Motif 305 (n=513)

Position-wise Probabilities

Download
uniprot genes site source protein function
A4FU01 MTMR11 S180 ochoa Myotubularin-related protein 11 (Cisplatin resistance-associated protein) (hCRA) (Inactive phosphatidylinositol 3-phosphatase 11) None
A5PKW4 PSD S990 ochoa PH and SEC7 domain-containing protein 1 (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6) (Exchange factor for ARF6) (Exchange factor for ARF6 A) (Pleckstrin homology and SEC7 domain-containing protein 1) Guanine nucleotide exchange factor for ARF6 (PubMed:23603394). Induces cytoskeletal remodeling (By similarity). {ECO:0000250|UniProtKB:Q5DTT2, ECO:0000269|PubMed:23603394}.
A6NJG2 SOWAHD S22 ochoa Ankyrin repeat domain-containing protein SOWAHD (Ankyrin repeat domain-containing protein 58) (Protein sosondowah homolog D) None
A8MQ27 NEURL1B S271 ochoa E3 ubiquitin-protein ligase NEURL1B (EC 2.3.2.27) (Neuralized-2) (NEUR2) (Neuralized-like protein 1B) (Neuralized-like protein 3) (RING-type E3 ubiquitin transferase NEURL1B) E3 ubiquitin-protein ligase involved in regulation of the Notch pathway through influencing the stability and activity of several Notch ligands. {ECO:0000269|PubMed:19723503}.
C9JH25 PRRT4 Y716 ochoa Proline-rich transmembrane protein 4 None
H0YHG0 None S451 ochoa DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}.
H7C1W4 None S54 ochoa Uncharacterized protein None
O00178 GTPBP1 S47 ochoa GTP-binding protein 1 (G-protein 1) (GP-1) (GP1) Promotes degradation of target mRNA species. Plays a role in the regulation of circadian mRNA stability. Binds GTP and has GTPase activity (By similarity). {ECO:0000250|UniProtKB:D2XV59}.
O00410 IPO5 S20 ochoa Importin-5 (Imp5) (Importin subunit beta-3) (Karyopherin beta-3) (Ran-binding protein 5) (RanBP5) Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5 (PubMed:11682607, PubMed:9687515). In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones. Binds to CPEB3 and mediates its nuclear import following neuronal stimulation (By similarity). In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. {ECO:0000250|UniProtKB:Q8BKC5, ECO:0000269|PubMed:11682607, ECO:0000269|PubMed:9687515}.
O00478 BTN3A3 S219 ochoa Butyrophilin subfamily 3 member A3 Plays a role in T-cell responses in the adaptive immune response. {ECO:0000269|PubMed:22767497}.
O14497 ARID1A S363 ochoa|psp AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
O14519 CDK2AP1 S28 ochoa Cyclin-dependent kinase 2-associated protein 1 (CDK2-associated protein 1) (Deleted in oral cancer 1) (DOC-1) (Putative oral cancer suppressor) Inhibitor of cyclin-dependent kinase CDK2 (By similarity). Also acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:20523938, PubMed:28977666). {ECO:0000250|UniProtKB:O35207, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:20523938, ECO:0000269|PubMed:28977666}.
O14686 KMT2D S2725 ochoa Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}.
O14686 KMT2D S2726 ochoa Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}.
O14745 NHERF1 S290 ochoa|psp Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (NHERF-1) (Ezrin-radixin-moesin-binding phosphoprotein 50) (EBP50) (Regulatory cofactor of Na(+)/H(+) exchanger) (Sodium-hydrogen exchanger regulatory factor 1) (Solute carrier family 9 isoform A3 regulatory factor 1) Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for recycling of internalized ADRB2. Was first known to play a role in the regulation of the activity and subcellular location of SLC9A3. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3. May enhance Wnt signaling. May participate in HTR4 targeting to microvilli (By similarity). Involved in the regulation of phosphate reabsorption in the renal proximal tubules. Involved in sperm capacitation. May participate in the regulation of the chloride and bicarbonate homeostasis in spermatozoa. {ECO:0000250, ECO:0000269|PubMed:10499588, ECO:0000269|PubMed:18784102, ECO:0000269|PubMed:9096337, ECO:0000269|PubMed:9430655}.
