Motif 317 (n=246)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A6ND36 | FAM83G | S614 | ochoa | Protein FAM83G (Protein associated with SMAD1) | Substrate for type I BMP receptor kinase involved in regulation of some target genes of the BMP signaling pathway. Also regulates the expression of several non-BMP target genes, suggesting a role in other signaling pathways. {ECO:0000269|PubMed:24554596}. |
A6NJZ7 | RIMBP3C | S314 | ochoa | RIMS-binding protein 3C (RIM-BP3.C) (RIMS-binding protein 3.3) (RIM-BP3.3) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
A6NNM3 | RIMBP3B | S314 | ochoa | RIMS-binding protein 3B (RIM-BP3.B) (RIMS-binding protein 3.2) (RIM-BP3.2) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
H0YJW9 | None | S61 | ochoa | Uncharacterized protein | None |
O14640 | DVL1 | S600 | ochoa | Segment polarity protein dishevelled homolog DVL-1 (Dishevelled-1) (DSH homolog 1) | Participates in Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Plays a role both in canonical and non-canonical Wnt signaling. Plays a role in the signal transduction pathways mediated by multiple Wnt genes. Required for LEF1 activation upon WNT1 and WNT3A signaling. DVL1 and PAK1 form a ternary complex with MUSK which is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ). |
O14647 | CHD2 | S130 | ochoa | Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) | ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}. |
O14654 | IRS4 | S427 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O15523 | DDX3Y | S101 | ochoa | ATP-dependent RNA helicase DDX3Y (EC 3.6.4.13) (DEAD box protein 3, Y-chromosomal) | Probable ATP-dependent RNA helicase. During immune response, may enhance IFNB1 expression via IRF3/IRF7 pathway (By similarity). {ECO:0000250|UniProtKB:Q62095}. |
O15534 | PER1 | S811 | ochoa | Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui) | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. {ECO:0000269|PubMed:24005054}. |
O60759 | CYTIP | S312 | ochoa | Cytohesin-interacting protein (Cytohesin binder and regulator) (CYBR) (Cytohesin-associated scaffolding protein) (CASP) (Cytohesin-binding protein HE) (Cbp HE) (Pleckstrin homology Sec7 and coiled-coil domains-binding protein) | By its binding to cytohesin-1 (CYTH1), it modifies activation of ARFs by CYTH1 and its precise function may be to sequester CYTH1 in the cytoplasm. |
O60759 | CYTIP | S314 | ochoa | Cytohesin-interacting protein (Cytohesin binder and regulator) (CYBR) (Cytohesin-associated scaffolding protein) (CASP) (Cytohesin-binding protein HE) (Cbp HE) (Pleckstrin homology Sec7 and coiled-coil domains-binding protein) | By its binding to cytohesin-1 (CYTH1), it modifies activation of ARFs by CYTH1 and its precise function may be to sequester CYTH1 in the cytoplasm. |
O75494 | SRSF10 | S129 | ochoa | Serine/arginine-rich splicing factor 10 (40 kDa SR-repressor protein) (SRrp40) (FUS-interacting serine-arginine-rich protein 1) (Splicing factor SRp38) (Splicing factor, arginine/serine-rich 13A) (TLS-associated protein with Ser-Arg repeats) (TASR) (TLS-associated protein with SR repeats) (TLS-associated serine-arginine protein) (TLS-associated SR protein) | Splicing factor that in its dephosphorylated form acts as a general repressor of pre-mRNA splicing (PubMed:11684676, PubMed:12419250, PubMed:14765198). Seems to interfere with the U1 snRNP 5'-splice recognition of SNRNP70 (PubMed:14765198). Required for splicing repression in M-phase cells and after heat shock (PubMed:14765198). Also acts as a splicing factor that specifically promotes exon skipping during alternative splicing (PubMed:26876937). Interaction with YTHDC1, a RNA-binding protein that recognizes and binds N6-methyladenosine (m6A)-containing RNAs, prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May be involved in regulation of alternative splicing in neurons, with isoform 1 acting as a positive and isoform 3 as a negative regulator (PubMed:12419250). {ECO:0000269|PubMed:11684676, ECO:0000269|PubMed:12419250, ECO:0000269|PubMed:14765198, ECO:0000269|PubMed:26876937}. |
O75494 | SRSF10 | Y136 | ochoa | Serine/arginine-rich splicing factor 10 (40 kDa SR-repressor protein) (SRrp40) (FUS-interacting serine-arginine-rich protein 1) (Splicing factor SRp38) (Splicing factor, arginine/serine-rich 13A) (TLS-associated protein with Ser-Arg repeats) (TASR) (TLS-associated protein with SR repeats) (TLS-associated serine-arginine protein) (TLS-associated SR protein) | Splicing factor that in its dephosphorylated form acts as a general repressor of pre-mRNA splicing (PubMed:11684676, PubMed:12419250, PubMed:14765198). Seems to interfere with the U1 snRNP 5'-splice recognition of SNRNP70 (PubMed:14765198). Required for splicing repression in M-phase cells and after heat shock (PubMed:14765198). Also acts as a splicing factor that specifically promotes exon skipping during alternative splicing (PubMed:26876937). Interaction with YTHDC1, a RNA-binding protein that recognizes and binds N6-methyladenosine (m6A)-containing RNAs, prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May be involved in regulation of alternative splicing in neurons, with isoform 1 acting as a positive and isoform 3 as a negative regulator (PubMed:12419250). {ECO:0000269|PubMed:11684676, ECO:0000269|PubMed:12419250, ECO:0000269|PubMed:14765198, ECO:0000269|PubMed:26876937}. |
O95071 | UBR5 | S2369 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
P04004 | VTN | S386 | psp | Vitronectin (VN) (S-protein) (Serum-spreading factor) (V75) [Cleaved into: Vitronectin V65 subunit; Vitronectin V10 subunit; Somatomedin-B] | Vitronectin is a cell adhesion and spreading factor found in serum and tissues. Vitronectin interact with glycosaminoglycans and proteoglycans. Is recognized by certain members of the integrin family and serves as a cell-to-substrate adhesion molecule. Inhibitor of the membrane-damaging effect of the terminal cytolytic complement pathway.; FUNCTION: Somatomedin-B is a growth hormone-dependent serum factor with protease-inhibiting activity. |
P18583 | SON | S1948 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P18583 | SON | S2009 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P18583 | SON | S2011 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P23588 | EIF4B | S317 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P28908 | TNFRSF8 | S429 | ochoa | Tumor necrosis factor receptor superfamily member 8 (CD30L receptor) (Ki-1 antigen) (Lymphocyte activation antigen CD30) (CD antigen CD30) | Receptor for TNFSF8/CD30L (PubMed:8391931). May play a role in the regulation of cellular growth and transformation of activated lymphoblasts. Regulates gene expression through activation of NF-kappa-B (PubMed:8999898). {ECO:0000269|PubMed:8391931, ECO:0000269|PubMed:8999898}. |
P31629 | HIVEP2 | S2118 | ochoa|psp | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P33991 | MCM4 | S26 | ochoa | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P36915 | GNL1 | S55 | ochoa | Guanine nucleotide-binding protein-like 1 (GTP-binding protein HSR1) | Possible regulatory or functional link with the histocompatibility cluster. |
P39880 | CUX1 | S1312 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P49760 | CLK2 | S98 | ochoa | Dual specificity protein kinase CLK2 (EC 2.7.12.1) (CDC-like kinase 2) | Dual specificity kinase acting on both serine/threonine and tyrosine-containing substrates. Phosphorylates serine- and arginine-rich (SR) proteins of the spliceosomal complex. May be a constituent of a network of regulatory mechanisms that enable SR proteins to control RNA splicing and can cause redistribution of SR proteins from speckles to a diffuse nucleoplasmic distribution. Acts as a suppressor of hepatic gluconeogenesis and glucose output by repressing PPARGC1A transcriptional activity on gluconeogenic genes via its phosphorylation. Phosphorylates PPP2R5B thereby stimulating the assembly of PP2A phosphatase with the PPP2R5B-AKT1 complex leading to dephosphorylation of AKT1. Phosphorylates: PTPN1, SRSF1 and SRSF3. Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Phosphorylates PAGE4 at several serine and threonine residues and this phosphorylation attenuates the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:28289210). {ECO:0000269|PubMed:10480872, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:28289210, ECO:0000269|PubMed:8910305, ECO:0000269|PubMed:9637771}. |
P49959 | MRE11 | S590 | psp | Double-strand break repair protein MRE11 (EC 3.1.-.-) (Meiotic recombination 11 homolog 1) (MRE11 homolog 1) (Meiotic recombination 11 homolog A) (MRE11 homolog A) | Core component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:11741547, PubMed:14657032, PubMed:22078559, PubMed:23080121, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:28867292, PubMed:29670289, PubMed:30464262, PubMed:30612738, PubMed:31353207, PubMed:37696958, PubMed:38128537, PubMed:9590181, PubMed:9651580, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:24316220, PubMed:28867292, PubMed:31353207, PubMed:38128537). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:24316220, PubMed:27889449, PubMed:28867292, PubMed:36050397, PubMed:38128537). Within the MRN complex, MRE11 possesses both single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity (PubMed:11741547, PubMed:22078559, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:29670289, PubMed:31353207, PubMed:36563124, PubMed:9590181, PubMed:9651580, PubMed:9705271). After DSBs, MRE11 is loaded onto DSBs sites and cleaves DNA by cooperating with RBBP8/CtIP to initiate end resection (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 first endonucleolytically cleaves the 5' strand at DNA DSB ends to prevent non-homologous end joining (NHEJ) and licence HR (PubMed:24316220). It then generates a single-stranded DNA gap via 3' to 5' exonucleolytic degradation to create entry sites for EXO1- and DNA2-mediated 5' to 3' long-range resection, which is required for single-strand invasion and recombination (PubMed:24316220, PubMed:28867292). RBBP8/CtIP specifically promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 endonuclease activity is also enhanced by AGER/RAGE (By similarity). The MRN complex is also required for DNA damage signaling via activation of the ATM and ATR kinases: the nuclease activity of MRE11 is not required to activate ATM and ATR (PubMed:14657032, PubMed:15064416, PubMed:15790808, PubMed:16622404). The MRN complex is also required for the processing of R-loops (PubMed:31537797). The MRN complex is involved in the activation of the cGAS-STING pathway induced by DNA damage during tumorigenesis: the MRN complex acts by displacing CGAS from nucleosome sequestration, thereby activating it (By similarity). In telomeres the MRN complex may modulate t-loop formation (PubMed:10888888). {ECO:0000250|UniProtKB:Q61216, ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:11741547, ECO:0000269|PubMed:14657032, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:22078559, ECO:0000269|PubMed:23080121, ECO:0000269|PubMed:24316220, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:29670289, ECO:0000269|PubMed:30464262, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:36050397, ECO:0000269|PubMed:36563124, ECO:0000269|PubMed:37696958, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9590181, ECO:0000269|PubMed:9651580, ECO:0000269|PubMed:9705271}.; FUNCTION: MRE11 contains two DNA-binding domains (DBDs), enabling it to bind both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). {ECO:0000305}. |
P51116 | FXR2 | S566 | ochoa | RNA-binding protein FXR2 (FXR2P) (FMR1 autosomal homolog 2) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for adult hippocampal neurogenesis (By similarity). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (By similarity). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs: mRNAs storage into membraneless compartments regulates their translation and/or stability (By similarity). Acts as a regulator of adult hippocampal neurogenesis by regulating translation and/or stability of NOG mRNA, thereby preventing NOG protein expression in the dentate gyrus (By similarity). {ECO:0000250|UniProtKB:Q61584, ECO:0000250|UniProtKB:Q9WVR4}. |
P51116 | FXR2 | S601 | ochoa | RNA-binding protein FXR2 (FXR2P) (FMR1 autosomal homolog 2) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for adult hippocampal neurogenesis (By similarity). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (By similarity). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs: mRNAs storage into membraneless compartments regulates their translation and/or stability (By similarity). Acts as a regulator of adult hippocampal neurogenesis by regulating translation and/or stability of NOG mRNA, thereby preventing NOG protein expression in the dentate gyrus (By similarity). {ECO:0000250|UniProtKB:Q61584, ECO:0000250|UniProtKB:Q9WVR4}. |
P51116 | FXR2 | S603 | ochoa | RNA-binding protein FXR2 (FXR2P) (FMR1 autosomal homolog 2) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for adult hippocampal neurogenesis (By similarity). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (By similarity). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs: mRNAs storage into membraneless compartments regulates their translation and/or stability (By similarity). Acts as a regulator of adult hippocampal neurogenesis by regulating translation and/or stability of NOG mRNA, thereby preventing NOG protein expression in the dentate gyrus (By similarity). {ECO:0000250|UniProtKB:Q61584, ECO:0000250|UniProtKB:Q9WVR4}. |
P52756 | RBM5 | S59 | ochoa | RNA-binding protein 5 (Protein G15) (Putative tumor suppressor LUCA15) (RNA-binding motif protein 5) (Renal carcinoma antigen NY-REN-9) | Component of the spliceosome A complex. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Regulates alternative splicing of a number of mRNAs. May modulate splice site pairing after recruitment of the U1 and U2 snRNPs to the 5' and 3' splice sites of the intron. May both positively and negatively regulate apoptosis by regulating the alternative splicing of several genes involved in this process, including FAS and CASP2/caspase-2. In the case of FAS, promotes exclusion of exon 6 thereby producing a soluble form of FAS that inhibits apoptosis. In the case of CASP2/caspase-2, promotes exclusion of exon 9 thereby producing a catalytically active form of CASP2/Caspase-2 that induces apoptosis. {ECO:0000269|PubMed:10949932, ECO:0000269|PubMed:12207175, ECO:0000269|PubMed:12581154, ECO:0000269|PubMed:15192330, ECO:0000269|PubMed:16585163, ECO:0000269|PubMed:18840686, ECO:0000269|PubMed:18851835, ECO:0000269|PubMed:21256132}. |
P52756 | RBM5 | S78 | ochoa | RNA-binding protein 5 (Protein G15) (Putative tumor suppressor LUCA15) (RNA-binding motif protein 5) (Renal carcinoma antigen NY-REN-9) | Component of the spliceosome A complex. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Regulates alternative splicing of a number of mRNAs. May modulate splice site pairing after recruitment of the U1 and U2 snRNPs to the 5' and 3' splice sites of the intron. May both positively and negatively regulate apoptosis by regulating the alternative splicing of several genes involved in this process, including FAS and CASP2/caspase-2. In the case of FAS, promotes exclusion of exon 6 thereby producing a soluble form of FAS that inhibits apoptosis. In the case of CASP2/caspase-2, promotes exclusion of exon 9 thereby producing a catalytically active form of CASP2/Caspase-2 that induces apoptosis. {ECO:0000269|PubMed:10949932, ECO:0000269|PubMed:12207175, ECO:0000269|PubMed:12581154, ECO:0000269|PubMed:15192330, ECO:0000269|PubMed:16585163, ECO:0000269|PubMed:18840686, ECO:0000269|PubMed:18851835, ECO:0000269|PubMed:21256132}. |
P56975 | NRG3 | S483 | ochoa | Pro-neuregulin-3, membrane-bound isoform (Pro-NRG3) [Cleaved into: Neuregulin-3 (NRG-3)] | Direct ligand for the ERBB4 tyrosine kinase receptor. Binding results in ligand-stimulated tyrosine phosphorylation and activation of the receptor. Does not bind to the EGF receptor, ERBB2 or ERBB3 receptors. May be a survival factor for oligodendrocytes. {ECO:0000269|PubMed:16478787, ECO:0000269|PubMed:9275162}. |
P62995 | TRA2B | S102 | ochoa | Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) | Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:9546399}. |
P62995 | TRA2B | S270 | ochoa | Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) | Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:9546399}. |
Q01130 | SRSF2 | S196 | ochoa | Serine/arginine-rich splicing factor 2 (Protein PR264) (Splicing component, 35 kDa) (Splicing factor SC35) (SC-35) (Splicing factor, arginine/serine-rich 2) | Necessary for the splicing of pre-mRNA. It is required for formation of the earliest ATP-dependent splicing complex and interacts with spliceosomal components bound to both the 5'- and 3'-splice sites during spliceosome assembly. It also is required for ATP-dependent interactions of both U1 and U2 snRNPs with pre-mRNA. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5'- and 3'-splice site binding components, U1 snRNP and U2AF. Binds to purine-rich RNA sequences, either 5'-AGSAGAGTA-3' (S=C or G) or 5'-GTTCGAGTA-3'. Can bind to beta-globin mRNA and commit it to the splicing pathway. The phosphorylated form (by SRPK2) is required for cellular apoptosis in response to cisplatin treatment. {ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21157427}. |
