine nucleotide exchange factor) | Acts as a guanine nucleotide exchange factor (GEF) which differentially activates the GTPases RHOA, RAC1 and CDC42. Plays a role in axon guidance regulating ephrin-induced growth cone collapse and dendritic spine morphogenesis. Upon activation by ephrin through EPHA4, the GEF activity switches toward RHOA resulting in its activation. Activated RHOA promotes cone retraction at the expense of RAC1- and CDC42-stimulated growth cone extension (By similarity). {ECO:0000250}. |
Q8NEJ9 | NGDN | S204 | ochoa | Neuroguidin (Centromere accumulated nuclear protein 1) (CANu1) (EIF4E-binding protein) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Its dissociation from the complex determines the transition from state pre-A1 to state pre-A1* (PubMed:34516797). Inhibits mRNA translation in a cytoplasmic polyadenylation element (CPE)-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q9DB96, ECO:0000269|PubMed:34516797}. |
Q8NEY8 | PPHLN1 | S113 | ochoa | Periphilin-1 (CDC7 expression repressor) (CR) (Gastric cancer antigen Ga50) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression. The HUSH complex is recruited to genomic loci rich in H3K9me3 and is probably required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3. In the HUSH complex, contributes to the maintenance of the complex at chromatin (PubMed:26022416). Acts as a transcriptional corepressor and regulates the cell cycle, probably via the HUSH complex (PubMed:15474462, PubMed:17963697). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). May be involved in epithelial differentiation by contributing to epidermal integrity and barrier formation (PubMed:12853457). {ECO:0000269|PubMed:15474462, ECO:0000269|PubMed:17963697, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:30487602, ECO:0000305|PubMed:12853457}. |
Q8NFW9 | MYRIP | S534 | ochoa | Rab effector MyRIP (Exophilin-8) (Myosin-VIIa- and Rab-interacting protein) (Synaptotagmin-like protein lacking C2 domains C) (SlaC2-c) (Slp homolog lacking C2 domains c) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor proteins MYO5A and MYO7A. May link RAB27A-containing vesicles to actin filaments. Functions as a protein kinase A-anchoring protein (AKAP). May act as a scaffolding protein that links PKA to components of the exocytosis machinery, thus facilitating exocytosis, including insulin release (By similarity). {ECO:0000250}. |
Q8NHH9 | ATL2 | S27 | ochoa | Atlastin-2 (ATL-2) (EC 3.6.5.-) (ADP-ribosylation factor-like protein 6-interacting protein 2) | Atlastin-2 (ATL2) is a membrane-anchored GTPase that mediates the GTP-dependent fusion of endoplasmic reticulum (ER) membranes, maintaining the continuous ER network. It facilitates the formation of three-way junctions where ER tubules intersect (PubMed:18270207, PubMed:19665976, PubMed:22065636, PubMed:27619977, PubMed:34817557). Two atlastin-2 on neighboring ER tubules bind GTP and form loose homodimers through the GB1/RHD3-type G domains and 3HB regions. Upon GTP hydrolysis, the 3HB regions tighten, pulling the membranes together to drive their fusion. After fusion, the homodimer disassembles upon release of inorganic phosphate (Pi). Subsequently, GDP dissociates, resetting the monomers to a conformation ready for a new fusion cycle (By similarity). {ECO:0000250|UniProtKB:Q8WXF7, ECO:0000269|PubMed:18270207, ECO:0000269|PubMed:19665976, ECO:0000269|PubMed:22065636, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:34817557}. |
Q8TBB1 | LNX1 | S238 | ochoa | E3 ubiquitin-protein ligase LNX (EC 2.3.2.27) (Ligand of Numb-protein X 1) (Numb-binding protein 1) (PDZ domain-containing RING finger protein 2) (RING-type E3 ubiquitin transferase LNX) | E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of NUMB. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Mediates ubiquitination of isoform p66 and isoform p72 of NUMB, but not that of isoform p71 or isoform p65. {ECO:0000250|UniProtKB:O70263}.; FUNCTION: Isoform 2 provides an endocytic scaffold for IGSF5/JAM4. {ECO:0000250|UniProtKB:O70263}. |
Q8TBP0 | TBC1D16 | S383 | ochoa | TBC1 domain family member 16 | May act as a GTPase-activating protein for Rab family protein(s). |
Q8TCN5 | ZNF507 | S489 | ochoa | Zinc finger protein 507 | May be involved in transcriptional regulation. |
Q8TEH3 | DENND1A | S523 | ochoa | DENN domain-containing protein 1A (Connecdenn 1) (Connecdenn) (Protein FAM31A) | Guanine nucleotide exchange factor (GEF) regulating clathrin-mediated endocytosis through RAB35 activation. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form. Regulates clathrin-mediated endocytosis of synaptic vesicles and mediates exit from early endosomes (PubMed:20154091, PubMed:20937701). Binds phosphatidylinositol-phosphates (PtdInsPs), with some preference for PtdIns(3)P (By similarity). {ECO:0000250|UniProtKB:Q8K382, ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701}. |
Q8TF40 | FNIP1 | S296 | ochoa | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8WVZ9 | KBTBD7 | S26 | ochoa | Kelch repeat and BTB domain-containing protein 7 | As part of the CUL3(KBTBD6/7) E3 ubiquitin ligase complex functions as a substrate adapter for the RAC1 guanine exchange factor (GEF) TIAM1, mediating its 'Lys-48' ubiquitination and proteasomal degradation (PubMed:25684205). By controlling this ubiquitination, regulates RAC1 signal transduction and downstream biological processes including the organization of the cytoskeleton, cell migration and cell proliferation (PubMed:25684205). Ubiquitination of TIAM1 requires the membrane-associated protein GABARAP which may restrict locally the activity of the complex (PubMed:25684205). {ECO:0000269|PubMed:25684205}. |
Q8WVZ9 | KBTBD7 | S29 | ochoa | Kelch repeat and BTB domain-containing protein 7 | As part of the CUL3(KBTBD6/7) E3 ubiquitin ligase complex functions as a substrate adapter for the RAC1 guanine exchange factor (GEF) TIAM1, mediating its 'Lys-48' ubiquitination and proteasomal degradation (PubMed:25684205). By controlling this ubiquitination, regulates RAC1 signal transduction and downstream biological processes including the organization of the cytoskeleton, cell migration and cell proliferation (PubMed:25684205). Ubiquitination of TIAM1 requires the membrane-associated protein GABARAP which may restrict locally the activity of the complex (PubMed:25684205). {ECO:0000269|PubMed:25684205}. |
Q8WXH0 | SYNE2 | Y4111 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WZ75 | ROBO4 | S564 | ochoa | Roundabout homolog 4 (Magic roundabout) | Receptor for Slit proteins, at least for SLIT2, and seems to be involved in angiogenesis and vascular patterning. May mediate the inhibition of primary endothelial cell migration by Slit proteins (By similarity). Involved in the maintenance of endothelial barrier organization and function (PubMed:30455415). {ECO:0000250, ECO:0000269|PubMed:30455415}. |
Q92545 | TMEM131 | S1178 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92614 | MYO18A | S1070 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q93073 | SECISBP2L | T254 | ochoa | Selenocysteine insertion sequence-binding protein 2-like (SECIS-binding protein 2-like) | Binds SECIS (Sec insertion sequence) elements present on selenocysteine (Sec) protein mRNAs, but does not promote Sec incorporation into selenoproteins in vitro. |
Q96D71 | REPS1 | Y275 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96E39 | RBMXL1 | S208 | ochoa | RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) | RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}. |
Q96HA1 | POM121 | S108 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96HB5 | CCDC120 | S283 | ochoa | Coiled-coil domain-containing protein 120 | Centriolar protein required for centriole subdistal appendage assembly and microtubule anchoring in interphase cells (PubMed:28422092). Together with CCDC68, cooperate with subdistal appendage components ODF2, NIN and CEP170 for hierarchical subdistal appendage assembly (PubMed:28422092). Recruits NIN and CEP170 to centrosomes (PubMed:28422092). Also required for neurite growth. Localizes CYTH2 to vesicles to allow its transport along neurites, and subsequent ARF6 activation and neurite growth. {ECO:0000269|PubMed:25326380}. |
Q96JP5 | ZFP91 | S85 | ochoa | E3 ubiquitin-protein ligase ZFP91 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase ZFP91) (Zinc finger protein 757) (Zinc finger protein 91 homolog) (Zfp-91) | Atypical E3 ubiquitin-protein ligase that mediates 'Lys-63'-linked ubiquitination of MAP3K14/NIK, leading to stabilize and activate MAP3K14/NIK. It thereby acts as an activator of the non-canonical NF-kappa-B2/NFKB2 pathway. May also play an important role in cell proliferation and/or anti-apoptosis. {ECO:0000269|PubMed:12738986, ECO:0000269|PubMed:20682767}. |
Q96JP5 | ZFP91 | S296 | ochoa | E3 ubiquitin-protein ligase ZFP91 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase ZFP91) (Zinc finger protein 757) (Zinc finger protein 91 homolog) (Zfp-91) | Atypical E3 ubiquitin-protein ligase that mediates 'Lys-63'-linked ubiquitination of MAP3K14/NIK, leading to stabilize and activate MAP3K14/NIK. It thereby acts as an activator of the non-canonical NF-kappa-B2/NFKB2 pathway. May also play an important role in cell proliferation and/or anti-apoptosis. {ECO:0000269|PubMed:12738986, ECO:0000269|PubMed:20682767}. |
Q96LR2 | LURAP1 | S129 | ochoa | Leucine rich adaptor protein 1 (Leucine repeat adapter protein 35A) | Acts as an activator of the canonical NF-kappa-B pathway and drive the production of pro-inflammatory cytokines. Promotes the antigen (Ag)-presenting and priming function of dendritic cells via the canonical NF-kappa-B pathway (PubMed:21048106). In concert with MYO18A and CDC42BPA/CDC42BPB, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration. Activates CDC42BPA/CDC42BPB and targets it to actomyosin through its interaction with MYO18A, leading to MYL9/MLC2 phosphorylation and MYH9/MYH10-dependent actomyosin assembly in the lamella (By similarity). {ECO:0000250|UniProtKB:D4A8G3, ECO:0000269|PubMed:21048106}. |
Q96PE2 | ARHGEF17 | S145 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96Q42 | ALS2 | S1335 | ochoa | Alsin (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 6 protein) (Amyotrophic lateral sclerosis 2 protein) | May act as a GTPase regulator. Controls survival and growth of spinal motoneurons (By similarity). {ECO:0000250}. |
Q96QD9 | FYTTD1 | S61 | ochoa | UAP56-interacting factor (Forty-two-three domain-containing protein 1) (Protein 40-2-3) | Required for mRNA export from the nucleus to the cytoplasm. Acts as an adapter that uses the DDX39B/UAP56-NFX1 pathway to ensure efficient mRNA export and delivering to the nuclear pore. Associates with spliced and unspliced mRNAs simultaneously with ALYREF/THOC4. {ECO:0000269|PubMed:19836239}. |
Q96QZ7 | MAGI1 | S1361 | ochoa | Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1 (Atrophin-1-interacting protein 3) (AIP-3) (BAI1-associated protein 1) (BAP-1) (Membrane-associated guanylate kinase inverted 1) (MAGI-1) (Trinucleotide repeat-containing gene 19 protein) (WW domain-containing protein 3) (WWP3) | Plays a role in coupling actin fibers to cell junctions in endothelial cells, via its interaction with AMOTL2 and CDH5 (By similarity). May regulate acid-induced ASIC3 currents by modulating its expression at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q6RHR9}. |
Q96RU3 | FNBP1 | Y500 | ochoa | Formin-binding protein 1 (Formin-binding protein 17) (hFBP17) | May act as a link between RND2 signaling and regulation of the actin cytoskeleton (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during the late stage of clathrin-mediated endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also enhances actin polymerization via the recruitment of WASL/N-WASP, which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:15252009, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:16418535, ECO:0000269|PubMed:17512409}. |
Q96S55 | WRNIP1 | S78 | ochoa | ATPase WRNIP1 (EC 3.6.1.-) (Werner helicase-interacting protein 1) | Functions as a modulator of initiation or reinitiation events during DNA polymerase delta-mediated DNA synthesis. In the presence of ATP, stimulation of DNA polymerase delta-mediated DNA synthesis is decreased. Also plays a role in the innate immune defense against viruses. Stabilizes the RIGI dsRNA interaction and promotes RIGI 'Lys-63'-linked polyubiquitination. In turn, RIGI transmits the signal through mitochondrial MAVS. {ECO:0000269|PubMed:15670210, ECO:0000269|PubMed:29053956}. |
Q96ST8 | CEP89 | S117 | ochoa | Centrosomal protein of 89 kDa (Cep89) (Centrosomal protein 123) (Cep123) (Coiled-coil domain-containing protein 123) | Required for ciliogenesis. Also plays a role in mitochondrial metabolism where it may modulate complex IV activity. {ECO:0000269|PubMed:23348840, ECO:0000269|PubMed:23575228}. |
Q99594 | TEAD3 | S61 | ochoa | Transcriptional enhancer factor TEF-5 (DTEF-1) (TEA domain family member 3) (TEAD-3) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q9BQ52 | ELAC2 | S237 | ochoa | Zinc phosphodiesterase ELAC protein 2 (EC 3.1.26.11) (ElaC homolog protein 2) (Heredity prostate cancer protein 2) (Ribonuclease Z 2) (RNase Z 2) (tRNA 3 endonuclease 2) (tRNase Z 2) | Zinc phosphodiesterase, which displays mitochondrial tRNA 3'-processing endonuclease activity. Involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA (PubMed:21593607). Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly (PubMed:24703694). {ECO:0000269|PubMed:21593607, ECO:0000269|PubMed:24703694}. |
Q9BR77 | CCDC77 | S36 | ochoa | Coiled-coil domain-containing protein 77 | None |
Q9BV36 | MLPH | S554 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BVI0 | PHF20 | S332 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BVQ7 | AFG2B | S610 | ochoa | ATPase family gene 2 protein homolog B (EC 3.6.4.10) (AFG2 AAA ATPase homolog B) (Ribosome biogenesis protein SPATA5L1) (Spermatogenesis-associated protein 5-like protein 1) | ATP-dependent chaperone part of the 55LCC heterohexameric ATPase complex which is chromatin-associated and promotes replisome proteostasis to maintain replication fork progression and genome stability. Required for replication fork progression, sister chromatid cohesion, and chromosome stability. The ATPase activity is specifically enhanced by replication fork DNA and is coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. Uses ATPase activity to process replisome substrates in S-phase, facilitating their proteolytic turnover from chromatin to ensure DNA replication and mitotic fidelity (PubMed:38554706). Plays an essential role in the cytoplasmic maturation steps of pre-60S ribosomal particles by promoting the release of shuttling protein RSL24D1/RLP24 from the pre-ribosomal particles (PubMed:35354024). {ECO:0000269|PubMed:35354024, ECO:0000269|PubMed:38554706}. |
Q9BXL7 | CARD11 | S442 | ochoa | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BYW2 | SETD2 | S1885 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZ23 | PANK2 | S171 | ochoa | Pantothenate kinase 2, mitochondrial (hPanK2) (EC 2.7.1.33) (Pantothenic acid kinase 2) [Cleaved into: Pantothenate kinase 2, mitochondrial intermediate form (iPanK2); Pantothenate kinase 2, mitochondrial mature form (mPanK2)] | [Isoform 1]: Mitochondrial isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis (PubMed:15659606, PubMed:16272150, PubMed:17242360, PubMed:17825826). Required for angiogenic activity of umbilical vein of endothelial cells (HUVEC) (PubMed:30221726). {ECO:0000269|PubMed:15659606, ECO:0000269|PubMed:16272150, ECO:0000269|PubMed:17242360, ECO:0000269|PubMed:17825826, ECO:0000269|PubMed:30221726}.; FUNCTION: [Isoform 4]: Cytoplasmic isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis. {ECO:0000269|PubMed:16272150}. |
Q9BZL6 | PRKD2 | S200 | ochoa | Serine/threonine-protein kinase D2 (EC 2.7.11.13) (nPKC-D2) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion (PubMed:14743217, PubMed:15604256, PubMed:16928771, PubMed:17077180, PubMed:17951978, PubMed:17962809, PubMed:18262756, PubMed:19001381, PubMed:19192391, PubMed:23503467, PubMed:28428613). May potentiate mitogenesis induced by the neuropeptide bombesin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression (By similarity). In response to oxidative stress, is phosphorylated at Tyr-438 and Tyr-717 by ABL1, which leads to the activation of PRKD2 without increasing its catalytic activity, and mediates activation of NF-kappa-B (PubMed:15604256, PubMed:28428613). In response to the activation of the gastrin receptor CCKBR, is phosphorylated at Ser-244 by CSNK1D and CSNK1E, translocates to the nucleus, phosphorylates HDAC7, leading to nuclear export of HDAC7 and inhibition of HDAC7 transcriptional repression of NR4A1/NUR77 (PubMed:17962809). Upon TCR stimulation, is activated independently of ZAP70, translocates from the cytoplasm to the nucleus and is required for interleukin-2 (IL2) promoter up-regulation (PubMed:17077180). During adaptive immune responses, is required in peripheral T-lymphocytes for the production of the effector cytokines IL2 and IFNG after TCR engagement and for optimal induction of antibody responses to antigens (By similarity). In epithelial cells stimulated with lysophosphatidic acid (LPA), is activated through a PKC-dependent pathway and mediates LPA-stimulated interleukin-8 (IL8) secretion via a NF-kappa-B-dependent pathway (PubMed:16928771). During TCR-induced T-cell activation, interacts with and is activated by the tyrosine kinase LCK, which results in the activation of the NFAT transcription factors (PubMed:19192391). In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane and in polarized cells is involved in the transport of proteins from the TGN to the basolateral membrane (PubMed:14743217). Plays an important role in endothelial cell proliferation and migration prior to angiogenesis, partly through modulation of the expression of KDR/VEGFR2 and FGFR1, two key growth factor receptors involved in angiogenesis (PubMed:19001381). In secretory pathway, is required for the release of chromogranin-A (CHGA)-containing secretory granules from the TGN (PubMed:18262756). Downstream of PRKCA, plays important roles in angiotensin-2-induced monocyte adhesion to endothelial cells (PubMed:17951978). Plays a regulatory role in angiogenesis and tumor growth by phosphorylating a downstream mediator CIB1 isoform 2, resulting in vascular endothelial growth factor A (VEGFA) secretion (PubMed:23503467). {ECO:0000250|UniProtKB:Q8BZ03, ECO:0000269|PubMed:14743217, ECO:0000269|PubMed:15604256, ECO:0000269|PubMed:16928771, ECO:0000269|PubMed:17077180, ECO:0000269|PubMed:17951978, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:18262756, ECO:0000269|PubMed:19001381, ECO:0000269|PubMed:19192391, ECO:0000269|PubMed:23503467, ECO:0000269|PubMed:28428613}. |
Q9C0C2 | TNKS1BP1 | S1476 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9GZX7 | AICDA | S41 | psp | Single-stranded DNA cytosine deaminase (EC 3.5.4.38) (Activation-induced cytidine deaminase) (AID) (Cytidine aminohydrolase) | Single-stranded DNA-specific cytidine deaminase. Involved in somatic hypermutation (SHM), gene conversion, and class-switch recombination (CSR) in B-lymphocytes by deaminating C to U during transcription of Ig-variable (V) and Ig-switch (S) region DNA. Required for several crucial steps of B-cell terminal differentiation necessary for efficient antibody responses (PubMed:18722174, PubMed:21385873, PubMed:21518874, PubMed:27716525). May also play a role in the epigenetic regulation of gene expression by participating in DNA demethylation (PubMed:21496894). {ECO:0000269|PubMed:18722174, ECO:0000269|PubMed:21385873, ECO:0000269|PubMed:21496894, ECO:0000269|PubMed:21518874, ECO:0000269|PubMed:27716525}. |
Q9H0B6 | KLC2 | S507 | ochoa | Kinesin light chain 2 (KLC 2) | Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}. |
Q9H0K1 | SIK2 | S590 | ochoa | Serine/threonine-protein kinase SIK2 (EC 2.7.11.1) (Qin-induced kinase) (Salt-inducible kinase 2) (SIK-2) (Serine/threonine-protein kinase SNF1-like kinase 2) | Serine/threonine-protein kinase that plays a role in many biological processes such as fatty acid oxidation, autophagy, immune response or glucose metabolism (PubMed:23322770, PubMed:26983400). Phosphorylates 'Ser-794' of IRS1 in insulin-stimulated adipocytes, potentially modulating the efficiency of insulin signal transduction. Inhibits CREB activity by phosphorylating and repressing TORCs, the CREB-specific coactivators (PubMed:15454081). Phosphorylates EP300 and thus inhibits its histone acetyltransferase activity (PubMed:21084751, PubMed:26983400). In turn, regulates the DNA-binding ability of several transcription factors such as PPARA or MLXIPL (PubMed:21084751, PubMed:26983400). Also plays a role in thymic T-cell development (By similarity). {ECO:0000250|UniProtKB:Q8CFH6, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:21084751, ECO:0000269|PubMed:23322770, ECO:0000269|PubMed:26983400}. |
Q9H2H9 | SLC38A1 | S56 | ochoa | Sodium-coupled neutral amino acid symporter 1 (Amino acid transporter A1) (N-system amino acid transporter 2) (Solute carrier family 38 member 1) (System A amino acid transporter 1) (System N amino acid transporter 1) | Symporter that cotransports short-chain neutral amino acids and sodium ions from the extraccellular to the intracellular side of the cell membrane (PubMed:10891391, PubMed:20599747). The transport is elctrogenic, pH dependent and driven by the Na(+) electrochemical gradient (PubMed:10891391). Participates in the astroglia-derived glutamine transport into GABAergic interneurons for neurotransmitter GABA de novo synthesis (By similarity). May also contributes to amino acid transport in placental trophoblasts (PubMed:20599747). Also regulates synaptic plasticity (PubMed:12388062). {ECO:0000250|UniProtKB:Q8K2P7, ECO:0000250|UniProtKB:Q9JM15, ECO:0000269|PubMed:10891391, ECO:0000269|PubMed:12388062, ECO:0000269|PubMed:20599747}. |
Q9H2M9 | RAB3GAP2 | S41 | ochoa | Rab3 GTPase-activating protein non-catalytic subunit (RGAP-iso) (Rab3 GTPase-activating protein 150 kDa subunit) (Rab3-GAP p150) (Rab3-GAP150) (Rab3-GAP regulatory subunit) | Regulatory subunit of the Rab3 GTPase-activating (Rab3GAP) complex composed of RAB3GAP1 and RAB3GAP2, which has GTPase-activating protein (GAP) activity towards various Rab3 subfamily members (RAB3A, RAB3B, RAB3C and RAB3D), RAB5A and RAB43, and guanine nucleotide exchange factor (GEF) activity towards RAB18 (PubMed:24891604, PubMed:9733780). As part of the Rab3GAP complex, acts as a GAP for Rab3 proteins by converting active RAB3-GTP to the inactive form RAB3-GDP (By similarity). Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones (By similarity). The Rab3GAP complex acts as a GEF for RAB18 by promoting the conversion of inactive RAB18-GDP to the active form RAB18-GTP (PubMed:24891604). Recruits and stabilizes RAB18 at the cis-Golgi membrane in human fibroblasts where RAB18 is most likely activated (PubMed:26063829). Also involved in RAB18 recruitment at the endoplasmic reticulum (ER) membrane where it maintains proper ER structure (PubMed:24891604). Required for normal eye and brain development (By similarity). May participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters (By similarity). {ECO:0000250|UniProtKB:Q15042, ECO:0000269|PubMed:24891604, ECO:0000269|PubMed:26063829, ECO:0000269|PubMed:9733780}. |