O14979 HNRNPDL S117 ochoa Heterogeneous nuclear ribonucleoprotein D-like (hnRNP D-like) (hnRNP DL) (AU-rich element RNA-binding factor) (JKT41-binding protein) (Protein laAUF1) Acts as a transcriptional regulator. Promotes transcription repression. Promotes transcription activation in differentiated myotubes (By similarity). Binds to double- and single-stranded DNA sequences. Binds to the transcription suppressor CATR sequence of the COX5B promoter (By similarity). Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Binds both to nuclear and cytoplasmic poly(A) mRNAs. Binds to poly(G) and poly(A), but not to poly(U) or poly(C) RNA homopolymers. Binds to the 5'-ACUAGC-3' RNA consensus sequence. {ECO:0000250, ECO:0000269|PubMed:9538234}.
O15085 ARHGEF11 S657 ochoa Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}.
O15503 INSIG1 S46 psp Insulin-induced gene 1 protein (INSIG-1) Oxysterol-binding protein that mediates feedback control of cholesterol synthesis by controlling both endoplasmic reticulum to Golgi transport of SCAP and degradation of HMGCR (PubMed:12202038, PubMed:12535518, PubMed:16168377, PubMed:16399501, PubMed:16606821, PubMed:32322062). Acts as a negative regulator of cholesterol biosynthesis by mediating the retention of the SCAP-SREBP complex in the endoplasmic reticulum, thereby blocking the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:12202038, PubMed:16399501, PubMed:26311497, PubMed:32322062). Binds oxysterol, including 25-hydroxycholesterol, regulating interaction with SCAP and retention of the SCAP-SREBP complex in the endoplasmic reticulum (PubMed:32322062). In presence of oxysterol, interacts with SCAP, retaining the SCAP-SREBP complex in the endoplasmic reticulum, thereby preventing SCAP from escorting SREBF1/SREBP1 and SREBF2/SREBP2 to the Golgi (PubMed:15899885, PubMed:32322062). Sterol deprivation or phosphorylation by PCK1 reduce oxysterol-binding, disrupting the interaction between INSIG1 and SCAP, thereby promoting Golgi transport of the SCAP-SREBP complex, followed by processing and nuclear translocation of SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:26311497, PubMed:32322062). Also regulates cholesterol synthesis by regulating degradation of HMGCR: initiates the sterol-mediated ubiquitin-mediated endoplasmic reticulum-associated degradation (ERAD) of HMGCR via recruitment of the reductase to the ubiquitin ligases AMFR/gp78 and/or RNF139 (PubMed:12535518, PubMed:16168377, PubMed:22143767). Also regulates degradation of SOAT2/ACAT2 when the lipid levels are low: initiates the ubiquitin-mediated degradation of SOAT2/ACAT2 via recruitment of the ubiquitin ligases AMFR/gp78 (PubMed:28604676). {ECO:0000269|PubMed:12202038, ECO:0000269|PubMed:12535518, ECO:0000269|PubMed:15899885, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16399501, ECO:0000269|PubMed:16606821, ECO:0000269|PubMed:22143767, ECO:0000269|PubMed:26311497, ECO:0000269|PubMed:28604676, ECO:0000269|PubMed:32322062}.
O43166 SIPA1L1 S381 ochoa Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}.
O43166 SIPA1L1 S1700 ochoa Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}.
O43182 ARHGAP6 S820 ochoa Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}.
O43683 BUB1 S618 ochoa|psp Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}.