Q05519 | SRSF11 | S323 | ochoa | Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) | May function in pre-mRNA splicing. |
Q05D32 | CTDSPL2 | S85 | ochoa | CTD small phosphatase-like protein 2 (CTDSP-like 2) (EC 3.1.3.-) | Probable phosphatase. {ECO:0000250}. |
Q07157 | TJP1 | S179 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q07157 | TJP1 | S326 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08170 | SRSF4 | S423 | ochoa | Serine/arginine-rich splicing factor 4 (Pre-mRNA-splicing factor SRP75) (SRP001LB) (Splicing factor, arginine/serine-rich 4) | Plays a role in alternative splice site selection during pre-mRNA splicing. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:15009664}. |
Q12872 | SFSWAP | S832 | ochoa | Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) | Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}. |
Q13017 | ARHGAP5 | S1023 | ochoa | Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) | GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}. |
Q13247 | SRSF6 | S291 | ochoa | Serine/arginine-rich splicing factor 6 (Pre-mRNA-splicing factor SRP55) (Splicing factor, arginine/serine-rich 6) | Plays a role in constitutive splicing and modulates the selection of alternative splice sites. Plays a role in the alternative splicing of MAPT/Tau exon 10. Binds to alternative exons of TNC pre-mRNA and promotes the expression of alternatively spliced TNC. Plays a role in wound healing and in the regulation of keratinocyte differentiation and proliferation via its role in alternative splicing. {ECO:0000269|PubMed:12549914, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:22767602, ECO:0000269|PubMed:24440982}. |
Q13427 | PPIG | S506 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13523 | PRP4K | S427 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13523 | PRP4K | S431 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q14004 | CDK13 | S437 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14004 | CDK13 | S439 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14004 | CDK13 | S441 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14498 | RBM39 | S97 | ochoa | RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) | RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}. |
Q14498 | RBM39 | Y99 | ochoa|psp | RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) | RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}. |
Q14669 | TRIP12 | S163 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14739 | LBR | S93 | ochoa | Delta(14)-sterol reductase LBR (Delta-14-SR) (EC 1.3.1.70) (3-beta-hydroxysterol Delta (14)-reductase) (C-14 sterol reductase) (C14SR) (Integral nuclear envelope inner membrane protein) (LMN2R) (Lamin-B receptor) (Sterol C14-reductase) | Catalyzes the reduction of the C14-unsaturated bond of lanosterol, as part of the metabolic pathway leading to cholesterol biosynthesis (PubMed:12618959, PubMed:16784888, PubMed:21327084, PubMed:27336722, PubMed:9630650). Plays a critical role in myeloid cell cholesterol biosynthesis which is essential to both myeloid cell growth and functional maturation (By similarity). Mediates the activation of NADPH oxidases, perhaps by maintaining critical levels of cholesterol required for membrane lipid raft formation during neutrophil differentiation (By similarity). Anchors the lamina and the heterochromatin to the inner nuclear membrane (PubMed:10828963). {ECO:0000250|UniProtKB:Q3U9G9, ECO:0000269|PubMed:10828963, ECO:0000269|PubMed:12618959, ECO:0000269|PubMed:16784888, ECO:0000269|PubMed:21327084, ECO:0000269|PubMed:27336722, ECO:0000269|PubMed:9630650}. |
Q14739 | LBR | S97 | ochoa | Delta(14)-sterol reductase LBR (Delta-14-SR) (EC 1.3.1.70) (3-beta-hydroxysterol Delta (14)-reductase) (C-14 sterol reductase) (C14SR) (Integral nuclear envelope inner membrane protein) (LMN2R) (Lamin-B receptor) (Sterol C14-reductase) | Catalyzes the reduction of the C14-unsaturated bond of lanosterol, as part of the metabolic pathway leading to cholesterol biosynthesis (PubMed:12618959, PubMed:16784888, PubMed:21327084, PubMed:27336722, PubMed:9630650). Plays a critical role in myeloid cell cholesterol biosynthesis which is essential to both myeloid cell growth and functional maturation (By similarity). Mediates the activation of NADPH oxidases, perhaps by maintaining critical levels of cholesterol required for membrane lipid raft formation during neutrophil differentiation (By similarity). Anchors the lamina and the heterochromatin to the inner nuclear membrane (PubMed:10828963). {ECO:0000250|UniProtKB:Q3U9G9, ECO:0000269|PubMed:10828963, ECO:0000269|PubMed:12618959, ECO:0000269|PubMed:16784888, ECO:0000269|PubMed:21327084, ECO:0000269|PubMed:27336722, ECO:0000269|PubMed:9630650}. |
Q14739 | LBR | S99 | ochoa | Delta(14)-sterol reductase LBR (Delta-14-SR) (EC 1.3.1.70) (3-beta-hydroxysterol Delta (14)-reductase) (C-14 sterol reductase) (C14SR) (Integral nuclear envelope inner membrane protein) (LMN2R) (Lamin-B receptor) (Sterol C14-reductase) | Catalyzes the reduction of the C14-unsaturated bond of lanosterol, as part of the metabolic pathway leading to cholesterol biosynthesis (PubMed:12618959, PubMed:16784888, PubMed:21327084, PubMed:27336722, PubMed:9630650). Plays a critical role in myeloid cell cholesterol biosynthesis which is essential to both myeloid cell growth and functional maturation (By similarity). Mediates the activation of NADPH oxidases, perhaps by maintaining critical levels of cholesterol required for membrane lipid raft formation during neutrophil differentiation (By similarity). Anchors the lamina and the heterochromatin to the inner nuclear membrane (PubMed:10828963). {ECO:0000250|UniProtKB:Q3U9G9, ECO:0000269|PubMed:10828963, ECO:0000269|PubMed:12618959, ECO:0000269|PubMed:16784888, ECO:0000269|PubMed:21327084, ECO:0000269|PubMed:27336722, ECO:0000269|PubMed:9630650}. |
Q14966 | ZNF638 | S552 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14966 | ZNF638 | S560 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q15424 | SAFB | S761 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15696 | ZRSR2 | S388 | ochoa | U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 2 (CCCH type zinc finger, RNA-binding motif and serine/arginine rich protein 2) (Renal carcinoma antigen NY-REN-20) (U2(RNU2) small nuclear RNA auxiliary factor 1-like 2) (U2AF35-related protein) (URP) | Pre-mRNA-binding protein required for splicing of both U2- and U12-type introns. Selectively interacts with the 3'-splice site of U2- and U12-type pre-mRNAs and promotes different steps in U2 and U12 intron splicing. Recruited to U12 pre-mRNAs in an ATP-dependent manner and is required for assembly of the pre-spliceosome, a precursor to other spliceosomal complexes. For U2-type introns, it is selectively and specifically required for the second step of splicing. {ECO:0000269|PubMed:21041408, ECO:0000269|PubMed:9237760}. |
Q15735 | INPP5J | S903 | ochoa | Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A (EC 3.1.3.36) (Inositol polyphosphate 5-phosphatase J) (Phosphatidylinositol 1,3,4,5-tetrakisphosphate 5-phosphatase) (EC 3.1.3.56) (Phosphatidylinositol 1,4,5-trisphosphate 5-phosphatase) (EC 3.1.3.56) | Inositol 5-phosphatase, which converts inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate. Also converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate and inositol 1,3,4,5-tetrakisphosphate to inositol 1,3,4-trisphosphate in vitro. May be involved in modulation of the function of inositol and phosphatidylinositol polyphosphate-binding proteins that are present at membranes ruffles. {ECO:0000250|UniProtKB:Q9JMC1}. |
Q15773 | MLF2 | S216 | ochoa | Myeloid leukemia factor 2 (Myelodysplasia-myeloid leukemia factor 2) | None |
Q16629 | SRSF7 | S163 | psp | Serine/arginine-rich splicing factor 7 (Splicing factor 9G8) (Splicing factor, arginine/serine-rich 7) | Required for pre-mRNA splicing. Can also modulate alternative splicing in vitro. Represses the splicing of MAPT/Tau exon 10. May function as export adapter involved in mRNA nuclear export such as of histone H2A. Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NXF1 pathway); enhances NXF1-NXT1 RNA-binding activity. RNA-binding is semi-sequence specific. {ECO:0000269|PubMed:11336712, ECO:0000269|PubMed:12667464, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:18364396}. |
Q16629 | SRSF7 | S192 | ochoa | Serine/arginine-rich splicing factor 7 (Splicing factor 9G8) (Splicing factor, arginine/serine-rich 7) | Required for pre-mRNA splicing. Can also modulate alternative splicing in vitro. Represses the splicing of MAPT/Tau exon 10. May function as export adapter involved in mRNA nuclear export such as of histone H2A. Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NXF1 pathway); enhances NXF1-NXT1 RNA-binding activity. RNA-binding is semi-sequence specific. {ECO:0000269|PubMed:11336712, ECO:0000269|PubMed:12667464, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:18364396}. |
Q16629 | SRSF7 | S194 | ochoa | Serine/arginine-rich splicing factor 7 (Splicing factor 9G8) (Splicing factor, arginine/serine-rich 7) | Required for pre-mRNA splicing. Can also modulate alternative splicing in vitro. Represses the splicing of MAPT/Tau exon 10. May function as export adapter involved in mRNA nuclear export such as of histone H2A. Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NXF1 pathway); enhances NXF1-NXT1 RNA-binding activity. RNA-binding is semi-sequence specific. {ECO:0000269|PubMed:11336712, ECO:0000269|PubMed:12667464, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:18364396}. |
Q16629 | SRSF7 | S196 | ochoa | Serine/arginine-rich splicing factor 7 (Splicing factor 9G8) (Splicing factor, arginine/serine-rich 7) | Required for pre-mRNA splicing. Can also modulate alternative splicing in vitro. Represses the splicing of MAPT/Tau exon 10. May function as export adapter involved in mRNA nuclear export such as of histone H2A. Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NXF1 pathway); enhances NXF1-NXT1 RNA-binding activity. RNA-binding is semi-sequence specific. {ECO:0000269|PubMed:11336712, ECO:0000269|PubMed:12667464, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:18364396}. |
Q16630 | CPSF6 | S513 | ochoa | Cleavage and polyadenylation specificity factor subunit 6 (Cleavage and polyadenylation specificity factor 68 kDa subunit) (CPSF 68 kDa subunit) (Cleavage factor Im complex 68 kDa subunit) (CFIm68) (Pre-mRNA cleavage factor Im 68 kDa subunit) (Protein HPBRII-4/7) | Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:14690600, PubMed:29276085, PubMed:8626397, PubMed:9659921). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:14690600, PubMed:8626397, PubMed:9659921). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF6 enhances NUDT21/CPSF5 binding to 5'-UGUA-3' elements localized upstream of pA signals and promotes RNA looping, and hence activates directly the mRNA 3'-processing machinery (PubMed:15169763, PubMed:21295486, PubMed:29276085). Plays a role in mRNA export (PubMed:19864460). {ECO:0000269|PubMed:14690600, ECO:0000269|PubMed:15169763, ECO:0000269|PubMed:19864460, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:21295486, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397, ECO:0000269|PubMed:9659921}.; FUNCTION: (Microbial infection) Binds HIV-1 capsid-nucleocapsid (HIV-1 CA-NC) complexes and might thereby promote the integration of the virus in the nucleus of dividing cells (in vitro). {ECO:0000269|PubMed:24130490}. |
Q5SYE7 | NHSL1 | S1367 | ochoa | NHS-like protein 1 | None |
Q5T200 | ZC3H13 | S578 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T200 | ZC3H13 | S621 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T200 | ZC3H13 | S643 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5VTL8 | PRPF38B | S289 | ochoa | Pre-mRNA-splicing factor 38B (Sarcoma antigen NY-SAR-27) | May be required for pre-mRNA splicing. {ECO:0000305}. |
Q5VUA4 | ZNF318 | S647 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VZL5 | ZMYM4 | S1181 | ochoa | Zinc finger MYM-type protein 4 (Zinc finger protein 262) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q6T4R5 | NHS | S475 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6T4R5 | NHS | S477 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6U841 | SLC4A10 | S89 | ochoa | Sodium-driven chloride bicarbonate exchanger (Solute carrier family 4 member 10) | Sodium/bicarbonate cotransporter which plays an important role in regulating intracellular pH (PubMed:18319254). Has been shown to act as a sodium/bicarbonate cotransporter in exchange for intracellular chloride (By similarity). Has also been shown to act as a sodium/biocarbonate cotransporter which does not couple net influx of bicarbonate to net efflux of chloride, with the observed chloride efflux being due to chloride self-exchange (PubMed:18319254). Controls neuronal pH and may contribute to the secretion of cerebrospinal fluid (By similarity). Acting on presynaptic intracellular pH, it promotes GABA release, reduces the excitability of CA1 pyramidal neurons, and modulates short-term synaptic plasticity (By similarity). Required in retinal cells to maintain normal pH which is necessary for normal vision (By similarity). In the kidney, likely to mediate bicarbonate reclamation in the apical membrane of the proximal tubules (By similarity). {ECO:0000250|UniProtKB:Q5DTL9, ECO:0000250|UniProtKB:Q80ZA5, ECO:0000269|PubMed:18319254}. |
Q6UN15 | FIP1L1 | S559 | ochoa | Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}. |
Q6ZSZ5 | ARHGEF18 | S67 | ochoa | Rho guanine nucleotide exchange factor 18 (114 kDa Rho-specific guanine nucleotide exchange factor) (p114-Rho-GEF) (p114RhoGEF) (Septin-associated RhoGEF) (SA-RhoGEF) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. Its activation induces formation of actin stress fibers. Also acts as a GEF for RAC1, inducing production of reactive oxygen species (ROS). Does not act as a GEF for CDC42. The G protein beta-gamma (Gbetagamma) subunits of heterotrimeric G proteins act as activators, explaining the integrated effects of LPA and other G-protein coupled receptor agonists on actin stress fiber formation, cell shape change and ROS production. Required for EPB41L4B-mediated regulation of the circumferential actomyosin belt in epithelial cells (PubMed:22006950). {ECO:0000269|PubMed:11085924, ECO:0000269|PubMed:14512443, ECO:0000269|PubMed:15558029, ECO:0000269|PubMed:22006950, ECO:0000269|PubMed:28132693}. |
Q6ZVL6 | KIAA1549L | S1542 | ochoa | UPF0606 protein KIAA1549L | None |
Q7Z460 | CLASP1 | S655 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q86U06 | RBM23 | S128 | ochoa | Probable RNA-binding protein 23 (CAPER beta) (CAPERbeta) (RNA-binding motif protein 23) (RNA-binding region-containing protein 4) (Splicing factor SF2) | RNA-binding protein that acts both as a transcription coactivator and pre-mRNA splicing factor (PubMed:15694343). Regulates steroid hormone receptor-mediated transcription, independently of the pre-mRNA splicing factor activity (PubMed:15694343). {ECO:0000269|PubMed:15694343}. |
Q86US8 | SMG6 | S264 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86US8 | SMG6 | S267 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86X51 | EZHIP | S338 | ochoa | EZH inhibitory protein | Inhibits PRC2/EED-EZH1 and PRC2/EED-EZH2 complex function by inhibiting EZH1/EZH2 methyltransferase activity, thereby causing down-regulation of histone H3 trimethylation on 'Lys-27' (H3K27me3) (PubMed:29909548, PubMed:30923826, PubMed:31086175, PubMed:31451685). Probably inhibits methyltransferase activity by limiting the stimulatory effect of cofactors such as AEBP2 and JARID2 (PubMed:30923826). Inhibits H3K27me3 deposition during spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B1B0V2, ECO:0000269|PubMed:29909548, ECO:0000269|PubMed:30923826, ECO:0000269|PubMed:31086175, ECO:0000269|PubMed:31451685}. |
Q8IWX8 | CHERP | S813 | ochoa | Calcium homeostasis endoplasmic reticulum protein (ERPROT 213-21) (SR-related CTD-associated factor 6) | Involved in calcium homeostasis, growth and proliferation. {ECO:0000269|PubMed:10794731, ECO:0000269|PubMed:12656674}. |
Q8IYB3 | SRRM1 | S211 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8IZD0 | SAMD14 | S64 | ochoa | Sterile alpha motif domain-containing protein 14 (SAM domain-containing protein 14) | None |
Q8N2F6 | ARMC10 | S45 | ochoa|psp | Armadillo repeat-containing protein 10 (Splicing variant involved in hepatocarcinogenesis protein) | May play a role in cell survival and cell growth. May suppress the transcriptional activity of p53/TP53. {ECO:0000269|PubMed:12839973, ECO:0000269|PubMed:17904127}. |
Q8N8A6 | DDX51 | S83 | ochoa | ATP-dependent RNA helicase DDX51 (EC 3.6.4.13) (DEAD box protein 51) | ATP-binding RNA helicase involved in the biogenesis of 60S ribosomal subunits. {ECO:0000250}. |
Q8NB49 | ATP11C | S1112 | ochoa | Phospholipid-transporting ATPase IG (EC 7.6.2.1) (ATPase IQ) (ATPase class VI type 11C) (P4-ATPase flippase complex alpha subunit ATP11C) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids, phosphatidylserines (PS) and phosphatidylethanolamines (PE), from the outer to the inner leaflet of the plasma membrane (PubMed:24904167, PubMed:25315773, PubMed:26567335, PubMed:32493773). Major PS-flippase in immune cell subsets. In erythrocyte plasma membrane, it is required to maintain PS in the inner leaflet preventing its exposure on the surface. This asymmetric distribution is critical for the survival of erythrocytes in circulation since externalized PS is a phagocytic signal for erythrocyte clearance by splenic macrophages (PubMed:26944472). Required for B cell differentiation past the pro-B cell stage (By similarity). Seems to mediate PS flipping in pro-B cells (By similarity). May be involved in the transport of cholestatic bile acids (By similarity). {ECO:0000250|UniProtKB:Q9QZW0, ECO:0000269|PubMed:24904167, ECO:0000269|PubMed:25315773, ECO:0000269|PubMed:26944472, ECO:0000269|PubMed:32493773}. |