Q9H334 | FOXP1 | Y443 | ochoa | Forkhead box protein P1 (Mac-1-regulated forkhead) (MFH) | Transcriptional repressor (PubMed:18347093, PubMed:26647308). Can act with CTBP1 to synergistically repress transcription but CTPBP1 is not essential (By similarity). Plays an important role in the specification and differentiation of lung epithelium. Acts cooperatively with FOXP4 to regulate lung secretory epithelial cell fate and regeneration by restricting the goblet cell lineage program; the function may involve regulation of AGR2. Essential transcriptional regulator of B-cell development. Involved in regulation of cardiac muscle cell proliferation. Involved in the columnar organization of spinal motor neurons. Promotes the formation of the lateral motor neuron column (LMC) and the preganglionic motor column (PGC) and is required for respective appropriate motor axon projections. The segment-appropriate generation of spinal cord motor columns requires cooperation with other Hox proteins. Can regulate PITX3 promoter activity; may promote midbrain identity in embryonic stem cell-derived dopamine neurons by regulating PITX3. Negatively regulates the differentiation of T follicular helper cells T(FH)s. Involved in maintenance of hair follicle stem cell quiescence; the function probably involves regulation of FGF18 (By similarity). Represses transcription of various pro-apoptotic genes and cooperates with NF-kappa B-signaling in promoting B-cell expansion by inhibition of caspase-dependent apoptosis (PubMed:25267198). Binds to CSF1R promoter elements and is involved in regulation of monocyte differentiation and macrophage functions; repression of CSF1R in monocytes seems to involve NCOR2 as corepressor (PubMed:15286807, PubMed:18347093, PubMed:18799727). Involved in endothelial cell proliferation, tube formation and migration indicative for a role in angiogenesis; the role in neovascularization seems to implicate suppression of SEMA5B (PubMed:24023716). Can negatively regulate androgen receptor signaling (PubMed:18640093). Acts as a transcriptional activator of the FBXL7 promoter; this activity is regulated by AURKA (PubMed:28218735). {ECO:0000250|UniProtKB:P58462, ECO:0000269|PubMed:15286807, ECO:0000269|PubMed:18640093, ECO:0000269|PubMed:18799727, ECO:0000269|PubMed:24023716, ECO:0000269|PubMed:25267198, ECO:0000269|PubMed:26647308, ECO:0000269|PubMed:28218735, ECO:0000305|PubMed:18347093, ECO:0000305|PubMed:24023716}.; FUNCTION: [Isoform 8]: Involved in transcriptional regulation in embryonic stem cells (ESCs). Stimulates expression of transcription factors that are required for pluripotency and decreases expression of differentiation-associated genes. Has distinct DNA-binding specifities as compared to the canonical form and preferentially binds DNA with the sequence 5'-CGATACAA-3' (or closely related sequences) (PubMed:21924763). Promotes ESC self-renewal and pluripotency (By similarity). {ECO:0000250|UniProtKB:P58462, ECO:0000269|PubMed:21924763}. |
Q9H7D0 | DOCK5 | S1674 | ochoa | Dedicator of cytokinesis protein 5 | Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}. |
Q9H8G2 | CAAP1 | S93 | ochoa | Caspase activity and apoptosis inhibitor 1 (Conserved anti-apoptotic protein) (CAAP) | Anti-apoptotic protein that modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. {ECO:0000269|PubMed:21980415}. |
Q9H8V3 | ECT2 | S858 | ochoa | Protein ECT2 (Epithelial cell-transforming sequence 2 oncogene) | Guanine nucleotide exchange factor (GEF) that catalyzes the exchange of GDP for GTP. Promotes guanine nucleotide exchange on the Rho family members of small GTPases, like RHOA, RHOC, RAC1 and CDC42. Required for signal transduction pathways involved in the regulation of cytokinesis. Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Regulates the translocation of RHOA from the central spindle to the equatorial region. Plays a role in the control of mitotic spindle assembly; regulates the activation of CDC42 in metaphase for the process of spindle fibers attachment to kinetochores before chromosome congression. Involved in the regulation of epithelial cell polarity; participates in the formation of epithelial tight junctions in a polarity complex PARD3-PARD6-protein kinase PRKCQ-dependent manner. Plays a role in the regulation of neurite outgrowth. Inhibits phenobarbital (PB)-induced NR1I3 nuclear translocation. Stimulates the activity of RAC1 through its association with the oncogenic PARD6A-PRKCI complex in cancer cells, thereby acting to coordinately drive tumor cell proliferation and invasion. Also stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:10579713, ECO:0000269|PubMed:14645260, ECO:0000269|PubMed:15254234, ECO:0000269|PubMed:15545273, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16170345, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16495035, ECO:0000269|PubMed:19129481, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19617897, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21373644, ECO:0000269|PubMed:25068414, ECO:0000269|PubMed:31888991}. |
Q9H992 | MARCHF7 | S358 | ochoa | E3 ubiquitin-protein ligase MARCHF7 (EC 2.3.2.27) (Axotrophin) (Membrane-associated RING finger protein 7) (Membrane-associated RING-CH protein VII) (MARCH-VII) (RING finger protein 177) (RING-type E3 ubiquitin transferase MARCHF7) | E3 ubiquitin-protein ligase which may specifically enhance the E2 activity of HIP2. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfer the ubiquitin to targeted substrates (PubMed:16868077). May be involved in T-cell proliferation by regulating LIF secretion (By similarity). May play a role in lysosome homeostasis (PubMed:31270356). Promotes 'Lys-6', 'Lys-11' and 'Lys-63'-linked mixed polyubiquitination on ATG14 leading to the inhibition of autophagy by impairing the interaction between ATG14 and STX7 (PubMed:37632749). Participates in the dopamine-mediated negative regulation of the NLRP3 inflammasome by promoting its uibiquitination and subsequent degradation (PubMed:25594175). {ECO:0000250|UniProtKB:Q9WV66, ECO:0000269|PubMed:16868077, ECO:0000269|PubMed:25594175, ECO:0000269|PubMed:31270356, ECO:0000269|PubMed:37632749}. |
Q9HCG8 | CWC22 | S102 | ochoa | Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q9HD20 | ATP13A1 | S899 | ochoa | Endoplasmic reticulum transmembrane helix translocase (EC 7.4.2.-) (Endoplasmic reticulum P5A-ATPase) | Endoplasmic reticulum translocase required to remove mitochondrial transmembrane proteins mistargeted to the endoplasmic reticulum (PubMed:32973005, PubMed:36264797). Acts as a dislocase that mediates the ATP-dependent extraction of mislocalized mitochondrial transmembrane proteins from the endoplasmic reticulum membrane (PubMed:32973005). Specifically binds mitochondrial tail-anchored transmembrane proteins: has an atypically large substrate-binding pocket that recognizes and binds moderately hydrophobic transmembranes with short hydrophilic lumenal domains (PubMed:32973005). {ECO:0000269|PubMed:32973005, ECO:0000269|PubMed:36264797}. |
Q9HD67 | MYO10 | S1171 | ochoa | Unconventional myosin-X (Unconventional myosin-10) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as a plus end-directed motor. Moves with higher velocity and takes larger steps on actin bundles than on single actin filaments (PubMed:27580874). The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. {ECO:0000269|PubMed:16894163, ECO:0000269|PubMed:18570893, ECO:0000269|PubMed:27580874}.; FUNCTION: [Isoform Headless]: Functions as a dominant-negative regulator of isoform 1, suppressing its filopodia-inducing and axon outgrowth-promoting activities. In hippocampal neurons, it increases VASP retention in spine heads to induce spine formation and spine head expansion (By similarity). {ECO:0000250|UniProtKB:F8VQB6}. |
Q9NQC3 | RTN4 | S184 | ochoa | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
Q9NRH2 | SNRK | S558 | ochoa | SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) | May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}. |
Q9NRY4 | ARHGAP35 | S1221 | psp | Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) | Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}. |
Q9NSY1 | BMP2K | S1032 | ochoa | BMP-2-inducible protein kinase (BIKe) (EC 2.7.11.1) | May be involved in osteoblast differentiation. {ECO:0000250|UniProtKB:Q91Z96}. |
Q9NUG4 | CCM2L | S200 | ochoa | Cerebral cavernous malformations 2 protein-like (CCM2-like) | None |
Q9NV58 | RNF19A | S69 | ochoa | E3 ubiquitin-protein ligase RNF19A (EC 2.3.2.31) (Double ring-finger protein) (Dorfin) (RING finger protein 19A) (p38) | E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates, such as SNCAIP or CASR. Specifically ubiquitinates pathogenic SOD1 variants, which leads to their proteasomal degradation and to neuronal protection. {ECO:0000269|PubMed:11237715, ECO:0000269|PubMed:12145308, ECO:0000269|PubMed:12750386, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16513638}. |
Q9NVM1 | EVA1B | S71 | ochoa | Protein eva-1 homolog B (Protein FAM176B) | None |
Q9NXR1 | NDE1 | S239 | ochoa | Nuclear distribution protein nudE homolog 1 (NudE) | Required for centrosome duplication and formation and function of the mitotic spindle. Essential for the development of the cerebral cortex. May regulate the production of neurons by controlling the orientation of the mitotic spindle during division of cortical neuronal progenitors of the proliferative ventricular zone of the brain. Orientation of the division plane perpendicular to the layers of the cortex gives rise to two proliferative neuronal progenitors whereas parallel orientation of the division plane yields one proliferative neuronal progenitor and a postmitotic neuron. A premature shift towards a neuronal fate within the progenitor population may result in an overall reduction in the final number of neurons and an increase in the number of neurons in the deeper layers of the cortex. Acts as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:21529752, ECO:0000269|PubMed:34793709}. |
Q9NXR1 | NDE1 | S309 | ochoa | Nuclear distribution protein nudE homolog 1 (NudE) | Required for centrosome duplication and formation and function of the mitotic spindle. Essential for the development of the cerebral cortex. May regulate the production of neurons by controlling the orientation of the mitotic spindle during division of cortical neuronal progenitors of the proliferative ventricular zone of the brain. Orientation of the division plane perpendicular to the layers of the cortex gives rise to two proliferative neuronal progenitors whereas parallel orientation of the division plane yields one proliferative neuronal progenitor and a postmitotic neuron. A premature shift towards a neuronal fate within the progenitor population may result in an overall reduction in the final number of neurons and an increase in the number of neurons in the deeper layers of the cortex. Acts as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:21529752, ECO:0000269|PubMed:34793709}. |
Q9NYV4 | CDK12 | S1053 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NZJ0 | DTL | S488 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9P203 | BTBD7 | S968 | ochoa | BTB/POZ domain-containing protein 7 | Acts as a mediator of epithelial dynamics and organ branching by promoting cleft progression. Induced following accumulation of fibronectin in forming clefts, leading to local expression of the cell-scattering SNAIL2 and suppression of E-cadherin levels, thereby altering cell morphology and reducing cell-cell adhesion. This stimulates cell separation at the base of forming clefts by local, dynamic intercellular gap formation and promotes cleft progression (By similarity). {ECO:0000250}. |
Q9P227 | ARHGAP23 | S1309 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P273 | TENM3 | S27 | ochoa | Teneurin-3 (Ten-3) (Protein Odd Oz/ten-m homolog 3) (Tenascin-M3) (Ten-m3) (Teneurin transmembrane protein 3) | Involved in neural development by regulating the establishment of proper connectivity within the nervous system. Acts in both pre- and postsynaptic neurons in the hippocampus to control the assembly of a precise topographic projection: required in both CA1 and subicular neurons for the precise targeting of proximal CA1 axons to distal subiculum, probably by promoting homophilic cell adhesion. Required for proper dendrite morphogenesis and axon targeting in the vertebrate visual system, thereby playing a key role in the development of the visual pathway. Regulates the formation in ipsilateral retinal mapping to both the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). May also be involved in the differentiation of the fibroblast-like cells in the superficial layer of mandibular condylar cartilage into chondrocytes. {ECO:0000250|UniProtKB:Q9WTS6}. |
Q9P2G1 | ANKIB1 | S782 | ochoa | Ankyrin repeat and IBR domain-containing protein 1 (EC 2.3.2.31) | Might act as an E3 ubiquitin-protein ligase, or as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. {ECO:0000250}. |
Q9P2H5 | USP35 | S613 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 35 (EC 3.4.19.12) (Deubiquitinating enzyme 35) (Ubiquitin thioesterase 35) (Ubiquitin-specific-processing protease 35) | Deubiquitinase that plays a role in different processes including cell cycle regulation, mitophagy or endoplasmic reticulum stress (PubMed:26348204, PubMed:29449677, PubMed:37004621). Inhibits TNFalpha-induced NF-kappa-B activation through stabilizing TNIP2 protein via deubiquitination (PubMed:26348204). Plays an essential role during mitosis by deubiquitinating and thereby regulating the levels of Aurora B/AURKB protein (PubMed:29449677). In addition, regulates the protein levels of other key component of the chromosomal passenger complex (CPC) such as survivin/BIRC5 or Borealin/CDCA8 by enhancing their stability (PubMed:34438346). Regulates the degradation of mitochondria through the process of autophagy termed mitophagy (PubMed:25915564). {ECO:0000269|PubMed:25915564, ECO:0000269|PubMed:26348204, ECO:0000269|PubMed:29449677, ECO:0000269|PubMed:34438346, ECO:0000269|PubMed:37004621}. |
Q9P2M4 | TBC1D14 | S93 | ochoa | TBC1 domain family member 14 | Plays a role in the regulation of starvation-induced autophagosome formation (PubMed:22613832). Together with the TRAPPIII complex, regulates a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy. {ECO:0000269|PubMed:22613832, ECO:0000269|PubMed:26711178}. |
Q9UEW8 | STK39 | S371 | ochoa|psp | STE20/SPS1-related proline-alanine-rich protein kinase (Ste-20-related kinase) (EC 2.7.11.1) (DCHT) (Serine/threonine-protein kinase 39) | Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:21321328). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:12740379, PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Mediates the inhibition of SLC4A4, SLC26A6 as well as CFTR activities (By similarity). Phosphorylates RELT (By similarity). {ECO:0000250|UniProtKB:Q9Z1W9, ECO:0000269|PubMed:12740379, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:34289367}. |
Q9UK61 | TASOR | S905 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UKJ3 | GPATCH8 | S1028 | ochoa | G patch domain-containing protein 8 | None |
Q9ULH0 | KIDINS220 | S885 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULT8 | HECTD1 | S1720 | ochoa | E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (E3 ligase for inhibin receptor) (EULIR) (HECT domain-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:33711283). Mediates 'Lys-63'-linked polyubiquitination of HSP90AA1 which leads to its intracellular localization and reduced secretion (By similarity). Negatively regulating HSP90AA1 secretion in cranial mesenchyme cells may impair their emigration and may be essential for the correct development of the cranial neural folds and neural tube closure (By similarity). Catalyzes ubiquitination and degradation of ZNF622, an assembly factor for the ribosomal 60S subunit, in hematopoietic cells, thereby promoting hematopoietic stem cell renewal (PubMed:33711283). {ECO:0000250|UniProtKB:Q69ZR2, ECO:0000269|PubMed:33711283}. |
Q9ULW0 | TPX2 | S125 | ochoa|psp | Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) | Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}. |
Q9UNX3 | RPL26L1 | S32 | ochoa | Ribosomal protein uL24-like (60S ribosomal protein L26-like 1) (Large ribosomal subunit protein uL24-like 1) | None |
Q9UPN3 | MACF1 | S1378 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN3 | MACF1 | S7333 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPP1 | PHF8 | S1024 | ochoa | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPZ3 | HPS5 | S440 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9UQ26 | RIMS2 | S403 | ochoa | Regulating synaptic membrane exocytosis protein 2 (Rab-3-interacting molecule 2) (RIM 2) (Rab-3-interacting protein 3) | Rab effector involved in exocytosis. May act as scaffold protein. Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:23999003}. |
Q9UQ35 | SRRM2 | S1675 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ84 | EXO1 | S510 | ochoa | Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) | 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}. |
Q9Y227 | ENTPD4 | S596 | ochoa | Ectonucleoside triphosphate diphosphohydrolase 4 (NTPDase 4) (EC 3.6.1.15) (EC 3.6.1.6) (Golgi UDPase) (Lysosomal apyrase-like protein of 70 kDa) (Uridine-diphosphatase) (UDPase) (EC 3.6.1.42) | [Isoform 1]: Catalyzes the hydrolysis of nucleoside triphosphates and diphosphates in a calcium- or magnesium-dependent manner, with a preference for pyrimidines. Preferentially hydrolyzes UTP and TTP. AMP, ADP, ATP and UMP are not substrates (PubMed:10858452, PubMed:9556635). Preferentially activated by Ca(2+) over Mg(2+) (PubMed:10858452). {ECO:0000269|PubMed:10858452, ECO:0000269|PubMed:9556635}.; FUNCTION: [Isoform 2]: Has a broad substrate specificity with the ability of cleaving all nucleotide di- and triphosphates with the exception of adenosine di- and triphosphate (ADP and ATP). Preferentially hydrolyzes CTP, UDP, CDP, GTP and GDP. Can use either Ca(2+) or Mg(2+) equally. {ECO:0000269|PubMed:10858452, ECO:0000269|PubMed:9556635}. |
Q9Y2H9 | MAST1 | S826 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2I9 | TBC1D30 | S117 | ochoa | TBC1 domain family member 30 | May act as a GTPase-activating protein for Rab family protein(s). {ECO:0000305}. |
Q9Y2J2 | EPB41L3 | S867 | ochoa | Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] | Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}. |
Q9Y2K7 | KDM2A | S394 | ochoa | Lysine-specific demethylase 2A (EC 1.14.11.27) (CXXC-type zinc finger protein 8) (F-box and leucine-rich repeat protein 11) (F-box protein FBL7) (F-box protein Lilina) (F-box/LRR-repeat protein 11) (JmjC domain-containing histone demethylation protein 1A) ([Histone-H3]-lysine-36 demethylase 1A) | Histone demethylase that specifically demethylates 'Lys-36' of histone H3, thereby playing a central role in histone code. Preferentially demethylates dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36'. May also recognize and bind to some phosphorylated proteins and promote their ubiquitination and degradation. Required to maintain the heterochromatic state. Associates with centromeres and represses transcription of small non-coding RNAs that are encoded by the clusters of satellite repeats at the centromere. Required to sustain centromeric integrity and genomic stability, particularly during mitosis. Regulates circadian gene expression by repressing the transcriptional activator activity of CLOCK-BMAL1 heterodimer and RORA in a catalytically-independent manner (PubMed:26037310). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:19001877, ECO:0000269|PubMed:26037310, ECO:0000269|PubMed:28262558}. |
Q9Y3S1 | WNK2 | S49 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y4F9 | RIPOR2 | S344 | ochoa | Rho family-interacting cell polarization regulator 2 | Acts as an inhibitor of the small GTPase RHOA and plays several roles in the regulation of myoblast and hair cell differentiation, lymphocyte T proliferation and neutrophil polarization (PubMed:17150207, PubMed:23241886, PubMed:24687993, PubMed:24958875, PubMed:25588844, PubMed:27556504). Inhibits chemokine-induced T lymphocyte responses, such as cell adhesion, polarization and migration (PubMed:23241886). Involved also in the regulation of neutrophil polarization, chemotaxis and adhesion (By similarity). Required for normal development of inner and outer hair cell stereocilia within the cochlea of the inner ear (By similarity). Plays a role for maintaining the structural organization of the basal domain of stereocilia (By similarity). Involved in mechanosensory hair cell function (By similarity). Required for normal hearing (PubMed:24958875). {ECO:0000250|UniProtKB:Q80U16, ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:23241886, ECO:0000269|PubMed:24687993, ECO:0000269|PubMed:24958875, ECO:0000269|PubMed:27556504}.; FUNCTION: [Isoform 2]: Acts as an inhibitor of the small GTPase RHOA (PubMed:25588844). Plays a role in fetal mononuclear myoblast differentiation by promoting filopodia and myotube formation (PubMed:17150207). Maintains naive T lymphocytes in a quiescent state (PubMed:27556504). {ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:25588844, ECO:0000269|PubMed:27556504}. |
Q9Y4H2 | IRS2 | S346 | ochoa|psp | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y4K4 | MAP4K5 | S436 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 5 (EC 2.7.11.1) (Kinase homologous to SPS1/STE20) (KHS) (MAPK/ERK kinase kinase kinase 5) (MEK kinase kinase 5) (MEKKK 5) | May play a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway. {ECO:0000269|PubMed:9038372}. |
Q9Y675 | SNURF | S34 | ochoa | SNRPN upstream reading frame protein | None |
Q9Y6D5 | ARFGEF2 | S617 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) | Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}. |
Q9Y6N7 | ROBO1 | S1435 | ochoa | Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) | Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}. |
Q9NYB9 | ABI2 | S22 | Sugiyama | Abl interactor 2 (Abelson interactor 2) (Abi-2) (Abl-binding protein 3) (AblBP3) (Arg-binding protein 1) (ArgBP1) | Regulator of actin cytoskeleton dynamics underlying cell motility and adhesion. Functions as a component of the WAVE complex, which activates actin nucleating machinery Arp2/3 to drive lamellipodia formation (PubMed:21107423). Acts as a regulator and substrate of nonreceptor tyrosine kinases ABL1 and ABL2 involved in processes linked to cell growth and differentiation. Positively regulates ABL1-mediated phosphorylation of ENAH, which is required for proper polymerization of nucleated actin filaments at the leading edge (PubMed:10498863, PubMed:7590236, PubMed:8649853). Contributes to the regulation of actin assembly at the tips of neuron projections. In particular, controls dendritic spine morphogenesis and may promote dendritic spine specification toward large mushroom-type spines known as repositories of memory in the brain (By similarity). In hippocampal neurons, may mediate actin-dependent BDNF-NTRK2 early endocytic trafficking that triggers dendrite outgrowth (By similarity). Participates in ocular lens morphogenesis, likely by regulating lamellipodia-driven adherens junction formation at the epithelial cell-secondary lens fiber interface (By similarity). Also required for nascent adherens junction assembly in epithelial cells (PubMed:15572692). {ECO:0000250|UniProtKB:P62484, ECO:0000269|PubMed:10498863, ECO:0000269|PubMed:15572692, ECO:0000269|PubMed:21107423, ECO:0000269|PubMed:7590236, ECO:0000269|PubMed:8649853}. |
P13639 | EEF2 | S732 | Sugiyama | Elongation factor 2 (EF-2) (EC 3.6.5.-) | Catalyzes the GTP-dependent ribosomal translocation step during translation elongation (PubMed:26593721). During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively (PubMed:26593721). Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (PubMed:26593721). {ECO:0000269|PubMed:26593721}. |