O43918 AIRE S156 psp Autoimmune regulator (Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy protein) (APECED protein) Transcription factor playing an essential role to promote self-tolerance in the thymus by regulating the expression of a wide array of self-antigens that have the commonality of being tissue-restricted in their expression pattern in the periphery, called tissue restricted antigens (TRA) (PubMed:26084028). Binds to G-doublets in an A/T-rich environment; the preferred motif is a tandem repeat of 5'-ATTGGTTA-3' combined with a 5'-TTATTA-3' box. Binds to nucleosomes (By similarity). Binds to chromatin and interacts selectively with histone H3 that is not methylated at 'Lys-4', not phosphorylated at 'Thr-3' and not methylated at 'Arg-2'. Functions as a sensor of histone H3 modifications that are important for the epigenetic regulation of gene expression. Mainly expressed by medullary thymic epithelial cells (mTECs), induces the expression of thousands of tissue-restricted proteins, which are presented on major histocompatibility complex class I (MHC-I) and MHC-II molecules to developing T-cells percolating through the thymic medulla (PubMed:26084028). Also induces self-tolerance through other mechanisms such as the regulation of the mTEC differentiation program. Controls the medullary accumulation of thymic dendritic cells and the development of regulatory T-cell through the regulation of XCL1 expression. Regulates the production of CCR4 and CCR7 ligands in medullary thymic epithelial cells and alters the coordinated maturation and migration of thymocytes. In thimic B-cells, allows the presentation of licensing-dependent endogenous self-anitgen for negative selection. In secondary lymphoid organs, induces functional inactivation of CD4(+) T-cells. Expressed by a distinct bone marrow-derived population, induces self-tolerance through a mechanism that does not require regulatory T-cells and is resitant to innate inflammatory stimuli (By similarity). {ECO:0000250|UniProtKB:Q9Z0E3, ECO:0000269|PubMed:11274163, ECO:0000269|PubMed:18292755, ECO:0000269|PubMed:26084028, ECO:0000305|PubMed:19302042, ECO:0000305|PubMed:26972725}.
O60248 SOX15 S37 ochoa Transcription factor SOX-15 (Protein SOX-12) (Protein SOX-20) (SRY-box transcription factor 15) Transcription factor that binds to DNA at the 5'-AACAATG-3' consensus sequence (By similarity). Acts as a transcriptional activator and repressor (By similarity). Binds synergistically with POU5F1 (OCT3/4) to gene promoters (By similarity). Binds to the FOXK1 promoter and recruits FHL3, resulting in transcriptional activation of FOXK1 which leads to myoblast proliferation (By similarity). Acts as an inhibitor of myoblast differentiation via transcriptional repression which leads to down-regulation of the muscle-specific genes MYOD and MYOG (By similarity). Involved in trophoblast giant cell differentiation via enhancement of HAND1 transcriptional activity (By similarity). Regulates transcription of HRC via binding to it proximal enhancer region (By similarity). Involved in skeletal muscle regeneration (By similarity). Also plays a role in the development of myogenic precursor cells (By similarity). {ECO:0000250|UniProtKB:P43267}.
O60292 SIPA1L3 S391 ochoa Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}.
O60292 SIPA1L3 S1619 ochoa Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}.
O60331 PIP5K1C S45 ochoa Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1gamma) (PtdIns(4)P-5-kinase 1 gamma) (EC 2.7.1.68) (Type I phosphatidylinositol 4-phosphate 5-kinase gamma) Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:12422219, PubMed:22942276). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (Probable). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport (By similarity). Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis (PubMed:12847086). Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) (PubMed:12847086). Required for clathrin-coated pits assembly at the synapse (PubMed:17261850). Participates in cell junction assembly (PubMed:17261850). Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking (PubMed:17261850). Required for focal adhesion dynamics. Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions (PubMed:12422219). Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins (PubMed:12422219). Required for uropodium formation and retraction of the cell rear during directed migration (By similarity). Has a role in growth factor-stimulated directional cell migration and adhesion (By similarity). Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor (PubMed:17635937). Negative regulator of T-cell activation and adhesion (By similarity). Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor (By similarity). Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth (By similarity). {ECO:0000250|UniProtKB:O70161, ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:12422219, ECO:0000269|PubMed:12847086, ECO:0000269|PubMed:17261850, ECO:0000269|PubMed:17635937, ECO:0000269|PubMed:22942276, ECO:0000305|PubMed:19889969}.