Q8NEY8 | PPHLN1 | S92 | ochoa | Periphilin-1 (CDC7 expression repressor) (CR) (Gastric cancer antigen Ga50) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression. The HUSH complex is recruited to genomic loci rich in H3K9me3 and is probably required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3. In the HUSH complex, contributes to the maintenance of the complex at chromatin (PubMed:26022416). Acts as a transcriptional corepressor and regulates the cell cycle, probably via the HUSH complex (PubMed:15474462, PubMed:17963697). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). May be involved in epithelial differentiation by contributing to epidermal integrity and barrier formation (PubMed:12853457). {ECO:0000269|PubMed:15474462, ECO:0000269|PubMed:17963697, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:30487602, ECO:0000305|PubMed:12853457}. |
Q8TB45 | DEPTOR | S238 | ochoa | DEP domain-containing mTOR-interacting protein (hDEPTOR) (DEP domain-containing protein 6) | Negative regulator of the mTORC1 and mTORC2 complexes: inhibits the protein kinase activity of MTOR, thereby inactivating both complexes (PubMed:19446321, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:25936805, PubMed:29382726, PubMed:34519268, PubMed:34519269). DEPTOR inhibits mTORC1 and mTORC2 to induce autophagy (PubMed:22017875, PubMed:22017876, PubMed:22017877). In contrast to AKT1S1/PRAS40, only partially inhibits mTORC1 activity (PubMed:34519268, PubMed:34519269). {ECO:0000269|PubMed:19446321, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:29382726, ECO:0000269|PubMed:34519268, ECO:0000269|PubMed:34519269}. |
Q8TEK3 | DOT1L | S1100 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TF76 | HASPIN | S93 | psp | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8WVS4 | DYNC2I1 | S79 | ochoa | Cytoplasmic dynein 2 intermediate chain 1 (Dynein 2 intermediate chain 1) (WD repeat-containing protein 60) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 2 complex (dynein-2 complex), a motor protein complex that drives the movement of cargos along microtubules within cilia and flagella in concert with the intraflagellar transport (IFT) system (PubMed:23910462, PubMed:25205765, PubMed:29742051, PubMed:31451806). DYNC2I1 plays a major role in retrograde ciliary protein trafficking in cilia and flagella (PubMed:29742051, PubMed:30320547, PubMed:30649997). Also requires to maintain a functional transition zone (PubMed:30320547). {ECO:0000269|PubMed:23910462, ECO:0000269|PubMed:25205765, ECO:0000269|PubMed:29742051, ECO:0000269|PubMed:30320547, ECO:0000269|PubMed:30649997, ECO:0000269|PubMed:31451806}. |
Q92575 | UBXN4 | S330 | ochoa | UBX domain-containing protein 4 (Erasin) (UBX domain-containing protein 2) | Involved in endoplasmic reticulum-associated protein degradation (ERAD). Acts as a platform to recruit both UBQLN1 and VCP to the ER during ERAD (PubMed:19822669). {ECO:0000269|PubMed:16968747, ECO:0000269|PubMed:19822669}. |
Q96EY5 | MVB12A | S207 | ochoa|psp | Multivesicular body subunit 12A (CIN85/CD2AP family-binding protein) (ESCRT-I complex subunit MVB12A) (Protein FAM125A) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies. May be involved in the ligand-mediated internalization and down-regulation of EGF receptor. {ECO:0000269|PubMed:16895919}. |
Q96FF9 | CDCA5 | S21 | ochoa|psp | Sororin (Cell division cycle-associated protein 5) (p35) | Regulator of sister chromatid cohesion in mitosis stabilizing cohesin complex association with chromatin. May antagonize the action of WAPL which stimulates cohesin dissociation from chromatin. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Required for efficient DNA double-stranded break repair. {ECO:0000269|PubMed:15837422, ECO:0000269|PubMed:17349791, ECO:0000269|PubMed:21111234}. |
Q96HA7 | TONSL | S863 | ochoa | Tonsoku-like protein (Inhibitor of kappa B-related protein) (I-kappa-B-related protein) (IkappaBR) (NF-kappa-B inhibitor-like protein 2) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 2) | Component of the MMS22L-TONSL complex, a complex that promotes homologous recombination-mediated repair of double-strand breaks (DSBs) at stalled or collapsed replication forks (PubMed:21055983, PubMed:21055984, PubMed:21055985, PubMed:21113133, PubMed:26527279, PubMed:27338793, PubMed:27797818, PubMed:29478807, PubMed:30773278). The MMS22L-TONSL complex is required to maintain genome integrity during DNA replication (PubMed:21055983, PubMed:21055984, PubMed:21055985). It mediates the assembly of RAD51 filaments on single-stranded DNA (ssDNA): the MMS22L-TONSL complex is recruited to DSBs following histone replacement by histone chaperones and eviction of the replication protein A complex (RPA/RP-A) from DSBs (PubMed:21055983, PubMed:21055984, PubMed:21055985, PubMed:27797818, PubMed:29478807). Following recruitment to DSBs, the TONSL-MMS22L complex promotes recruitment of RAD51 filaments and subsequent homologous recombination (PubMed:27797818, PubMed:29478807). Within the complex, TONSL acts as a histone reader, which recognizes and binds newly synthesized histones following their replacement by histone chaperones (PubMed:27338793, PubMed:29478807). Specifically binds histone H4 lacking methylation at 'Lys-20' (H4K20me0) and histone H3.1 (PubMed:27338793). {ECO:0000269|PubMed:21055983, ECO:0000269|PubMed:21055984, ECO:0000269|PubMed:21055985, ECO:0000269|PubMed:21113133, ECO:0000269|PubMed:26527279, ECO:0000269|PubMed:27338793, ECO:0000269|PubMed:27797818, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30773278}. |
Q96P20 | NLRP3 | S161 | psp | NACHT, LRR and PYD domains-containing protein 3 (EC 3.6.4.-) (Angiotensin/vasopressin receptor AII/AVP-like) (Caterpiller protein 1.1) (CLR1.1) (Cold-induced autoinflammatory syndrome 1 protein) (Cryopyrin) (PYRIN-containing APAF1-like protein 1) | Sensor component of the NLRP3 inflammasome, which mediates inflammasome activation in response to defects in membrane integrity, leading to secretion of inflammatory cytokines IL1B and IL18 and pyroptosis (PubMed:16407889, PubMed:18403674, PubMed:18604214, PubMed:23582325, PubMed:25686105, PubMed:27929086, PubMed:28656979, PubMed:28847925, PubMed:30487600, PubMed:30612879, PubMed:31086327, PubMed:31086329, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353, PubMed:34512673, PubMed:36442502). In response to pathogens and other damage-associated signals that affect the integrity of membranes, initiates the formation of the inflammasome polymeric complex composed of NLRP3, CASP1 and PYCARD/ASC (PubMed:16407889, PubMed:18403674, PubMed:27432880, PubMed:28847925, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353, PubMed:36142182, PubMed:36442502). Recruitment of pro-caspase-1 (proCASP1) to the NLRP3 inflammasome promotes caspase-1 (CASP1) activation, which subsequently cleaves and activates inflammatory cytokines IL1B and IL18 and gasdermin-D (GSDMD), promoting cytokine secretion and pyroptosis (PubMed:23582325, PubMed:28847925, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353). Activation of NLRP3 inflammasome is also required for HMGB1 secretion; stimulating inflammatory responses (PubMed:22801494). Under resting conditions, ADP-bound NLRP3 is autoinhibited (PubMed:35114687). NLRP3 activation stimuli include extracellular ATP, nigericin, reactive oxygen species, crystals of monosodium urate or cholesterol, amyloid-beta fibers, environmental or industrial particles and nanoparticles, such as asbestos, silica, aluminum salts, cytosolic dsRNA, etc (PubMed:16407889, PubMed:18403674, PubMed:18604214, PubMed:19414800, PubMed:23871209). Almost all stimuli trigger intracellular K(+) efflux (By similarity). These stimuli lead to membrane perturbation and activation of NLRP3 (By similarity). Upon activation, NLRP3 is transported to microtubule organizing center (MTOC), where it is unlocked by NEK7, leading to its relocalization to dispersed trans-Golgi network (dTGN) vesicle membranes and formation of an active inflammasome complex (PubMed:36442502, PubMed:39173637). Associates with dTGN vesicle membranes by binding to phosphatidylinositol 4-phosphate (PtdIns4P) (PubMed:30487600, PubMed:34554188). Shows ATPase activity (PubMed:17483456). {ECO:0000250|UniProtKB:Q8R4B8, ECO:0000269|PubMed:16407889, ECO:0000269|PubMed:17483456, ECO:0000269|PubMed:18403674, ECO:0000269|PubMed:18604214, ECO:0000269|PubMed:19414800, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:23871209, ECO:0000269|PubMed:25686105, ECO:0000269|PubMed:27432880, ECO:0000269|PubMed:27929086, ECO:0000269|PubMed:28656979, ECO:0000269|PubMed:28847925, ECO:0000269|PubMed:30487600, ECO:0000269|PubMed:30612879, ECO:0000269|PubMed:31086327, ECO:0000269|PubMed:31086329, ECO:0000269|PubMed:31189953, ECO:0000269|PubMed:33231615, ECO:0000269|PubMed:34133077, ECO:0000269|PubMed:34341353, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:35114687, ECO:0000269|PubMed:36142182, ECO:0000269|PubMed:36442502, ECO:0000269|PubMed:39173637}.; FUNCTION: Independently of inflammasome activation, regulates the differentiation of T helper 2 (Th2) cells and has a role in Th2 cell-dependent asthma and tumor growth (By similarity). During Th2 differentiation, required for optimal IRF4 binding to IL4 promoter and for IRF4-dependent IL4 transcription (By similarity). Binds to the consensus DNA sequence 5'-GRRGGNRGAG-3' (By similarity). May also participate in the transcription of IL5, IL13, GATA3, CCR3, CCR4 and MAF (By similarity). {ECO:0000250|UniProtKB:Q8R4B8}. |
Q96QZ7 | MAGI1 | S1412 | ochoa | Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1 (Atrophin-1-interacting protein 3) (AIP-3) (BAI1-associated protein 1) (BAP-1) (Membrane-associated guanylate kinase inverted 1) (MAGI-1) (Trinucleotide repeat-containing gene 19 protein) (WW domain-containing protein 3) (WWP3) | Plays a role in coupling actin fibers to cell junctions in endothelial cells, via its interaction with AMOTL2 and CDH5 (By similarity). May regulate acid-induced ASIC3 currents by modulating its expression at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q6RHR9}. |
Q96T49 | PPP1R16B | S69 | psp | Protein phosphatase 1 regulatory inhibitor subunit 16B (Ankyrin repeat domain-containing protein 4) (CAAX box protein TIMAP) (TGF-beta-inhibited membrane-associated protein) (hTIMAP) | Regulator of protein phosphatase 1 (PP1) that acts as a positive regulator of pulmonary endothelial cell (EC) barrier function (PubMed:18586956). Involved in the regulation of the PI3K/AKT signaling pathway, angiogenesis and endothelial cell proliferation (PubMed:25007873). Regulates angiogenesis and endothelial cell proliferation through the control of ECE1 dephosphorylation, trafficking and activity (By similarity). Protects the endothelial barrier from lipopolysaccharide (LPS)-induced vascular leakage (By similarity). Involved in the regulation of endothelial cell filopodia extension (By similarity). May be a downstream target for TGF-beta1 signaling cascade in endothelial cells (PubMed:16263087, PubMed:18586956). Involved in PKA-mediated moesin dephosphorylation which is important in EC barrier protection against thrombin stimulation (PubMed:18586956). Promotes the interaction of PPP1CA with RPSA/LAMR1 and in turn facilitates the dephosphorylation of RPSA/LAMR1 (PubMed:16263087). Involved in the dephosphorylation of EEF1A1 (PubMed:26497934). {ECO:0000250|UniProtKB:Q8VHQ3, ECO:0000250|UniProtKB:Q95N27, ECO:0000269|PubMed:16263087, ECO:0000269|PubMed:18586956, ECO:0000269|PubMed:25007873, ECO:0000269|PubMed:26497934}. |
Q99501 | GAS2L1 | S394 | ochoa | GAS2-like protein 1 (GAS2-related protein on chromosome 22) (Growth arrest-specific protein 2-like 1) | Involved in the cross-linking of microtubules and microfilaments (PubMed:12584248, PubMed:24706950). Regulates microtubule dynamics and stability by interacting with microtubule plus-end tracking proteins, such as MAPRE1, to regulate microtubule growth along actin stress fibers (PubMed:24706950). {ECO:0000269|PubMed:12584248, ECO:0000269|PubMed:24706950}. |
Q99640 | PKMYT1 | S473 | ochoa | Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase (EC 2.7.11.1) (Myt1 kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins (PubMed:10373560, PubMed:10504341, PubMed:9001210, PubMed:9268380). Mediates phosphorylation of CDK1 predominantly on 'Thr-14'. Also involved in Golgi fragmentation (PubMed:9001210, PubMed:9268380). May be involved in phosphorylation of CDK1 on 'Tyr-15' to a lesser degree, however tyrosine kinase activity is unclear and may be indirect (PubMed:9001210, PubMed:9268380). {ECO:0000269|PubMed:10373560, ECO:0000269|PubMed:10504341, ECO:0000269|PubMed:9001210, ECO:0000269|PubMed:9268380}. |
Q9BRL6 | SRSF8 | S153 | ochoa | Serine/arginine-rich splicing factor 8 (Pre-mRNA-splicing factor SRP46) (Splicing factor SRp46) (Splicing factor, arginine/serine-rich 2B) | Involved in pre-mRNA alternative splicing. {ECO:0000269|PubMed:9671500}. |
Q9BRL6 | SRSF8 | S161 | ochoa | Serine/arginine-rich splicing factor 8 (Pre-mRNA-splicing factor SRP46) (Splicing factor SRp46) (Splicing factor, arginine/serine-rich 2B) | Involved in pre-mRNA alternative splicing. {ECO:0000269|PubMed:9671500}. |
Q9BRL6 | SRSF8 | S163 | ochoa | Serine/arginine-rich splicing factor 8 (Pre-mRNA-splicing factor SRP46) (Splicing factor SRp46) (Splicing factor, arginine/serine-rich 2B) | Involved in pre-mRNA alternative splicing. {ECO:0000269|PubMed:9671500}. |
Q9BRL6 | SRSF8 | S191 | ochoa | Serine/arginine-rich splicing factor 8 (Pre-mRNA-splicing factor SRP46) (Splicing factor SRp46) (Splicing factor, arginine/serine-rich 2B) | Involved in pre-mRNA alternative splicing. {ECO:0000269|PubMed:9671500}. |
Q9BRL6 | SRSF8 | S193 | ochoa | Serine/arginine-rich splicing factor 8 (Pre-mRNA-splicing factor SRP46) (Splicing factor SRp46) (Splicing factor, arginine/serine-rich 2B) | Involved in pre-mRNA alternative splicing. {ECO:0000269|PubMed:9671500}. |
Q9BSF8 | BTBD10 | S74 | ochoa | BTB/POZ domain-containing protein 10 (Glucose metabolism-related protein 1) | Plays a major role as an activator of AKT family members by inhibiting PPP2CA-mediated dephosphorylation, thereby keeping AKTs activated. Plays a role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. {ECO:0000250|UniProtKB:Q80X66}. |
Q9BXP5 | SRRT | S26 | ochoa | Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) | Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}. |
Q9BXP5 | SRRT | S74 | ochoa | Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) | Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}. |
Q9BZE4 | GTPBP4 | S563 | ochoa | GTP-binding protein 4 (Chronic renal failure gene protein) (GTP-binding protein NGB) (Nucleolar GTP-binding protein 1) | Involved in the biogenesis of the 60S ribosomal subunit (PubMed:32669547). Acts as a TP53 repressor, preventing TP53 stabilization and cell cycle arrest (PubMed:20308539). {ECO:0000269|PubMed:20308539, ECO:0000269|PubMed:32669547}. |
Q9GZU2 | PEG3 | S196 | ochoa | Paternally-expressed gene 3 protein (Zinc finger and SCAN domain-containing protein 24) | Induces apoptosis in cooperation with SIAH1A. Acts as a mediator between p53/TP53 and BAX in a neuronal death pathway that is activated by DNA damage. Acts synergistically with TRAF2 and inhibits TNF induced apoptosis through activation of NF-kappa-B (By similarity). Possesses a tumor suppressing activity in glioma cells. {ECO:0000250, ECO:0000269|PubMed:11260267}. |
Q9H5Z6 | FAM124B | S290 | ochoa | Protein FAM124B | None |
Q9H7N4 | SCAF1 | T619 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7N4 | SCAF1 | S623 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H9C1 | VIPAS39 | S130 | ochoa | Spermatogenesis-defective protein 39 homolog (hSPE-39) (VPS33B-interacting protein in apical-basolateral polarity regulator) (VPS33B-interacting protein in polarity and apical restriction) | Proposed to be involved in endosomal maturation implicating in part VPS33B. In epithelial cells, the VPS33B:VIPAS39 complex may play a role in the apical RAB11A-dependent recycling pathway and in the maintenance of the apical-basolateral polarity (PubMed:20190753). May play a role in lysosomal trafficking, probably via association with the core HOPS complex in a discrete population of endosomes; the functions seems to be independent of VPS33B (PubMed:19109425). May play a role in vesicular trafficking during spermatogenesis (By similarity). May be involved in direct or indirect transcriptional regulation of E-cadherin (By similarity). {ECO:0000250|UniProtKB:Q23288, ECO:0000269|PubMed:19109425, ECO:0000269|PubMed:20190753}. |
Q9HC52 | CBX8 | S190 | ochoa | Chromobox protein homolog 8 (Polycomb 3 homolog) (Pc3) (hPc3) (Rectachrome 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:21282530}. |
Q9HCD5 | NCOA5 | S96 | ochoa | Nuclear receptor coactivator 5 (NCoA-5) (Coactivator independent of AF-2) (CIA) | Nuclear receptor coregulator that can have both coactivator and corepressor functions. Interacts with nuclear receptors for steroids (ESR1 and ESR2) independently of the steroid binding domain (AF-2) of the ESR receptors, and with the orphan nuclear receptor NR1D2. Involved in the coactivation of nuclear steroid receptors (ER) as well as the corepression of MYC in response to 17-beta-estradiol (E2). {ECO:0000269|PubMed:15073177}. |