Q08211 | DHX9 | S452 | Sugiyama | ATP-dependent RNA helicase A (EC 3.6.4.13) (DEAH box protein 9) (DExH-box helicase 9) (Leukophysin) (LKP) (Nuclear DNA helicase II) (NDH II) (RNA helicase A) | Multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3' to 5' direction and that plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation and RNA-mediated gene silencing (PubMed:11416126, PubMed:12711669, PubMed:15355351, PubMed:16680162, PubMed:17531811, PubMed:20669935, PubMed:21561811, PubMed:24049074, PubMed:24990949, PubMed:25062910, PubMed:28221134, PubMed:9111062, PubMed:37467750). Requires a 3'-single-stranded tail as entry site for acid nuclei unwinding activities as well as the binding and hydrolyzing of any of the four ribo- or deoxyribo-nucleotide triphosphates (NTPs) (PubMed:1537828). Unwinds numerous nucleic acid substrates such as double-stranded (ds) DNA and RNA, DNA:RNA hybrids, DNA and RNA forks composed of either partially complementary DNA duplexes or DNA:RNA hybrids, respectively, and also DNA and RNA displacement loops (D- and R-loops), triplex-helical DNA (H-DNA) structure and DNA and RNA-based G-quadruplexes (PubMed:20669935, PubMed:21561811, PubMed:24049074). Binds dsDNA, single-stranded DNA (ssDNA), dsRNA, ssRNA and poly(A)-containing RNA (PubMed:10198287, PubMed:9111062). Also binds to circular dsDNA or dsRNA of either linear and/or circular forms and stimulates the relaxation of supercoiled DNAs catalyzed by topoisomerase TOP2A (PubMed:12711669). Plays a role in DNA replication at origins of replication and cell cycle progression (PubMed:24990949). Plays a role as a transcriptional coactivator acting as a bridging factor between polymerase II holoenzyme and transcription factors or cofactors, such as BRCA1, CREBBP, RELA and SMN1 (PubMed:11038348, PubMed:11149922, PubMed:11416126, PubMed:15355351, PubMed:28221134, PubMed:9323138, PubMed:9662397). Binds to the CDKN2A promoter (PubMed:11038348). Plays several roles in post-transcriptional regulation of gene expression (PubMed:28221134, PubMed:28355180). In cooperation with NUP98, promotes pre-mRNA alternative splicing activities of a subset of genes (PubMed:11402034, PubMed:16680162, PubMed:28221134, PubMed:28355180). As component of a large PER complex, is involved in the negative regulation of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms (By similarity). Also acts as a nuclear resolvase that is able to bind and neutralize harmful massive secondary double-stranded RNA structures formed by inverted-repeat Alu retrotransposon elements that are inserted and transcribed as parts of genes during the process of gene transposition (PubMed:28355180). Involved in the positive regulation of nuclear export of constitutive transport element (CTE)-containing unspliced mRNA (PubMed:10924507, PubMed:11402034, PubMed:9162007). Component of the coding region determinant (CRD)-mediated complex that promotes cytoplasmic MYC mRNA stability (PubMed:19029303). Plays a role in mRNA translation (PubMed:28355180). Positively regulates translation of selected mRNAs through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Involved with LARP6 in the translation stimulation of type I collagen mRNAs for CO1A1 and CO1A2 through binding of a specific stem-loop structure in their 5'-UTRs (PubMed:22190748). Stimulates LIN28A-dependent mRNA translation probably by facilitating ribonucleoprotein remodeling during the process of translation (PubMed:21247876). Plays also a role as a small interfering (siRNA)-loading factor involved in the RNA-induced silencing complex (RISC) loading complex (RLC) assembly, and hence functions in the RISC-mediated gene silencing process (PubMed:17531811). Binds preferentially to short double-stranded RNA, such as those produced during rotavirus intestinal infection (PubMed:28636595). This interaction may mediate NLRP9 inflammasome activation and trigger inflammatory response, including IL18 release and pyroptosis (PubMed:28636595). Finally, mediates the attachment of heterogeneous nuclear ribonucleoproteins (hnRNPs) to actin filaments in the nucleus (PubMed:11687588). {ECO:0000250|UniProtKB:O70133, ECO:0000269|PubMed:10198287, ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:11038348, ECO:0000269|PubMed:11149922, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11416126, ECO:0000269|PubMed:11687588, ECO:0000269|PubMed:12711669, ECO:0000269|PubMed:15355351, ECO:0000269|PubMed:1537828, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:20669935, ECO:0000269|PubMed:21247876, ECO:0000269|PubMed:21561811, ECO:0000269|PubMed:22190748, ECO:0000269|PubMed:24049074, ECO:0000269|PubMed:24990949, ECO:0000269|PubMed:25062910, ECO:0000269|PubMed:28221134, ECO:0000269|PubMed:28355180, ECO:0000269|PubMed:28636595, ECO:0000269|PubMed:37467750, ECO:0000269|PubMed:9111062, ECO:0000269|PubMed:9162007, ECO:0000269|PubMed:9323138, ECO:0000269|PubMed:9662397}.; FUNCTION: (Microbial infection) Plays a role in HIV-1 replication and virion infectivity (PubMed:11096080, PubMed:19229320, PubMed:25149208, PubMed:27107641). Enhances HIV-1 transcription by facilitating the binding of RNA polymerase II holoenzyme to the proviral DNA (PubMed:11096080, PubMed:25149208). Binds (via DRBM domain 2) to the HIV-1 TAR RNA and stimulates HIV-1 transcription of transactivation response element (TAR)-containing mRNAs (PubMed:11096080, PubMed:9892698). Involved also in HIV-1 mRNA splicing and transport (PubMed:25149208). Positively regulates HIV-1 gag mRNA translation, through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Binds (via DRBM domains) to a HIV-1 double-stranded RNA region of the primer binding site (PBS)-segment of the 5'-UTR, and hence stimulates DHX9 incorporation into virions and virion infectivity (PubMed:27107641). Also plays a role as a cytosolic viral MyD88-dependent DNA and RNA sensors in plasmacytoid dendritic cells (pDCs), and hence induce antiviral innate immune responses (PubMed:20696886, PubMed:21957149). Binds (via the OB-fold region) to viral single-stranded DNA unmethylated C-phosphate-G (CpG) oligonucleotide (PubMed:20696886). {ECO:0000269|PubMed:11096080, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:20696886, ECO:0000269|PubMed:21957149, ECO:0000269|PubMed:25149208, ECO:0000269|PubMed:27107641, ECO:0000269|PubMed:9892698}. |
Q9H0B6 | KLC2 | Y431 | Sugiyama | Kinesin light chain 2 (KLC 2) | Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}. |
Q9BWG6 | SCNM1 | Y193 | Sugiyama | Sodium channel modifier 1 | As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:36084634). Plays a role in the regulation of primary cilia length and Hedgehog signaling (PubMed:36084634). {ECO:0000269|PubMed:36084634}. |
Q04446 | GBE1 | S53 | Sugiyama | 1,4-alpha-glucan-branching enzyme (EC 2.4.1.18) (Brancher enzyme) (Glycogen-branching enzyme) | Glycogen-branching enzyme participates in the glycogen biosynthetic process along with glycogenin and glycogen synthase. Generates alpha-1,6-glucosidic branches from alpha-1,4-linked glucose chains, to increase solubility of the glycogen polymer (PubMed:26199317, PubMed:8463281, PubMed:8613547). {ECO:0000269|PubMed:26199317, ECO:0000269|PubMed:8463281, ECO:0000269|PubMed:8613547}. |
O00327 | BMAL1 | S90 | GPS6 | Basic helix-loop-helix ARNT-like protein 1 (Aryl hydrocarbon receptor nuclear translocator-like protein 1) (Basic-helix-loop-helix-PAS protein MOP3) (Brain and muscle ARNT-like 1) (Class E basic helix-loop-helix protein 5) (bHLHe5) (Member of PAS protein 3) (PAS domain-containing protein 3) (bHLH-PAS protein JAP3) | Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. BMAL1 positively regulates myogenesis and negatively regulates adipogenesis via the transcriptional control of the genes of the canonical Wnt signaling pathway. Plays a role in normal pancreatic beta-cell function; regulates glucose-stimulated insulin secretion via the regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2, PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling pathway; regulates the expression of MTOR and DEPTOR. Controls diurnal oscillations of Ly6C inflammatory monocytes; rhythmic recruitment of the PRC2 complex imparts diurnal variation to chemokine expression that is necessary to sustain Ly6C monocyte rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1, CYP19A1 and LHCGR in the ovary and also the genes involved in hair growth. Plays an important role in adult hippocampal neurogenesis by regulating the timely entry of neural stem/progenitor cells (NSPCs) into the cell cycle and the number of cell divisions that take place prior to cell-cycle exit. Regulates the circadian expression of CIART and KLF11. The CLOCK-BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The NPAS2-BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. The preferred binding motif for the CLOCK-BMAL1 heterodimer is 5'-CACGTGA-3', which contains a flanking adenine nucleotide at the 3-prime end of the canonical 6-nucleotide E-box sequence (PubMed:23229515). CLOCK specifically binds to the half-site 5'-CAC-3', while BMAL1 binds to the half-site 5'-GTGA-3' (PubMed:23229515). The CLOCK-BMAL1 heterodimer also recognizes the non-canonical E-box motifs 5'-AACGTGA-3' and 5'-CATGTGA-3' (PubMed:23229515). Essential for the rhythmic interaction of CLOCK with ASS1 and plays a critical role in positively regulating CLOCK-mediated acetylation of ASS1 (PubMed:28985504). Plays a role in protecting against lethal sepsis by limiting the expression of immune checkpoint protein CD274 in macrophages in a PKM2-dependent manner (By similarity). Regulates the diurnal rhythms of skeletal muscle metabolism via transcriptional activation of genes promoting triglyceride synthesis (DGAT2) and metabolic efficiency (COQ10B) (By similarity). {ECO:0000250|UniProtKB:Q9WTL8, ECO:0000269|PubMed:11441146, ECO:0000269|PubMed:12738229, ECO:0000269|PubMed:18587630, ECO:0000269|PubMed:23785138, ECO:0000269|PubMed:23955654, ECO:0000269|PubMed:24005054, ECO:0000269|PubMed:28985504}.; FUNCTION: (Microbial infection) Regulates SARS coronavirus-2/SARS-CoV-2 entry and replication in lung epithelial cells probably through the post-transcriptional regulation of ACE2 and interferon-stimulated gene expression. {ECO:0000269|PubMed:34545347}. |
P13807 | GYS1 | S701 | iPTMNet | Glycogen [starch] synthase, muscle (EC 2.4.1.11) (Glycogen synthase 1) | Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan. {ECO:0000269|PubMed:35835870}. |
Q9Y618 | NCOR2 | S70 | Sugiyama | Nuclear receptor corepressor 2 (N-CoR2) (CTG repeat protein 26) (SMAP270) (Silencing mediator of retinoic acid and thyroid hormone receptor) (SMRT) (T3 receptor-associating factor) (TRAC) (Thyroid-, retinoic-acid-receptor-associated corepressor) | Transcriptional corepressor that mediates the transcriptional repression activity of some nuclear receptors by promoting chromatin condensation, thus preventing access of the basal transcription (PubMed:10077563, PubMed:10097068, PubMed:18212045, PubMed:20812024, PubMed:22230954, PubMed:23911289). Acts by recruiting chromatin modifiers, such as histone deacetylases HDAC1, HDAC2 and HDAC3 (PubMed:22230954). Required to activate the histone deacetylase activity of HDAC3 (PubMed:22230954). Involved in the regulation BCL6-dependent of the germinal center (GC) reactions, mainly through the control of the GC B-cells proliferation and survival (PubMed:18212045, PubMed:23911289). Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). {ECO:0000269|PubMed:10077563, ECO:0000269|PubMed:10097068, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:22230954, ECO:0000269|PubMed:23911289}.; FUNCTION: [Isoform 1]: Isoform 1 and isoform 4 have different affinities for different nuclear receptors. {ECO:0000269|PubMed:15632172}.; FUNCTION: [Isoform 4]: Isoform 1 and isoform 4 have different affinities for different nuclear receptors. {ECO:0000269|PubMed:15632172}. |
Q7KZI7 | MARK2 | S633 | Sugiyama | Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}. |
Q8N5S9 | CAMKK1 | S111 | Sugiyama | Calcium/calmodulin-dependent protein kinase kinase 1 (CaM-KK 1) (CaM-kinase kinase 1) (CaMKK 1) (EC 2.7.11.17) (CaM-kinase IV kinase) (Calcium/calmodulin-dependent protein kinase kinase alpha) (CaM-KK alpha) (CaM-kinase kinase alpha) (CaMKK alpha) | Calcium/calmodulin-dependent protein kinase that belongs to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Phosphorylates CAMK1, CAMK1D, CAMK1G and CAMK4. Involved in regulating cell apoptosis. Promotes cell survival by phosphorylating AKT1/PKB that inhibits pro-apoptotic BAD/Bcl2-antagonist of cell death. {ECO:0000269|PubMed:12935886}. |
Q8TD08 | MAPK15 | S505 | Sugiyama | Mitogen-activated protein kinase 15 (MAP kinase 15) (MAPK 15) (EC 2.7.11.24) (Extracellular signal-regulated kinase 7) (ERK-7) (Extracellular signal-regulated kinase 8) (ERK-8) | Atypical MAPK protein that regulates several process such as autophagy, ciliogenesis, protein trafficking/secretion and genome integrity, in a kinase activity-dependent manner (PubMed:20733054, PubMed:21847093, PubMed:22948227, PubMed:24618899, PubMed:29021280). Controls both, basal and starvation-induced autophagy throught its interaction with GABARAP, MAP1LC3B and GABARAPL1 leading to autophagosome formation, SQSTM1 degradation and reduced MAP1LC3B inhibitory phosphorylation (PubMed:22948227). Regulates primary cilium formation and the localization of ciliary proteins involved in cilium structure, transport, and signaling (PubMed:29021280). Prevents the relocation of the sugar-adding enzymes from the Golgi to the endoplasmic reticulum, thereby restricting the production of sugar-coated proteins (PubMed:24618899). Upon amino-acid starvation, mediates transitional endoplasmic reticulum site disassembly and inhibition of secretion (PubMed:21847093). Binds to chromatin leading to MAPK15 activation and interaction with PCNA, that which protects genomic integrity by inhibiting MDM2-mediated degradation of PCNA (PubMed:20733054). Regulates DA transporter (DAT) activity and protein expression via activation of RhoA (PubMed:28842414). In response to H(2)O(2) treatment phosphorylates ELAVL1, thus preventing it from binding to the PDCD4 3'UTR and rendering the PDCD4 mRNA accessible to miR-21 and leading to its degradation and loss of protein expression (PubMed:26595526). Also functions in a kinase activity-independent manner as a negative regulator of growth (By similarity). Phosphorylates in vitro FOS and MBP (PubMed:11875070, PubMed:16484222, PubMed:19166846, PubMed:20638370). During oocyte maturation, plays a key role in the microtubule organization and meiotic cell cycle progression in oocytes, fertilized eggs, and early embryos (By similarity). Interacts with ESRRA promoting its re-localization from the nucleus to the cytoplasm and then prevents its transcriptional activity (PubMed:21190936). {ECO:0000250|UniProtKB:Q80Y86, ECO:0000250|UniProtKB:Q9Z2A6, ECO:0000269|PubMed:11875070, ECO:0000269|PubMed:16484222, ECO:0000269|PubMed:19166846, ECO:0000269|PubMed:20638370, ECO:0000269|PubMed:20733054, ECO:0000269|PubMed:21190936, ECO:0000269|PubMed:21847093, ECO:0000269|PubMed:22948227, ECO:0000269|PubMed:24618899, ECO:0000269|PubMed:26595526, ECO:0000269|PubMed:28842414, ECO:0000269|PubMed:29021280}. |
P55036 | PSMD4 | S242 | Sugiyama | 26S proteasome non-ATPase regulatory subunit 4 (26S proteasome regulatory subunit RPN10) (26S proteasome regulatory subunit S5A) (Antisecretory factor 1) (AF) (ASF) (Multiubiquitin chain-binding protein) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMD4 acts as an ubiquitin receptor subunit through ubiquitin-interacting motifs and selects ubiquitin-conjugates for destruction. Displays a preferred selectivity for longer polyubiquitin chains. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:15826667}. |
Q96L34 | MARK4 | S496 | Sugiyama | MAP/microtubule affinity-regulating kinase 4 (EC 2.7.11.1) (MAP/microtubule affinity-regulating kinase-like 1) | Serine/threonine-protein kinase (PubMed:14594945, PubMed:15009667, PubMed:23184942, PubMed:23666762). Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:14594945, PubMed:23666762). Also phosphorylates the microtubule-associated proteins MAP2 and MAP4 (PubMed:14594945). Involved in regulation of the microtubule network, causing reorganization of microtubules into bundles (PubMed:14594945, PubMed:25123532). Required for the initiation of axoneme extension during cilium assembly (PubMed:23400999). Regulates the centrosomal location of ODF2 and phosphorylates ODF2 in vitro (PubMed:23400999). Plays a role in cell cycle progression, specifically in the G1/S checkpoint (PubMed:25123532). Reduces neuronal cell survival (PubMed:15009667). Plays a role in energy homeostasis by regulating satiety and metabolic rate (By similarity). Promotes adipogenesis by activating JNK1 and inhibiting the p38MAPK pathway, and triggers apoptosis by activating the JNK1 pathway (By similarity). Phosphorylates mTORC1 complex member RPTOR and acts as a negative regulator of the mTORC1 complex, probably due to disruption of the interaction between phosphorylated RPTOR and the RRAGA/RRAGC heterodimer which is required for mTORC1 activation (PubMed:23184942). Involved in NLRP3 positioning along microtubules by mediating NLRP3 recruitment to microtubule organizing center (MTOC) upon inflammasome activation (PubMed:28656979). {ECO:0000250|UniProtKB:Q8CIP4, ECO:0000269|PubMed:14594945, ECO:0000269|PubMed:15009667, ECO:0000269|PubMed:23184942, ECO:0000269|PubMed:23400999, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:25123532, ECO:0000269|PubMed:28656979}. |
Q00975 | CACNA1B | S2120 | SIGNOR | Voltage-dependent N-type calcium channel subunit alpha-1B (Brain calcium channel III) (BIII) (Calcium channel, L type, alpha-1 polypeptide isoform 5) (Voltage-gated calcium channel subunit alpha Cav2.2) | Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This alpha-1B subunit gives rise to N-type calcium currents. N-type calcium channels belong to the 'high-voltage activated' (HVA) group. They are involved in pain signaling (PubMed:25296916). Calcium channels containing alpha-1B subunit may play a role in directed migration of immature neurons. Mediates Ca(2+) release probability at hippocampal neuronal soma and synaptic terminals (By similarity). {ECO:0000250|UniProtKB:Q02294, ECO:0000269|PubMed:25296916}.; FUNCTION: [Isoform Alpha-1B-1]: Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This alpha-1B subunit gives rise to N-type calcium currents. {ECO:0000269|PubMed:1321501}. |
Q14524 | SCN5A | S539 | PSP | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.000016 | 4.801 |
R-HSA-1640170 | Cell Cycle | 0.000032 | 4.499 |
R-HSA-111933 | Calmodulin induced events | 0.000065 | 4.184 |
R-HSA-111996 | Ca-dependent events | 0.000067 | 4.175 |
R-HSA-111997 | CaM pathway | 0.000065 | 4.184 |
R-HSA-422475 | Axon guidance | 0.000044 | 4.360 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.000045 | 4.342 |
R-HSA-9675108 | Nervous system development | 0.000052 | 4.286 |
R-HSA-112043 | PLC beta mediated events | 0.000137 | 3.864 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.000142 | 3.848 |
R-HSA-162582 | Signal Transduction | 0.000174 | 3.761 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.000183 | 3.738 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.000207 | 3.683 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.000229 | 3.640 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.000241 | 3.618 |
R-HSA-112040 | G-protein mediated events | 0.000327 | 3.485 |
R-HSA-1489509 | DAG and IP3 signaling | 0.000432 | 3.364 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.000429 | 3.367 |
R-HSA-73887 | Death Receptor Signaling | 0.000587 | 3.231 |
R-HSA-193648 | NRAGE signals death through JNK | 0.000692 | 3.160 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.000707 | 3.150 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.000887 | 3.052 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.000887 | 3.052 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 0.001141 | 2.943 |
R-HSA-983189 | Kinesins | 0.001186 | 2.926 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.001281 | 2.892 |
R-HSA-438064 | Post NMDA receptor activation events | 0.001423 | 2.847 |
R-HSA-199991 | Membrane Trafficking | 0.001393 | 2.856 |
R-HSA-9022535 | Loss of phosphorylation of MECP2 at T308 | 0.001569 | 2.804 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.001604 | 2.795 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.001908 | 2.719 |
R-HSA-2428924 | IGF1R signaling cascade | 0.001947 | 2.711 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.002189 | 2.660 |
R-HSA-9634597 | GPER1 signaling | 0.002232 | 2.651 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.002937 | 2.532 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 0.003218 | 2.492 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.003359 | 2.474 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.003531 | 2.452 |
R-HSA-111885 | Opioid Signalling | 0.003490 | 2.457 |
R-HSA-8853659 | RET signaling | 0.003613 | 2.442 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.003847 | 2.415 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.004094 | 2.388 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.004295 | 2.367 |
R-HSA-376176 | Signaling by ROBO receptors | 0.004365 | 2.360 |
R-HSA-68886 | M Phase | 0.004409 | 2.356 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.005555 | 2.255 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.005555 | 2.255 |
R-HSA-9005895 | Pervasive developmental disorders | 0.005608 | 2.251 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.005608 | 2.251 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.005608 | 2.251 |
R-HSA-8875878 | MET promotes cell motility | 0.004824 | 2.317 |
R-HSA-9842663 | Signaling by LTK | 0.005608 | 2.251 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.004850 | 2.314 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.005538 | 2.257 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.005538 | 2.257 |
R-HSA-9007101 | Rab regulation of trafficking | 0.005643 | 2.249 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.005538 | 2.257 |
R-HSA-1500931 | Cell-Cell communication | 0.004883 | 2.311 |
R-HSA-75153 | Apoptotic execution phase | 0.005184 | 2.285 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.005917 | 2.228 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.006077 | 2.216 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.006622 | 2.179 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.007024 | 2.153 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 0.007707 | 2.113 |
R-HSA-9010642 | ROBO receptors bind AKAP5 | 0.007707 | 2.113 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.008174 | 2.088 |
R-HSA-9022534 | Loss of MECP2 binding ability to 5hmC-DNA | 0.008771 | 2.057 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.009062 | 2.043 |
R-HSA-165159 | MTOR signalling | 0.009236 | 2.035 |
R-HSA-6806834 | Signaling by MET | 0.009863 | 2.006 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.009921 | 2.003 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.010344 | 1.985 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.010037 | 1.998 |
R-HSA-194138 | Signaling by VEGF | 0.010621 | 1.974 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.011203 | 1.951 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.011423 | 1.942 |
R-HSA-418885 | DCC mediated attractive signaling | 0.011203 | 1.951 |
R-HSA-5683057 | MAPK family signaling cascades | 0.011077 | 1.956 |
R-HSA-373752 | Netrin-1 signaling | 0.011670 | 1.933 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.011203 | 1.951 |
R-HSA-446728 | Cell junction organization | 0.011709 | 1.931 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.012323 | 1.909 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 0.013293 | 1.876 |
R-HSA-74713 | IRS activation | 0.013293 | 1.876 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.012567 | 1.901 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.013392 | 1.873 |