O60346 PHLPP1 S149 ochoa PH domain leucine-rich repeat-containing protein phosphatase 1 (EC 3.1.3.16) (Pleckstrin homology domain-containing family E member 1) (PH domain-containing family E member 1) (Suprachiasmatic nucleus circadian oscillatory protein) (hSCOP) Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT2 and AKT3, 'Ser-660' of PRKCB and 'Ser-657' of PRKCA (PubMed:15808505, PubMed:17386267, PubMed:18162466). Isoform 2 seems to have a major role in regulating Akt signaling in hippocampal neurons (By similarity). Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and suppression of tumor growth. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation (PubMed:18162466). Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor (PubMed:19079341). Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). May act as a negative regulator of K-Ras signaling in membrane rafts (By similarity). Involved in the hippocampus-dependent long-term memory formation (By similarity). Involved in circadian control by regulating the consolidation of circadian periodicity after resetting (By similarity). Involved in development and function of regulatory T-cells (By similarity). {ECO:0000250|UniProtKB:Q8CHE4, ECO:0000250|UniProtKB:Q9WTR8, ECO:0000269|PubMed:15808505, ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}.
O60346 PHLPP1 S151 ochoa PH domain leucine-rich repeat-containing protein phosphatase 1 (EC 3.1.3.16) (Pleckstrin homology domain-containing family E member 1) (PH domain-containing family E member 1) (Suprachiasmatic nucleus circadian oscillatory protein) (hSCOP) Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT2 and AKT3, 'Ser-660' of PRKCB and 'Ser-657' of PRKCA (PubMed:15808505, PubMed:17386267, PubMed:18162466). Isoform 2 seems to have a major role in regulating Akt signaling in hippocampal neurons (By similarity). Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and suppression of tumor growth. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation (PubMed:18162466). Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor (PubMed:19079341). Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). May act as a negative regulator of K-Ras signaling in membrane rafts (By similarity). Involved in the hippocampus-dependent long-term memory formation (By similarity). Involved in circadian control by regulating the consolidation of circadian periodicity after resetting (By similarity). Involved in development and function of regulatory T-cells (By similarity). {ECO:0000250|UniProtKB:Q8CHE4, ECO:0000250|UniProtKB:Q9WTR8, ECO:0000269|PubMed:15808505, ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}.
O60347 TBC1D12 S315 ochoa TBC1 domain family member 12 RAB11A-binding protein that plays a role in neurite outgrowth. {ECO:0000250|UniProtKB:M0R7T9}.
O60508 CDC40 S20 ochoa Pre-mRNA-processing factor 17 (Cell division cycle 40 homolog) (EH-binding protein 3) (Ehb3) (PRP17 homolog) (hPRP17) Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:33220177). Plays an important role in embryonic brain development; this function does not require proline isomerization (PubMed:33220177). {ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:33220177, ECO:0000269|PubMed:9830021}.
O60883 GPR37L1 S461 ochoa G-protein coupled receptor 37-like 1 (Endothelin B receptor-like protein 2) (ETBR-LP-2) G-protein coupled receptor (PubMed:27072655). Has been shown to bind the neuroprotective and glioprotective factor prosaposin (PSAP), leading to endocytosis followed by an ERK phosphorylation cascade (PubMed:23690594). However, other studies have shown that prosaposin does not increase activity (PubMed:27072655, PubMed:28688853). It has been suggested that GPR37L1 is a constitutively active receptor which signals through the guanine nucleotide-binding protein G(s) subunit alpha (PubMed:27072655). Participates in the regulation of postnatal cerebellar development by modulating the Shh pathway (By similarity). Regulates baseline blood pressure in females and protects against cardiovascular stress in males (By similarity). Mediates inhibition of astrocyte glutamate transporters and reduction in neuronal N-methyl-D-aspartate receptor activity (By similarity). {ECO:0000250|UniProtKB:Q99JG2, ECO:0000269|PubMed:23690594, ECO:0000269|PubMed:27072655, ECO:0000269|PubMed:28688853}.