Q9HCG8 | CWC22 | S93 | ochoa | Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q9HCM7 | FBRSL1 | S31 | ochoa | Fibrosin-1-like protein (AUTS2-like protein) (HBV X-transactivated gene 9 protein) (HBV XAg-transactivated protein 9) | None |
Q9NQ29 | LUC7L | S332 | ochoa | Putative RNA-binding protein Luc7-like 1 (Putative SR protein LUC7B1) (SR+89) | May bind to RNA via its Arg/Ser-rich domain. {ECO:0000269|PubMed:11170747}. |
Q9NQ29 | LUC7L | S342 | ochoa | Putative RNA-binding protein Luc7-like 1 (Putative SR protein LUC7B1) (SR+89) | May bind to RNA via its Arg/Ser-rich domain. {ECO:0000269|PubMed:11170747}. |
Q9NWH9 | SLTM | S788 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NZJ0 | DTL | S562 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9NZV7 | ZIM2 | S71 | ochoa | Zinc finger imprinted 2 (Zinc finger protein 656) | May be involved in transcriptional regulation. |
Q9P1Y6 | PHRF1 | S1034 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P1Y6 | PHRF1 | S1106 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P2G1 | ANKIB1 | S785 | ochoa | Ankyrin repeat and IBR domain-containing protein 1 (EC 2.3.2.31) | Might act as an E3 ubiquitin-protein ligase, or as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. {ECO:0000250}. |
Q9P2N2 | ARHGAP28 | S55 | ochoa | Rho GTPase-activating protein 28 (Rho-type GTPase-activating protein 28) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9UBC3 | DNMT3B | S136 | ochoa | DNA (cytosine-5)-methyltransferase 3B (Dnmt3b) (EC 2.1.1.37) (DNA methyltransferase HsaIIIB) (DNA MTase HsaIIIB) (M.HsaIIIB) | Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. DNA methylation is coordinated with methylation of histones. May preferentially methylates nucleosomal DNA within the nucleosome core region. May function as transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. Seems to be involved in gene silencing (By similarity). In association with DNMT1 and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Isoforms 4 and 5 are probably not functional due to the deletion of two conserved methyltransferase motifs. Functions as a transcriptional corepressor by associating with ZHX1. Required for DUX4 silencing in somatic cells (PubMed:27153398). {ECO:0000250, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:17303076, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18567530, ECO:0000269|PubMed:27153398}. |
Q9UBN1 | CACNG4 | S253 | ochoa | Voltage-dependent calcium channel gamma-4 subunit (Neuronal voltage-gated calcium channel gamma-4 subunit) (Transmembrane AMPAR regulatory protein gamma-4) (TARP gamma-4) | Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit (PubMed:21127204). Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs), including GRIA1 and GRIA4. Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization (PubMed:21172611). {ECO:0000269|PubMed:21127204, ECO:0000269|PubMed:21172611}. |
Q9UBU9 | NXF1 | S62 | ochoa | Nuclear RNA export factor 1 (Tip-associated protein) (Tip-associating protein) (mRNA export factor TAP) | Involved in the nuclear export of mRNA species bearing retroviral constitutive transport elements (CTE) and in the export of mRNA from the nucleus to the cytoplasm (TAP/NFX1 pathway) (PubMed:10924507). The NXF1-NXT1 heterodimer is involved in the export of HSP70 mRNA in conjunction with ALYREF/THOC4 and THOC5 components of the TREX complex (PubMed:18364396, PubMed:19165146, PubMed:9660949). ALYREF/THOC4-bound mRNA is thought to be transferred to the NXF1-NXT1 heterodimer for export (PubMed:18364396, PubMed:19165146, PubMed:9660949). Also involved in nuclear export of m6A-containing mRNAs: interaction between SRSF3 and YTHDC1 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). {ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:18364396, ECO:0000269|PubMed:19165146, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:9660949}. |
Q9UDY2 | TJP2 | S174 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UDY2 | TJP2 | S292 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UDY2 | TJP2 | S294 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UFD9 | RIMBP3 | S314 | ochoa | RIMS-binding protein 3A (RIM-BP3.A) (RIMS-binding protein 3.1) (RIM-BP3.1) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
Q9UK58 | CCNL1 | S445 | ochoa | Cyclin-L1 (Cyclin-L) | Involved in pre-mRNA splicing. Functions in association with cyclin-dependent kinases (CDKs) (PubMed:18216018). Inhibited by the CDK-specific inhibitor CDKN1A/p21 (PubMed:11980906). May play a role in the regulation of RNA polymerase II (pol II). May be a candidate proto-oncogene in head and neck squamous cell carcinomas (HNSCC) (PubMed:12414649, PubMed:15700036). {ECO:0000269|PubMed:11980906, ECO:0000269|PubMed:12414649, ECO:0000269|PubMed:15700036, ECO:0000269|PubMed:18216018}. |
Q9UKJ3 | GPATCH8 | S914 | ochoa | G patch domain-containing protein 8 | None |
Q9UKJ3 | GPATCH8 | T977 | ochoa | G patch domain-containing protein 8 | None |
Q9UKJ3 | GPATCH8 | S981 | ochoa | G patch domain-containing protein 8 | None |
Q9UNF1 | MAGED2 | S247 | ochoa | Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) | Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}. |
Q9UQ26 | RIMS2 | S1072 | ochoa | Regulating synaptic membrane exocytosis protein 2 (Rab-3-interacting molecule 2) (RIM 2) (Rab-3-interacting protein 3) | Rab effector involved in exocytosis. May act as scaffold protein. Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:23999003}. |
Q9UQ35 | SRRM2 | S506 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S508 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S510 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S1731 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S1911 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S2067 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | T2069 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S2071 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y2D9 | ZNF652 | S204 | ochoa | Zinc finger protein 652 | Functions as a transcriptional repressor. {ECO:0000269|PubMed:16966434}. |
Q9Y2W1 | THRAP3 | S53 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y2W1 | THRAP3 | S55 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y383 | LUC7L2 | S353 | ochoa | Putative RNA-binding protein Luc7-like 2 | May bind to RNA via its Arg/Ser-rich domain. |
Q9Y388 | RBMX2 | S272 | ochoa | RNA-binding motif protein, X-linked 2 | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9Y4X4 | KLF12 | S291 | ochoa | Krueppel-like factor 12 (Transcriptional repressor AP-2rep) | Confers strong transcriptional repression to the AP-2-alpha gene. Binds to a regulatory element (A32) in the AP-2-alpha gene promoter. |
Q9Y4X4 | KLF12 | S293 | ochoa | Krueppel-like factor 12 (Transcriptional repressor AP-2rep) | Confers strong transcriptional repression to the AP-2-alpha gene. Binds to a regulatory element (A32) in the AP-2-alpha gene promoter. |
Q9Y561 | LRP12 | S652 | ochoa | Low-density lipoprotein receptor-related protein 12 (LDLR-related protein 12) (LRP-12) (Suppressor of tumorigenicity 7 protein) | Probable receptor, which may be involved in the internalization of lipophilic molecules and/or signal transduction. May act as a tumor suppressor. {ECO:0000269|PubMed:12809483}. |
Q9Y5Y4 | PTGDR2 | S331 | ochoa | Prostaglandin D2 receptor 2 (Chemoattractant receptor-homologous molecule expressed on Th2 cells) (G-protein coupled receptor 44) (CD antigen CD294) | Receptor for prostaglandin D2 (PGD2). Coupled to the G(i)-protein. Receptor activation may result in pertussis toxin-sensitive decreases in cAMP levels and Ca(2+) mobilization. PI3K signaling is also implicated in mediating PTGDR2 effects. PGD2 induced receptor internalization. CRTH2 internalization can be regulated by diverse kinases such as, PKC, PKA, GRK2, GPRK5/GRK5 and GRK6. Receptor activation is responsible, at least in part, in immune regulation and allergic/inflammation responses. {ECO:0000269|PubMed:11208866, ECO:0000269|PubMed:11535533, ECO:0000269|PubMed:17196174}. |
Q9Y6R9 | CCDC61 | S334 | ochoa | Centrosomal protein CCDC61 (Coiled-coil domain-containing protein 61) (VFL3 homolog) | Microtubule-binding centrosomal protein required for centriole cohesion, independently of the centrosome-associated protein/CEP250 and rootletin/CROCC linker (PubMed:31789463). In interphase, required for anchoring microtubule at the mother centriole subdistal appendages and for centrosome positioning (PubMed:31789463). During mitosis, may be involved in spindle assembly and chromatin alignment by regulating the organization of spindle microtubules into a symmetrical structure (PubMed:30354798). Has been proposed to play a role in CEP170 recruitment to centrosomes (PubMed:30354798). However, this function could not be confirmed (PubMed:31789463). Plays a non-essential role in ciliogenesis (PubMed:31789463, PubMed:32375023). {ECO:0000269|PubMed:30354798, ECO:0000269|PubMed:31789463, ECO:0000269|PubMed:32375023}. |
Q14152 | EIF3A | S1257 | Sugiyama | Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
Q12809 | KCNH2 | S283 | ELM|EPSD | Voltage-gated inwardly rectifying potassium channel KCNH2 (Eag homolog) (Ether-a-go-go-related gene potassium channel 1) (ERG-1) (Eag-related protein 1) (Ether-a-go-go-related protein 1) (H-ERG) (hERG-1) (hERG1) (Potassium voltage-gated channel subfamily H member 2) (Voltage-gated potassium channel subunit Kv11.1) | Pore-forming (alpha) subunit of voltage-gated inwardly rectifying potassium channel (PubMed:10219239, PubMed:10753933, PubMed:10790218, PubMed:10837251, PubMed:11997281, PubMed:12063277, PubMed:18559421, PubMed:22314138, PubMed:22359612, PubMed:26363003, PubMed:27916661, PubMed:9230439, PubMed:9351446, PubMed:9765245). Channel properties are modulated by cAMP and subunit assembly (PubMed:10837251). Characterized by unusual gating kinetics by producing relatively small outward currents during membrane depolarization and large inward currents during subsequent repolarization which reflect a rapid inactivation during depolarization and quick recovery from inactivation but slow deactivation (closing) during repolarization (PubMed:10219239, PubMed:10753933, PubMed:10790218, PubMed:10837251, PubMed:11997281, PubMed:12063277, PubMed:18559421, PubMed:22314138, PubMed:22359612, PubMed:26363003, PubMed:27916661, PubMed:9230439, PubMed:9351446, PubMed:9765245). Forms a stable complex with KCNE1 or KCNE2, and that this heteromultimerization regulates inward rectifier potassium channel activity (PubMed:10219239, PubMed:9230439). {ECO:0000269|PubMed:10219239, ECO:0000269|PubMed:10753933, ECO:0000269|PubMed:10790218, ECO:0000269|PubMed:10837251, ECO:0000269|PubMed:11997281, ECO:0000269|PubMed:12063277, ECO:0000269|PubMed:18559421, ECO:0000269|PubMed:22314138, ECO:0000269|PubMed:22359612, ECO:0000269|PubMed:26363003, ECO:0000269|PubMed:27916661, ECO:0000269|PubMed:9230439, ECO:0000269|PubMed:9351446, ECO:0000269|PubMed:9765245}.; FUNCTION: [Isoform A-USO]: Has no inward rectifier potassium channel activity by itself, but modulates channel characteristics by forming heterotetramers with other isoforms which are retained intracellularly and undergo ubiquitin-dependent degradation. {ECO:0000269|PubMed:18559421, ECO:0000269|PubMed:9765245}.; FUNCTION: [Isoform B-USO]: Has no inward rectifier potassium channel activity by itself, but modulates channel characteristics by forming heterotetramers with other isoforms which are retained intracellularly and undergo ubiquitin-dependent degradation. {ECO:0000269|PubMed:18559421}. |
O14640 | DVL1 | S142 | SIGNOR | Segment polarity protein dishevelled homolog DVL-1 (Dishevelled-1) (DSH homolog 1) | Participates in Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Plays a role both in canonical and non-canonical Wnt signaling. Plays a role in the signal transduction pathways mediated by multiple Wnt genes. Required for LEF1 activation upon WNT1 and WNT3A signaling. DVL1 and PAK1 form a ternary complex with MUSK which is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ). |
P49760 | CLK2 | S142 | GPS6|SIGNOR|EPSD|Sugiyama | Dual specificity protein kinase CLK2 (EC 2.7.12.1) (CDC-like kinase 2) | Dual specificity kinase acting on both serine/threonine and tyrosine-containing substrates. Phosphorylates serine- and arginine-rich (SR) proteins of the spliceosomal complex. May be a constituent of a network of regulatory mechanisms that enable SR proteins to control RNA splicing and can cause redistribution of SR proteins from speckles to a diffuse nucleoplasmic distribution. Acts as a suppressor of hepatic gluconeogenesis and glucose output by repressing PPARGC1A transcriptional activity on gluconeogenic genes via its phosphorylation. Phosphorylates PPP2R5B thereby stimulating the assembly of PP2A phosphatase with the PPP2R5B-AKT1 complex leading to dephosphorylation of AKT1. Phosphorylates: PTPN1, SRSF1 and SRSF3. Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Phosphorylates PAGE4 at several serine and threonine residues and this phosphorylation attenuates the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:28289210). {ECO:0000269|PubMed:10480872, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:28289210, ECO:0000269|PubMed:8910305, ECO:0000269|PubMed:9637771}. |
Q9NPD3 | EXOSC4 | S78 | Sugiyama | Exosome complex component RRP41 (Exosome component 4) (Ribosomal RNA-processing protein 41) (p12A) | Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. EXOSC4 binds to ARE-containing RNAs. {ECO:0000269|PubMed:16912217, ECO:0000269|PubMed:17545563, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:20368444, ECO:0000269|PubMed:21255825}. |
P18825 | ADRA2C | S358 | Sugiyama | Alpha-2C adrenergic receptor (Alpha-2 adrenergic receptor subtype C4) (Alpha-2C adrenoreceptor) (Alpha-2C adrenoceptor) (Alpha-2CAR) | Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. |
Q9NW75 | GPATCH2 | S58 | Sugiyama | G patch domain-containing protein 2 | Enhances the ATPase activity of DHX15 in vitro. {ECO:0000269|PubMed:19432882}. |
H7C1W4 | None | S28 | ochoa | Uncharacterized protein | None |
O14523 | C2CD2L | S667 | ochoa | Phospholipid transfer protein C2CD2L (C2 domain-containing protein 2-like) (C2CD2-like) (Transmembrane protein 24) | Lipid-binding protein that transports phosphatidylinositol, the precursor of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), from its site of synthesis in the endoplasmic reticulum to the cell membrane (PubMed:28209843). It thereby maintains the pool of cell membrane phosphoinositides, which are degraded during phospholipase C (PLC) signaling (PubMed:28209843). Plays a key role in the coordination of Ca(2+) and phosphoinositide signaling: localizes to sites of contact between the endoplasmic reticulum and the cell membrane, where it tethers the two bilayers (PubMed:28209843). In response to elevation of cytosolic Ca(2+), it is phosphorylated at its C-terminus and dissociates from the cell membrane, abolishing phosphatidylinositol transport to the cell membrane (PubMed:28209843). Positively regulates insulin secretion in response to glucose: phosphatidylinositol transfer to the cell membrane allows replenishment of PI(4,5)P2 pools and calcium channel opening, priming a new population of insulin granules (PubMed:28209843). {ECO:0000269|PubMed:28209843}. |
O14641 | DVL2 | S641 | ochoa | Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) | Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}. |
O15534 | PER1 | S815 | ochoa | Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui) | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. {ECO:0000269|PubMed:24005054}. |
O75376 | NCOR1 | S1734 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75791 | GRAP2 | S164 | ochoa | GRB2-related adapter protein 2 (Adapter protein GRID) (GRB-2-like protein) (GRB2L) (GRBLG) (GRBX) (Grf40 adapter protein) (Grf-40) (Growth factor receptor-binding protein) (Hematopoietic cell-associated adapter protein GrpL) (P38) (Protein GADS) (SH3-SH2-SH3 adapter Mona) | Interacts with SLP-76 to regulate NF-AT activation. Binds to tyrosine-phosphorylated shc. |
O94913 | PCF11 | S487 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O94913 | PCF11 | S489 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O95049 | TJP3 | S164 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
P0C7T5 | ATXN1L | S289 | ochoa | Ataxin-1-like (Brother of ataxin-1) (Brother of ATXN1) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression (PubMed:21475249). Can suppress ATXN1 cytotoxicity in spinocerebellar ataxia type 1 (SCA1). In concert with CIC and ATXN1, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P0C7T6, ECO:0000269|PubMed:21475249}. |
P22735 | TGM1 | S85 | psp | Protein-glutamine gamma-glutamyltransferase K (EC 2.3.2.13) (Epidermal TGase) (Transglutaminase K) (TG(K)) (TGK) (TGase K) (Transglutaminase-1) (TGase-1) | Catalyzes the cross-linking of proteins and the conjugation of polyamines to proteins. Responsible for cross-linking epidermal proteins during formation of the stratum corneum. Involved in cell proliferation (PubMed:26220141). {ECO:0000269|PubMed:26220141}. |