R-HSA-74749 | Signal attenuation | 0.013504 | 1.870 |
R-HSA-5689877 | Josephin domain DUBs | 0.013504 | 1.870 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 0.013504 | 1.870 |
R-HSA-5654736 | Signaling by FGFR1 | 0.015534 | 1.809 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.014642 | 1.834 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.016043 | 1.795 |
R-HSA-9020591 | Interleukin-12 signaling | 0.016201 | 1.790 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.016427 | 1.784 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.016538 | 1.782 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.016888 | 1.772 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.017086 | 1.767 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.017218 | 1.764 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.018865 | 1.724 |
R-HSA-352238 | Breakdown of the nuclear lamina | 0.018858 | 1.725 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.018865 | 1.724 |
R-HSA-163358 | PKA-mediated phosphorylation of key metabolic factors | 0.018865 | 1.724 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.019600 | 1.708 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.020538 | 1.687 |
R-HSA-164378 | PKA activation in glucagon signalling | 0.023336 | 1.632 |
R-HSA-1227986 | Signaling by ERBB2 | 0.022426 | 1.649 |
R-HSA-109704 | PI3K Cascade | 0.021845 | 1.661 |
R-HSA-163615 | PKA activation | 0.023336 | 1.632 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.024224 | 1.616 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.024448 | 1.612 |
R-HSA-209543 | p75NTR recruits signalling complexes | 0.026405 | 1.578 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.026405 | 1.578 |
R-HSA-72187 | mRNA 3'-end processing | 0.026337 | 1.579 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.025776 | 1.589 |
R-HSA-6794361 | Neurexins and neuroligins | 0.026337 | 1.579 |
R-HSA-68875 | Mitotic Prophase | 0.027797 | 1.556 |
R-HSA-392517 | Rap1 signalling | 0.027324 | 1.563 |
R-HSA-68882 | Mitotic Anaphase | 0.027190 | 1.566 |
R-HSA-5654743 | Signaling by FGFR4 | 0.027999 | 1.553 |
R-HSA-8854214 | TBC/RABGAPs | 0.027999 | 1.553 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.028374 | 1.547 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 0.029143 | 1.535 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.029148 | 1.535 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.029164 | 1.535 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.029245 | 1.534 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.029245 | 1.534 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.029245 | 1.534 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.031425 | 1.503 |
R-HSA-442720 | CREB1 phosphorylation through the activation of Adenylate Cyclase | 0.031914 | 1.496 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.032624 | 1.486 |
R-HSA-8953897 | Cellular responses to stimuli | 0.030137 | 1.521 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.033326 | 1.477 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.033326 | 1.477 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.033326 | 1.477 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.033858 | 1.470 |
R-HSA-5654741 | Signaling by FGFR3 | 0.033904 | 1.470 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.036533 | 1.437 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.036533 | 1.437 |
R-HSA-177929 | Signaling by EGFR | 0.037204 | 1.429 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 0.036533 | 1.437 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.038046 | 1.420 |
R-HSA-180024 | DARPP-32 events | 0.037198 | 1.429 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.037151 | 1.430 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.035179 | 1.454 |
R-HSA-8963896 | HDL assembly | 0.038046 | 1.420 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.036475 | 1.438 |
R-HSA-447115 | Interleukin-12 family signaling | 0.038943 | 1.410 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.039354 | 1.405 |
R-HSA-112399 | IRS-mediated signalling | 0.040337 | 1.394 |
R-HSA-2559583 | Cellular Senescence | 0.041525 | 1.382 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.041646 | 1.380 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.041646 | 1.380 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.041771 | 1.379 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.041771 | 1.379 |
R-HSA-163685 | Integration of energy metabolism | 0.042169 | 1.375 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.042197 | 1.375 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.044807 | 1.349 |
R-HSA-5654689 | PI-3K cascade:FGFR1 | 0.047441 | 1.324 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.045561 | 1.341 |
R-HSA-190236 | Signaling by FGFR | 0.044363 | 1.353 |
R-HSA-5654738 | Signaling by FGFR2 | 0.046604 | 1.332 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.046415 | 1.333 |
R-HSA-389356 | Co-stimulation by CD28 | 0.044257 | 1.354 |
R-HSA-166208 | mTORC1-mediated signalling | 0.047441 | 1.324 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.042197 | 1.375 |
R-HSA-1839120 | Signaling by FGFR1 amplification mutants | 0.047867 | 1.320 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.047867 | 1.320 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.047867 | 1.320 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.048124 | 1.318 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.048843 | 1.311 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.050689 | 1.295 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.050901 | 1.293 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.050901 | 1.293 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.052127 | 1.283 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.052675 | 1.278 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.057493 | 1.240 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.057493 | 1.240 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.056239 | 1.250 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 0.052127 | 1.283 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.056932 | 1.245 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.052127 | 1.283 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.056932 | 1.245 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.056462 | 1.248 |
R-HSA-176974 | Unwinding of DNA | 0.052127 | 1.283 |
R-HSA-5653656 | Vesicle-mediated transport | 0.055399 | 1.256 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.056932 | 1.245 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.059319 | 1.227 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.054637 | 1.263 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.053051 | 1.275 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.067017 | 1.174 |
R-HSA-5467345 | Deletions in the AXIN1 gene destabilize the destruction complex | 0.067017 | 1.174 |
R-HSA-9022927 | MECP2 regulates transcription of genes involved in GABA signaling | 0.065917 | 1.181 |
R-HSA-191650 | Regulation of gap junction activity | 0.065917 | 1.181 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.065917 | 1.181 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.063073 | 1.200 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 0.063073 | 1.200 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.068825 | 1.162 |
R-HSA-5654688 | SHC-mediated cascade:FGFR1 | 0.060080 | 1.221 |
R-HSA-5673000 | RAF activation | 0.068766 | 1.163 |
R-HSA-1221632 | Meiotic synapsis | 0.065746 | 1.182 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.067409 | 1.171 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.067409 | 1.171 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.062995 | 1.201 |
R-HSA-72172 | mRNA Splicing | 0.069554 | 1.158 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.068825 | 1.162 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.068825 | 1.162 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.063586 | 1.197 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.062684 | 1.203 |
R-HSA-198203 | PI3K/AKT activation | 0.063073 | 1.200 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.068766 | 1.163 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.065917 | 1.181 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.060763 | 1.216 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.068766 | 1.163 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.063626 | 1.196 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.060080 | 1.221 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.067409 | 1.171 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.063586 | 1.197 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.062575 | 1.204 |
R-HSA-1236394 | Signaling by ERBB4 | 0.063626 | 1.196 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.069898 | 1.156 |
R-HSA-68877 | Mitotic Prometaphase | 0.069939 | 1.155 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.071880 | 1.143 |
R-HSA-373760 | L1CAM interactions | 0.073921 | 1.131 |
R-HSA-8874081 | MET activates PTK2 signaling | 0.074451 | 1.128 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.074451 | 1.128 |
R-HSA-69481 | G2/M Checkpoints | 0.074980 | 1.125 |
R-HSA-9020558 | Interleukin-2 signaling | 0.074987 | 1.125 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.129546 | 0.888 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.129546 | 0.888 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.129546 | 0.888 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 0.129546 | 0.888 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 0.129546 | 0.888 |
R-HSA-5619043 | Defective SLC2A1 causes GLUT1 deficiency syndrome 1 (GLUT1DS1) | 0.129546 | 0.888 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.129546 | 0.888 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.129546 | 0.888 |
R-HSA-5632968 | Defective Mismatch Repair Associated With MSH6 | 0.129546 | 0.888 |
R-HSA-9630794 | Evasion of Oncogene Induced Senescence Due to Defective p16INK4A binding to CDK4... | 0.187888 | 0.726 |
R-HSA-9632700 | Evasion of Oxidative Stress Induced Senescence Due to Defective p16INK4A binding... | 0.187888 | 0.726 |
R-HSA-1299316 | TWIK-releated acid-sensitive K+ channel (TASK) | 0.187888 | 0.726 |
R-HSA-4085023 | Defective GFPT1 causes CMSTA1 | 0.187888 | 0.726 |
R-HSA-9916720 | Mitochondrial short-chain enoyl-CoA hydratase deficiency 1 | 0.187888 | 0.726 |
R-HSA-5619111 | Defective SLC20A2 causes idiopathic basal ganglia calcification 1 (IBGC1) | 0.187888 | 0.726 |
R-HSA-5619109 | Defective SLC6A2 causes orthostatic intolerance (OI) | 0.187888 | 0.726 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.085824 | 1.066 |
R-HSA-190374 | FGFR1c and Klotho ligand binding and activation | 0.085824 | 1.066 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 0.107259 | 0.970 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 0.107259 | 0.970 |
R-HSA-75108 | Activation, myristolyation of BID and translocation to mitochondria | 0.242323 | 0.616 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 0.242323 | 0.616 |
R-HSA-8854521 | Interaction between PHLDA1 and AURKA | 0.242323 | 0.616 |
R-HSA-5619089 | Defective SLC6A5 causes hyperekplexia 3 (HKPX3) | 0.242323 | 0.616 |
R-HSA-3878781 | Glycogen storage disease type IV (GBE1) | 0.242323 | 0.616 |
R-HSA-3828062 | Glycogen storage disease type 0 (muscle GYS1) | 0.242323 | 0.616 |
R-HSA-3814836 | Glycogen storage disease type XV (GYG1) | 0.242323 | 0.616 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.129929 | 0.886 |
R-HSA-1839122 | Signaling by activated point mutants of FGFR1 | 0.087812 | 1.056 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.087812 | 1.056 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.087812 | 1.056 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.087812 | 1.056 |
R-HSA-9022707 | MECP2 regulates transcription factors | 0.153571 | 0.814 |
R-HSA-8851907 | MET activates PI3K/AKT signaling | 0.153571 | 0.814 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 0.153571 | 0.814 |
R-HSA-114516 | Disinhibition of SNARE formation | 0.153571 | 0.814 |
R-HSA-112412 | SOS-mediated signalling | 0.153571 | 0.814 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.153571 | 0.814 |
R-HSA-9854907 | Regulation of MITF-M dependent genes involved in metabolism | 0.293112 | 0.533 |
R-HSA-8853336 | Signaling by plasma membrane FGFR1 fusions | 0.293112 | 0.533 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.293112 | 0.533 |
R-HSA-8865999 | MET activates PTPN11 | 0.293112 | 0.533 |
R-HSA-9734281 | Defective HPRT1 disrupts guanine and hypoxanthine salvage | 0.293112 | 0.533 |
R-HSA-392023 | Adrenaline signalling through Alpha-2 adrenergic receptor | 0.293112 | 0.533 |
R-HSA-2428933 | SHC-related events triggered by IGF1R | 0.101487 | 0.994 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.101487 | 0.994 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.101487 | 0.994 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.101487 | 0.994 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.101487 | 0.994 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.101487 | 0.994 |
R-HSA-444257 | RSK activation | 0.177954 | 0.750 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.177954 | 0.750 |
R-HSA-3785653 | Myoclonic epilepsy of Lafora | 0.177954 | 0.750 |
R-HSA-9028335 | Activated NTRK2 signals through PI3K | 0.177954 | 0.750 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.177954 | 0.750 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.115946 | 0.936 |
R-HSA-180292 | GAB1 signalosome | 0.078045 | 1.108 |
R-HSA-170984 | ARMS-mediated activation | 0.202873 | 0.693 |
R-HSA-9613354 | Lipophagy | 0.202873 | 0.693 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 0.340500 | 0.468 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 0.340500 | 0.468 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 0.340500 | 0.468 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.098213 | 1.008 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.146948 | 0.833 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.146948 | 0.833 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.228146 | 0.642 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.228146 | 0.642 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.082275 | 1.085 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.120538 | 0.919 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 0.099170 | 1.004 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.099170 | 1.004 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.099170 | 1.004 |
R-HSA-9034864 | Activated NTRK3 signals through RAS | 0.253615 | 0.596 |
R-HSA-4839744 | Signaling by APC mutants | 0.253615 | 0.596 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.253615 | 0.596 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.253615 | 0.596 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.253615 | 0.596 |
R-HSA-112308 | Presynaptic depolarization and calcium channel opening | 0.253615 | 0.596 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 0.384713 | 0.415 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.384713 | 0.415 |
R-HSA-203754 | NOSIP mediated eNOS trafficking | 0.384713 | 0.415 |
R-HSA-9846298 | Defective binding of VWF variant to GPIb:IX:V | 0.384713 | 0.415 |
R-HSA-9706377 | FLT3 signaling by CBL mutants | 0.384713 | 0.415 |
R-HSA-9673221 | Defective F9 activation | 0.384713 | 0.415 |
R-HSA-9845620 | Enhanced binding of GP1BA variant to VWF multimer:collagen | 0.384713 | 0.415 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 0.108220 | 0.966 |
R-HSA-5654219 | Phospholipase C-mediated cascade: FGFR1 | 0.197638 | 0.704 |
R-HSA-429947 | Deadenylation of mRNA | 0.157616 | 0.802 |
R-HSA-9026519 | Activated NTRK2 signals through RAS | 0.279139 | 0.554 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 0.279139 | 0.554 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.279139 | 0.554 |
R-HSA-3928664 | Ephrin signaling | 0.215383 | 0.667 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.170815 | 0.767 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.137643 | 0.861 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.184383 | 0.734 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.233445 | 0.632 |
R-HSA-5654710 | PI-3K cascade:FGFR3 | 0.233445 | 0.632 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.233445 | 0.632 |
R-HSA-937039 | IRAK1 recruits IKK complex | 0.304598 | 0.516 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 0.304598 | 0.516 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.304598 | 0.516 |
R-HSA-3000484 | Scavenging by Class F Receptors | 0.304598 | 0.516 |
R-HSA-165160 | PDE3B signalling | 0.425965 | 0.371 |
R-HSA-5638303 | Inhibition of Signaling by Overexpressed EGFR | 0.425965 | 0.371 |
R-HSA-5638302 | Signaling by Overexpressed Wild-Type EGFR in Cancer | 0.425965 | 0.371 |
R-HSA-111957 | Cam-PDE 1 activation | 0.425965 | 0.371 |
R-HSA-109703 | PKB-mediated events | 0.425965 | 0.371 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 0.425965 | 0.371 |
R-HSA-9907570 | Loss-of-function mutations in DLD cause MSUD3/DLDD | 0.425965 | 0.371 |
R-HSA-9865113 | Loss-of-function mutations in DBT cause MSUD2 | 0.425965 | 0.371 |
R-HSA-5654720 | PI-3K cascade:FGFR4 | 0.251762 | 0.599 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.251762 | 0.599 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.251762 | 0.599 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.251762 | 0.599 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.251762 | 0.599 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 0.170165 | 0.769 |
R-HSA-9861559 | PDH complex synthesizes acetyl-CoA from PYR | 0.329884 | 0.482 |
R-HSA-5654704 | SHC-mediated cascade:FGFR3 | 0.270278 | 0.568 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 0.226978 | 0.644 |
R-HSA-9615710 | Late endosomal microautophagy | 0.226978 | 0.644 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.193344 | 0.714 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.109342 | 0.961 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.176196 | 0.754 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.176196 | 0.754 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.176196 | 0.754 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.288935 | 0.539 |
R-HSA-5654719 | SHC-mediated cascade:FGFR4 | 0.288935 | 0.539 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.288935 | 0.539 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 0.354908 | 0.450 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 0.464454 | 0.333 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.464454 | 0.333 |
R-HSA-9912481 | Branched-chain ketoacid dehydrogenase kinase deficiency | 0.464454 | 0.333 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 0.464454 | 0.333 |
R-HSA-9865125 | Loss-of-function mutations in BCKDHA or BCKDHB cause MSUD | 0.464454 | 0.333 |
R-HSA-9912529 | H139Hfs13* PPM1K causes a mild variant of MSUD | 0.464454 | 0.333 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.186382 | 0.730 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.196793 | 0.706 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.379590 | 0.421 |
R-HSA-180336 | SHC1 events in EGFR signaling | 0.379590 | 0.421 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.379590 | 0.421 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.096343 | 1.016 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.096343 | 1.016 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.218233 | 0.661 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.326470 | 0.486 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.255449 | 0.593 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.240413 | 0.619 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.240413 | 0.619 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.240413 | 0.619 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.403865 | 0.394 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.251748 | 0.599 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.251748 | 0.599 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.317822 | 0.498 |
R-HSA-5654693 | FRS-mediated FGFR1 signaling | 0.363983 | 0.439 |
R-HSA-5654695 | PI-3K cascade:FGFR2 | 0.363983 | 0.439 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.333342 | 0.477 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.427675 | 0.369 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 0.427675 | 0.369 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.257224 | 0.590 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.206396 | 0.685 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.308125 | 0.511 |
R-HSA-156902 | Peptide chain elongation | 0.235779 | 0.627 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.321548 | 0.493 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.216842 | 0.664 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.288966 | 0.539 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.310325 | 0.508 |
R-HSA-4641257 | Degradation of AXIN | 0.364455 | 0.438 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.364455 | 0.438 |
R-HSA-5654699 | SHC-mediated cascade:FGFR2 | 0.401141 | 0.397 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.401141 | 0.397 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.401141 | 0.397 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.450975 | 0.346 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.271277 | 0.567 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.419497 | 0.377 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.419497 | 0.377 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.419497 | 0.377 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.410938 | 0.386 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.317635 | 0.498 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.455605 | 0.341 |
R-HSA-167161 | HIV Transcription Initiation | 0.441542 | 0.355 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.441542 | 0.355 |
R-HSA-72649 | Translation initiation complex formation | 0.429807 | 0.367 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.391810 | 0.407 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.456669 | 0.340 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.456528 | 0.341 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.443575 | 0.353 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.443068 | 0.354 |
R-HSA-8852135 | Protein ubiquitination | 0.354690 | 0.450 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.093422 | 1.030 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.384263 | 0.415 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.242631 | 0.615 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.455605 | 0.341 |
R-HSA-73893 | DNA Damage Bypass | 0.207414 | 0.683 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.389279 | 0.410 |
R-HSA-5689880 | Ub-specific processing proteases | 0.462109 | 0.335 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.241700 | 0.617 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.308125 | 0.511 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.253323 | 0.596 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.426293 | 0.370 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.099170 | 1.004 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 0.304598 | 0.516 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.088883 | 1.051 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.389279 | 0.410 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.355303 | 0.449 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.078045 | 1.108 |