O60883 GPR37L1 S462 ochoa G-protein coupled receptor 37-like 1 (Endothelin B receptor-like protein 2) (ETBR-LP-2) G-protein coupled receptor (PubMed:27072655). Has been shown to bind the neuroprotective and glioprotective factor prosaposin (PSAP), leading to endocytosis followed by an ERK phosphorylation cascade (PubMed:23690594). However, other studies have shown that prosaposin does not increase activity (PubMed:27072655, PubMed:28688853). It has been suggested that GPR37L1 is a constitutively active receptor which signals through the guanine nucleotide-binding protein G(s) subunit alpha (PubMed:27072655). Participates in the regulation of postnatal cerebellar development by modulating the Shh pathway (By similarity). Regulates baseline blood pressure in females and protects against cardiovascular stress in males (By similarity). Mediates inhibition of astrocyte glutamate transporters and reduction in neuronal N-methyl-D-aspartate receptor activity (By similarity). {ECO:0000250|UniProtKB:Q99JG2, ECO:0000269|PubMed:23690594, ECO:0000269|PubMed:27072655, ECO:0000269|PubMed:28688853}.
O60941 DTNB S427 ochoa Dystrobrevin beta (DTN-B) (Beta-dystrobrevin) Scaffolding protein that assembles DMD and SNTA1 molecules to the basal membrane of kidney cells and liver sinusoids (By similarity). May function as a repressor of the SYN1 promoter through the binding of repressor element-1 (RE-1), in turn regulates SYN1 expression and may be involved in cell proliferation regulation during the early phase of neural differentiation (PubMed:27223470). May be required for proper maturation and function of a subset of inhibitory synapses (By similarity). {ECO:0000250|UniProtKB:O70585, ECO:0000269|PubMed:27223470}.
O75376 NCOR1 Y1597 ochoa Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}.
O75376 NCOR1 S1599 ochoa Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}.
O75398 DEAF1 S43 ochoa Deformed epidermal autoregulatory factor 1 homolog (Nuclear DEAF-1-related transcriptional regulator) (NUDR) (Suppressin) (Zinc finger MYND domain-containing protein 5) Transcription factor that binds to sequence with multiple copies of 5'-TTC[CG]G-3' present in its own promoter and that of the HNRPA2B1 gene. Down-regulates transcription of these genes. Binds to the retinoic acid response element (RARE) 5'-AGGGTTCACCGAAAGTTCA-3'. Activates the proenkephalin gene independently of promoter binding, probably through protein-protein interaction. When secreted, behaves as an inhibitor of cell proliferation, by arresting cells in the G0 or G1 phase. Required for neural tube closure and skeletal patterning. Regulates epithelial cell proliferation and side-branching in the mammary gland. Controls the expression of peripheral tissue antigens in pancreatic lymph nodes. Isoform 1 displays greater transcriptional activity than isoform 4. Isoform 4 may inhibit transcriptional activity of isoform 1 by interacting with isoform 1 and retaining it in the cytoplasm. Transcriptional activator of EIF4G3. {ECO:0000269|PubMed:10521432, ECO:0000269|PubMed:11427895, ECO:0000269|PubMed:11705868, ECO:0000269|PubMed:18826651, ECO:0000269|PubMed:19668219, ECO:0000269|PubMed:24726472}.
O75427 LRCH4 S21 ochoa Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}.
O75676 RPS6KA4 S324 psp Ribosomal protein S6 kinase alpha-4 (S6K-alpha-4) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 4) (Nuclear mitogen- and stress-activated protein kinase 2) (Ribosomal protein kinase B) (RSKB) Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factor RELA, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes. Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin. Plays an essential role in the control of RELA transcriptional activity in response to TNF. Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN. May also phosphorylate 'Ser-28' of histone H3. Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines. Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors. {ECO:0000269|PubMed:11035004, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:9792677}.