P23497 | SP100 | S456 | ochoa | Nuclear autoantigen Sp-100 (Nuclear dot-associated Sp100 protein) (Speckled 100 kDa) | Together with PML, this tumor suppressor is a major constituent of the PML bodies, a subnuclear organelle involved in a large number of physiological processes including cell growth, differentiation and apoptosis. Functions as a transcriptional coactivator of ETS1 and ETS2 according to PubMed:11909962. Under certain conditions, it may also act as a corepressor of ETS1 preventing its binding to DNA according to PubMed:15247905. Through the regulation of ETS1 it may play a role in angiogenesis, controlling endothelial cell motility and invasion. Through interaction with the MRN complex it may be involved in the regulation of telomeres lengthening. May also regulate TP53-mediated transcription and through CASP8AP2, regulate FAS-mediated apoptosis. Also plays a role in infection by viruses, including human cytomegalovirus and Epstein-Barr virus, through mechanisms that may involve chromatin and/or transcriptional regulation. {ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:14647468, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000269|PubMed:15767676, ECO:0000269|PubMed:16177824, ECO:0000269|PubMed:17245429, ECO:0000269|PubMed:21274506, ECO:0000269|PubMed:21880768}. |
P23588 | EIF4B | S263 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P35580 | MYH10 | S1935 | ochoa|psp | Myosin-10 (Cellular myosin heavy chain, type B) (Myosin heavy chain 10) (Myosin heavy chain, non-muscle IIb) (Non-muscle myosin heavy chain B) (NMMHC-B) (Non-muscle myosin heavy chain IIb) (NMMHC II-b) (NMMHC-IIB) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. During cell spreading, plays an important role in cytoskeleton reorganization, focal contacts formation (in the central part but not the margins of spreading cells), and lamellipodial extension; this function is mechanically antagonized by MYH9. {ECO:0000269|PubMed:20052411, ECO:0000269|PubMed:20603131}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000305|PubMed:25428876, ECO:0000305|PubMed:39048823}. |
P41587 | VIPR2 | S409 | ochoa | Vasoactive intestinal polypeptide receptor 2 (VIP-R-2) (Helodermin-preferring VIP receptor) (Pituitary adenylate cyclase-activating polypeptide type III receptor) (PACAP type III receptor) (PACAP-R-3) (PACAP-R3) (VPAC2 receptor) (VPAC2R) | G protein-coupled receptor activated by the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (ADCYAP1/PACAP) (PubMed:7811244, PubMed:35477937, PubMed:8933357). Binds VIP and both PACAP27 and PACAP38 bioactive peptides with the following order of potency PACAP38 = VIP > PACAP27 (PubMed:35477937, PubMed:8933357). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors. Activates cAMP-dependent pathway (PubMed:7811244, PubMed:35477937, PubMed:8933357). May be coupled to phospholipase C. {ECO:0000269|PubMed:35477937, ECO:0000269|PubMed:7811244, ECO:0000269|PubMed:8933357}. |
P52756 | RBM5 | Y51 | ochoa | RNA-binding protein 5 (Protein G15) (Putative tumor suppressor LUCA15) (RNA-binding motif protein 5) (Renal carcinoma antigen NY-REN-9) | Component of the spliceosome A complex. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Regulates alternative splicing of a number of mRNAs. May modulate splice site pairing after recruitment of the U1 and U2 snRNPs to the 5' and 3' splice sites of the intron. May both positively and negatively regulate apoptosis by regulating the alternative splicing of several genes involved in this process, including FAS and CASP2/caspase-2. In the case of FAS, promotes exclusion of exon 6 thereby producing a soluble form of FAS that inhibits apoptosis. In the case of CASP2/caspase-2, promotes exclusion of exon 9 thereby producing a catalytically active form of CASP2/Caspase-2 that induces apoptosis. {ECO:0000269|PubMed:10949932, ECO:0000269|PubMed:12207175, ECO:0000269|PubMed:12581154, ECO:0000269|PubMed:15192330, ECO:0000269|PubMed:16585163, ECO:0000269|PubMed:18840686, ECO:0000269|PubMed:18851835, ECO:0000269|PubMed:21256132}. |
Q03001 | DST | S7425 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q07157 | TJP1 | S175 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q07157 | TJP1 | S320 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q13387 | MAPK8IP2 | S251 | ochoa | C-Jun-amino-terminal kinase-interacting protein 2 (JIP-2) (JNK-interacting protein 2) (Islet-brain-2) (IB-2) (JNK MAP kinase scaffold protein 2) (Mitogen-activated protein kinase 8-interacting protein 2) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module. JIP2 inhibits IL1 beta-induced apoptosis in insulin-secreting cells. May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). {ECO:0000250}. |
Q13427 | PPIG | S356 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13427 | PPIG | T358 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13523 | PRP4K | S354 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13523 | PRP4K | S383 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13595 | TRA2A | S103 | ochoa | Transformer-2 protein homolog alpha (TRA-2 alpha) (TRA2-alpha) (Transformer-2 protein homolog A) | Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. {ECO:0000269|PubMed:9546399}. |
Q14004 | CDK13 | S388 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14152 | EIF3A | S978 | ochoa | Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
Q14152 | EIF3A | S1028 | ochoa | Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
Q14152 | EIF3A | S1058 | ochoa | Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
Q14498 | RBM39 | Y95 | ochoa|psp | RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) | RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}. |
Q14966 | ZNF638 | S558 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q5T200 | ZC3H13 | S316 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T200 | ZC3H13 | S1213 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T200 | ZC3H13 | S1217 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T200 | ZC3H13 | S1279 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q7Z6E9 | RBBP6 | T701 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q86VM9 | ZC3H18 | S604 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q86X29 | LSR | Y535 | ochoa | Lipolysis-stimulated lipoprotein receptor (Angulin-1) | Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}. |
Q8IWX8 | CHERP | S815 | ochoa | Calcium homeostasis endoplasmic reticulum protein (ERPROT 213-21) (SR-related CTD-associated factor 6) | Involved in calcium homeostasis, growth and proliferation. {ECO:0000269|PubMed:10794731, ECO:0000269|PubMed:12656674}. |
Q8IWX8 | CHERP | S817 | ochoa | Calcium homeostasis endoplasmic reticulum protein (ERPROT 213-21) (SR-related CTD-associated factor 6) | Involved in calcium homeostasis, growth and proliferation. {ECO:0000269|PubMed:10794731, ECO:0000269|PubMed:12656674}. |
Q8IX01 | SUGP2 | S89 | ochoa | SURP and G-patch domain-containing protein 2 (Arginine/serine-rich-splicing factor 14) (Splicing factor, arginine/serine-rich 14) | May play a role in mRNA splicing. {ECO:0000305}. |
Q8N2M8 | CLASRP | T330 | ochoa | CLK4-associating serine/arginine rich protein (Splicing factor, arginine/serine-rich 16) (Suppressor of white-apricot homolog 2) | Probably functions as an alternative splicing regulator. May regulate the mRNA splicing of genes such as CLK1. May act by regulating members of the CLK kinase family (By similarity). {ECO:0000250}. |
Q8TAD8 | SNIP1 | T152 | ochoa | Smad nuclear-interacting protein 1 (FHA domain-containing protein SNIP1) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Down-regulates NF-kappa-B signaling by competing with RELA for CREBBP/EP300 binding. Involved in the microRNA (miRNA) biogenesis. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:11567019, ECO:0000269|PubMed:15378006, ECO:0000269|PubMed:18632581, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q8WUF5 | PPP1R13L | S339 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WVZ9 | KBTBD7 | S29 | ochoa | Kelch repeat and BTB domain-containing protein 7 | As part of the CUL3(KBTBD6/7) E3 ubiquitin ligase complex functions as a substrate adapter for the RAC1 guanine exchange factor (GEF) TIAM1, mediating its 'Lys-48' ubiquitination and proteasomal degradation (PubMed:25684205). By controlling this ubiquitination, regulates RAC1 signal transduction and downstream biological processes including the organization of the cytoskeleton, cell migration and cell proliferation (PubMed:25684205). Ubiquitination of TIAM1 requires the membrane-associated protein GABARAP which may restrict locally the activity of the complex (PubMed:25684205). {ECO:0000269|PubMed:25684205}. |
Q93075 | TATDN2 | S85 | ochoa | 3'-5' RNA nuclease TATDN2 (EC 3.1.13.-) (TatD DNase domain containing 2) | Mg(2+)-dependent 3'RNA exonuclease and endonuclease that resolves R-loops via specific degradation of R-loop RNA stucture (PubMed:37953292). Shows no activity against D-loop and minimal activity against the RNA strand of an RNA-DNA hybrid duplex oligomer. Has no 3' or 5' exonuclease activity, no uracil glycosylase activity, and no 5' flap endonuclease activity on DNA substrates (PubMed:37953292). May have a role in maintaining genomic stability through its role in R-loop resolution (PubMed:37953292). {ECO:0000269|PubMed:37953292}. |
Q96MT3 | PRICKLE1 | S683 | ochoa | Prickle-like protein 1 (REST/NRSF-interacting LIM domain protein 1) | Involved in the planar cell polarity pathway that controls convergent extension during gastrulation and neural tube closure. Convergent extension is a complex morphogenetic process during which cells elongate, move mediolaterally, and intercalate between neighboring cells, leading to convergence toward the mediolateral axis and extension along the anteroposterior axis. Necessary for nuclear localization of REST. May serve as nuclear receptor. {ECO:0000269|PubMed:21901791}. |
Q9BTL3 | RAMAC | S86 | ochoa | RNA guanine-N7 methyltransferase activating subunit (Protein FAM103A1) (RNA guanine-7 methyltransferase activating subunit) (RNMT-activating mRNA cap methyltransferase subunit) (RNMT-activating mini protein) (RAM) | Regulatory subunit of the mRNA-capping methyltransferase RNMT:RAMAC complex that methylates the N7 position of the added guanosine to the 5'-cap structure of mRNAs (PubMed:22099306, PubMed:27422871). Promotes the recruitment of the methyl donor, S-adenosyl-L-methionine, to RNMT (PubMed:27422871). Regulates RNMT expression by a post-transcriptional stabilizing mechanism (PubMed:22099306). Binds RNA (PubMed:22099306). {ECO:0000269|PubMed:22099306, ECO:0000269|PubMed:27422871}. |
Q9BVG8 | KIFC3 | S784 | ochoa | Kinesin-like protein KIFC3 | Minus-end microtubule-dependent motor protein. Involved in apically targeted transport (By similarity). Required for zonula adherens maintenance. {ECO:0000250, ECO:0000269|PubMed:19041755}. |
Q9BXP5 | SRRT | S51 | ochoa | Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) | Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}. |
Q9BYW2 | SETD2 | S430 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9H4G0 | EPB41L1 | S437 | ochoa | Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) | May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases. |
Q9HCD5 | NCOA5 | S34 | ochoa | Nuclear receptor coactivator 5 (NCoA-5) (Coactivator independent of AF-2) (CIA) | Nuclear receptor coregulator that can have both coactivator and corepressor functions. Interacts with nuclear receptors for steroids (ESR1 and ESR2) independently of the steroid binding domain (AF-2) of the ESR receptors, and with the orphan nuclear receptor NR1D2. Involved in the coactivation of nuclear steroid receptors (ER) as well as the corepression of MYC in response to 17-beta-estradiol (E2). {ECO:0000269|PubMed:15073177}. |
Q9HCG8 | CWC22 | S786 | ochoa | Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q9HCM7 | FBRSL1 | S33 | ochoa | Fibrosin-1-like protein (AUTS2-like protein) (HBV X-transactivated gene 9 protein) (HBV XAg-transactivated protein 9) | None |
Q9NQ29 | LUC7L | S336 | ochoa | Putative RNA-binding protein Luc7-like 1 (Putative SR protein LUC7B1) (SR+89) | May bind to RNA via its Arg/Ser-rich domain. {ECO:0000269|PubMed:11170747}. |
Q9NVW2 | RLIM | S228 | ochoa | E3 ubiquitin-protein ligase RLIM (EC 2.3.2.27) (LIM domain-interacting RING finger protein) (RING finger LIM domain-binding protein) (R-LIM) (RING finger protein 12) (RING-type E3 ubiquitin transferase RLIM) (Renal carcinoma antigen NY-REN-43) | E3 ubiquitin-protein ligase. Acts as a negative coregulator for LIM homeodomain transcription factors by mediating the ubiquitination and subsequent degradation of LIM cofactors LDB1 and LDB2 and by mediating the recruitment the SIN3a/histone deacetylase corepressor complex. Ubiquitination and degradation of LIM cofactors LDB1 and LDB2 allows DNA-bound LIM homeodomain transcription factors to interact with other protein partners such as RLIM. Plays a role in telomere length-mediated growth suppression by mediating the ubiquitination and degradation of TERF1. By targeting ZFP42 for degradation, acts as an activator of random inactivation of X chromosome in the embryo, a stochastic process in which one X chromosome is inactivated to minimize sex-related dosage differences of X-encoded genes in somatic cells of female placental mammals. {ECO:0000269|PubMed:19164295, ECO:0000269|PubMed:19945382}. |
Q9NVW2 | RLIM | S230 | ochoa|psp | E3 ubiquitin-protein ligase RLIM (EC 2.3.2.27) (LIM domain-interacting RING finger protein) (RING finger LIM domain-binding protein) (R-LIM) (RING finger protein 12) (RING-type E3 ubiquitin transferase RLIM) (Renal carcinoma antigen NY-REN-43) | E3 ubiquitin-protein ligase. Acts as a negative coregulator for LIM homeodomain transcription factors by mediating the ubiquitination and subsequent degradation of LIM cofactors LDB1 and LDB2 and by mediating the recruitment the SIN3a/histone deacetylase corepressor complex. Ubiquitination and degradation of LIM cofactors LDB1 and LDB2 allows DNA-bound LIM homeodomain transcription factors to interact with other protein partners such as RLIM. Plays a role in telomere length-mediated growth suppression by mediating the ubiquitination and degradation of TERF1. By targeting ZFP42 for degradation, acts as an activator of random inactivation of X chromosome in the embryo, a stochastic process in which one X chromosome is inactivated to minimize sex-related dosage differences of X-encoded genes in somatic cells of female placental mammals. {ECO:0000269|PubMed:19164295, ECO:0000269|PubMed:19945382}. |
Q9NWB6 | ARGLU1 | S56 | ochoa | Arginine and glutamate-rich protein 1 | Dual function regulator of gene expression; regulator of transcription and modulator of alternative splicing (PubMed:30698747). General coactivator of nuclear receptor-induced gene expression, including genes activated by the glucocorticoid receptor NR3C1 (PubMed:30698747). Binds to a subset of pre-mRNAs and to components of the spliceosome machinery to directly modulate basal alternative splicing; involved in simple and complex cassette exon splicing events (PubMed:30698747). Binds its own pre-mRNA and regulates its alternative splicing and degradation; one of the alternatively spliced products is a stable intronic sequence RNA (sisRNA) that binds the protein to regulate its ability to affect splicing (PubMed:27899669, PubMed:36533631). Binding of the sisRNA stimulates phase separation and localization to nuclear speckles, which may contribute to activation of nuclear receptor-induced gene expression (PubMed:36533631). May also indirectly modulate alternative splicing (PubMed:30698747). Regulates transcription of genes involved in heart development, neuronal cell function, protein localization and chromatin localization (By similarity). Regulates splicing of genes involved in neurogenesis and chromatin organization (By similarity). Essential for central nervous system development (By similarity). Required for the estrogen-dependent expression of ESR1 target genes (PubMed:21454576). Can act in cooperation with MED1 (PubMed:21454576). {ECO:0000250|UniProtKB:Q3UL36, ECO:0000269|PubMed:21454576, ECO:0000269|PubMed:27899669, ECO:0000269|PubMed:30698747, ECO:0000269|PubMed:36533631}. |
Q9NWB6 | ARGLU1 | S58 | ochoa | Arginine and glutamate-rich protein 1 | Dual function regulator of gene expression; regulator of transcription and modulator of alternative splicing (PubMed:30698747). General coactivator of nuclear receptor-induced gene expression, including genes activated by the glucocorticoid receptor NR3C1 (PubMed:30698747). Binds to a subset of pre-mRNAs and to components of the spliceosome machinery to directly modulate basal alternative splicing; involved in simple and complex cassette exon splicing events (PubMed:30698747). Binds its own pre-mRNA and regulates its alternative splicing and degradation; one of the alternatively spliced products is a stable intronic sequence RNA (sisRNA) that binds the protein to regulate its ability to affect splicing (PubMed:27899669, PubMed:36533631). Binding of the sisRNA stimulates phase separation and localization to nuclear speckles, which may contribute to activation of nuclear receptor-induced gene expression (PubMed:36533631). May also indirectly modulate alternative splicing (PubMed:30698747). Regulates transcription of genes involved in heart development, neuronal cell function, protein localization and chromatin localization (By similarity). Regulates splicing of genes involved in neurogenesis and chromatin organization (By similarity). Essential for central nervous system development (By similarity). Required for the estrogen-dependent expression of ESR1 target genes (PubMed:21454576). Can act in cooperation with MED1 (PubMed:21454576). {ECO:0000250|UniProtKB:Q3UL36, ECO:0000269|PubMed:21454576, ECO:0000269|PubMed:27899669, ECO:0000269|PubMed:30698747, ECO:0000269|PubMed:36533631}. |