R-HSA-3000157 | Laminin interactions | 0.363983 | 0.439 |
R-HSA-9646399 | Aggrephagy | 0.410938 | 0.386 |
R-HSA-182971 | EGFR downregulation | 0.256630 | 0.591 |
R-HSA-4641265 | Repression of WNT target genes | 0.101487 | 0.994 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.180274 | 0.744 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 0.157616 | 0.802 |
R-HSA-190242 | FGFR1 ligand binding and activation | 0.215383 | 0.667 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.198288 | 0.703 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.166244 | 0.779 |
R-HSA-4641258 | Degradation of DVL | 0.364455 | 0.438 |
R-HSA-74752 | Signaling by Insulin receptor | 0.103273 | 0.986 |
R-HSA-5610787 | Hedgehog 'off' state | 0.090738 | 1.042 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.228146 | 0.642 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 0.228146 | 0.642 |
R-HSA-354192 | Integrin signaling | 0.137643 | 0.861 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.379590 | 0.421 |
R-HSA-4086400 | PCP/CE pathway | 0.148661 | 0.828 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.345251 | 0.462 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.333342 | 0.477 |
R-HSA-5689901 | Metalloprotease DUBs | 0.382625 | 0.417 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.441542 | 0.355 |
R-HSA-202424 | Downstream TCR signaling | 0.381450 | 0.419 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.079412 | 1.100 |
R-HSA-8983432 | Interleukin-15 signaling | 0.304598 | 0.516 |
R-HSA-2424491 | DAP12 signaling | 0.241700 | 0.617 |
R-HSA-5688426 | Deubiquitination | 0.279135 | 0.554 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.079412 | 1.100 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.169689 | 0.770 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 0.202873 | 0.693 |
R-HSA-448706 | Interleukin-1 processing | 0.202873 | 0.693 |
R-HSA-9762292 | Regulation of CDH11 function | 0.228146 | 0.642 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 0.163355 | 0.787 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.354908 | 0.450 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.317635 | 0.498 |
R-HSA-167172 | Transcription of the HIV genome | 0.278279 | 0.556 |
R-HSA-451927 | Interleukin-2 family signaling | 0.410938 | 0.386 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.159007 | 0.799 |
R-HSA-6802949 | Signaling by RAS mutants | 0.176196 | 0.754 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.229992 | 0.638 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.345251 | 0.462 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.294784 | 0.530 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.107259 | 0.970 |
R-HSA-9796292 | Formation of axial mesoderm | 0.115946 | 0.936 |
R-HSA-8866911 | TFAP2 (AP-2) family regulates transcription of cell cycle factors | 0.340500 | 0.468 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.120538 | 0.919 |
R-HSA-9931529 | Phosphorylation and nuclear translocation of BMAL1 (ARNTL) and CLOCK | 0.384713 | 0.415 |
R-HSA-174490 | Membrane binding and targetting of GAG proteins | 0.329884 | 0.482 |
R-HSA-6803529 | FGFR2 alternative splicing | 0.307682 | 0.512 |
R-HSA-68949 | Orc1 removal from chromatin | 0.240413 | 0.619 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.348895 | 0.457 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.323966 | 0.490 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.329345 | 0.482 |
R-HSA-169893 | Prolonged ERK activation events | 0.163355 | 0.787 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.179143 | 0.747 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.454936 | 0.342 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.295623 | 0.529 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.187922 | 0.726 |
R-HSA-912631 | Regulation of signaling by CBL | 0.087848 | 1.056 |
R-HSA-9620244 | Long-term potentiation | 0.170815 | 0.767 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 0.329884 | 0.482 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.226978 | 0.644 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.193344 | 0.714 |
R-HSA-525793 | Myogenesis | 0.382625 | 0.417 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.295623 | 0.529 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.095804 | 1.019 |
R-HSA-9766229 | Degradation of CDH1 | 0.105553 | 0.977 |
R-HSA-1059683 | Interleukin-6 signaling | 0.329884 | 0.482 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 0.450975 | 0.346 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.148161 | 0.829 |
R-HSA-187687 | Signalling to ERKs | 0.170165 | 0.769 |
R-HSA-418555 | G alpha (s) signalling events | 0.118361 | 0.927 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.108220 | 0.966 |
R-HSA-202403 | TCR signaling | 0.231886 | 0.635 |
R-HSA-111452 | Activation and oligomerization of BAK protein | 0.129546 | 0.888 |
R-HSA-190704 | Oligomerization of connexins into connexons | 0.187888 | 0.726 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 0.107259 | 0.970 |
R-HSA-165158 | Activation of AKT2 | 0.384713 | 0.415 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.279139 | 0.554 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.137643 | 0.861 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.129014 | 0.889 |
R-HSA-190373 | FGFR1c ligand binding and activation | 0.329884 | 0.482 |
R-HSA-1483115 | Hydrolysis of LPC | 0.354908 | 0.450 |
R-HSA-1483152 | Hydrolysis of LPE | 0.464454 | 0.333 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.403865 | 0.394 |
R-HSA-9664420 | Killing mechanisms | 0.403865 | 0.394 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 0.403865 | 0.394 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.216842 | 0.664 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.426293 | 0.370 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.441542 | 0.355 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.310609 | 0.508 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.255449 | 0.593 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.078045 | 1.108 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.148161 | 0.829 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.092805 | 1.032 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.081636 | 1.088 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.271737 | 0.566 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 0.401141 | 0.397 |
R-HSA-170968 | Frs2-mediated activation | 0.329884 | 0.482 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.092809 | 1.032 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.382625 | 0.417 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 0.177954 | 0.750 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 0.202873 | 0.693 |
R-HSA-174495 | Synthesis And Processing Of GAG, GAGPOL Polyproteins | 0.354908 | 0.450 |
R-HSA-69541 | Stabilization of p53 | 0.217551 | 0.662 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.141566 | 0.849 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 0.427675 | 0.369 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.121732 | 0.915 |
R-HSA-3322077 | Glycogen synthesis | 0.251762 | 0.599 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.432554 | 0.364 |
R-HSA-5676594 | TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway | 0.329884 | 0.482 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.267695 | 0.572 |
R-HSA-5693538 | Homology Directed Repair | 0.081147 | 1.091 |
R-HSA-8984722 | Interleukin-35 Signalling | 0.304598 | 0.516 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.129929 | 0.886 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.212497 | 0.673 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.226978 | 0.644 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 0.354908 | 0.450 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.242631 | 0.615 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.154729 | 0.810 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.317822 | 0.498 |
R-HSA-9711097 | Cellular response to starvation | 0.169890 | 0.770 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.358667 | 0.445 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.237879 | 0.624 |
R-HSA-1500620 | Meiosis | 0.202114 | 0.694 |
R-HSA-5358351 | Signaling by Hedgehog | 0.283820 | 0.547 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.081919 | 1.087 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 0.288935 | 0.539 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.280393 | 0.552 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.226589 | 0.645 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.118361 | 0.927 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.181129 | 0.742 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.269097 | 0.570 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.091682 | 1.038 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.170165 | 0.769 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.330021 | 0.481 |
R-HSA-1538133 | G0 and Early G1 | 0.271737 | 0.566 |
R-HSA-114294 | Activation, translocation and oligomerization of BAX | 0.129546 | 0.888 |
R-HSA-169131 | Inhibition of PKR | 0.129546 | 0.888 |
R-HSA-373756 | SDK interactions | 0.129546 | 0.888 |
R-HSA-190827 | Transport of connexins along the secretory pathway | 0.187888 | 0.726 |
R-HSA-5632928 | Defective Mismatch Repair Associated With MSH2 | 0.187888 | 0.726 |
R-HSA-9632693 | Evasion of Oxidative Stress Induced Senescence Due to p16INK4A Defects | 0.187888 | 0.726 |
R-HSA-9630750 | Evasion of Oncogene Induced Senescence Due to p16INK4A Defects | 0.187888 | 0.726 |
R-HSA-9818025 | NFE2L2 regulating TCA cycle genes | 0.085824 | 1.066 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.085824 | 1.066 |
R-HSA-447038 | NrCAM interactions | 0.085824 | 1.066 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 0.242323 | 0.616 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 0.129929 | 0.886 |
R-HSA-8948747 | Regulation of PTEN localization | 0.153571 | 0.814 |
R-HSA-844623 | The IPAF inflammasome | 0.293112 | 0.533 |
R-HSA-9927354 | Co-stimulation by ICOS | 0.177954 | 0.750 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.131122 | 0.882 |
R-HSA-9754119 | Drug-mediated inhibition of CDK4/CDK6 activity | 0.340500 | 0.468 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.132447 | 0.878 |
R-HSA-5624138 | Trafficking of myristoylated proteins to the cilium | 0.384713 | 0.415 |
R-HSA-8866376 | Reelin signalling pathway | 0.384713 | 0.415 |
R-HSA-3229121 | Glycogen storage diseases | 0.197638 | 0.704 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.096370 | 1.016 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.279139 | 0.554 |
R-HSA-9017802 | Noncanonical activation of NOTCH3 | 0.425965 | 0.371 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.159007 | 0.799 |
R-HSA-1433559 | Regulation of KIT signaling | 0.354908 | 0.450 |
R-HSA-69478 | G2/M DNA replication checkpoint | 0.464454 | 0.333 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.217551 | 0.662 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.379590 | 0.421 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.194027 | 0.712 |
R-HSA-1566977 | Fibronectin matrix formation | 0.427675 | 0.369 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 0.308125 | 0.511 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.279918 | 0.553 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.322327 | 0.492 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.362133 | 0.441 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 0.455605 | 0.341 |
R-HSA-73894 | DNA Repair | 0.399537 | 0.398 |
R-HSA-70268 | Pyruvate metabolism | 0.227176 | 0.644 |
R-HSA-3371556 | Cellular response to heat stress | 0.460689 | 0.337 |
R-HSA-1266738 | Developmental Biology | 0.459521 | 0.338 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.215383 | 0.667 |
R-HSA-392518 | Signal amplification | 0.317822 | 0.498 |
R-HSA-9612973 | Autophagy | 0.103932 | 0.983 |
R-HSA-2028269 | Signaling by Hippo | 0.197638 | 0.704 |
R-HSA-8939211 | ESR-mediated signaling | 0.133609 | 0.874 |
R-HSA-74160 | Gene expression (Transcription) | 0.219464 | 0.659 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.254641 | 0.594 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.321545 | 0.493 |
R-HSA-1632852 | Macroautophagy | 0.089429 | 1.049 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.192867 | 0.715 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.146948 | 0.833 |
R-HSA-2172127 | DAP12 interactions | 0.294784 | 0.530 |
R-HSA-9020956 | Interleukin-27 signaling | 0.228146 | 0.642 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.137643 | 0.861 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.362133 | 0.441 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.399308 | 0.399 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.096018 | 1.018 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.269097 | 0.570 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.350993 | 0.455 |
R-HSA-9645723 | Diseases of programmed cell death | 0.079753 | 1.098 |
R-HSA-69275 | G2/M Transition | 0.187516 | 0.727 |
R-HSA-3295583 | TRP channels | 0.184383 | 0.734 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 0.251762 | 0.599 |
R-HSA-9931295 | PD-L1(CD274) glycosylation and translocation to plasma membrane | 0.270278 | 0.568 |
R-HSA-447043 | Neurofascin interactions | 0.464454 | 0.333 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.078959 | 1.103 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.286992 | 0.542 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.198020 | 0.703 |
R-HSA-422356 | Regulation of insulin secretion | 0.230035 | 0.638 |
R-HSA-112316 | Neuronal System | 0.381842 | 0.418 |
R-HSA-212436 | Generic Transcription Pathway | 0.197867 | 0.704 |
R-HSA-162587 | HIV Life Cycle | 0.440018 | 0.357 |
R-HSA-1280218 | Adaptive Immune System | 0.422455 | 0.374 |
R-HSA-390696 | Adrenoceptors | 0.177954 | 0.750 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.193344 | 0.714 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.268427 | 0.571 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.363983 | 0.439 |
R-HSA-3214842 | HDMs demethylate histones | 0.170815 | 0.767 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.335036 | 0.475 |
R-HSA-9663891 | Selective autophagy | 0.360782 | 0.443 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.362133 | 0.441 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.362133 | 0.441 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.107259 | 0.970 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.107259 | 0.970 |
R-HSA-447041 | CHL1 interactions | 0.153571 | 0.814 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 0.202873 | 0.693 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 0.253615 | 0.596 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.137643 | 0.861 |
R-HSA-9823587 | Defects of platelet adhesion to exposed collagen | 0.425965 | 0.371 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.105073 | 0.979 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.307682 | 0.512 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.078028 | 1.108 |
R-HSA-8982491 | Glycogen metabolism | 0.410938 | 0.386 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.192867 | 0.715 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.437661 | 0.359 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.286568 | 0.543 |
R-HSA-400685 | Sema4D in semaphorin signaling | 0.170815 | 0.767 |
R-HSA-901042 | Calnexin/calreticulin cycle | 0.317822 | 0.498 |
R-HSA-1266695 | Interleukin-7 signaling | 0.363983 | 0.439 |
R-HSA-4839726 | Chromatin organization | 0.130745 | 0.884 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.222042 | 0.654 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 0.153571 | 0.814 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.128200 | 0.892 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 0.379590 | 0.421 |
R-HSA-421270 | Cell-cell junction organization | 0.138036 | 0.860 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.083626 | 1.078 |
R-HSA-69242 | S Phase | 0.267663 | 0.572 |
R-HSA-418990 | Adherens junctions interactions | 0.160450 | 0.795 |
R-HSA-8953854 | Metabolism of RNA | 0.432847 | 0.364 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.286992 | 0.542 |
R-HSA-5578775 | Ion homeostasis | 0.456528 | 0.341 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.139769 | 0.855 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.236661 | 0.626 |
R-HSA-75893 | TNF signaling | 0.456528 | 0.341 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.096394 | 1.016 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.179143 | 0.747 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.107259 | 0.970 |
R-HSA-9630747 | Diseases of Cellular Senescence | 0.242323 | 0.616 |
R-HSA-9675132 | Diseases of cellular response to stress | 0.242323 | 0.616 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 0.293112 | 0.533 |
R-HSA-112411 | MAPK1 (ERK2) activation | 0.202873 | 0.693 |
R-HSA-5626978 | TNFR1-mediated ceramide production | 0.340500 | 0.468 |
R-HSA-205025 | NADE modulates death signalling | 0.340500 | 0.468 |
R-HSA-8876725 | Protein methylation | 0.146948 | 0.833 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.109118 | 0.962 |
R-HSA-1483226 | Synthesis of PI | 0.253615 | 0.596 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 0.425965 | 0.371 |
R-HSA-187706 | Signalling to p38 via RIT and RIN | 0.425965 | 0.371 |
R-HSA-5653890 | Lactose synthesis | 0.464454 | 0.333 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.134846 | 0.870 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.216670 | 0.664 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.427675 | 0.369 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.308125 | 0.511 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.334394 | 0.476 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.395500 | 0.403 |
R-HSA-204174 | Regulation of pyruvate dehydrogenase (PDH) complex | 0.437661 | 0.359 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.370849 | 0.431 |
R-HSA-8848021 | Signaling by PTK6 | 0.370849 | 0.431 |
R-HSA-196780 | Biotin transport and metabolism | 0.146948 | 0.833 |
R-HSA-109582 | Hemostasis | 0.216082 | 0.665 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.329884 | 0.482 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.250900 | 0.600 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.270143 | 0.568 |
R-HSA-166520 | Signaling by NTRKs | 0.267663 | 0.572 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.228146 | 0.642 |
R-HSA-8941332 | RUNX2 regulates genes involved in cell migration | 0.253615 | 0.596 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.170165 | 0.769 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.105073 | 0.979 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.105073 | 0.979 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.105073 | 0.979 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.105073 | 0.979 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.379590 | 0.421 |
R-HSA-9008059 | Interleukin-37 signaling | 0.455605 | 0.341 |
R-HSA-445144 | Signal transduction by L1 | 0.098213 | 1.008 |
R-HSA-1474165 | Reproduction | 0.317346 | 0.498 |
R-HSA-2262752 | Cellular responses to stress | 0.181878 | 0.740 |
R-HSA-6807070 | PTEN Regulation | 0.291275 | 0.536 |
R-HSA-3000170 | Syndecan interactions | 0.144816 | 0.839 |
R-HSA-9675135 | Diseases of DNA repair | 0.176196 | 0.754 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.321545 | 0.493 |
R-HSA-69206 | G1/S Transition | 0.270279 | 0.568 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.441542 | 0.355 |
R-HSA-5357801 | Programmed Cell Death | 0.394867 | 0.404 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.286992 | 0.542 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.105073 | 0.979 |
R-HSA-844615 | The AIM2 inflammasome | 0.242323 | 0.616 |
R-HSA-9708296 | tRNA-derived small RNA (tsRNA or tRNA-related fragment, tRF) biogenesis | 0.242323 | 0.616 |
R-HSA-425986 | Sodium/Proton exchangers | 0.177954 | 0.750 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.202873 | 0.693 |
R-HSA-110056 | MAPK3 (ERK1) activation | 0.228146 | 0.642 |
R-HSA-9634600 | Regulation of glycolysis by fructose 2,6-bisphosphate metabolism | 0.163355 | 0.787 |
R-HSA-418890 | Role of second messengers in netrin-1 signaling | 0.304598 | 0.516 |
R-HSA-427652 | Sodium-coupled phosphate cotransporters | 0.425965 | 0.371 |
R-HSA-5660668 | CLEC7A/inflammasome pathway | 0.425965 | 0.371 |
R-HSA-75892 | Platelet Adhesion to exposed collagen | 0.329884 | 0.482 |
R-HSA-9842640 | Signaling by LTK in cancer | 0.464454 | 0.333 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.256630 | 0.591 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 0.326470 | 0.486 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.286992 | 0.542 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.213863 | 0.670 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.202114 | 0.694 |
R-HSA-9682385 | FLT3 signaling in disease | 0.348895 | 0.457 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.280082 | 0.553 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.455862 | 0.341 |
R-HSA-201556 | Signaling by ALK | 0.104072 | 0.983 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.163355 | 0.787 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.140359 | 0.853 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.432554 | 0.364 |
R-HSA-109581 | Apoptosis | 0.272767 | 0.564 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.148161 | 0.829 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.304598 | 0.516 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.288879 | 0.539 |
R-HSA-373755 | Semaphorin interactions | 0.370849 | 0.431 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.081919 | 1.087 |
R-HSA-70171 | Glycolysis | 0.365459 | 0.437 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.132447 | 0.878 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.382625 | 0.417 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.131122 | 0.882 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.202873 | 0.693 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.120538 | 0.919 |
R-HSA-5682910 | LGI-ADAM interactions | 0.253615 | 0.596 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 0.279139 | 0.554 |
R-HSA-9694493 | Maturation of protein E | 0.425965 | 0.371 |
R-HSA-9683683 | Maturation of protein E | 0.425965 | 0.371 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.198288 | 0.703 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 0.354908 | 0.450 |
R-HSA-8964011 | HDL clearance | 0.464454 | 0.333 |
R-HSA-8964572 | Lipid particle organization | 0.464454 | 0.333 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.379590 | 0.421 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.085568 | 1.068 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 0.379998 | 0.420 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.179143 | 0.747 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 0.403865 | 0.394 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.334394 | 0.476 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.419497 | 0.377 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.128200 | 0.892 |
R-HSA-9827857 | Specification of primordial germ cells | 0.197638 | 0.704 |
R-HSA-2672351 | Stimuli-sensing channels | 0.216842 | 0.664 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.348570 | 0.458 |
R-HSA-373753 | Nephrin family interactions | 0.251762 | 0.599 |
R-HSA-417957 | P2Y receptors | 0.354908 | 0.450 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.337661 | 0.472 |