O75762 TRPA1 S86 psp Transient receptor potential cation channel subfamily A member 1 (Ankyrin-like with transmembrane domains protein 1) (Transformation-sensitive protein p120) (p120) (Wasabi receptor) Ligand-activated Ca(2+)-permeable, nonselective cation channel involved in pain detection and possibly also in cold perception, oxygen concentration perception, cough, itch, and inner ear function (PubMed:17259981, PubMed:21195050, PubMed:21873995, PubMed:23199233, PubMed:25389312, PubMed:33152265). Has a relatively high Ca(2+) selectivity, with a preference for divalent over monovalent cations (Ca(2+) > Ba(2+) > Mg(2+) > NH4(+) > Li(+) > K(+)), the influx of cation into the cytoplasm leads to membrane depolarization (PubMed:19202543, PubMed:21195050). Has a central role in the pain response to endogenous inflammatory mediators, such as bradykinin and to a diverse array of irritants. Activated by a large variety of structurally unrelated electrophilic and non-electrophilic chemical compounds, such as allylthiocyanate (AITC) from mustard oil or wasabi, cinnamaldehyde, diallyl disulfide (DADS) from garlic, and acrolein, an environmental irritant (PubMed:20547126, PubMed:25389312, PubMed:27241698, PubMed:30878828). Electrophilic ligands activate TRPA1 by interacting with critical N-terminal Cys residues in a covalent manner (PubMed:17164327, PubMed:27241698, PubMed:31866091, PubMed:32641835). Non-electrophile agonists bind at distinct sites in the transmembrane domain to promote channel activation (PubMed:33152265). Also acts as an ionotropic cannabinoid receptor by being activated by delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana (PubMed:25389312). May be a component for the mechanosensitive transduction channel of hair cells in inner ear, thereby participating in the perception of sounds (By similarity). {ECO:0000250|UniProtKB:Q8BLA8, ECO:0000269|PubMed:17164327, ECO:0000269|PubMed:17259981, ECO:0000269|PubMed:19202543, ECO:0000269|PubMed:20547126, ECO:0000269|PubMed:21195050, ECO:0000269|PubMed:21873995, ECO:0000269|PubMed:23199233, ECO:0000269|PubMed:25389312, ECO:0000269|PubMed:27241698, ECO:0000269|PubMed:30878828, ECO:0000269|PubMed:31866091, ECO:0000269|PubMed:32641835, ECO:0000269|PubMed:33152265}.
O75822 EIF3J S20 ochoa Eukaryotic translation initiation factor 3 subunit J (eIF3j) (Eukaryotic translation initiation factor 3 subunit 1) (eIF-3-alpha) (eIF3 p35) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
O94819 KBTBD11 S314 ochoa Kelch repeat and BTB domain-containing protein 11 (Chronic myelogenous leukemia-associated protein) (Kelch domain-containing protein 7B) None
O94953 KDM4B S1072 ochoa Lysine-specific demethylase 4B (EC 1.14.11.66) (JmjC domain-containing histone demethylation protein 3B) (Jumonji domain-containing protein 2B) ([histone H3]-trimethyl-L-lysine(9) demethylase 4B) Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27', H3 'Lys-36' nor H4 'Lys-20'. Only able to demethylate trimethylated H3 'Lys-9', with a weaker activity than KDM4A, KDM4C and KDM4D. Demethylation of Lys residue generates formaldehyde and succinate (PubMed:16603238, PubMed:28262558). Plays a critical role in the development of the central nervous system (CNS). {ECO:0000250|UniProtKB:Q91VY5, ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:28262558}.
O94986 CEP152 S1430 ochoa Centrosomal protein of 152 kDa (Cep152) Necessary for centrosome duplication; the function also seems to involve CEP63, CDK5RAP2 and WDR62 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). Acts as a molecular scaffold facilitating the interaction of PLK4 and CPAP, 2 molecules involved in centriole formation (PubMed:20852615, PubMed:21059844). Proposed to snatch PLK4 away from PLK4:CEP92 complexes in early G1 daughter centriole and to reposition PLK4 at the outer boundary of a newly forming CEP152 ring structure (PubMed:24997597). Also plays a key role in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles (By similarity). Overexpression of CEP152 can drive amplification of centrioles (PubMed:20852615). {ECO:0000250|UniProtKB:A2AUM9, ECO:0000250|UniProtKB:Q498G2, ECO:0000269|PubMed:20852615, ECO:0000269|PubMed:21059844, ECO:0000269|PubMed:21131973}.
O95613 PCNT S3287 ochoa Pericentrin (Kendrin) (Pericentrin-B) Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}.