Q9NWB6 | ARGLU1 | S60 | ochoa | Arginine and glutamate-rich protein 1 | Dual function regulator of gene expression; regulator of transcription and modulator of alternative splicing (PubMed:30698747). General coactivator of nuclear receptor-induced gene expression, including genes activated by the glucocorticoid receptor NR3C1 (PubMed:30698747). Binds to a subset of pre-mRNAs and to components of the spliceosome machinery to directly modulate basal alternative splicing; involved in simple and complex cassette exon splicing events (PubMed:30698747). Binds its own pre-mRNA and regulates its alternative splicing and degradation; one of the alternatively spliced products is a stable intronic sequence RNA (sisRNA) that binds the protein to regulate its ability to affect splicing (PubMed:27899669, PubMed:36533631). Binding of the sisRNA stimulates phase separation and localization to nuclear speckles, which may contribute to activation of nuclear receptor-induced gene expression (PubMed:36533631). May also indirectly modulate alternative splicing (PubMed:30698747). Regulates transcription of genes involved in heart development, neuronal cell function, protein localization and chromatin localization (By similarity). Regulates splicing of genes involved in neurogenesis and chromatin organization (By similarity). Essential for central nervous system development (By similarity). Required for the estrogen-dependent expression of ESR1 target genes (PubMed:21454576). Can act in cooperation with MED1 (PubMed:21454576). {ECO:0000250|UniProtKB:Q3UL36, ECO:0000269|PubMed:21454576, ECO:0000269|PubMed:27899669, ECO:0000269|PubMed:30698747, ECO:0000269|PubMed:36533631}. |
Q9NYL2 | MAP3K20 | S690 | ochoa | Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) | Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}. |
Q9NYV4 | CDK12 | S323 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9P1Y6 | PHRF1 | S1032 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P1Y6 | PHRF1 | S1098 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P1Y6 | PHRF1 | S1127 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9UDY2 | TJP2 | Y249 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UDY2 | TJP2 | Y253 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UKJ3 | GPATCH8 | S765 | ochoa | G patch domain-containing protein 8 | None |
Q9UKJ3 | GPATCH8 | S1014 | ochoa | G patch domain-containing protein 8 | None |
Q9UQ35 | SRRM2 | S1653 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S1657 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y2J0 | RPH3A | S254 | ochoa | Rabphilin-3A (Exophilin-1) | Plays an essential role in docking and fusion steps of regulated exocytosis (By similarity). At the presynaptic level, RPH3A is recruited by RAB3A to the synaptic vesicle membrane in a GTP-dependent manner where it modulates synaptic vesicle trafficking and calcium-triggered neurotransmitter release (By similarity). In the post-synaptic compartment, forms a ternary complex with GRIN2A and DLG4 and regulates NMDA receptor stability. Also plays a role in the exocytosis of arginine vasopressin hormone (By similarity). {ECO:0000250|UniProtKB:P47709}. |
Q9Y2W1 | THRAP3 | Y68 | psp | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q14152 | EIF3A | S988 | Sugiyama | Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
O95249 | GOSR1 | T55 | Sugiyama | Golgi SNAP receptor complex member 1 (28 kDa Golgi SNARE protein) (28 kDa cis-Golgi SNARE p28) (GOS-28) | Involved in transport from the ER to the Golgi apparatus as well as in intra-Golgi transport. It belongs to a super-family of proteins called t-SNAREs or soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor. May play a protective role against hydrogen peroxide induced cytotoxicity under glutathione depleted conditions in neuronal cells by regulating the intracellular ROS levels via inhibition of p38 MAPK (MAPK11, MAPK12, MAPK13 and MAPK14). Participates in docking and fusion stage of ER to cis-Golgi transport. Plays an important physiological role in VLDL-transport vesicle-Golgi fusion and thus in VLDL delivery to the hepatic cis-Golgi. {ECO:0000269|PubMed:15215310, ECO:0000269|PubMed:21860593}. |
Q96RR4 | CAMKK2 | S105 | Sugiyama | Calcium/calmodulin-dependent protein kinase kinase 2 (CaM-KK 2) (CaM-kinase kinase 2) (CaMKK 2) (EC 2.7.11.17) (Calcium/calmodulin-dependent protein kinase kinase beta) (CaM-KK beta) (CaM-kinase kinase beta) (CaMKK beta) | Calcium/calmodulin-dependent protein kinase belonging to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Isoform 1, isoform 2 and isoform 3 phosphorylate CAMK1 and CAMK4. Isoform 3 phosphorylates CAMK1D. Isoform 4, isoform 5 and isoform 6 lacking part of the calmodulin-binding domain are inactive. Efficiently phosphorylates 5'-AMP-activated protein kinase (AMPK) trimer, including that consisting of PRKAA1, PRKAB1 and PRKAG1. This phosphorylation is stimulated in response to Ca(2+) signals (By similarity). Seems to be involved in hippocampal activation of CREB1 (By similarity). May play a role in neurite growth. Isoform 3 may promote neurite elongation, while isoform 1 may promoter neurite branching. {ECO:0000250, ECO:0000269|PubMed:11395482, ECO:0000269|PubMed:12935886, ECO:0000269|PubMed:21957496, ECO:0000269|PubMed:9662074}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 1.998401e-15 | 14.699 |
R-HSA-72172 | mRNA Splicing | 4.669598e-13 | 12.331 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 1.882050e-12 | 11.725 |
R-HSA-72187 | mRNA 3'-end processing | 1.202038e-09 | 8.920 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 4.486008e-09 | 8.348 |
R-HSA-8953854 | Metabolism of RNA | 2.540436e-08 | 7.595 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 5.981340e-06 | 5.223 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 2.758286e-05 | 4.559 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 7.989698e-05 | 4.097 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 3.092731e-04 | 3.510 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 1.322239e-03 | 2.879 |
R-HSA-2028269 | Signaling by Hippo | 1.701465e-03 | 2.769 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 2.673535e-03 | 2.573 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 3.315814e-03 | 2.479 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 4.851348e-03 | 2.314 |
R-HSA-201688 | WNT mediated activation of DVL | 7.258740e-03 | 2.139 |
R-HSA-176974 | Unwinding of DNA | 7.258740e-03 | 2.139 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 6.141270e-03 | 2.212 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 6.141270e-03 | 2.212 |
R-HSA-9930044 | Nuclear RNA decay | 8.327331e-03 | 2.079 |
R-HSA-9664420 | Killing mechanisms | 1.909221e-02 | 1.719 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 1.909221e-02 | 1.719 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 2.090660e-02 | 1.680 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 2.474031e-02 | 1.607 |
R-HSA-844456 | The NLRP3 inflammasome | 2.675643e-02 | 1.573 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 5.112940e-02 | 1.291 |
R-HSA-392023 | Adrenaline signalling through Alpha-2 adrenergic receptor | 5.112940e-02 | 1.291 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 8.055070e-02 | 1.094 |
R-HSA-112308 | Presynaptic depolarization and calcium channel opening | 1.367000e-01 | 0.864 |
R-HSA-1250342 | PI3K events in ERBB4 signaling | 1.457210e-01 | 0.836 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 1.457210e-01 | 0.836 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 1.546483e-01 | 0.811 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 1.634828e-01 | 0.787 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 1.722255e-01 | 0.764 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 1.808774e-01 | 0.743 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 1.808774e-01 | 0.743 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 1.979125e-01 | 0.704 |
R-HSA-4641258 | Degradation of DVL | 7.862776e-02 | 1.104 |
R-HSA-1296072 | Voltage gated Potassium channels | 7.862776e-02 | 1.104 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 8.480276e-02 | 1.072 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 8.794394e-02 | 1.056 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 2.228069e-01 | 0.652 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 2.309331e-01 | 0.637 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 2.309331e-01 | 0.637 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 2.309331e-01 | 0.637 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 2.309331e-01 | 0.637 |
R-HSA-429947 | Deadenylation of mRNA | 2.703146e-01 | 0.568 |
R-HSA-72649 | Translation initiation complex formation | 1.386278e-01 | 0.858 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 2.779470e-01 | 0.556 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 1.457963e-01 | 0.836 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 3.076908e-01 | 0.512 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 3.362164e-01 | 0.473 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 3.431633e-01 | 0.464 |
R-HSA-68962 | Activation of the pre-replicative complex | 5.552456e-02 | 1.256 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 3.500379e-01 | 0.456 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 1.894394e-01 | 0.723 |
R-HSA-191650 | Regulation of gap junction activity | 6.103903e-02 | 1.214 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 1.546483e-01 | 0.811 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 1.036487e-01 | 0.984 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 3.833527e-01 | 0.416 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 1.457210e-01 | 0.836 |
R-HSA-5576893 | Phase 2 - plateau phase | 1.979125e-01 | 0.704 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 3.149345e-01 | 0.502 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 3.362164e-01 | 0.473 |
R-HSA-5693537 | Resolution of D-Loop Structures | 3.431633e-01 | 0.464 |
R-HSA-4086400 | PCP/CE pathway | 6.279364e-02 | 1.202 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 3.362164e-01 | 0.473 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 4.760522e-02 | 1.322 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 1.074763e-01 | 0.969 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 3.500379e-01 | 0.456 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 4.145613e-01 | 0.382 |
R-HSA-2424491 | DAP12 signaling | 3.149345e-01 | 0.502 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 6.103903e-02 | 1.214 |
R-HSA-69478 | G2/M DNA replication checkpoint | 9.015485e-02 | 1.045 |
R-HSA-5576890 | Phase 3 - rapid repolarisation | 9.965926e-02 | 1.001 |
R-HSA-446107 | Type I hemidesmosome assembly | 1.090650e-01 | 0.962 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 1.183730e-01 | 0.927 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 1.275844e-01 | 0.894 |
R-HSA-174490 | Membrane binding and targetting of GAG proteins | 1.634828e-01 | 0.787 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 1.979125e-01 | 0.704 |
R-HSA-6811438 | Intra-Golgi traffic | 9.432830e-02 | 1.025 |
R-HSA-350054 | Notch-HLH transcription pathway | 2.548085e-01 | 0.594 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 1.530400e-01 | 0.815 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 1.566881e-01 | 0.805 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 3.003711e-01 | 0.522 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 3.076908e-01 | 0.512 |
R-HSA-162588 | Budding and maturation of HIV virion | 3.221027e-01 | 0.492 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 3.431633e-01 | 0.464 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 3.500379e-01 | 0.456 |
R-HSA-212300 | PRC2 methylates histones and DNA | 3.635733e-01 | 0.439 |
R-HSA-69002 | DNA Replication Pre-Initiation | 3.628344e-01 | 0.440 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 2.703146e-01 | 0.568 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 3.149345e-01 | 0.502 |
R-HSA-72737 | Cap-dependent Translation Initiation | 3.963096e-01 | 0.402 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 3.910311e-01 | 0.408 |
R-HSA-72613 | Eukaryotic Translation Initiation | 3.963096e-01 | 0.402 |
R-HSA-9843745 | Adipogenesis | 2.014229e-01 | 0.696 |
R-HSA-202433 | Generation of second messenger molecules | 3.898091e-01 | 0.409 |
R-HSA-174495 | Synthesis And Processing Of GAG, GAGPOL Polyproteins | 1.722255e-01 | 0.764 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 3.768284e-01 | 0.424 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 3.076908e-01 | 0.512 |
R-HSA-1236394 | Signaling by ERBB4 | 2.130008e-01 | 0.672 |
R-HSA-8964046 | VLDL clearance | 9.965926e-02 | 1.001 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 1.457210e-01 | 0.836 |
R-HSA-429958 | mRNA decay by 3' to 5' exoribonuclease | 2.228069e-01 | 0.652 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 2.703146e-01 | 0.568 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 2.854999e-01 | 0.544 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 3.003711e-01 | 0.522 |
R-HSA-9615710 | Late endosomal microautophagy | 3.076908e-01 | 0.512 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 4.025209e-01 | 0.395 |
R-HSA-9710421 | Defective pyroptosis | 4.149695e-01 | 0.382 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 4.331605e-01 | 0.363 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 3.590708e-01 | 0.445 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 3.590708e-01 | 0.445 |
R-HSA-9909396 | Circadian clock | 7.161862e-02 | 1.145 |
R-HSA-68867 | Assembly of the pre-replicative complex | 2.940945e-01 | 0.532 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 1.090650e-01 | 0.962 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 2.283597e-01 | 0.641 |
R-HSA-622312 | Inflammasomes | 5.019568e-02 | 1.299 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 2.062975e-01 | 0.686 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 9.432830e-02 | 1.025 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 2.469331e-01 | 0.607 |
R-HSA-5334118 | DNA methylation | 3.076908e-01 | 0.512 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 3.568410e-01 | 0.448 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 3.961982e-01 | 0.402 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 6.386841e-02 | 1.195 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 2.176316e-01 | 0.662 |
R-HSA-2172127 | DAP12 interactions | 4.210967e-01 | 0.376 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 1.108365e-01 | 0.955 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 1.108365e-01 | 0.955 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 9.965926e-02 | 1.001 |
R-HSA-425381 | Bicarbonate transporters | 1.367000e-01 | 0.864 |
R-HSA-399719 | Trafficking of AMPA receptors | 5.826037e-02 | 1.235 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 1.808774e-01 | 0.743 |
R-HSA-68949 | Orc1 removal from chromatin | 1.315408e-01 | 0.881 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 2.929744e-01 | 0.533 |
R-HSA-69481 | G2/M Checkpoints | 6.359632e-02 | 1.197 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 1.275844e-01 | 0.894 |
R-HSA-176187 | Activation of ATR in response to replication stress | 6.386841e-02 | 1.195 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 3.500379e-01 | 0.456 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 8.794394e-02 | 1.056 |
R-HSA-5682910 | LGI-ADAM interactions | 1.367000e-01 | 0.864 |
R-HSA-9005895 | Pervasive developmental disorders | 1.546483e-01 | 0.811 |
R-HSA-9697154 | Disorders of Nervous System Development | 1.546483e-01 | 0.811 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 1.546483e-01 | 0.811 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 1.808774e-01 | 0.743 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 1.894394e-01 | 0.723 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 3.362164e-01 | 0.473 |
R-HSA-69052 | Switching of origins to a post-replicative state | 2.091767e-01 | 0.679 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 3.149345e-01 | 0.502 |
R-HSA-3214841 | PKMTs methylate histone lysines | 9.111947e-02 | 1.040 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 7.169927e-02 | 1.144 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 2.631402e-01 | 0.580 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 1.751616e-01 | 0.757 |
R-HSA-390696 | Adrenoceptors | 1.090650e-01 | 0.962 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 1.808774e-01 | 0.743 |
R-HSA-9675151 | Disorders of Developmental Biology | 1.979125e-01 | 0.704 |
R-HSA-5689901 | Metalloprotease DUBs | 2.854999e-01 | 0.544 |
R-HSA-69620 | Cell Cycle Checkpoints | 1.695363e-01 | 0.771 |
R-HSA-69239 | Synthesis of DNA | 3.552993e-01 | 0.449 |
R-HSA-9675135 | Diseases of DNA repair | 4.331605e-01 | 0.363 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 6.386841e-02 | 1.195 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 2.309331e-01 | 0.637 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 3.003711e-01 | 0.522 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 3.149345e-01 | 0.502 |
R-HSA-69190 | DNA strand elongation | 6.104207e-02 | 1.214 |