R-HSA-140834 | Extrinsic Pathway of Fibrin Clot Formation | 0.340500 | 0.468 |
R-HSA-2892247 | POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation | 0.427675 | 0.369 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.410938 | 0.386 |
R-HSA-2132295 | MHC class II antigen presentation | 0.101135 | 0.995 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.082354 | 1.084 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.427675 | 0.369 |
R-HSA-2586552 | Signaling by Leptin | 0.228146 | 0.642 |
R-HSA-8963898 | Plasma lipoprotein assembly | 0.157616 | 0.802 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 0.329884 | 0.482 |
R-HSA-168316 | Assembly of Viral Components at the Budding Site | 0.384713 | 0.415 |
R-HSA-5632684 | Hedgehog 'on' state | 0.467837 | 0.330 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.469759 | 0.328 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.471655 | 0.326 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.471655 | 0.326 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.471655 | 0.326 |
R-HSA-388396 | GPCR downstream signalling | 0.472248 | 0.326 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.473018 | 0.325 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.473303 | 0.325 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.473303 | 0.325 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.473303 | 0.325 |
R-HSA-186763 | Downstream signal transduction | 0.473303 | 0.325 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 0.473725 | 0.324 |
R-HSA-5358508 | Mismatch Repair | 0.473725 | 0.324 |
R-HSA-156711 | Polo-like kinase mediated events | 0.473725 | 0.324 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.473725 | 0.324 |
R-HSA-210993 | Tie2 Signaling | 0.473725 | 0.324 |
R-HSA-418038 | Nucleotide-like (purinergic) receptors | 0.473725 | 0.324 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.473725 | 0.324 |
R-HSA-983712 | Ion channel transport | 0.475134 | 0.323 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.478861 | 0.320 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.482887 | 0.316 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.486485 | 0.313 |
R-HSA-69236 | G1 Phase | 0.486485 | 0.313 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.486485 | 0.313 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.490734 | 0.309 |
R-HSA-69190 | DNA strand elongation | 0.490734 | 0.309 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.491564 | 0.308 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.491564 | 0.308 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.492767 | 0.307 |
R-HSA-3214847 | HATs acetylate histones | 0.494666 | 0.306 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.495895 | 0.305 |
R-HSA-110320 | Translesion Synthesis by POLH | 0.495895 | 0.305 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 0.495895 | 0.305 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.495895 | 0.305 |
R-HSA-9694631 | Maturation of nucleoprotein | 0.495895 | 0.305 |
R-HSA-844456 | The NLRP3 inflammasome | 0.495895 | 0.305 |
R-HSA-449836 | Other interleukin signaling | 0.495895 | 0.305 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.495895 | 0.305 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.495900 | 0.305 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 0.500364 | 0.301 |
R-HSA-9032845 | Activated NTRK2 signals through CDK5 | 0.500364 | 0.301 |
R-HSA-5576890 | Phase 3 - rapid repolarisation | 0.500364 | 0.301 |
R-HSA-9026762 | Biosynthesis of maresin conjugates in tissue regeneration (MCTR) | 0.500364 | 0.301 |
R-HSA-418886 | Netrin mediated repulsion signals | 0.500364 | 0.301 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 0.500364 | 0.301 |
R-HSA-9686347 | Microbial modulation of RIPK1-mediated regulated necrosis | 0.500364 | 0.301 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 0.500364 | 0.301 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 0.500364 | 0.301 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.500364 | 0.301 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.501143 | 0.300 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.507875 | 0.294 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.507875 | 0.294 |
R-HSA-9948299 | Ribosome-associated quality control | 0.510604 | 0.292 |
R-HSA-9020702 | Interleukin-1 signaling | 0.514740 | 0.288 |
R-HSA-2408557 | Selenocysteine synthesis | 0.514740 | 0.288 |
R-HSA-380287 | Centrosome maturation | 0.514932 | 0.288 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.514932 | 0.288 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.515615 | 0.288 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.517460 | 0.286 |
R-HSA-9823730 | Formation of definitive endoderm | 0.517460 | 0.286 |
R-HSA-6807004 | Negative regulation of MET activity | 0.517460 | 0.286 |
R-HSA-1482922 | Acyl chain remodelling of PI | 0.517460 | 0.286 |
R-HSA-1181150 | Signaling by NODAL | 0.517460 | 0.286 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.521544 | 0.283 |
R-HSA-445717 | Aquaporin-mediated transport | 0.521544 | 0.283 |
R-HSA-390522 | Striated Muscle Contraction | 0.524710 | 0.280 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.524710 | 0.280 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.524710 | 0.280 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.524710 | 0.280 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.524710 | 0.280 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.524710 | 0.280 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.524710 | 0.280 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.531058 | 0.275 |
R-HSA-111995 | phospho-PLA2 pathway | 0.533868 | 0.273 |
R-HSA-212718 | EGFR interacts with phospholipase C-gamma | 0.533868 | 0.273 |
R-HSA-190370 | FGFR1b ligand binding and activation | 0.533868 | 0.273 |
R-HSA-196025 | Formation of annular gap junctions | 0.533868 | 0.273 |
R-HSA-8875656 | MET receptor recycling | 0.533868 | 0.273 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 0.533868 | 0.273 |
R-HSA-9020933 | Interleukin-23 signaling | 0.533868 | 0.273 |
R-HSA-8985947 | Interleukin-9 signaling | 0.533868 | 0.273 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 0.533868 | 0.273 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 0.533868 | 0.273 |
R-HSA-8866904 | Negative regulation of activity of TFAP2 (AP-2) family transcription factors | 0.533868 | 0.273 |
R-HSA-9734207 | Nucleotide salvage defects | 0.533868 | 0.273 |
R-HSA-9839383 | TGFBR3 PTM regulation | 0.533868 | 0.273 |
R-HSA-210455 | Astrocytic Glutamate-Glutamine Uptake And Metabolism | 0.533868 | 0.273 |
R-HSA-112313 | Neurotransmitter uptake and metabolism In glial cells | 0.533868 | 0.273 |
R-HSA-9637628 | Modulation by Mtb of host immune system | 0.533868 | 0.273 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 0.533868 | 0.273 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 0.533868 | 0.273 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.534154 | 0.272 |
R-HSA-9707616 | Heme signaling | 0.534154 | 0.272 |
R-HSA-192823 | Viral mRNA Translation | 0.534541 | 0.272 |
R-HSA-9694635 | Translation of Structural Proteins | 0.537879 | 0.269 |
R-HSA-202040 | G-protein activation | 0.538401 | 0.269 |
R-HSA-167044 | Signalling to RAS | 0.538401 | 0.269 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 0.538401 | 0.269 |
R-HSA-210991 | Basigin interactions | 0.538401 | 0.269 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.541223 | 0.267 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.541223 | 0.267 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.541223 | 0.267 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 0.541223 | 0.267 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.541223 | 0.267 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.541223 | 0.267 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.541223 | 0.267 |
R-HSA-180746 | Nuclear import of Rev protein | 0.541223 | 0.267 |
R-HSA-5205647 | Mitophagy | 0.541223 | 0.267 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.546610 | 0.262 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.546610 | 0.262 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.546610 | 0.262 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.549669 | 0.260 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.552549 | 0.258 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.556325 | 0.255 |
R-HSA-70326 | Glucose metabolism | 0.556325 | 0.255 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.557399 | 0.254 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.557399 | 0.254 |
R-HSA-169911 | Regulation of Apoptosis | 0.557399 | 0.254 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.558706 | 0.253 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.558706 | 0.253 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.558706 | 0.253 |
R-HSA-175474 | Assembly Of The HIV Virion | 0.558706 | 0.253 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.562765 | 0.250 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 0.565127 | 0.248 |
R-HSA-9020958 | Interleukin-21 signaling | 0.565127 | 0.248 |
R-HSA-190873 | Gap junction degradation | 0.565127 | 0.248 |
R-HSA-201688 | WNT mediated activation of DVL | 0.565127 | 0.248 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.565127 | 0.248 |
R-HSA-163680 | AMPK inhibits chREBP transcriptional activation activity | 0.565127 | 0.248 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 0.565127 | 0.248 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 0.565127 | 0.248 |
R-HSA-193697 | p75NTR regulates axonogenesis | 0.565127 | 0.248 |
R-HSA-1433617 | Regulation of signaling by NODAL | 0.565127 | 0.248 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.565127 | 0.248 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.565127 | 0.248 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 0.565127 | 0.248 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 0.565127 | 0.248 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 0.565127 | 0.248 |
R-HSA-418889 | Caspase activation via Dependence Receptors in the absence of ligand | 0.565127 | 0.248 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.572154 | 0.242 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.573227 | 0.242 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.573227 | 0.242 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.573227 | 0.242 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.573227 | 0.242 |
R-HSA-3371511 | HSF1 activation | 0.573227 | 0.242 |
R-HSA-163560 | Triglyceride catabolism | 0.573227 | 0.242 |
R-HSA-69205 | G1/S-Specific Transcription | 0.573227 | 0.242 |
R-HSA-9909396 | Circadian clock | 0.575607 | 0.240 |
R-HSA-9006936 | Signaling by TGFB family members | 0.578306 | 0.238 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 0.578365 | 0.238 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.578365 | 0.238 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 0.578365 | 0.238 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.578365 | 0.238 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.578365 | 0.238 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.578365 | 0.238 |
R-HSA-9669938 | Signaling by KIT in disease | 0.578365 | 0.238 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.578365 | 0.238 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.578365 | 0.238 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.584789 | 0.233 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.584789 | 0.233 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.588698 | 0.230 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.588698 | 0.230 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.592928 | 0.227 |
R-HSA-164843 | 2-LTR circle formation | 0.594292 | 0.226 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 0.594292 | 0.226 |
R-HSA-451308 | Activation of Ca-permeable Kainate Receptor | 0.594292 | 0.226 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 0.594292 | 0.226 |
R-HSA-68952 | DNA replication initiation | 0.594292 | 0.226 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.594292 | 0.226 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 0.594292 | 0.226 |
R-HSA-9683686 | Maturation of spike protein | 0.594292 | 0.226 |
R-HSA-9668250 | Defective factor IX causes hemophilia B | 0.594292 | 0.226 |
R-HSA-9693928 | Defective RIPK1-mediated regulated necrosis | 0.594292 | 0.226 |
R-HSA-1296346 | Tandem pore domain potassium channels | 0.594292 | 0.226 |
R-HSA-9664873 | Pexophagy | 0.594292 | 0.226 |
R-HSA-8934903 | Receptor Mediated Mitophagy | 0.594292 | 0.226 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.594755 | 0.226 |
R-HSA-8854691 | Interleukin-20 family signaling | 0.597374 | 0.224 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 0.597374 | 0.224 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 0.597374 | 0.224 |
R-HSA-9830674 | Formation of the ureteric bud | 0.597374 | 0.224 |
R-HSA-446210 | Synthesis of UDP-N-acetyl-glucosamine | 0.597374 | 0.224 |
R-HSA-200425 | Carnitine shuttle | 0.597374 | 0.224 |
R-HSA-982772 | Growth hormone receptor signaling | 0.597374 | 0.224 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.601156 | 0.221 |
R-HSA-1566948 | Elastic fibre formation | 0.603803 | 0.219 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.603803 | 0.219 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.606337 | 0.217 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.606337 | 0.217 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.607185 | 0.217 |
R-HSA-9658195 | Leishmania infection | 0.607185 | 0.217 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.610799 | 0.214 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.610799 | 0.214 |
R-HSA-445355 | Smooth Muscle Contraction | 0.610799 | 0.214 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.611779 | 0.213 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.615731 | 0.211 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 0.615731 | 0.211 |
R-HSA-428930 | Thromboxane signalling through TP receptor | 0.615731 | 0.211 |
R-HSA-168255 | Influenza Infection | 0.616021 | 0.210 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.618537 | 0.209 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.618537 | 0.209 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.618537 | 0.209 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.618537 | 0.209 |
R-HSA-195721 | Signaling by WNT | 0.619455 | 0.208 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.621502 | 0.207 |
R-HSA-451306 | Ionotropic activity of kainate receptors | 0.621502 | 0.207 |
R-HSA-5658623 | FGFRL1 modulation of FGFR1 signaling | 0.621502 | 0.207 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 0.621502 | 0.207 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 0.621502 | 0.207 |
R-HSA-196819 | Vitamin B1 (thiamin) metabolism | 0.621502 | 0.207 |
R-HSA-210990 | PECAM1 interactions | 0.621502 | 0.207 |
R-HSA-9635465 | Suppression of apoptosis | 0.621502 | 0.207 |
R-HSA-391908 | Prostanoid ligand receptors | 0.621502 | 0.207 |
R-HSA-9758890 | Transport of RCbl within the body | 0.621502 | 0.207 |
R-HSA-75205 | Dissolution of Fibrin Clot | 0.621502 | 0.207 |
R-HSA-448424 | Interleukin-17 signaling | 0.628921 | 0.201 |
R-HSA-9609690 | HCMV Early Events | 0.629728 | 0.201 |
R-HSA-446652 | Interleukin-1 family signaling | 0.631648 | 0.200 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.632894 | 0.199 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.632894 | 0.199 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.632894 | 0.199 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.632894 | 0.199 |
R-HSA-167169 | HIV Transcription Elongation | 0.632894 | 0.199 |
R-HSA-3371568 | Attenuation phase | 0.632894 | 0.199 |
R-HSA-202433 | Generation of second messenger molecules | 0.632894 | 0.199 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.632894 | 0.199 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.632894 | 0.199 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.632894 | 0.199 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.632894 | 0.199 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.632894 | 0.199 |
R-HSA-420029 | Tight junction interactions | 0.633439 | 0.198 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.633439 | 0.198 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.633439 | 0.198 |
R-HSA-9839394 | TGFBR3 expression | 0.633439 | 0.198 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.634635 | 0.197 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.634635 | 0.197 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.634635 | 0.197 |
R-HSA-418597 | G alpha (z) signalling events | 0.635780 | 0.197 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.635780 | 0.197 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.643963 | 0.191 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.646590 | 0.189 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.646871 | 0.189 |
R-HSA-9694548 | Maturation of spike protein | 0.646871 | 0.189 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.646871 | 0.189 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.646871 | 0.189 |
R-HSA-9607240 | FLT3 Signaling | 0.646871 | 0.189 |
R-HSA-5358493 | Synthesis of diphthamide-EEF2 | 0.646890 | 0.189 |
R-HSA-428540 | Activation of RAC1 | 0.646890 | 0.189 |
R-HSA-1250342 | PI3K events in ERBB4 signaling | 0.646890 | 0.189 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 0.646890 | 0.189 |
R-HSA-416550 | Sema4D mediated inhibition of cell attachment and migration | 0.646890 | 0.189 |
R-HSA-418359 | Reduction of cytosolic Ca++ levels | 0.646890 | 0.189 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 0.646890 | 0.189 |
R-HSA-162592 | Integration of provirus | 0.646890 | 0.189 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.649352 | 0.188 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.650501 | 0.187 |
R-HSA-9865118 | Diseases of branched-chain amino acid catabolism | 0.650501 | 0.187 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.650501 | 0.187 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.650501 | 0.187 |
R-HSA-9638630 | Attachment of bacteria to epithelial cells | 0.650501 | 0.187 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.653937 | 0.184 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.654356 | 0.184 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.657765 | 0.182 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.659004 | 0.181 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.660465 | 0.180 |
R-HSA-6811438 | Intra-Golgi traffic | 0.660465 | 0.180 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.660465 | 0.180 |
R-HSA-9683701 | Translation of Structural Proteins | 0.660465 | 0.180 |
R-HSA-4086398 | Ca2+ pathway | 0.661283 | 0.180 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.664001 | 0.178 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 0.666926 | 0.176 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.666926 | 0.176 |
R-HSA-901032 | ER Quality Control Compartment (ERQC) | 0.666926 | 0.176 |
R-HSA-264876 | Insulin processing | 0.666926 | 0.176 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.667309 | 0.176 |
R-HSA-1483255 | PI Metabolism | 0.667309 | 0.176 |
R-HSA-9865114 | Maple Syrup Urine Disease | 0.670575 | 0.174 |
R-HSA-179812 | GRB2 events in EGFR signaling | 0.670575 | 0.174 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.670575 | 0.174 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 0.670575 | 0.174 |
R-HSA-877312 | Regulation of IFNG signaling | 0.670575 | 0.174 |
R-HSA-8851805 | MET activates RAS signaling | 0.670575 | 0.174 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 0.670575 | 0.174 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 0.670575 | 0.174 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.670575 | 0.174 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 0.670575 | 0.174 |
R-HSA-8866427 | VLDLR internalisation and degradation | 0.670575 | 0.174 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.670575 | 0.174 |
R-HSA-193144 | Estrogen biosynthesis | 0.670575 | 0.174 |
R-HSA-73943 | Reversal of alkylation damage by DNA dioxygenases | 0.670575 | 0.174 |
R-HSA-8983711 | OAS antiviral response | 0.670575 | 0.174 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.673677 | 0.172 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.673677 | 0.172 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.677339 | 0.169 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.681813 | 0.166 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.682529 | 0.166 |
R-HSA-191859 | snRNP Assembly | 0.682529 | 0.166 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.682721 | 0.166 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.682721 | 0.166 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 0.682721 | 0.166 |
R-HSA-622312 | Inflammasomes | 0.682721 | 0.166 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.682721 | 0.166 |
R-HSA-9710421 | Defective pyroptosis | 0.686507 | 0.163 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.686507 | 0.163 |
R-HSA-5617833 | Cilium Assembly | 0.690175 | 0.161 |
R-HSA-170660 | Adenylate cyclase activating pathway | 0.692673 | 0.159 |
R-HSA-190375 | FGFR2c ligand binding and activation | 0.692673 | 0.159 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 0.692673 | 0.159 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.692673 | 0.159 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.692673 | 0.159 |
R-HSA-190322 | FGFR4 ligand binding and activation | 0.692673 | 0.159 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 0.692673 | 0.159 |
R-HSA-1839130 | Signaling by activated point mutants of FGFR3 | 0.692673 | 0.159 |
R-HSA-2033514 | FGFR3 mutant receptor activation | 0.692673 | 0.159 |
R-HSA-9735804 | Diseases of nucleotide metabolism | 0.692673 | 0.159 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.692673 | 0.159 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 0.692673 | 0.159 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 0.692673 | 0.159 |
R-HSA-9683610 | Maturation of nucleoprotein | 0.692673 | 0.159 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.697897 | 0.156 |
R-HSA-420092 | Glucagon-type ligand receptors | 0.697897 | 0.156 |
R-HSA-418360 | Platelet calcium homeostasis | 0.697897 | 0.156 |
R-HSA-9907900 | Proteasome assembly | 0.698955 | 0.156 |
R-HSA-190828 | Gap junction trafficking | 0.698955 | 0.156 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.698955 | 0.156 |
R-HSA-5683826 | Surfactant metabolism | 0.698955 | 0.156 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.704264 | 0.152 |
R-HSA-450294 | MAP kinase activation | 0.704264 | 0.152 |
R-HSA-391251 | Protein folding | 0.709633 | 0.149 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.709633 | 0.149 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.709633 | 0.149 |
R-HSA-5619084 | ABC transporter disorders | 0.711008 | 0.148 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.711023 | 0.148 |
R-HSA-9824272 | Somitogenesis | 0.711023 | 0.148 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.711023 | 0.148 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.711023 | 0.148 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.712467 | 0.147 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.712467 | 0.147 |
R-HSA-190372 | FGFR3c ligand binding and activation | 0.713290 | 0.147 |
R-HSA-9859138 | BCKDH synthesizes BCAA-CoA from KIC, KMVA, KIV | 0.713290 | 0.147 |
R-HSA-5654227 | Phospholipase C-mediated cascade; FGFR3 | 0.713290 | 0.147 |