O95622 ADCY5 S155 ochoa Adenylate cyclase type 5 (EC 4.6.1.1) (ATP pyrophosphate-lyase 5) (Adenylate cyclase type V) (Adenylyl cyclase 5) (AC5) Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling (PubMed:15385642, PubMed:24700542, PubMed:26206488). Mediates signaling downstream of ADRB1 (PubMed:24700542). Regulates the increase of free cytosolic Ca(2+) in response to increased blood glucose levels and contributes to the regulation of Ca(2+)-dependent insulin secretion (PubMed:24740569). {ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:24700542, ECO:0000269|PubMed:24740569, ECO:0000269|PubMed:26206488}.
O95714 HERC2 S1948 ochoa E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}.
O95758 PTBP3 S161 ochoa Polypyrimidine tract-binding protein 3 (Regulator of differentiation 1) (Rod1) RNA-binding protein that mediates pre-mRNA alternative splicing regulation. Plays a role in the regulation of cell proliferation, differentiation and migration. Positive regulator of EPO-dependent erythropoiesis. Participates in cell differentiation regulation by repressing tissue-specific exons. Promotes FAS exon 6 skipping. Binds RNA, preferentially to both poly(G) and poly(U). {ECO:0000269|PubMed:10207106, ECO:0000269|PubMed:18335065, ECO:0000269|PubMed:19441079, ECO:0000269|PubMed:20937273}.
O95758 PTBP3 S165 ochoa Polypyrimidine tract-binding protein 3 (Regulator of differentiation 1) (Rod1) RNA-binding protein that mediates pre-mRNA alternative splicing regulation. Plays a role in the regulation of cell proliferation, differentiation and migration. Positive regulator of EPO-dependent erythropoiesis. Participates in cell differentiation regulation by repressing tissue-specific exons. Promotes FAS exon 6 skipping. Binds RNA, preferentially to both poly(G) and poly(U). {ECO:0000269|PubMed:10207106, ECO:0000269|PubMed:18335065, ECO:0000269|PubMed:19441079, ECO:0000269|PubMed:20937273}.
O95817 BAG3 S171 ochoa BAG family molecular chaperone regulator 3 (BAG-3) (Bcl-2-associated athanogene 3) (Bcl-2-binding protein Bis) (Docking protein CAIR-1) Co-chaperone and adapter protein that connects different classes of molecular chaperones including heat shock proteins 70 (HSP70s), e.g. HSPA1A/HSP70 or HSPA8/HSC70, and small heat shock proteins (sHSPs), e.g. HSPB8 (PubMed:27884606, PubMed:30559338). Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from HSP70s, thereby triggering client protein release (PubMed:27884606, PubMed:30559338). Nucleotide release is mediated via BAG3 binding to the nucleotide-binding domain (NBD) of HSP70s, whereas client release is mediated via binding to the substrate-binding domain (SBD) (PubMed:27474739, PubMed:9873016). Has anti-apoptotic activity (PubMed:10597216). Plays a role in the HSF1 nucleocytoplasmic transport (PubMed:26159920). {ECO:0000269|PubMed:10597216, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:26159920, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27884606, ECO:0000269|PubMed:30559338, ECO:0000269|PubMed:9873016}.
P00519 ABL1 S1007 ochoa Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}.
P04150 NR3C1 S164 ochoa Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.