R-HSA-69206 | G1/S Transition | 4.325369e-01 | 0.364 |
R-HSA-111933 | Calmodulin induced events | 3.635733e-01 | 0.439 |
R-HSA-9658195 | Leishmania infection | 3.886668e-01 | 0.410 |
R-HSA-9824443 | Parasitic Infection Pathways | 3.886668e-01 | 0.410 |
R-HSA-175474 | Assembly Of The HIV Virion | 2.469331e-01 | 0.607 |
R-HSA-166208 | mTORC1-mediated signalling | 2.548085e-01 | 0.594 |
R-HSA-420092 | Glucagon-type ligand receptors | 3.076908e-01 | 0.512 |
R-HSA-111997 | CaM pathway | 3.635733e-01 | 0.439 |
R-HSA-391908 | Prostanoid ligand receptors | 1.367000e-01 | 0.864 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 6.386841e-02 | 1.195 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 3.291965e-01 | 0.483 |
R-HSA-111996 | Ca-dependent events | 4.087778e-01 | 0.389 |
R-HSA-69242 | S Phase | 2.535866e-01 | 0.596 |
R-HSA-1489509 | DAG and IP3 signaling | 4.271602e-01 | 0.369 |
R-HSA-1226099 | Signaling by FGFR in disease | 2.130008e-01 | 0.672 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 1.634828e-01 | 0.787 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 1.315408e-01 | 0.881 |
R-HSA-2129379 | Molecules associated with elastic fibres | 3.221027e-01 | 0.492 |
R-HSA-6807062 | Cholesterol biosynthesis via lathosterol | 2.548085e-01 | 0.594 |
R-HSA-381042 | PERK regulates gene expression | 3.568410e-01 | 0.448 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 3.133624e-01 | 0.504 |
R-HSA-9671555 | Signaling by PDGFR in disease | 2.469331e-01 | 0.607 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 3.362164e-01 | 0.473 |
R-HSA-5669034 | TNFs bind their physiological receptors | 2.703146e-01 | 0.568 |
R-HSA-400685 | Sema4D in semaphorin signaling | 2.779470e-01 | 0.556 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 4.401813e-01 | 0.356 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 2.854999e-01 | 0.544 |
R-HSA-156711 | Polo-like kinase mediated events | 2.145953e-01 | 0.668 |
R-HSA-391903 | Eicosanoid ligand-binding receptors | 2.309331e-01 | 0.637 |
R-HSA-3000170 | Syndecan interactions | 2.626021e-01 | 0.581 |
R-HSA-191273 | Cholesterol biosynthesis | 2.283597e-01 | 0.641 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 3.515200e-01 | 0.454 |
R-HSA-1566948 | Elastic fibre formation | 3.768284e-01 | 0.424 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 3.362164e-01 | 0.473 |
R-HSA-8964043 | Plasma lipoprotein clearance | 3.833527e-01 | 0.416 |
R-HSA-375280 | Amine ligand-binding receptors | 4.210967e-01 | 0.376 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 6.104207e-02 | 1.214 |
R-HSA-1834941 | STING mediated induction of host immune responses | 2.228069e-01 | 0.652 |
R-HSA-8964038 | LDL clearance | 2.548085e-01 | 0.594 |
R-HSA-1296071 | Potassium Channels | 3.095165e-01 | 0.509 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 3.768284e-01 | 0.424 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 3.568410e-01 | 0.448 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 4.271602e-01 | 0.369 |
R-HSA-74160 | Gene expression (Transcription) | 2.644968e-01 | 0.578 |
R-HSA-75153 | Apoptotic execution phase | 1.108365e-01 | 0.955 |
R-HSA-165159 | MTOR signalling | 4.087778e-01 | 0.389 |
R-HSA-5683826 | Surfactant metabolism | 4.210967e-01 | 0.376 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 2.824972e-01 | 0.549 |
R-HSA-1433557 | Signaling by SCF-KIT | 4.149695e-01 | 0.382 |
R-HSA-73857 | RNA Polymerase II Transcription | 1.889793e-01 | 0.724 |
R-HSA-9607240 | FLT3 Signaling | 3.961982e-01 | 0.402 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 2.631402e-01 | 0.580 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 2.258369e-01 | 0.646 |
R-HSA-381070 | IRE1alpha activates chaperones | 2.863652e-01 | 0.543 |
R-HSA-5620924 | Intraflagellar transport | 4.449743e-01 | 0.352 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 4.449743e-01 | 0.352 |
R-HSA-389356 | Co-stimulation by CD28 | 4.449743e-01 | 0.352 |
R-HSA-157858 | Gap junction trafficking and regulation | 4.507891e-01 | 0.346 |
R-HSA-73893 | DNA Damage Bypass | 4.507891e-01 | 0.346 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 4.507891e-01 | 0.346 |
R-HSA-68882 | Mitotic Anaphase | 4.511296e-01 | 0.346 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 4.538533e-01 | 0.343 |
R-HSA-5658442 | Regulation of RAS by GAPs | 4.565433e-01 | 0.341 |
R-HSA-5576891 | Cardiac conduction | 4.572021e-01 | 0.340 |
R-HSA-912446 | Meiotic recombination | 4.622376e-01 | 0.335 |
R-HSA-9864848 | Complex IV assembly | 4.622376e-01 | 0.335 |
R-HSA-6794361 | Neurexins and neuroligins | 4.678726e-01 | 0.330 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 4.781090e-01 | 0.320 |
R-HSA-418597 | G alpha (z) signalling events | 4.844278e-01 | 0.315 |
R-HSA-3214815 | HDACs deacetylate histones | 4.844278e-01 | 0.315 |
R-HSA-193648 | NRAGE signals death through JNK | 4.898316e-01 | 0.310 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 4.898316e-01 | 0.310 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 4.898316e-01 | 0.310 |
R-HSA-3247509 | Chromatin modifying enzymes | 4.992476e-01 | 0.302 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 5.004709e-01 | 0.301 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 5.057075e-01 | 0.296 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 5.057075e-01 | 0.296 |
R-HSA-1227986 | Signaling by ERBB2 | 5.108895e-01 | 0.292 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 5.108895e-01 | 0.292 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 5.108895e-01 | 0.292 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 5.108895e-01 | 0.292 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 5.108895e-01 | 0.292 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 5.108895e-01 | 0.292 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 5.108895e-01 | 0.292 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 5.144367e-01 | 0.289 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 5.160176e-01 | 0.287 |
R-HSA-112043 | PLC beta mediated events | 5.160176e-01 | 0.287 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 5.210922e-01 | 0.283 |
R-HSA-9707616 | Heme signaling | 5.210922e-01 | 0.283 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 5.210922e-01 | 0.283 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 5.261139e-01 | 0.279 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 5.261139e-01 | 0.279 |
R-HSA-8848021 | Signaling by PTK6 | 5.261139e-01 | 0.279 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 5.261139e-01 | 0.279 |
R-HSA-373755 | Semaphorin interactions | 5.261139e-01 | 0.279 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 5.261139e-01 | 0.279 |
R-HSA-9856651 | MITF-M-dependent gene expression | 5.273195e-01 | 0.278 |
R-HSA-2428924 | IGF1R signaling cascade | 5.310832e-01 | 0.275 |
R-HSA-936837 | Ion transport by P-type ATPases | 5.310832e-01 | 0.275 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 5.360008e-01 | 0.271 |
R-HSA-69306 | DNA Replication | 5.368300e-01 | 0.270 |
R-HSA-4839726 | Chromatin organization | 5.376860e-01 | 0.269 |
R-HSA-8854518 | AURKA Activation by TPX2 | 5.408670e-01 | 0.267 |
R-HSA-1989781 | PPARA activates gene expression | 5.430975e-01 | 0.265 |
R-HSA-5693606 | DNA Double Strand Break Response | 5.456826e-01 | 0.263 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 5.456826e-01 | 0.263 |
R-HSA-112040 | G-protein mediated events | 5.456826e-01 | 0.263 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 5.493063e-01 | 0.260 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 5.504479e-01 | 0.259 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 5.551635e-01 | 0.256 |
R-HSA-877300 | Interferon gamma signaling | 5.554561e-01 | 0.255 |
R-HSA-9006936 | Signaling by TGFB family members | 5.585089e-01 | 0.253 |
R-HSA-5633007 | Regulation of TP53 Activity | 5.585089e-01 | 0.253 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 5.598300e-01 | 0.252 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 5.644478e-01 | 0.248 |
R-HSA-3000178 | ECM proteoglycans | 5.644478e-01 | 0.248 |
R-HSA-975634 | Retinoid metabolism and transport | 5.644478e-01 | 0.248 |
R-HSA-109581 | Apoptosis | 5.645698e-01 | 0.248 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 5.690174e-01 | 0.245 |
R-HSA-2467813 | Separation of Sister Chromatids | 5.705713e-01 | 0.244 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 5.735394e-01 | 0.241 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 5.735394e-01 | 0.241 |
R-HSA-69473 | G2/M DNA damage checkpoint | 5.780142e-01 | 0.238 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 5.798700e-01 | 0.237 |
R-HSA-380287 | Centrosome maturation | 5.824423e-01 | 0.235 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 5.824423e-01 | 0.235 |
R-HSA-69278 | Cell Cycle, Mitotic | 5.831200e-01 | 0.234 |
R-HSA-9711123 | Cellular response to chemical stress | 5.838940e-01 | 0.234 |
R-HSA-112316 | Neuronal System | 5.853431e-01 | 0.233 |
R-HSA-1980143 | Signaling by NOTCH1 | 5.868242e-01 | 0.231 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 5.911605e-01 | 0.228 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 5.954514e-01 | 0.225 |
R-HSA-416482 | G alpha (12/13) signalling events | 5.954514e-01 | 0.225 |
R-HSA-216083 | Integrin cell surface interactions | 5.954514e-01 | 0.225 |
R-HSA-9659379 | Sensory processing of sound | 5.996976e-01 | 0.222 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 5.996976e-01 | 0.222 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 6.038995e-01 | 0.219 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 6.038995e-01 | 0.219 |
R-HSA-9678108 | SARS-CoV-1 Infection | 6.053242e-01 | 0.218 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 6.080576e-01 | 0.216 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 6.080576e-01 | 0.216 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 6.080576e-01 | 0.216 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 6.148389e-01 | 0.211 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 6.162439e-01 | 0.210 |
R-HSA-2559583 | Cellular Senescence | 6.191677e-01 | 0.208 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 6.202731e-01 | 0.207 |
R-HSA-1500620 | Meiosis | 6.242603e-01 | 0.205 |
R-HSA-6794362 | Protein-protein interactions at synapses | 6.242603e-01 | 0.205 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 6.272942e-01 | 0.203 |
R-HSA-141424 | Amplification of signal from the kinetochores | 6.282058e-01 | 0.202 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 6.282058e-01 | 0.202 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 6.321102e-01 | 0.199 |
R-HSA-69275 | G2/M Transition | 6.352866e-01 | 0.197 |
R-HSA-438064 | Post NMDA receptor activation events | 6.359738e-01 | 0.197 |
R-HSA-390466 | Chaperonin-mediated protein folding | 6.359738e-01 | 0.197 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 6.397970e-01 | 0.194 |
R-HSA-9645723 | Diseases of programmed cell death | 6.397970e-01 | 0.194 |
R-HSA-453274 | Mitotic G2-G2/M phases | 6.405404e-01 | 0.193 |
R-HSA-5617833 | Cilium Assembly | 6.457350e-01 | 0.190 |
R-HSA-1640170 | Cell Cycle | 6.472295e-01 | 0.189 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 6.473242e-01 | 0.189 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 6.473242e-01 | 0.189 |
R-HSA-195721 | Signaling by WNT | 6.506667e-01 | 0.187 |
R-HSA-68877 | Mitotic Prometaphase | 6.534161e-01 | 0.185 |
R-HSA-391251 | Protein folding | 6.583227e-01 | 0.182 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 6.583227e-01 | 0.182 |
R-HSA-2682334 | EPH-Ephrin signaling | 6.583227e-01 | 0.182 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 6.654649e-01 | 0.177 |
R-HSA-1474290 | Collagen formation | 6.654649e-01 | 0.177 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 6.658111e-01 | 0.177 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 6.708255e-01 | 0.173 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 6.724587e-01 | 0.172 |
R-HSA-6807878 | COPI-mediated anterograde transport | 6.759009e-01 | 0.170 |
R-HSA-422356 | Regulation of insulin secretion | 6.826778e-01 | 0.166 |
R-HSA-5357801 | Programmed Cell Death | 6.851825e-01 | 0.164 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 6.860132e-01 | 0.164 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 6.893138e-01 | 0.162 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 6.946006e-01 | 0.158 |
R-HSA-9842860 | Regulation of endogenous retroelements | 6.958118e-01 | 0.158 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 6.958118e-01 | 0.158 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 6.958118e-01 | 0.158 |
R-HSA-1483255 | PI Metabolism | 6.958118e-01 | 0.158 |
R-HSA-212165 | Epigenetic regulation of gene expression | 7.002594e-01 | 0.155 |
R-HSA-112315 | Transmission across Chemical Synapses | 7.002594e-01 | 0.155 |
R-HSA-397014 | Muscle contraction | 7.012836e-01 | 0.154 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 7.021747e-01 | 0.154 |
R-HSA-111885 | Opioid Signalling | 7.021747e-01 | 0.154 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 7.021747e-01 | 0.154 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 7.035275e-01 | 0.153 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 7.053064e-01 | 0.152 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 7.053064e-01 | 0.152 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 7.204803e-01 | 0.142 |
R-HSA-8951664 | Neddylation | 7.209807e-01 | 0.142 |
R-HSA-202403 | TCR signaling | 7.234206e-01 | 0.141 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 7.292092e-01 | 0.137 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 7.292092e-01 | 0.137 |
R-HSA-2871796 | FCERI mediated MAPK activation | 7.292092e-01 | 0.137 |
R-HSA-1483249 | Inositol phosphate metabolism | 7.292092e-01 | 0.137 |
R-HSA-9006925 | Intracellular signaling by second messengers | 7.342699e-01 | 0.134 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 7.348774e-01 | 0.134 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 7.348774e-01 | 0.134 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 7.355393e-01 | 0.133 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 7.404276e-01 | 0.131 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 7.431592e-01 | 0.129 |
R-HSA-1592230 | Mitochondrial biogenesis | 7.485371e-01 | 0.126 |
R-HSA-5693538 | Homology Directed Repair | 7.511839e-01 | 0.124 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 7.511839e-01 | 0.124 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 7.640081e-01 | 0.117 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 7.640081e-01 | 0.117 |
R-HSA-6809371 | Formation of the cornified envelope | 7.664930e-01 | 0.115 |
R-HSA-977606 | Regulation of Complement cascade | 7.689518e-01 | 0.114 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 7.713850e-01 | 0.113 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 7.713850e-01 | 0.113 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 7.713850e-01 | 0.113 |
R-HSA-114608 | Platelet degranulation | 7.761751e-01 | 0.110 |
R-HSA-9609646 | HCMV Infection | 7.771640e-01 | 0.109 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 7.831737e-01 | 0.106 |
R-HSA-1474165 | Reproduction | 7.854580e-01 | 0.105 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 7.921680e-01 | 0.101 |
R-HSA-68886 | M Phase | 7.972962e-01 | 0.098 |
R-HSA-163685 | Integration of energy metabolism | 8.007914e-01 | 0.096 |
R-HSA-6807070 | PTEN Regulation | 8.070246e-01 | 0.093 |
R-HSA-162582 | Signal Transduction | 8.103188e-01 | 0.091 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 8.150349e-01 | 0.089 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 8.150349e-01 | 0.089 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 8.159655e-01 | 0.088 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 8.169853e-01 | 0.088 |
R-HSA-166658 | Complement cascade | 8.208249e-01 | 0.086 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 8.245845e-01 | 0.084 |
R-HSA-2187338 | Visual phototransduction | 8.245845e-01 | 0.084 |
R-HSA-418594 | G alpha (i) signalling events | 8.292759e-01 | 0.081 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 8.336438e-01 | 0.079 |
R-HSA-199991 | Membrane Trafficking | 8.346848e-01 | 0.078 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 8.353991e-01 | 0.078 |
R-HSA-5673001 | RAF/MAP kinase cascade | 8.370572e-01 | 0.077 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 8.371359e-01 | 0.077 |
R-HSA-73887 | Death Receptor Signaling | 8.371359e-01 | 0.077 |
R-HSA-9612973 | Autophagy | 8.405551e-01 | 0.075 |
R-HSA-9610379 | HCMV Late Events | 8.422379e-01 | 0.075 |
R-HSA-162587 | HIV Life Cycle | 8.422379e-01 | 0.075 |
R-HSA-1257604 | PIP3 activates AKT signaling | 8.448679e-01 | 0.073 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 8.461364e-01 | 0.073 |
R-HSA-2262752 | Cellular responses to stress | 8.591264e-01 | 0.066 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 8.640238e-01 | 0.063 |
R-HSA-418555 | G alpha (s) signalling events | 8.654603e-01 | 0.063 |
R-HSA-8953897 | Cellular responses to stimuli | 8.694004e-01 | 0.061 |
R-HSA-611105 | Respiratory electron transport | 8.751015e-01 | 0.058 |
R-HSA-8957322 | Metabolism of steroids | 8.780502e-01 | 0.056 |
R-HSA-1474244 | Extracellular matrix organization | 8.850200e-01 | 0.053 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 8.876949e-01 | 0.052 |
R-HSA-983712 | Ion channel transport | 8.888826e-01 | 0.051 |
R-HSA-9609690 | HCMV Early Events | 8.968541e-01 | 0.047 |