R-HSA-399956 | CRMPs in Sema3A signaling | 0.713290 | 0.147 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.713290 | 0.147 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.713290 | 0.147 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 0.713290 | 0.147 |
R-HSA-77310 | Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA | 0.713290 | 0.147 |
R-HSA-77348 | Beta oxidation of octanoyl-CoA to hexanoyl-CoA | 0.713290 | 0.147 |
R-HSA-77350 | Beta oxidation of hexanoyl-CoA to butanoyl-CoA | 0.713290 | 0.147 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.713290 | 0.147 |
R-HSA-9856872 | Malate-aspartate shuttle | 0.713290 | 0.147 |
R-HSA-9026766 | Biosynthesis of protectin and resolvin conjugates in tissue regeneration (PCTR a... | 0.713290 | 0.147 |
R-HSA-1482798 | Acyl chain remodeling of CL | 0.713290 | 0.147 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.714719 | 0.146 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.714719 | 0.146 |
R-HSA-69239 | Synthesis of DNA | 0.717673 | 0.144 |
R-HSA-9659379 | Sensory processing of sound | 0.720309 | 0.142 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.722716 | 0.141 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.722716 | 0.141 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.722716 | 0.141 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.722716 | 0.141 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.722716 | 0.141 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.725499 | 0.139 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.726442 | 0.139 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 0.726442 | 0.139 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.726442 | 0.139 |
R-HSA-5694530 | Cargo concentration in the ER | 0.726442 | 0.139 |
R-HSA-2129379 | Molecules associated with elastic fibres | 0.726442 | 0.139 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.726442 | 0.139 |
R-HSA-162906 | HIV Infection | 0.731599 | 0.136 |
R-HSA-170670 | Adenylate cyclase inhibitory pathway | 0.732526 | 0.135 |
R-HSA-5654228 | Phospholipase C-mediated cascade; FGFR4 | 0.732526 | 0.135 |
R-HSA-110312 | Translesion synthesis by REV1 | 0.732526 | 0.135 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 0.732526 | 0.135 |
R-HSA-190239 | FGFR3 ligand binding and activation | 0.732526 | 0.135 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.732526 | 0.135 |
R-HSA-171007 | p38MAPK events | 0.732526 | 0.135 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 0.732526 | 0.135 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 0.732526 | 0.135 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 0.732526 | 0.135 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 0.732526 | 0.135 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.732526 | 0.135 |
R-HSA-77352 | Beta oxidation of butanoyl-CoA to acetyl-CoA | 0.732526 | 0.135 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 0.732526 | 0.135 |
R-HSA-174362 | Transport and metabolism of PAPS | 0.732526 | 0.135 |
R-HSA-416700 | Other semaphorin interactions | 0.732526 | 0.135 |
R-HSA-73942 | DNA Damage Reversal | 0.732526 | 0.135 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.734036 | 0.134 |
R-HSA-397014 | Muscle contraction | 0.734780 | 0.134 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.734809 | 0.134 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.739838 | 0.131 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.739838 | 0.131 |
R-HSA-1234174 | Cellular response to hypoxia | 0.744446 | 0.128 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.746833 | 0.127 |
R-HSA-5656121 | Translesion synthesis by POLI | 0.750471 | 0.125 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 0.750471 | 0.125 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 0.750471 | 0.125 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 0.750471 | 0.125 |
R-HSA-5576886 | Phase 4 - resting membrane potential | 0.750471 | 0.125 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 0.750471 | 0.125 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.750471 | 0.125 |
R-HSA-9708530 | Regulation of BACH1 activity | 0.750471 | 0.125 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.750471 | 0.125 |
R-HSA-9678110 | Attachment and Entry | 0.750471 | 0.125 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.750471 | 0.125 |
R-HSA-168268 | Virus Assembly and Release | 0.750471 | 0.125 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.752669 | 0.123 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.752669 | 0.123 |
R-HSA-9733709 | Cardiogenesis | 0.752669 | 0.123 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.755362 | 0.122 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.755506 | 0.122 |
R-HSA-9734767 | Developmental Cell Lineages | 0.756427 | 0.121 |
R-HSA-372790 | Signaling by GPCR | 0.758791 | 0.120 |
R-HSA-1989781 | PPARA activates gene expression | 0.759050 | 0.120 |
R-HSA-9664407 | Parasite infection | 0.759437 | 0.120 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.759437 | 0.120 |
R-HSA-9664417 | Leishmania phagocytosis | 0.759437 | 0.120 |
R-HSA-1482788 | Acyl chain remodelling of PC | 0.764950 | 0.116 |
R-HSA-8964539 | Glutamate and glutamine metabolism | 0.764950 | 0.116 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 0.764950 | 0.116 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.765809 | 0.116 |
R-HSA-9748787 | Azathioprine ADME | 0.765809 | 0.116 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 0.767214 | 0.115 |
R-HSA-5655862 | Translesion synthesis by POLK | 0.767214 | 0.115 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.767214 | 0.115 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.767214 | 0.115 |
R-HSA-5576893 | Phase 2 - plateau phase | 0.767214 | 0.115 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 0.767214 | 0.115 |
R-HSA-77346 | Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA | 0.767214 | 0.115 |
R-HSA-196783 | Coenzyme A biosynthesis | 0.767214 | 0.115 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.767214 | 0.115 |
R-HSA-9651496 | Defects of contact activation system (CAS) and kallikrein/kinin system (KKS) | 0.767214 | 0.115 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.770990 | 0.113 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.776698 | 0.110 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 0.776698 | 0.110 |
R-HSA-190861 | Gap junction assembly | 0.776698 | 0.110 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.776698 | 0.110 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.776698 | 0.110 |
R-HSA-9711123 | Cellular response to chemical stress | 0.779791 | 0.108 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.781709 | 0.107 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 0.782834 | 0.106 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 0.782834 | 0.106 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 0.782834 | 0.106 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 0.782834 | 0.106 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 0.782834 | 0.106 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 0.782834 | 0.106 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.785224 | 0.105 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.785224 | 0.105 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.785224 | 0.105 |
R-HSA-381042 | PERK regulates gene expression | 0.787929 | 0.104 |
R-HSA-1482839 | Acyl chain remodelling of PE | 0.787929 | 0.104 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.788646 | 0.103 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.788646 | 0.103 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.789559 | 0.103 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.794422 | 0.100 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.794422 | 0.100 |
R-HSA-8956320 | Nucleotide biosynthesis | 0.794422 | 0.100 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.794475 | 0.100 |
R-HSA-157118 | Signaling by NOTCH | 0.796348 | 0.099 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.796711 | 0.099 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.796711 | 0.099 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.796711 | 0.099 |
R-HSA-3000178 | ECM proteoglycans | 0.796711 | 0.099 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 0.797407 | 0.098 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 0.797407 | 0.098 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.797407 | 0.098 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.797407 | 0.098 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 0.797407 | 0.098 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.797407 | 0.098 |
R-HSA-2142700 | Biosynthesis of Lipoxins (LX) | 0.797407 | 0.098 |
R-HSA-2564830 | Cytosolic iron-sulfur cluster assembly | 0.797407 | 0.098 |
R-HSA-2033519 | Activated point mutants of FGFR2 | 0.797407 | 0.098 |
R-HSA-9026395 | Biosynthesis of DHA-derived sulfido conjugates | 0.797407 | 0.098 |
R-HSA-432142 | Platelet sensitization by LDL | 0.797407 | 0.098 |
R-HSA-5576891 | Cardiac conduction | 0.798228 | 0.098 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 0.798659 | 0.098 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.803288 | 0.095 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.803288 | 0.095 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.804526 | 0.094 |
R-HSA-8948216 | Collagen chain trimerization | 0.808905 | 0.092 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.809457 | 0.092 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 0.811003 | 0.091 |
R-HSA-500753 | Pyrimidine biosynthesis | 0.811003 | 0.091 |
R-HSA-9834899 | Specification of the neural plate border | 0.811003 | 0.091 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.811003 | 0.091 |
R-HSA-2142688 | Synthesis of 5-eicosatetraenoic acids | 0.811003 | 0.091 |
R-HSA-9671793 | Diseases of hemostasis | 0.811003 | 0.091 |
R-HSA-727802 | Transport of nucleotide sugars | 0.811003 | 0.091 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.811831 | 0.091 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.811831 | 0.091 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.812095 | 0.090 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.818683 | 0.087 |
R-HSA-74217 | Purine salvage | 0.818683 | 0.087 |
R-HSA-9931953 | Biofilm formation | 0.818683 | 0.087 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.819422 | 0.086 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.820057 | 0.086 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.820057 | 0.086 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.820057 | 0.086 |
R-HSA-5654221 | Phospholipase C-mediated cascade; FGFR2 | 0.823687 | 0.084 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.823687 | 0.084 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 0.823687 | 0.084 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.823687 | 0.084 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.823687 | 0.084 |
R-HSA-9629569 | Protein hydroxylation | 0.823687 | 0.084 |
R-HSA-391903 | Eicosanoid ligand-binding receptors | 0.823687 | 0.084 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.826143 | 0.083 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.828010 | 0.082 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.828010 | 0.082 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.828010 | 0.082 |
R-HSA-72312 | rRNA processing | 0.831043 | 0.080 |
R-HSA-418594 | G alpha (i) signalling events | 0.832542 | 0.080 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.835521 | 0.078 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.835521 | 0.078 |
R-HSA-190241 | FGFR2 ligand binding and activation | 0.835521 | 0.078 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.835521 | 0.078 |
R-HSA-9636383 | Prevention of phagosomal-lysosomal fusion | 0.835521 | 0.078 |
R-HSA-140837 | Intrinsic Pathway of Fibrin Clot Formation | 0.835521 | 0.078 |
R-HSA-422085 | Synthesis, secretion, and deacylation of Ghrelin | 0.835521 | 0.078 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.835521 | 0.078 |
R-HSA-196836 | Vitamin C (ascorbate) metabolism | 0.835521 | 0.078 |
R-HSA-1482925 | Acyl chain remodelling of PG | 0.835521 | 0.078 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.835521 | 0.078 |
R-HSA-6782135 | Dual incision in TC-NER | 0.835593 | 0.078 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.836850 | 0.077 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.836904 | 0.077 |
R-HSA-9609646 | HCMV Infection | 0.838021 | 0.077 |
R-HSA-8979227 | Triglyceride metabolism | 0.842918 | 0.074 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.842918 | 0.074 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.845378 | 0.073 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 0.845378 | 0.073 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.845378 | 0.073 |
R-HSA-216083 | Integrin cell surface interactions | 0.846408 | 0.072 |
R-HSA-1474290 | Collagen formation | 0.846520 | 0.072 |
R-HSA-5654706 | FRS-mediated FGFR3 signaling | 0.846561 | 0.072 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.846561 | 0.072 |
R-HSA-9694614 | Attachment and Entry | 0.846561 | 0.072 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.849959 | 0.071 |
R-HSA-379724 | tRNA Aminoacylation | 0.849959 | 0.071 |
R-HSA-5362517 | Signaling by Retinoic Acid | 0.849959 | 0.071 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.853451 | 0.069 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.855472 | 0.068 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.856547 | 0.067 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.856723 | 0.067 |
R-HSA-9857377 | Regulation of MITF-M-dependent genes involved in lysosome biogenesis and autopha... | 0.856861 | 0.067 |
R-HSA-5654712 | FRS-mediated FGFR4 signaling | 0.856861 | 0.067 |
R-HSA-189200 | Cellular hexose transport | 0.856861 | 0.067 |
R-HSA-6807062 | Cholesterol biosynthesis via lathosterol | 0.856861 | 0.067 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.861138 | 0.065 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.861138 | 0.065 |
R-HSA-73928 | Depyrimidination | 0.861138 | 0.065 |
R-HSA-186797 | Signaling by PDGF | 0.863219 | 0.064 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.863219 | 0.064 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.863219 | 0.064 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 0.866470 | 0.062 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 0.868453 | 0.061 |
R-HSA-449147 | Signaling by Interleukins | 0.869005 | 0.061 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.869909 | 0.061 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.873171 | 0.059 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.873171 | 0.059 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.873171 | 0.059 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.875277 | 0.058 |
R-HSA-2142691 | Synthesis of Leukotrienes (LT) and Eoxins (EX) | 0.875413 | 0.058 |
R-HSA-375280 | Amine ligand-binding receptors | 0.875413 | 0.058 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.875413 | 0.058 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 0.875434 | 0.058 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.875434 | 0.058 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.875434 | 0.058 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 0.875434 | 0.058 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.877741 | 0.057 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.880453 | 0.055 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.882032 | 0.055 |
R-HSA-774815 | Nucleosome assembly | 0.882032 | 0.055 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.882032 | 0.055 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.883797 | 0.054 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.883797 | 0.054 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 0.883797 | 0.054 |
R-HSA-9830364 | Formation of the nephric duct | 0.883797 | 0.054 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.883797 | 0.054 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.886880 | 0.052 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.888324 | 0.051 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.888324 | 0.051 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.888324 | 0.051 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 0.888324 | 0.051 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.890741 | 0.050 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 0.891599 | 0.050 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.891599 | 0.050 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.891599 | 0.050 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.891599 | 0.050 |
R-HSA-70635 | Urea cycle | 0.891599 | 0.050 |
R-HSA-9637687 | Suppression of phagosomal maturation | 0.891599 | 0.050 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 0.891599 | 0.050 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 0.891599 | 0.050 |
R-HSA-9758941 | Gastrulation | 0.891922 | 0.050 |
R-HSA-9830369 | Kidney development | 0.891952 | 0.050 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.894303 | 0.049 |
R-HSA-437239 | Recycling pathway of L1 | 0.894303 | 0.049 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.894875 | 0.048 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.895453 | 0.048 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 0.897004 | 0.047 |
R-HSA-5218859 | Regulated Necrosis | 0.897004 | 0.047 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.898303 | 0.047 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.898878 | 0.046 |
R-HSA-171306 | Packaging Of Telomere Ends | 0.898878 | 0.046 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.898878 | 0.046 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 0.898878 | 0.046 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.898878 | 0.046 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 0.898878 | 0.046 |
R-HSA-425410 | Metal ion SLC transporters | 0.899984 | 0.046 |
R-HSA-9833110 | RSV-host interactions | 0.903813 | 0.044 |
R-HSA-69306 | DNA Replication | 0.905469 | 0.043 |
R-HSA-5654700 | FRS-mediated FGFR2 signaling | 0.905668 | 0.043 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.905668 | 0.043 |
R-HSA-77387 | Insulin receptor recycling | 0.905668 | 0.043 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 0.905668 | 0.043 |
R-HSA-8850843 | Phosphate bond hydrolysis by NTPDase proteins | 0.905668 | 0.043 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 0.905668 | 0.043 |
R-HSA-5620971 | Pyroptosis | 0.905668 | 0.043 |
R-HSA-8951664 | Neddylation | 0.906449 | 0.043 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.907618 | 0.042 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.907618 | 0.042 |
R-HSA-1236974 | ER-Phagosome pathway | 0.907746 | 0.042 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.908417 | 0.042 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.910909 | 0.041 |
R-HSA-5334118 | DNA methylation | 0.912003 | 0.040 |
R-HSA-209968 | Thyroxine biosynthesis | 0.912003 | 0.040 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 0.912003 | 0.040 |
R-HSA-211000 | Gene Silencing by RNA | 0.914835 | 0.039 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.915151 | 0.039 |
R-HSA-912446 | Meiotic recombination | 0.915362 | 0.038 |
R-HSA-70895 | Branched-chain amino acid catabolism | 0.915362 | 0.038 |
R-HSA-2514856 | The phototransduction cascade | 0.915362 | 0.038 |
R-HSA-6798695 | Neutrophil degranulation | 0.915724 | 0.038 |
R-HSA-162909 | Host Interactions of HIV factors | 0.915826 | 0.038 |
R-HSA-9679506 | SARS-CoV Infections | 0.917281 | 0.037 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.917913 | 0.037 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 0.917913 | 0.037 |
R-HSA-112311 | Neurotransmitter clearance | 0.917913 | 0.037 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.917913 | 0.037 |
R-HSA-114452 | Activation of BH3-only proteins | 0.917913 | 0.037 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.918254 | 0.037 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 0.919208 | 0.037 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.919974 | 0.036 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.920634 | 0.036 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.921551 | 0.035 |
R-HSA-8963693 | Aspartate and asparagine metabolism | 0.923426 | 0.035 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.924349 | 0.034 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.924730 | 0.034 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.924730 | 0.034 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.926109 | 0.033 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.928497 | 0.032 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.928569 | 0.032 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.929360 | 0.032 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.930339 | 0.031 |
R-HSA-5689603 | UCH proteinases | 0.930339 | 0.031 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.931597 | 0.031 |
R-HSA-3214815 | HDACs deacetylate histones | 0.932430 | 0.030 |
R-HSA-9753281 | Paracetamol ADME | 0.932430 | 0.030 |
R-HSA-5083635 | Defective B3GALTL causes PpS | 0.933367 | 0.030 |
R-HSA-9930044 | Nuclear RNA decay | 0.933367 | 0.030 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 0.933367 | 0.030 |
R-HSA-159418 | Recycling of bile acids and salts | 0.933367 | 0.030 |
R-HSA-5609975 | Diseases associated with glycosylation precursor biosynthesis | 0.933367 | 0.030 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.933592 | 0.030 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.936956 | 0.028 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.937843 | 0.028 |
R-HSA-189483 | Heme degradation | 0.937843 | 0.028 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.938354 | 0.028 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.938354 | 0.028 |
R-HSA-5621480 | Dectin-2 family | 0.939690 | 0.027 |
R-HSA-9843745 | Adipogenesis | 0.940815 | 0.026 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.941508 | 0.026 |
R-HSA-203615 | eNOS activation | 0.942018 | 0.026 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.943036 | 0.025 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.943758 | 0.025 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.943952 | 0.025 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 0.945914 | 0.024 |
R-HSA-2980736 | Peptide hormone metabolism | 0.948564 | 0.023 |
R-HSA-8873719 | RAB geranylgeranylation | 0.949205 | 0.023 |
R-HSA-351202 | Metabolism of polyamines | 0.949205 | 0.023 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.949463 | 0.023 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 0.949548 | 0.022 |
R-HSA-8956321 | Nucleotide salvage | 0.952045 | 0.021 |
R-HSA-1442490 | Collagen degradation | 0.952045 | 0.021 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.952830 | 0.021 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.952830 | 0.021 |
R-HSA-5173214 | O-glycosylation of TSR domain-containing proteins | 0.952938 | 0.021 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.952938 | 0.021 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 0.952938 | 0.021 |
R-HSA-110331 | Cleavage of the damaged purine | 0.952938 | 0.021 |
R-HSA-913531 | Interferon Signaling | 0.954616 | 0.020 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.954616 | 0.020 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.955209 | 0.020 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.955209 | 0.020 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.956100 | 0.019 |
R-HSA-6785470 | tRNA processing in the mitochondrion | 0.956100 | 0.019 |
R-HSA-73927 | Depurination | 0.956100 | 0.019 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.956100 | 0.019 |