R-HSA-5683057 | MAPK family signaling cascades | 8.995956e-01 | 0.046 |
R-HSA-9694516 | SARS-CoV-2 Infection | 9.012921e-01 | 0.045 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 9.028891e-01 | 0.044 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 9.032325e-01 | 0.044 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 9.042568e-01 | 0.044 |
R-HSA-376176 | Signaling by ROBO receptors | 9.042568e-01 | 0.044 |
R-HSA-6805567 | Keratinization | 9.082472e-01 | 0.042 |
R-HSA-73894 | DNA Repair | 9.101575e-01 | 0.041 |
R-HSA-388396 | GPCR downstream signalling | 9.235973e-01 | 0.035 |
R-HSA-162906 | HIV Infection | 9.266371e-01 | 0.033 |
R-HSA-913531 | Interferon Signaling | 9.269877e-01 | 0.033 |
R-HSA-72312 | rRNA processing | 9.304450e-01 | 0.031 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 9.336701e-01 | 0.030 |
R-HSA-157118 | Signaling by NOTCH | 9.361330e-01 | 0.029 |
R-HSA-5653656 | Vesicle-mediated transport | 9.388657e-01 | 0.027 |
R-HSA-9679506 | SARS-CoV Infections | 9.431448e-01 | 0.025 |
R-HSA-5688426 | Deubiquitination | 9.455807e-01 | 0.024 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 9.461587e-01 | 0.024 |
R-HSA-212436 | Generic Transcription Pathway | 9.473185e-01 | 0.024 |
R-HSA-9734767 | Developmental Cell Lineages | 9.500372e-01 | 0.022 |
R-HSA-72766 | Translation | 9.512999e-01 | 0.022 |
R-HSA-372790 | Signaling by GPCR | 9.560964e-01 | 0.019 |
R-HSA-500792 | GPCR ligand binding | 9.565654e-01 | 0.019 |
R-HSA-446728 | Cell junction organization | 9.574380e-01 | 0.019 |
R-HSA-1483257 | Phospholipid metabolism | 9.645158e-01 | 0.016 |
R-HSA-1500931 | Cell-Cell communication | 9.716636e-01 | 0.012 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 9.783291e-01 | 0.010 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 9.828907e-01 | 0.007 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 9.830737e-01 | 0.007 |
R-HSA-422475 | Axon guidance | 9.830759e-01 | 0.007 |
R-HSA-9675108 | Nervous system development | 9.880279e-01 | 0.005 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.882609e-01 | 0.005 |
R-HSA-1280218 | Adaptive Immune System | 9.888632e-01 | 0.005 |
R-HSA-446203 | Asparagine N-linked glycosylation | 9.910348e-01 | 0.004 |
R-HSA-6798695 | Neutrophil degranulation | 9.938576e-01 | 0.003 |
R-HSA-9824446 | Viral Infection Pathways | 9.940557e-01 | 0.003 |
R-HSA-1266738 | Developmental Biology | 9.949111e-01 | 0.002 |
R-HSA-168249 | Innate Immune System | 9.962603e-01 | 0.002 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 9.973158e-01 | 0.001 |
R-HSA-597592 | Post-translational protein modification | 9.975030e-01 | 0.001 |
R-HSA-5663205 | Infectious disease | 9.980311e-01 | 0.001 |
R-HSA-109582 | Hemostasis | 9.982965e-01 | 0.001 |
R-HSA-382551 | Transport of small molecules | 9.985608e-01 | 0.001 |
R-HSA-392499 | Metabolism of proteins | 9.994964e-01 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 9.997124e-01 | 0.000 |
R-HSA-1643685 | Disease | 9.998502e-01 | 0.000 |
R-HSA-168256 | Immune System | 9.999116e-01 | 0.000 |
R-HSA-9709957 | Sensory Perception | 9.999836e-01 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | 0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CLK3 |
0.893 | 0.582 | 1 | 0.855 |
SRPK1 |
0.887 | 0.549 | -3 | 0.881 |
CLK2 |
0.885 | 0.600 | -3 | 0.876 |
SRPK2 |
0.877 | 0.495 | -3 | 0.834 |
SRPK3 |
0.875 | 0.507 | -3 | 0.864 |
HIPK2 |
0.870 | 0.501 | 1 | 0.822 |
CLK4 |
0.868 | 0.500 | -3 | 0.879 |
HIPK4 |
0.866 | 0.447 | 1 | 0.912 |
PIM3 |
0.865 | 0.320 | -3 | 0.917 |
COT |
0.864 | 0.228 | 2 | 0.817 |
DYRK2 |
0.864 | 0.465 | 1 | 0.877 |
CLK1 |
0.863 | 0.497 | -3 | 0.850 |
HIPK1 |
0.862 | 0.515 | 1 | 0.883 |
RSK2 |
0.862 | 0.370 | -3 | 0.884 |
CDKL1 |
0.862 | 0.395 | -3 | 0.897 |
KIS |
0.860 | 0.355 | 1 | 0.827 |
CDKL5 |
0.859 | 0.361 | -3 | 0.889 |
NDR2 |
0.857 | 0.219 | -3 | 0.900 |
DYRK3 |
0.857 | 0.509 | 1 | 0.894 |
PIM1 |
0.856 | 0.343 | -3 | 0.892 |
ICK |
0.856 | 0.405 | -3 | 0.906 |
MOS |
0.856 | 0.214 | 1 | 0.827 |
AURC |
0.856 | 0.334 | -2 | 0.732 |
PRKX |
0.855 | 0.380 | -3 | 0.821 |
MTOR |
0.854 | 0.167 | 1 | 0.785 |
RSK4 |
0.854 | 0.369 | -3 | 0.870 |
RSK3 |
0.854 | 0.329 | -3 | 0.876 |
NLK |
0.854 | 0.341 | 1 | 0.885 |
DYRK4 |
0.854 | 0.444 | 1 | 0.814 |
PKACB |
0.853 | 0.358 | -2 | 0.733 |
NDR1 |
0.853 | 0.264 | -3 | 0.897 |
CDK1 |
0.852 | 0.350 | 1 | 0.795 |
P90RSK |
0.852 | 0.317 | -3 | 0.884 |
CDC7 |
0.852 | 0.093 | 1 | 0.782 |
CDK10 |
0.850 | 0.459 | 1 | 0.790 |
PKACG |
0.850 | 0.294 | -2 | 0.778 |
CDK13 |
0.847 | 0.339 | 1 | 0.801 |
CAMK1B |
0.847 | 0.251 | -3 | 0.900 |
P70S6KB |
0.847 | 0.302 | -3 | 0.881 |
SKMLCK |
0.847 | 0.253 | -2 | 0.876 |
DYRK1B |
0.846 | 0.426 | 1 | 0.819 |
CDK12 |
0.846 | 0.361 | 1 | 0.782 |
MST4 |
0.845 | 0.203 | 2 | 0.837 |
DYRK1A |
0.845 | 0.416 | 1 | 0.861 |
HIPK3 |
0.845 | 0.452 | 1 | 0.857 |
PKCD |
0.845 | 0.262 | 2 | 0.764 |
CAMLCK |
0.845 | 0.283 | -2 | 0.862 |
MSK2 |
0.845 | 0.294 | -3 | 0.874 |
GRK1 |
0.845 | 0.160 | -2 | 0.812 |
AKT2 |
0.845 | 0.362 | -3 | 0.830 |
PRPK |
0.844 | -0.024 | -1 | 0.826 |
GCN2 |
0.844 | -0.008 | 2 | 0.797 |
PKN2 |
0.844 | 0.256 | -3 | 0.878 |
MSK1 |
0.844 | 0.322 | -3 | 0.868 |
PRKD2 |
0.843 | 0.261 | -3 | 0.850 |
CDK5 |
0.843 | 0.336 | 1 | 0.825 |
PIM2 |
0.843 | 0.364 | -3 | 0.857 |
WNK1 |
0.843 | 0.231 | -2 | 0.850 |
RAF1 |
0.842 | 0.042 | 1 | 0.754 |
PKN3 |
0.842 | 0.193 | -3 | 0.881 |
PAK1 |
0.842 | 0.258 | -2 | 0.824 |
PKCG |
0.842 | 0.276 | 2 | 0.729 |
NIK |
0.842 | 0.267 | -3 | 0.884 |
NUAK2 |
0.842 | 0.233 | -3 | 0.895 |
CHAK2 |
0.841 | 0.123 | -1 | 0.840 |
IKKB |
0.841 | -0.005 | -2 | 0.710 |
CDK8 |
0.841 | 0.269 | 1 | 0.810 |
ATR |
0.841 | 0.057 | 1 | 0.781 |
DAPK2 |
0.841 | 0.268 | -3 | 0.897 |
MAK |
0.841 | 0.457 | -2 | 0.772 |
AURB |
0.841 | 0.285 | -2 | 0.731 |
LATS2 |
0.840 | 0.138 | -5 | 0.751 |
CDK18 |
0.840 | 0.322 | 1 | 0.769 |
CDK19 |
0.840 | 0.287 | 1 | 0.782 |
PKCB |
0.840 | 0.253 | 2 | 0.727 |
MLK1 |
0.840 | 0.090 | 2 | 0.799 |
GRK5 |
0.840 | 0.041 | -3 | 0.844 |
PKCA |
0.839 | 0.257 | 2 | 0.722 |
CDK7 |
0.839 | 0.283 | 1 | 0.819 |
BMPR2 |
0.839 | 0.008 | -2 | 0.849 |
LATS1 |
0.839 | 0.219 | -3 | 0.910 |
ERK5 |
0.839 | 0.126 | 1 | 0.824 |
AURA |
0.839 | 0.245 | -2 | 0.722 |
MOK |
0.838 | 0.491 | 1 | 0.888 |
MLK3 |
0.838 | 0.132 | 2 | 0.742 |
P38G |
0.838 | 0.322 | 1 | 0.728 |
CAMK2G |
0.838 | -0.004 | 2 | 0.794 |
GRK7 |
0.838 | 0.171 | 1 | 0.711 |
NEK6 |
0.837 | 0.029 | -2 | 0.835 |
DSTYK |
0.837 | 0.006 | 2 | 0.867 |
BMPR1B |
0.837 | 0.163 | 1 | 0.737 |
JNK3 |
0.837 | 0.306 | 1 | 0.803 |
CDK9 |
0.837 | 0.305 | 1 | 0.803 |
MAPKAPK2 |
0.837 | 0.216 | -3 | 0.847 |
PDHK4 |
0.837 | -0.150 | 1 | 0.799 |
JNK2 |
0.837 | 0.320 | 1 | 0.777 |
TGFBR2 |
0.837 | 0.055 | -2 | 0.805 |
MAPKAPK3 |
0.836 | 0.197 | -3 | 0.854 |
CAMK2A |
0.835 | 0.190 | 2 | 0.808 |
SGK3 |
0.835 | 0.307 | -3 | 0.864 |
ERK1 |
0.835 | 0.309 | 1 | 0.774 |
PKACA |
0.835 | 0.314 | -2 | 0.691 |
CDK3 |
0.835 | 0.284 | 1 | 0.744 |
PKCZ |
0.834 | 0.235 | 2 | 0.758 |
MNK1 |
0.834 | 0.255 | -2 | 0.811 |
IRE1 |
0.834 | 0.185 | 1 | 0.779 |
MYLK4 |
0.834 | 0.276 | -2 | 0.809 |
PAK3 |
0.834 | 0.205 | -2 | 0.810 |
PKCH |
0.833 | 0.241 | 2 | 0.709 |
CDK14 |
0.833 | 0.354 | 1 | 0.796 |
PKG2 |
0.833 | 0.258 | -2 | 0.722 |
P38A |
0.833 | 0.297 | 1 | 0.826 |
GRK6 |
0.833 | 0.066 | 1 | 0.760 |
PRKD1 |
0.833 | 0.118 | -3 | 0.874 |
DLK |
0.832 | 0.089 | 1 | 0.768 |
PKR |
0.832 | 0.251 | 1 | 0.803 |
RIPK3 |
0.832 | 0.036 | 3 | 0.678 |
AKT1 |
0.832 | 0.340 | -3 | 0.836 |
TBK1 |
0.831 | -0.117 | 1 | 0.641 |
PRKD3 |
0.831 | 0.238 | -3 | 0.847 |
CDK17 |
0.830 | 0.291 | 1 | 0.730 |
MLK4 |
0.830 | 0.116 | 2 | 0.722 |
MNK2 |
0.830 | 0.204 | -2 | 0.809 |
P38B |
0.830 | 0.293 | 1 | 0.777 |
IKKE |
0.830 | -0.123 | 1 | 0.633 |
CAMK2B |
0.830 | 0.129 | 2 | 0.775 |
PAK2 |
0.829 | 0.201 | -2 | 0.815 |
PKCE |
0.829 | 0.325 | 2 | 0.717 |
NEK7 |
0.828 | -0.096 | -3 | 0.782 |
ULK2 |
0.828 | -0.134 | 2 | 0.748 |
ERK2 |
0.828 | 0.279 | 1 | 0.814 |
AMPKA1 |
0.828 | 0.125 | -3 | 0.887 |
CAMK2D |
0.827 | 0.051 | -3 | 0.866 |
MARK4 |
0.827 | 0.009 | 4 | 0.779 |
PDHK1 |
0.827 | -0.215 | 1 | 0.768 |
PAK6 |
0.827 | 0.203 | -2 | 0.761 |
PRP4 |
0.827 | 0.200 | -3 | 0.734 |
RIPK1 |
0.826 | 0.071 | 1 | 0.780 |
PHKG1 |
0.826 | 0.141 | -3 | 0.884 |
PASK |
0.826 | 0.246 | -3 | 0.916 |
GRK4 |
0.826 | -0.025 | -2 | 0.824 |
SGK1 |
0.826 | 0.349 | -3 | 0.785 |
HUNK |
0.826 | -0.026 | 2 | 0.771 |
CAMK1G |
0.825 | 0.248 | -3 | 0.855 |
AMPKA2 |
0.825 | 0.148 | -3 | 0.877 |
AKT3 |
0.825 | 0.342 | -3 | 0.794 |
CAMK4 |
0.825 | 0.113 | -3 | 0.869 |
CDK4 |
0.824 | 0.366 | 1 | 0.774 |
ANKRD3 |
0.824 | -0.019 | 1 | 0.781 |
MLK2 |
0.824 | -0.047 | 2 | 0.795 |
DCAMKL1 |
0.823 | 0.221 | -3 | 0.866 |
ATM |
0.823 | -0.002 | 1 | 0.714 |
PKCT |
0.823 | 0.245 | 2 | 0.709 |
WNK3 |
0.823 | -0.068 | 1 | 0.745 |
IRE2 |
0.823 | 0.116 | 2 | 0.698 |
IKKA |
0.823 | -0.072 | -2 | 0.700 |
ALK4 |
0.823 | 0.023 | -2 | 0.809 |
DRAK1 |
0.822 | 0.106 | 1 | 0.709 |
CDK2 |
0.822 | 0.178 | 1 | 0.830 |
BCKDK |
0.822 | -0.151 | -1 | 0.749 |
TTBK2 |
0.822 | -0.055 | 2 | 0.672 |
MST3 |
0.822 | 0.203 | 2 | 0.829 |
MASTL |
0.821 | -0.184 | -2 | 0.795 |
PKCI |
0.821 | 0.263 | 2 | 0.734 |
CDK6 |
0.821 | 0.342 | 1 | 0.779 |
FAM20C |
0.821 | 0.050 | 2 | 0.618 |
NEK9 |
0.821 | -0.096 | 2 | 0.804 |
GSK3A |
0.821 | 0.190 | 4 | 0.535 |
CDK16 |
0.821 | 0.288 | 1 | 0.742 |
CHAK1 |
0.821 | 0.067 | 2 | 0.756 |
SMMLCK |
0.820 | 0.264 | -3 | 0.882 |
ALK2 |
0.820 | 0.056 | -2 | 0.796 |
TAO3 |
0.820 | 0.164 | 1 | 0.738 |
ACVR2B |
0.820 | 0.052 | -2 | 0.790 |
P70S6K |
0.820 | 0.261 | -3 | 0.829 |
QSK |
0.820 | 0.094 | 4 | 0.750 |
CK1E |
0.820 | 0.116 | -3 | 0.621 |
P38D |
0.820 | 0.286 | 1 | 0.740 |
TGFBR1 |
0.820 | 0.023 | -2 | 0.781 |
ACVR2A |
0.820 | 0.045 | -2 | 0.785 |
YSK4 |
0.820 | -0.026 | 1 | 0.699 |
BRSK1 |
0.820 | 0.114 | -3 | 0.871 |
DAPK3 |
0.820 | 0.302 | -3 | 0.889 |
VRK2 |
0.819 | 0.037 | 1 | 0.845 |
TSSK1 |
0.819 | 0.084 | -3 | 0.893 |
NIM1 |
0.819 | 0.012 | 3 | 0.728 |
PLK1 |
0.819 | -0.016 | -2 | 0.781 |
MEK1 |
0.818 | -0.047 | 2 | 0.812 |
PERK |
0.818 | 0.058 | -2 | 0.821 |
TLK2 |
0.818 | -0.009 | 1 | 0.739 |
GRK2 |
0.818 | 0.032 | -2 | 0.715 |
QIK |
0.817 | 0.053 | -3 | 0.861 |
MELK |
0.817 | 0.123 | -3 | 0.862 |
BMPR1A |
0.817 | 0.094 | 1 | 0.711 |
TSSK2 |
0.817 | 0.023 | -5 | 0.770 |
ERK7 |
0.817 | 0.187 | 2 | 0.594 |
SIK |
0.816 | 0.120 | -3 | 0.851 |
DAPK1 |
0.816 | 0.298 | -3 | 0.885 |
WNK4 |
0.816 | 0.148 | -2 | 0.846 |
MRCKB |
0.816 | 0.324 | -3 | 0.842 |
PINK1 |
0.815 | 0.069 | 1 | 0.855 |
ROCK2 |
0.815 | 0.335 | -3 | 0.875 |
MEK5 |
0.815 | 0.041 | 2 | 0.800 |
ULK1 |
0.815 | -0.189 | -3 | 0.730 |
MEKK3 |
0.815 | 0.053 | 1 | 0.743 |
MPSK1 |
0.815 | 0.150 | 1 | 0.776 |
PAK5 |
0.815 | 0.204 | -2 | 0.735 |
DNAPK |
0.814 | 0.014 | 1 | 0.642 |
MAPKAPK5 |
0.814 | 0.120 | -3 | 0.831 |
CK1D |
0.813 | 0.122 | -3 | 0.572 |
NEK2 |
0.813 | -0.011 | 2 | 0.794 |
MARK3 |
0.812 | 0.045 | 4 | 0.708 |
JNK1 |
0.812 | 0.248 | 1 | 0.767 |
NUAK1 |
0.812 | 0.075 | -3 | 0.864 |
SMG1 |
0.812 | -0.060 | 1 | 0.739 |
MEKK2 |
0.811 | 0.044 | 2 | 0.772 |
PAK4 |
0.811 | 0.201 | -2 | 0.743 |
PLK3 |
0.811 | -0.056 | 2 | 0.758 |
MRCKA |
0.811 | 0.282 | -3 | 0.856 |
HRI |
0.811 | -0.025 | -2 | 0.833 |
HASPIN |
0.811 | 0.347 | -1 | 0.853 |
CAMK1D |
0.810 | 0.222 | -3 | 0.813 |
GSK3B |
0.810 | 0.109 | 4 | 0.527 |
TLK1 |
0.810 | -0.005 | -2 | 0.812 |
BRSK2 |
0.810 | 0.025 | -3 | 0.861 |
GCK |
0.810 | 0.171 | 1 | 0.719 |
MEKK1 |
0.809 | -0.038 | 1 | 0.739 |
CK1A2 |
0.809 | 0.112 | -3 | 0.579 |
PHKG2 |
0.809 | 0.148 | -3 | 0.849 |
SNRK |
0.809 | -0.006 | 2 | 0.654 |
DMPK1 |
0.808 | 0.351 | -3 | 0.858 |
ZAK |
0.808 | -0.044 | 1 | 0.715 |
TNIK |
0.808 | 0.190 | 3 | 0.876 |
CHK2 |
0.808 | 0.261 | -3 | 0.785 |
DCAMKL2 |
0.808 | 0.108 | -3 | 0.867 |
TAO2 |
0.808 | 0.113 | 2 | 0.813 |
HPK1 |
0.807 | 0.193 | 1 | 0.706 |
GRK3 |
0.807 | 0.040 | -2 | 0.688 |
GAK |
0.807 | 0.123 | 1 | 0.777 |
ROCK1 |
0.806 | 0.336 | -3 | 0.852 |
KHS2 |
0.806 | 0.245 | 1 | 0.710 |
CK2A2 |
0.805 | 0.082 | 1 | 0.677 |
NEK8 |
0.805 | 0.056 | 2 | 0.793 |
CK1G1 |
0.805 | 0.057 | -3 | 0.627 |
NEK5 |
0.805 | -0.022 | 1 | 0.759 |
LRRK2 |
0.805 | 0.202 | 2 | 0.824 |
IRAK4 |
0.804 | 0.057 | 1 | 0.759 |
PKN1 |
0.804 | 0.209 | -3 | 0.833 |
SLK |
0.804 | 0.104 | -2 | 0.726 |
EEF2K |
0.803 | 0.145 | 3 | 0.851 |
CRIK |
0.803 | 0.333 | -3 | 0.836 |
PDK1 |
0.803 | 0.091 | 1 | 0.733 |
LOK |
0.803 | 0.140 | -2 | 0.760 |
BRAF |
0.802 | -0.095 | -4 | 0.811 |
MARK2 |
0.802 | -0.030 | 4 | 0.661 |
MARK1 |
0.802 | -0.005 | 4 | 0.731 |
CHK1 |
0.802 | -0.038 | -3 | 0.849 |
HGK |
0.801 | 0.119 | 3 | 0.873 |
BUB1 |
0.801 | 0.221 | -5 | 0.725 |
SBK |
0.801 | 0.268 | -3 | 0.739 |
KHS1 |
0.800 | 0.167 | 1 | 0.696 |
CK2A1 |
0.799 | 0.086 | 1 | 0.660 |
LKB1 |
0.798 | 0.005 | -3 | 0.784 |
STK33 |
0.798 | 0.048 | 2 | 0.609 |
NEK11 |
0.798 | -0.059 | 1 | 0.721 |
SSTK |
0.798 | 0.059 | 4 | 0.741 |
MINK |
0.798 | 0.077 | 1 | 0.705 |
CAMKK1 |
0.797 | -0.075 | -2 | 0.706 |
TAK1 |
0.797 | 0.043 | 1 | 0.733 |
PLK4 |
0.797 | -0.122 | 2 | 0.585 |
CAMK1A |
0.795 | 0.214 | -3 | 0.792 |
OSR1 |
0.795 | 0.117 | 2 | 0.782 |
CAMKK2 |
0.795 | -0.061 | -2 | 0.713 |
MEKK6 |
0.793 | 0.018 | 1 | 0.725 |
MST2 |
0.792 | -0.071 | 1 | 0.717 |
MAP3K15 |
0.791 | -0.018 | 1 | 0.702 |
PKG1 |
0.791 | 0.201 | -2 | 0.641 |
YSK1 |
0.791 | 0.076 | 2 | 0.791 |
VRK1 |
0.789 | -0.016 | 2 | 0.750 |
PBK |
0.789 | 0.053 | 1 | 0.688 |
NEK4 |
0.788 | -0.086 | 1 | 0.718 |
TTBK1 |
0.787 | -0.158 | 2 | 0.590 |
MST1 |
0.787 | -0.036 | 1 | 0.703 |
PLK2 |
0.787 | -0.039 | -3 | 0.746 |
MYO3B |
0.787 | 0.162 | 2 | 0.805 |
NEK1 |
0.786 | -0.034 | 1 | 0.736 |
PDHK3_TYR |
0.785 | 0.252 | 4 | 0.886 |
TTK |
0.784 | 0.076 | -2 | 0.817 |
PDHK4_TYR |
0.782 | 0.223 | 2 | 0.868 |
YANK3 |
0.782 | 0.019 | 2 | 0.405 |
IRAK1 |
0.781 | -0.227 | -1 | 0.763 |
MAP2K6_TYR |
0.780 | 0.180 | -1 | 0.838 |
TESK1_TYR |
0.779 | 0.171 | 3 | 0.845 |
MAP2K4_TYR |
0.778 | 0.148 | -1 | 0.841 |
TAO1 |
0.778 | 0.057 | 1 | 0.667 |
CK1A |
0.778 | 0.082 | -3 | 0.495 |
MEK2 |
0.778 | -0.195 | 2 | 0.767 |
MYO3A |
0.778 | 0.065 | 1 | 0.738 |
LIMK2_TYR |
0.777 | 0.228 | -3 | 0.853 |
PINK1_TYR |
0.776 | 0.168 | 1 | 0.804 |
BMPR2_TYR |
0.776 | 0.120 | -1 | 0.833 |
ALPHAK3 |
0.775 | 0.014 | -1 | 0.745 |
PKMYT1_TYR |
0.774 | 0.098 | 3 | 0.810 |
PDHK1_TYR |
0.774 | 0.081 | -1 | 0.841 |
MAP2K7_TYR |
0.773 | 0.039 | 2 | 0.834 |
RIPK2 |
0.773 | -0.207 | 1 | 0.671 |
NEK3 |
0.771 | -0.088 | 1 | 0.699 |
ASK1 |
0.770 | -0.076 | 1 | 0.694 |
BIKE |
0.768 | -0.010 | 1 | 0.663 |
LIMK1_TYR |
0.766 | 0.051 | 2 | 0.811 |
RET |
0.762 | -0.040 | 1 | 0.744 |
EPHA6 |
0.762 | 0.004 | -1 | 0.806 |
TXK |
0.761 | 0.070 | 1 | 0.753 |
CK1G3 |
0.759 | 0.077 | -3 | 0.454 |
STLK3 |
0.757 | -0.152 | 1 | 0.683 |
ABL2 |
0.756 | -0.003 | -1 | 0.771 |
EPHB4 |
0.756 | -0.059 | -1 | 0.778 |
MST1R |
0.756 | -0.105 | 3 | 0.760 |
WEE1_TYR |
0.755 | 0.103 | -1 | 0.732 |
FGR |
0.754 | -0.079 | 1 | 0.752 |
JAK3 |
0.754 | -0.079 | 1 | 0.734 |
DDR1 |
0.754 | -0.103 | 4 | 0.810 |
CSF1R |
0.753 | -0.107 | 3 | 0.739 |
YES1 |
0.752 | -0.070 | -1 | 0.793 |
TYRO3 |
0.752 | -0.147 | 3 | 0.755 |
NEK10_TYR |
0.752 | -0.036 | 1 | 0.638 |
TNK2 |
0.751 | -0.018 | 3 | 0.682 |
TNK1 |
0.751 | 0.047 | 3 | 0.741 |
TYK2 |
0.750 | -0.227 | 1 | 0.727 |
FLT1 |
0.750 | -0.006 | -1 | 0.784 |
AAK1 |
0.750 | 0.013 | 1 | 0.571 |
ABL1 |
0.750 | -0.048 | -1 | 0.765 |
LCK |
0.750 | -0.017 | -1 | 0.776 |
ROS1 |
0.750 | -0.171 | 3 | 0.721 |
KDR |
0.750 | -0.040 | 3 | 0.681 |
TNNI3K_TYR |
0.749 | 0.019 | 1 | 0.764 |
ITK |
0.749 | -0.038 | -1 | 0.755 |
BLK |
0.748 | 0.004 | -1 | 0.778 |
KIT |
0.748 | -0.093 | 3 | 0.738 |
YANK2 |
0.748 | -0.021 | 2 | 0.423 |
EPHA4 |
0.748 | -0.070 | 2 | 0.767 |
JAK2 |
0.748 | -0.228 | 1 | 0.725 |
FGFR2 |
0.748 | -0.113 | 3 | 0.719 |
INSRR |
0.748 | -0.113 | 3 | 0.681 |
MET |
0.747 | -0.053 | 3 | 0.723 |
FER |
0.746 | -0.189 | 1 | 0.762 |
BMX |
0.743 | -0.032 | -1 | 0.688 |
FLT3 |
0.743 | -0.110 | 3 | 0.760 |
SRMS |
0.743 | -0.133 | 1 | 0.749 |
PDGFRB |
0.743 | -0.163 | 3 | 0.745 |
HCK |
0.743 | -0.147 | -1 | 0.776 |
CK1G2 |
0.742 | 0.059 | -3 | 0.544 |
TEC |
0.742 | -0.071 | -1 | 0.697 |
DDR2 |
0.742 | 0.019 | 3 | 0.652 |
FYN |
0.741 | -0.025 | -1 | 0.754 |
EPHB1 |
0.739 | -0.173 | 1 | 0.741 |
EPHB3 |
0.738 | -0.167 | -1 | 0.758 |
FGFR3 |
0.737 | -0.123 | 3 | 0.684 |
JAK1 |
0.737 | -0.150 | 1 | 0.672 |
EPHB2 |
0.737 | -0.148 | -1 | 0.750 |
TEK |
0.737 | -0.183 | 3 | 0.675 |
MERTK |
0.737 | -0.154 | 3 | 0.708 |
MATK |
0.736 | -0.077 | -1 | 0.707 |
PTK2 |
0.736 | 0.026 | -1 | 0.741 |
BTK |
0.736 | -0.183 | -1 | 0.728 |
PTK6 |
0.735 | -0.216 | -1 | 0.704 |
EPHA7 |
0.735 | -0.123 | 2 | 0.760 |
FGFR1 |
0.734 | -0.224 | 3 | 0.687 |
AXL |
0.733 | -0.210 | 3 | 0.700 |
SYK |
0.733 | 0.023 | -1 | 0.726 |
ERBB2 |
0.733 | -0.173 | 1 | 0.685 |
FLT4 |
0.732 | -0.172 | 3 | 0.679 |
PDGFRA |
0.732 | -0.254 | 3 | 0.749 |
EPHA3 |
0.731 | -0.171 | 2 | 0.735 |
FRK |
0.731 | -0.137 | -1 | 0.782 |
PTK2B |
0.730 | -0.088 | -1 | 0.729 |
EPHA1 |
0.730 | -0.156 | 3 | 0.703 |
LTK |
0.730 | -0.195 | 3 | 0.666 |
ALK |
0.729 | -0.214 | 3 | 0.649 |
LYN |
0.728 | -0.156 | 3 | 0.673 |
EPHA8 |
0.728 | -0.118 | -1 | 0.748 |
NTRK1 |
0.728 | -0.269 | -1 | 0.764 |
SRC |
0.728 | -0.115 | -1 | 0.752 |
EPHA5 |
0.727 | -0.122 | 2 | 0.750 |
EGFR |
0.726 | -0.114 | 1 | 0.603 |
INSR |
0.725 | -0.226 | 3 | 0.673 |
CSK |
0.724 | -0.170 | 2 | 0.759 |
FGFR4 |
0.723 | -0.129 | -1 | 0.726 |
NTRK3 |
0.723 | -0.220 | -1 | 0.720 |
NTRK2 |
0.722 | -0.299 | 3 | 0.681 |
ZAP70 |
0.718 | 0.012 | -1 | 0.664 |
EPHA2 |
0.716 | -0.129 | -1 | 0.723 |
ERBB4 |
0.714 | -0.092 | 1 | 0.617 |
IGF1R |
0.713 | -0.187 | 3 | 0.610 |
MUSK |
0.710 | -0.177 | 1 | 0.593 |
FES |
0.693 | -0.219 | -1 | 0.667 |