R-HSA-73886 | Chromosome Maintenance | 0.956772 | 0.019 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.957277 | 0.019 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.957896 | 0.019 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.958627 | 0.018 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.958627 | 0.018 |
R-HSA-9648002 | RAS processing | 0.959050 | 0.018 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.959435 | 0.018 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.959435 | 0.018 |
R-HSA-877300 | Interferon gamma signaling | 0.961546 | 0.017 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.961802 | 0.017 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.961802 | 0.017 |
R-HSA-5260271 | Diseases of Immune System | 0.961802 | 0.017 |
R-HSA-8868766 | rRNA processing in the mitochondrion | 0.961802 | 0.017 |
R-HSA-379726 | Mitochondrial tRNA aminoacylation | 0.961802 | 0.017 |
R-HSA-6809371 | Formation of the cornified envelope | 0.962122 | 0.017 |
R-HSA-418346 | Platelet homeostasis | 0.963108 | 0.016 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 0.964369 | 0.016 |
R-HSA-5423646 | Aflatoxin activation and detoxification | 0.964369 | 0.016 |
R-HSA-196807 | Nicotinate metabolism | 0.966147 | 0.015 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.966470 | 0.015 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.966764 | 0.015 |
R-HSA-3000480 | Scavenging by Class A Receptors | 0.966764 | 0.015 |
R-HSA-73884 | Base Excision Repair | 0.967620 | 0.014 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.968071 | 0.014 |
R-HSA-114608 | Platelet degranulation | 0.968311 | 0.014 |
R-HSA-991365 | Activation of GABAB receptors | 0.968998 | 0.014 |
R-HSA-977444 | GABA B receptor activation | 0.968998 | 0.014 |
R-HSA-73621 | Pyrimidine catabolism | 0.971082 | 0.013 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.971608 | 0.013 |
R-HSA-5619102 | SLC transporter disorders | 0.972110 | 0.012 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.972354 | 0.012 |
R-HSA-196741 | Cobalamin (Cbl, vitamin B12) transport and metabolism | 0.973026 | 0.012 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.973088 | 0.012 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.973231 | 0.012 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.973231 | 0.012 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 0.974765 | 0.011 |
R-HSA-77286 | mitochondrial fatty acid beta-oxidation of saturated fatty acids | 0.974839 | 0.011 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.976117 | 0.010 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.976406 | 0.010 |
R-HSA-425397 | Transport of vitamins, nucleosides, and related molecules | 0.977582 | 0.010 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.977796 | 0.010 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.978464 | 0.009 |
R-HSA-72766 | Translation | 0.979415 | 0.009 |
R-HSA-70263 | Gluconeogenesis | 0.979580 | 0.009 |
R-HSA-9031628 | NGF-stimulated transcription | 0.979580 | 0.009 |
R-HSA-9824446 | Viral Infection Pathways | 0.979700 | 0.009 |
R-HSA-157579 | Telomere Maintenance | 0.979899 | 0.009 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.981244 | 0.008 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.982330 | 0.008 |
R-HSA-6783783 | Interleukin-10 signaling | 0.982330 | 0.008 |
R-HSA-191273 | Cholesterol biosynthesis | 0.982330 | 0.008 |
R-HSA-1474244 | Extracellular matrix organization | 0.984000 | 0.007 |
R-HSA-9833482 | PKR-mediated signaling | 0.984323 | 0.007 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.984323 | 0.007 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 0.984544 | 0.007 |
R-HSA-977225 | Amyloid fiber formation | 0.985235 | 0.006 |
R-HSA-209776 | Metabolism of amine-derived hormones | 0.988301 | 0.005 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.988301 | 0.005 |
R-HSA-1643685 | Disease | 0.988304 | 0.005 |
R-HSA-1483166 | Synthesis of PA | 0.989088 | 0.005 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.989718 | 0.004 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.989822 | 0.004 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.990070 | 0.004 |
R-HSA-72306 | tRNA processing | 0.990320 | 0.004 |
R-HSA-180786 | Extension of Telomeres | 0.990507 | 0.004 |
R-HSA-9033241 | Peroxisomal protein import | 0.990507 | 0.004 |
R-HSA-977443 | GABA receptor activation | 0.991146 | 0.004 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.991367 | 0.004 |
R-HSA-211976 | Endogenous sterols | 0.991742 | 0.004 |
R-HSA-112310 | Neurotransmitter release cycle | 0.991936 | 0.004 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 0.991936 | 0.004 |
R-HSA-15869 | Metabolism of nucleotides | 0.992230 | 0.003 |
R-HSA-1268020 | Mitochondrial protein import | 0.992297 | 0.003 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.992413 | 0.003 |
R-HSA-168256 | Immune System | 0.992525 | 0.003 |
R-HSA-6799198 | Complex I biogenesis | 0.992816 | 0.003 |
R-HSA-9610379 | HCMV Late Events | 0.993317 | 0.003 |
R-HSA-428157 | Sphingolipid metabolism | 0.993794 | 0.003 |
R-HSA-416476 | G alpha (q) signalling events | 0.994375 | 0.002 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 0.994563 | 0.002 |
R-HSA-196071 | Metabolism of steroid hormones | 0.994563 | 0.002 |
R-HSA-913709 | O-linked glycosylation of mucins | 0.994929 | 0.002 |
R-HSA-1296071 | Potassium Channels | 0.995059 | 0.002 |
R-HSA-168249 | Innate Immune System | 0.995172 | 0.002 |
R-HSA-9840310 | Glycosphingolipid catabolism | 0.995589 | 0.002 |
R-HSA-8978934 | Metabolism of cofactors | 0.995886 | 0.002 |
R-HSA-189445 | Metabolism of porphyrins | 0.995886 | 0.002 |
R-HSA-9614085 | FOXO-mediated transcription | 0.995893 | 0.002 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.996163 | 0.002 |
R-HSA-74259 | Purine catabolism | 0.996163 | 0.002 |
R-HSA-1483257 | Phospholipid metabolism | 0.996387 | 0.002 |
R-HSA-977606 | Regulation of Complement cascade | 0.996389 | 0.002 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.996395 | 0.002 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 0.996663 | 0.001 |
R-HSA-917937 | Iron uptake and transport | 0.996887 | 0.001 |
R-HSA-9609507 | Protein localization | 0.997542 | 0.001 |
R-HSA-9018677 | Biosynthesis of DHA-derived SPMs | 0.997952 | 0.001 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.998385 | 0.001 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.998744 | 0.001 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.998899 | 0.000 |
R-HSA-166658 | Complement cascade | 0.999100 | 0.000 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 0.999139 | 0.000 |
R-HSA-597592 | Post-translational protein modification | 0.999209 | 0.000 |
R-HSA-2029481 | FCGR activation | 0.999229 | 0.000 |
R-HSA-77289 | Mitochondrial Fatty Acid Beta-Oxidation | 0.999329 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999353 | 0.000 |
R-HSA-2142753 | Arachidonate metabolism | 0.999404 | 0.000 |
R-HSA-5389840 | Mitochondrial translation elongation | 0.999417 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.999486 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999489 | 0.000 |
R-HSA-5368286 | Mitochondrial translation initiation | 0.999493 | 0.000 |
R-HSA-8956319 | Nucleotide catabolism | 0.999514 | 0.000 |
R-HSA-6805567 | Keratinization | 0.999519 | 0.000 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.999527 | 0.000 |
R-HSA-446219 | Synthesis of substrates in N-glycan biosythesis | 0.999598 | 0.000 |
R-HSA-5663205 | Infectious disease | 0.999619 | 0.000 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 0.999642 | 0.000 |
R-HSA-5173105 | O-linked glycosylation | 0.999743 | 0.000 |
R-HSA-5419276 | Mitochondrial translation termination | 0.999781 | 0.000 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.999795 | 0.000 |
R-HSA-6803157 | Antimicrobial peptides | 0.999809 | 0.000 |
R-HSA-8957322 | Metabolism of steroids | 0.999853 | 0.000 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.999858 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999864 | 0.000 |
R-HSA-2187338 | Visual phototransduction | 0.999873 | 0.000 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 0.999896 | 0.000 |
R-HSA-3781865 | Diseases of glycosylation | 0.999918 | 0.000 |
R-HSA-1660662 | Glycosphingolipid metabolism | 0.999928 | 0.000 |
R-HSA-446193 | Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... | 0.999934 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999936 | 0.000 |
R-HSA-9748784 | Drug ADME | 0.999944 | 0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.999971 | 0.000 |
R-HSA-5368287 | Mitochondrial translation | 0.999980 | 0.000 |
R-HSA-611105 | Respiratory electron transport | 0.999984 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999986 | 0.000 |
R-HSA-9018678 | Biosynthesis of specialized proresolving mediators (SPMs) | 0.999987 | 0.000 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.999991 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999994 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.999995 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.999995 | 0.000 |
R-HSA-9640148 | Infection with Enterobacteria | 0.999997 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999997 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.999998 | 0.000 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 1.000000 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 1.000000 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
RSK2 |
0.829 | 0.300 | -3 | 0.852 |
RSK4 |
0.826 | 0.351 | -3 | 0.822 |
PIM3 |
0.822 | 0.257 | -3 | 0.897 |
P70S6KB |
0.822 | 0.362 | -3 | 0.875 |
NDR2 |
0.822 | 0.164 | -3 | 0.888 |
RSK3 |
0.821 | 0.303 | -3 | 0.844 |
P90RSK |
0.821 | 0.272 | -3 | 0.852 |
CLK3 |
0.820 | 0.235 | 1 | 0.839 |
NDR1 |
0.819 | 0.237 | -3 | 0.893 |
COT |
0.818 | 0.099 | 2 | 0.781 |
PIM1 |
0.816 | 0.267 | -3 | 0.869 |
CDC7 |
0.814 | 0.075 | 1 | 0.895 |
PKACG |
0.812 | 0.216 | -2 | 0.818 |
LATS2 |
0.811 | 0.098 | -5 | 0.191 |
MSK1 |
0.811 | 0.225 | -3 | 0.841 |
CAMK1B |
0.811 | 0.177 | -3 | 0.923 |
CLK2 |
0.809 | 0.256 | -3 | 0.834 |
P70S6K |
0.809 | 0.391 | -3 | 0.809 |
MAPKAPK2 |
0.807 | 0.138 | -3 | 0.810 |
PIM2 |
0.807 | 0.334 | -3 | 0.838 |
PRKD2 |
0.806 | 0.152 | -3 | 0.838 |
MOS |
0.806 | 0.060 | 1 | 0.905 |
CDKL1 |
0.805 | 0.144 | -3 | 0.883 |
RAF1 |
0.805 | 0.086 | 1 | 0.902 |
SKMLCK |
0.805 | 0.119 | -2 | 0.917 |
IKKB |
0.805 | -0.003 | -2 | 0.776 |
MAPKAPK3 |
0.805 | 0.113 | -3 | 0.849 |
MSK2 |
0.805 | 0.172 | -3 | 0.840 |
PKACB |
0.805 | 0.192 | -2 | 0.761 |
NUAK2 |
0.805 | 0.146 | -3 | 0.909 |
MTOR |
0.804 | 0.045 | 1 | 0.837 |
CAMLCK |
0.804 | 0.202 | -2 | 0.908 |
PKN2 |
0.804 | 0.173 | -3 | 0.906 |
PRKD1 |
0.804 | 0.087 | -3 | 0.874 |
AURC |
0.803 | 0.136 | -2 | 0.752 |
PKN3 |
0.803 | 0.112 | -3 | 0.890 |
WNK1 |
0.803 | 0.132 | -2 | 0.910 |
MYLK4 |
0.802 | 0.196 | -2 | 0.855 |
GRK1 |
0.802 | 0.071 | -2 | 0.858 |
PRPK |
0.802 | 0.007 | -1 | 0.871 |
CAMK2G |
0.802 | 0.024 | 2 | 0.736 |
CLK4 |
0.801 | 0.183 | -3 | 0.858 |
DAPK2 |
0.801 | 0.179 | -3 | 0.923 |
SGK3 |
0.801 | 0.246 | -3 | 0.850 |
PAK1 |
0.801 | 0.169 | -2 | 0.859 |
CAMK2D |
0.801 | 0.066 | -3 | 0.900 |
PRKX |
0.801 | 0.188 | -3 | 0.774 |
CAMK2A |
0.801 | 0.127 | 2 | 0.748 |
SRPK1 |
0.801 | 0.117 | -3 | 0.841 |
AMPKA1 |
0.800 | 0.134 | -3 | 0.909 |
MST4 |
0.799 | 0.104 | 2 | 0.722 |
NLK |
0.799 | 0.059 | 1 | 0.855 |
SRPK2 |
0.799 | 0.158 | -3 | 0.779 |
AKT2 |
0.799 | 0.204 | -3 | 0.792 |
CDKL5 |
0.799 | 0.112 | -3 | 0.875 |
CAMK2B |
0.798 | 0.101 | 2 | 0.729 |
DSTYK |
0.798 | -0.000 | 2 | 0.792 |
RIPK3 |
0.798 | 0.062 | 3 | 0.765 |
PDHK4 |
0.798 | -0.091 | 1 | 0.901 |
HUNK |
0.798 | 0.087 | 2 | 0.750 |
NIK |
0.798 | 0.146 | -3 | 0.923 |
GRK6 |
0.798 | 0.069 | 1 | 0.892 |
PAK3 |
0.798 | 0.177 | -2 | 0.855 |
AURB |
0.797 | 0.153 | -2 | 0.750 |
ATR |
0.797 | 0.011 | 1 | 0.849 |
CLK1 |
0.797 | 0.172 | -3 | 0.833 |
TBK1 |
0.797 | -0.004 | 1 | 0.820 |
CAMK4 |
0.797 | 0.112 | -3 | 0.891 |
HIPK4 |
0.797 | 0.090 | 1 | 0.786 |
AMPKA2 |
0.796 | 0.143 | -3 | 0.885 |
GCN2 |
0.795 | -0.039 | 2 | 0.701 |
DYRK2 |
0.794 | 0.120 | 1 | 0.701 |
SRPK3 |
0.794 | 0.139 | -3 | 0.823 |
IKKE |
0.794 | -0.016 | 1 | 0.819 |
LATS1 |
0.794 | 0.109 | -3 | 0.886 |
ICK |
0.794 | 0.095 | -3 | 0.905 |
AURA |
0.794 | 0.134 | -2 | 0.726 |
PAK2 |
0.794 | 0.176 | -2 | 0.849 |
PKCD |
0.793 | 0.112 | 2 | 0.661 |
GRK5 |
0.793 | -0.030 | -3 | 0.894 |
MARK4 |
0.793 | 0.043 | 4 | 0.853 |
PKG2 |
0.793 | 0.155 | -2 | 0.758 |
PRKD3 |
0.793 | 0.128 | -3 | 0.830 |
BMPR2 |
0.793 | -0.071 | -2 | 0.891 |
TSSK2 |
0.792 | 0.029 | -5 | 0.139 |
BRSK1 |
0.791 | 0.125 | -3 | 0.865 |
PDHK1 |
0.791 | -0.089 | 1 | 0.895 |
ERK5 |
0.791 | 0.018 | 1 | 0.815 |
WNK3 |
0.791 | 0.065 | 1 | 0.856 |
PAK6 |
0.790 | 0.113 | -2 | 0.795 |
DYRK4 |
0.790 | 0.154 | 1 | 0.628 |
RIPK1 |
0.790 | 0.057 | 1 | 0.839 |
PKACA |
0.790 | 0.167 | -2 | 0.713 |
TGFBR2 |
0.790 | 0.001 | -2 | 0.809 |
SGK1 |
0.789 | 0.253 | -3 | 0.723 |
CRIK |
0.789 | 0.428 | -3 | 0.798 |
BMPR1B |
0.789 | 0.092 | 1 | 0.854 |
BCKDK |
0.789 | -0.034 | -1 | 0.826 |
TSSK1 |
0.788 | 0.046 | -3 | 0.914 |
CAMK1G |
0.788 | 0.159 | -3 | 0.853 |
ULK2 |
0.788 | -0.085 | 2 | 0.670 |
AKT1 |
0.787 | 0.196 | -3 | 0.806 |
DLK |
0.787 | 0.042 | 1 | 0.886 |
PKCG |
0.787 | 0.098 | 2 | 0.624 |
NIM1 |
0.787 | 0.039 | 3 | 0.798 |
GRK4 |
0.787 | -0.014 | -2 | 0.861 |
FAM20C |
0.787 | 0.024 | 2 | 0.582 |
PASK |
0.786 | 0.188 | -3 | 0.912 |
QSK |
0.786 | 0.083 | 4 | 0.824 |
MLK1 |
0.786 | -0.043 | 2 | 0.697 |
MNK1 |
0.786 | 0.114 | -2 | 0.861 |
MNK2 |
0.786 | 0.074 | -2 | 0.852 |
HIPK1 |
0.786 | 0.147 | 1 | 0.717 |
MASTL |
0.786 | -0.067 | -2 | 0.838 |
IKKA |
0.786 | -0.063 | -2 | 0.754 |
SMMLCK |
0.786 | 0.194 | -3 | 0.895 |
PKCA |
0.786 | 0.102 | 2 | 0.604 |
KIS |
0.785 | 0.011 | 1 | 0.703 |
DYRK3 |
0.784 | 0.180 | 1 | 0.719 |
MELK |
0.784 | 0.094 | -3 | 0.872 |
TTBK2 |
0.784 | 0.001 | 2 | 0.610 |
QIK |
0.784 | 0.055 | -3 | 0.901 |
SIK |
0.784 | 0.093 | -3 | 0.844 |
ALK4 |
0.783 | 0.037 | -2 | 0.844 |
NEK7 |
0.783 | -0.103 | -3 | 0.867 |
DRAK1 |
0.783 | 0.133 | 1 | 0.828 |
ATM |
0.783 | 0.007 | 1 | 0.791 |
BRSK2 |
0.782 | 0.071 | -3 | 0.882 |
CHAK2 |
0.782 | -0.045 | -1 | 0.878 |
GRK7 |
0.782 | 0.057 | 1 | 0.814 |
DYRK1B |
0.782 | 0.137 | 1 | 0.657 |
MARK3 |
0.782 | 0.078 | 4 | 0.781 |
AKT3 |
0.781 | 0.205 | -3 | 0.734 |
CAMK1D |
0.781 | 0.144 | -3 | 0.784 |
MRCKA |
0.781 | 0.255 | -3 | 0.842 |
TGFBR1 |
0.781 | 0.025 | -2 | 0.813 |
PKCB |
0.781 | 0.055 | 2 | 0.615 |
ULK1 |
0.781 | -0.082 | -3 | 0.826 |
DAPK1 |
0.781 | 0.212 | -3 | 0.874 |
DNAPK |
0.781 | 0.067 | 1 | 0.750 |
DCAMKL1 |
0.780 | 0.120 | -3 | 0.853 |
PKCH |
0.780 | 0.088 | 2 | 0.603 |
CHK1 |
0.780 | -0.002 | -3 | 0.858 |
ANKRD3 |
0.780 | -0.038 | 1 | 0.897 |
DAPK3 |
0.780 | 0.214 | -3 | 0.878 |
PLK1 |
0.780 | -0.002 | -2 | 0.801 |
MAPKAPK5 |
0.779 | 0.044 | -3 | 0.820 |
PHKG1 |
0.778 | 0.050 | -3 | 0.891 |
MEK1 |
0.778 | -0.014 | 2 | 0.755 |
ALK2 |
0.778 | 0.044 | -2 | 0.831 |
JNK2 |
0.778 | 0.057 | 1 | 0.637 |
NEK6 |
0.778 | -0.118 | -2 | 0.854 |
NUAK1 |
0.778 | 0.031 | -3 | 0.862 |
HIPK2 |
0.778 | 0.089 | 1 | 0.608 |
MARK1 |
0.777 | 0.070 | 4 | 0.802 |
MRCKB |
0.777 | 0.229 | -3 | 0.831 |
PKR |
0.777 | 0.054 | 1 | 0.853 |
CK1E |
0.776 | 0.071 | -3 | 0.662 |
DYRK1A |
0.776 | 0.097 | 1 | 0.748 |
MARK2 |
0.776 | 0.040 | 4 | 0.747 |
NEK9 |
0.776 | -0.087 | 2 | 0.705 |
SNRK |
0.776 | 0.037 | 2 | 0.599 |
JNK3 |
0.776 | 0.043 | 1 | 0.670 |
ACVR2B |
0.775 | 0.017 | -2 | 0.804 |
CDK10 |
0.775 | 0.116 | 1 | 0.639 |
PAK5 |
0.775 | 0.113 | -2 | 0.736 |
PLK3 |
0.774 | 0.015 | 2 | 0.731 |
CDK7 |
0.774 | 0.010 | 1 | 0.686 |
YSK4 |
0.774 | -0.019 | 1 | 0.841 |
HIPK3 |
0.774 | 0.099 | 1 | 0.726 |
ROCK2 |
0.774 | 0.247 | -3 | 0.866 |
DCAMKL2 |
0.773 | 0.074 | -3 | 0.871 |
ACVR2A |
0.773 | -0.001 | -2 | 0.790 |
MLK2 |
0.773 | -0.087 | 2 | 0.696 |
GRK2 |
0.773 | 0.020 | -2 | 0.747 |
WNK4 |
0.773 | 0.085 | -2 | 0.897 |
MST3 |
0.773 | 0.101 | 2 | 0.728 |
PAK4 |
0.773 | 0.113 | -2 | 0.742 |
CDK8 |
0.773 | -0.023 | 1 | 0.684 |
SSTK |
0.772 | 0.093 | 4 | 0.816 |
MEKK3 |
0.772 | 0.017 | 1 | 0.858 |
IRE1 |
0.772 | -0.033 | 1 | 0.792 |
PKCZ |
0.772 | 0.019 | 2 | 0.653 |
BMPR1A |
0.772 | 0.062 | 1 | 0.838 |
SMG1 |
0.771 | -0.028 | 1 | 0.793 |
NEK2 |
0.771 | -0.026 | 2 | 0.680 |
VRK2 |
0.770 | -0.081 | 1 | 0.895 |
PKCT |
0.770 | 0.099 | 2 | 0.604 |
DMPK1 |
0.770 | 0.242 | -3 | 0.844 |
CHK2 |
0.769 | 0.114 | -3 | 0.743 |
PKCE |
0.769 | 0.112 | 2 | 0.606 |
CK1A2 |
0.769 | 0.077 | -3 | 0.622 |
MLK3 |
0.769 | -0.060 | 2 | 0.625 |
CK1D |
0.769 | 0.069 | -3 | 0.618 |
CDK19 |
0.768 | -0.017 | 1 | 0.642 |
CAMK1A |
0.768 | 0.125 | -3 | 0.752 |
IRE2 |
0.767 | 0.018 | 2 | 0.615 |
P38A |
0.767 | 0.015 | 1 | 0.712 |
GAK |
0.767 | 0.112 | 1 | 0.856 |
PKCI |
0.767 | 0.083 | 2 | 0.621 |
MLK4 |
0.766 | -0.047 | 2 | 0.613 |
CDK1 |
0.766 | 0.009 | 1 | 0.642 |
BRAF |
0.766 | -0.015 | -4 | 0.835 |
MEK5 |
0.766 | -0.025 | 2 | 0.719 |
SBK |
0.766 | 0.097 | -3 | 0.680 |
CDK14 |
0.766 | 0.041 | 1 | 0.657 |
PHKG2 |
0.765 | 0.072 | -3 | 0.869 |
PLK4 |
0.765 | -0.037 | 2 | 0.566 |
CHAK1 |
0.765 | -0.059 | 2 | 0.650 |
CDK18 |
0.765 | 0.004 | 1 | 0.607 |
TLK1 |
0.763 | 0.006 | -2 | 0.832 |
ROCK1 |
0.763 | 0.245 | -3 | 0.842 |
CDK9 |
0.763 | 0.002 | 1 | 0.666 |
CDK13 |
0.763 | -0.021 | 1 | 0.657 |
PKN1 |
0.763 | 0.087 | -3 | 0.824 |
PRP4 |
0.763 | 0.020 | -3 | 0.771 |
GRK3 |
0.763 | 0.016 | -2 | 0.711 |
P38B |
0.763 | 0.012 | 1 | 0.643 |
GSK3B |
0.763 | 0.042 | 4 | 0.538 |
CK1G1 |
0.763 | 0.036 | -3 | 0.642 |
TLK2 |
0.762 | -0.086 | 1 | 0.829 |
ZAK |
0.762 | -0.039 | 1 | 0.844 |
TTBK1 |
0.762 | -0.036 | 2 | 0.547 |
CK2A2 |
0.761 | 0.066 | 1 | 0.766 |
NEK11 |
0.761 | 0.027 | 1 | 0.856 |
ERK2 |
0.761 | 0.000 | 1 | 0.679 |
MPSK1 |
0.760 | 0.052 | 1 | 0.781 |
P38G |
0.760 | 0.013 | 1 | 0.554 |
IRAK4 |
0.760 | 0.017 | 1 | 0.810 |
MEKK1 |
0.760 | -0.067 | 1 | 0.859 |
PERK |
0.760 | -0.081 | -2 | 0.851 |
CDK12 |
0.759 | -0.007 | 1 | 0.632 |
CDK5 |
0.759 | -0.010 | 1 | 0.698 |
ERK1 |
0.759 | -0.011 | 1 | 0.634 |
GCK |
0.759 | 0.082 | 1 | 0.866 |
HPK1 |
0.759 | 0.099 | 1 | 0.855 |
GSK3A |
0.758 | 0.045 | 4 | 0.546 |
TAO3 |
0.758 | -0.011 | 1 | 0.849 |
CDK17 |
0.758 | 0.002 | 1 | 0.557 |
MOK |
0.758 | 0.144 | 1 | 0.716 |
MEKK2 |
0.757 | -0.074 | 2 | 0.686 |
NEK5 |
0.757 | -0.060 | 1 | 0.854 |
LKB1 |
0.757 | 0.024 | -3 | 0.864 |
HRI |
0.757 | -0.087 | -2 | 0.853 |
PDK1 |
0.756 | -0.003 | 1 | 0.845 |
CDK2 |
0.756 | -0.023 | 1 | 0.730 |
CK2A1 |
0.756 | 0.069 | 1 | 0.747 |
MAK |
0.755 | 0.090 | -2 | 0.775 |
TAK1 |
0.754 | 0.046 | 1 | 0.879 |
PKG1 |
0.754 | 0.108 | -2 | 0.680 |
IRAK1 |
0.754 | -0.057 | -1 | 0.786 |
CAMKK1 |
0.754 | -0.034 | -2 | 0.793 |
CAMKK2 |
0.754 | -0.006 | -2 | 0.791 |
JNK1 |
0.752 | 0.024 | 1 | 0.621 |
TAO2 |
0.751 | -0.005 | 2 | 0.714 |
P38D |
0.751 | 0.010 | 1 | 0.565 |
CDK16 |
0.751 | 0.012 | 1 | 0.573 |
NEK8 |
0.751 | -0.081 | 2 | 0.694 |
BUB1 |
0.750 | 0.041 | -5 | 0.179 |
PBK |
0.750 | 0.097 | 1 | 0.773 |
MEKK6 |
0.750 | 0.026 | 1 | 0.842 |
CDK3 |
0.750 | 0.006 | 1 | 0.575 |
PLK2 |
0.749 | -0.013 | -3 | 0.769 |
LOK |
0.749 | 0.062 | -2 | 0.803 |
PINK1 |
0.749 | -0.145 | 1 | 0.819 |
KHS2 |
0.749 | 0.076 | 1 | 0.857 |
STK33 |
0.748 | -0.010 | 2 | 0.562 |
LRRK2 |
0.748 | 0.015 | 2 | 0.727 |
NEK4 |
0.748 | -0.010 | 1 | 0.834 |
MINK |
0.748 | 0.005 | 1 | 0.854 |
ERK7 |
0.747 | -0.010 | 2 | 0.453 |
TNIK |
0.746 | 0.010 | 3 | 0.835 |
EEF2K |
0.746 | -0.020 | 3 | 0.806 |
MAP3K15 |
0.745 | -0.043 | 1 | 0.827 |
MST2 |
0.745 | -0.070 | 1 | 0.871 |
KHS1 |
0.745 | 0.040 | 1 | 0.845 |
YANK3 |
0.744 | 0.024 | 2 | 0.396 |
HGK |
0.744 | -0.028 | 3 | 0.836 |
SLK |
0.743 | 0.001 | -2 | 0.743 |
NEK1 |
0.741 | -0.035 | 1 | 0.833 |
RIPK2 |
0.741 | -0.075 | 1 | 0.808 |
VRK1 |
0.741 | -0.033 | 2 | 0.726 |
MST1 |
0.740 | -0.022 | 1 | 0.851 |
CDK4 |
0.740 | 0.024 | 1 | 0.616 |
PDHK3_TYR |
0.739 | 0.115 | 4 | 0.930 |
YSK1 |
0.738 | -0.003 | 2 | 0.672 |
CDK6 |
0.737 | -0.002 | 1 | 0.634 |
MEK2 |
0.736 | -0.094 | 2 | 0.702 |
HASPIN |
0.735 | 0.041 | -1 | 0.770 |
PDHK4_TYR |
0.733 | 0.093 | 2 | 0.804 |
CK1A |
0.732 | 0.029 | -3 | 0.527 |
TESK1_TYR |
0.731 | 0.093 | 3 | 0.886 |
MAP2K6_TYR |
0.731 | 0.070 | -1 | 0.893 |
BMPR2_TYR |
0.730 | 0.071 | -1 | 0.895 |
MAP2K4_TYR |
0.730 | 0.028 | -1 | 0.890 |
NEK3 |
0.730 | -0.022 | 1 | 0.807 |
BIKE |
0.729 | 0.036 | 1 | 0.722 |
ALPHAK3 |
0.728 | 0.021 | -1 | 0.781 |
EPHA6 |
0.728 | 0.133 | -1 | 0.879 |
MAP2K7_TYR |
0.728 | 0.027 | 2 | 0.763 |
PKMYT1_TYR |
0.728 | 0.058 | 3 | 0.860 |
PDHK1_TYR |
0.728 | 0.030 | -1 | 0.901 |
TTK |
0.726 | -0.035 | -2 | 0.824 |
OSR1 |
0.726 | -0.052 | 2 | 0.688 |
LIMK2_TYR |
0.725 | 0.099 | -3 | 0.909 |
ASK1 |
0.725 | -0.055 | 1 | 0.817 |
PINK1_TYR |
0.724 | 0.047 | 1 | 0.869 |
EPHB4 |
0.721 | 0.062 | -1 | 0.854 |
RET |
0.720 | 0.061 | 1 | 0.848 |
DDR1 |
0.720 | 0.071 | 4 | 0.845 |
MYO3B |
0.719 | -0.043 | 2 | 0.683 |
TAO1 |
0.717 | -0.050 | 1 | 0.787 |
EPHA4 |
0.716 | 0.044 | 2 | 0.749 |
MYO3A |
0.716 | -0.052 | 1 | 0.821 |
TXK |
0.715 | 0.065 | 1 | 0.887 |
AAK1 |
0.714 | 0.048 | 1 | 0.609 |
LIMK1_TYR |
0.714 | -0.028 | 2 | 0.725 |
MST1R |
0.714 | -0.014 | 3 | 0.811 |
TNK2 |
0.713 | 0.044 | 3 | 0.765 |
CK1G3 |
0.712 | 0.027 | -3 | 0.481 |
SRMS |
0.712 | 0.031 | 1 | 0.898 |
EPHB1 |
0.712 | 0.023 | 1 | 0.898 |
ITK |
0.711 | 0.053 | -1 | 0.816 |
TYRO3 |
0.711 | -0.032 | 3 | 0.790 |
INSRR |
0.710 | 0.006 | 3 | 0.754 |
JAK3 |
0.710 | -0.003 | 1 | 0.835 |
EPHB3 |
0.710 | 0.019 | -1 | 0.838 |
FGR |
0.710 | -0.012 | 1 | 0.878 |
FGFR2 |
0.709 | 0.026 | 3 | 0.814 |
YES1 |
0.709 | -0.002 | -1 | 0.850 |
STLK3 |
0.709 | -0.103 | 1 | 0.812 |
TYK2 |
0.708 | -0.126 | 1 | 0.849 |
YANK2 |
0.708 | -0.001 | 2 | 0.406 |
ABL2 |
0.708 | -0.005 | -1 | 0.812 |
EPHB2 |
0.708 | 0.015 | -1 | 0.831 |
ROS1 |
0.707 | -0.077 | 3 | 0.765 |
FER |
0.706 | -0.070 | 1 | 0.904 |
CSF1R |
0.706 | -0.073 | 3 | 0.789 |
EPHA7 |
0.706 | 0.029 | 2 | 0.731 |
KDR |
0.705 | 0.023 | 3 | 0.762 |
JAK2 |
0.705 | -0.135 | 1 | 0.850 |
DDR2 |
0.704 | 0.106 | 3 | 0.746 |
TEK |
0.704 | 0.019 | 3 | 0.734 |
AXL |
0.704 | -0.004 | 3 | 0.789 |
ABL1 |
0.704 | -0.016 | -1 | 0.804 |
BMX |
0.703 | 0.032 | -1 | 0.737 |
KIT |
0.703 | -0.034 | 3 | 0.794 |
NEK10_TYR |
0.703 | -0.012 | 1 | 0.738 |
EPHA3 |
0.703 | -0.009 | 2 | 0.709 |
FLT1 |
0.703 | 0.014 | -1 | 0.846 |
MERTK |
0.702 | -0.007 | 3 | 0.788 |
BLK |
0.702 | 0.014 | -1 | 0.846 |
LCK |
0.702 | -0.007 | -1 | 0.844 |
HCK |
0.701 | -0.072 | -1 | 0.841 |
PDGFRB |
0.701 | -0.044 | 3 | 0.800 |
MET |
0.701 | -0.009 | 3 | 0.788 |
FLT3 |
0.700 | -0.017 | 3 | 0.784 |
PTK2 |
0.700 | 0.059 | -1 | 0.821 |
CK1G2 |
0.700 | 0.028 | -3 | 0.569 |
TEC |
0.700 | 0.010 | -1 | 0.750 |
FYN |
0.700 | 0.022 | -1 | 0.824 |
FGFR3 |
0.700 | 0.010 | 3 | 0.785 |
TNK1 |
0.700 | -0.027 | 3 | 0.776 |
FGFR1 |
0.699 | -0.033 | 3 | 0.777 |
EPHA5 |
0.699 | 0.023 | 2 | 0.736 |
EPHA1 |
0.698 | 0.004 | 3 | 0.765 |
PTK2B |
0.698 | 0.026 | -1 | 0.781 |
TNNI3K_TYR |
0.698 | -0.038 | 1 | 0.843 |
BTK |
0.696 | -0.063 | -1 | 0.782 |
ERBB2 |
0.696 | -0.047 | 1 | 0.817 |
LTK |
0.695 | -0.039 | 3 | 0.747 |
NTRK1 |
0.695 | -0.083 | -1 | 0.824 |
FLT4 |
0.695 | -0.027 | 3 | 0.764 |
JAK1 |
0.694 | -0.090 | 1 | 0.811 |
WEE1_TYR |
0.694 | -0.051 | -1 | 0.769 |
PDGFRA |
0.692 | -0.108 | 3 | 0.792 |
ALK |
0.692 | -0.071 | 3 | 0.718 |
EPHA8 |
0.692 | -0.016 | -1 | 0.823 |
SYK |
0.692 | 0.030 | -1 | 0.793 |
FRK |
0.691 | -0.047 | -1 | 0.848 |
LYN |
0.689 | -0.058 | 3 | 0.721 |
INSR |
0.688 | -0.076 | 3 | 0.729 |
PTK6 |
0.688 | -0.135 | -1 | 0.736 |
EGFR |
0.687 | -0.043 | 1 | 0.729 |
NTRK2 |
0.687 | -0.110 | 3 | 0.763 |
SRC |
0.687 | -0.040 | -1 | 0.813 |
EPHA2 |
0.686 | -0.001 | -1 | 0.793 |
MATK |
0.686 | -0.047 | -1 | 0.735 |
NTRK3 |
0.684 | -0.101 | -1 | 0.774 |
CSK |
0.683 | -0.088 | 2 | 0.725 |
FGFR4 |
0.683 | -0.049 | -1 | 0.771 |
ERBB4 |
0.680 | -0.004 | 1 | 0.746 |
IGF1R |
0.677 | -0.064 | 3 | 0.675 |
ZAP70 |
0.667 | -0.005 | -1 | 0.716 |
MUSK |
0.666 | -0.117 | 1 | 0.710 |
FES |
0.664 | -0.071 | -1 | 0.710 |