P04439 HLA-A S343 psp HLA class I histocompatibility antigen, A alpha chain (Human leukocyte antigen A) (HLA-A) Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-A-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells (PubMed:10449296, PubMed:12138174, PubMed:12393434, PubMed:1402688, PubMed:15893615, PubMed:17189421, PubMed:19543285, PubMed:21498667, PubMed:24192765, PubMed:24395804, PubMed:2456340, PubMed:2784196, PubMed:28250417, PubMed:7504010, PubMed:7694806, PubMed:9862734). May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity (PubMed:25880248, PubMed:7506728, PubMed:7679507). Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells (PubMed:12796775, PubMed:18275829, PubMed:19542454, PubMed:28250417). Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome or via endopeptidase IDE/insulin-degrading enzyme (PubMed:17079320, PubMed:17189421, PubMed:20364150, PubMed:26929325, PubMed:27049119). Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 (PubMed:7504010, PubMed:9862734). {ECO:0000269|PubMed:10449296, ECO:0000269|PubMed:12138174, ECO:0000269|PubMed:12393434, ECO:0000269|PubMed:12796775, ECO:0000269|PubMed:1402688, ECO:0000269|PubMed:15893615, ECO:0000269|PubMed:17079320, ECO:0000269|PubMed:17189421, ECO:0000269|PubMed:18275829, ECO:0000269|PubMed:19542454, ECO:0000269|PubMed:19543285, ECO:0000269|PubMed:20364150, ECO:0000269|PubMed:21498667, ECO:0000269|PubMed:24192765, ECO:0000269|PubMed:24395804, ECO:0000269|PubMed:2456340, ECO:0000269|PubMed:25880248, ECO:0000269|PubMed:26929325, ECO:0000269|PubMed:27049119, ECO:0000269|PubMed:2784196, ECO:0000269|PubMed:28250417, ECO:0000269|PubMed:7504010, ECO:0000269|PubMed:7506728, ECO:0000269|PubMed:7679507, ECO:0000269|PubMed:7694806, ECO:0000269|PubMed:9862734}.; FUNCTION: Allele A*01:01: Presents a restricted peptide repertoire including viral epitopes derived from IAV NP/nucleoprotein (CTELKLSDY), IAV PB1/polymerase basic protein 1 (VSDGGPNLY), HAdV-11 capsid L3/hexon protein (LTDLGQNLLY), SARS-CoV-2 3a/ORF3a (FTSDYYQLY) as well as tumor peptide antigens including MAGE1 (EADPTGHSY), MAGEA3 (EVDPIGHLY) and WT1 (TSEKRPFMCAY), all having in common a canonical motif with a negatively charged Asp or Glu residue at position 3 and a Tyr anchor residue at the C-terminus (PubMed:1402688, PubMed:17189421, PubMed:19177349, PubMed:20364150, PubMed:24395804, PubMed:25880248, PubMed:26758806, PubMed:30530481, PubMed:32887977, PubMed:7504010). A number of HLA-A*01:01-restricted peptides carry a post-translational modification with oxidation and N-terminal acetylation being the most frequent (PubMed:25880248). Fails to present highly immunogenic peptides from the EBV latent antigens (PubMed:18779413). {ECO:0000269|PubMed:1402688, ECO:0000269|PubMed:17189421, ECO:0000269|PubMed:18779413, ECO:0000269|PubMed:19177349, ECO:0000269|PubMed:20364150, ECO:0000269|PubMed:24395804, ECO:0000269|PubMed:25880248, ECO:0000269|PubMed:26758806, ECO:0000269|PubMed:30530481, ECO:0000269|PubMed:7504010}.; FUNCTION: Allele A*02:01: A major allele in human populations, presents immunodominant viral epitopes derived from IAV M/matrix protein 1 (GILGFVFTL), HIV-1 env (TLTSCNTSV), HIV-1 gag-pol (ILKEPVHGV), HTLV-1 Tax (LLFGYPVYV), HBV C/core antigen (FLPSDFFPS), HCMV UL83/pp65 (NLVPMVATV) as well as tumor peptide antigens including MAGEA4 (GVYDGREHTV), WT1 (RMFPNAPYL) and CTAG1A/NY-ESO-1 (SLLMWITQC), all having in common hydrophobic amino acids at position 2 and at the C-terminal anchors. {ECO:0000269|PubMed:11502003, ECO:0000269|PubMed:12138174, ECO:0000269|PubMed:12796775, ECO:0000269|PubMed:17079320, ECO:0000269|PubMed:18275829, ECO:0000269|PubMed:19542454, ECO:0000269|PubMed:20619457, ECO:0000269|PubMed:22245737, ECO:0000269|PubMed:26929325, ECO:0000269|PubMed:2784196, ECO:0000269|PubMed:28250417, ECO:0000269|PubMed:7694806, ECO:0000269|PubMed:7935798, ECO:0000269|PubMed:8630735, ECO:0000269|PubMed:8805302, ECO:0000269|PubMed:8906788, ECO:0000269|PubMed:9177355}.; FUNCTION: Allele A*03:01: Presents viral epitopes derived from IAV NP (ILRGSVAHK), HIV-1 nef (QVPLRPMTYK), HIV-1 gag-pol (AIFQSSMTK), SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) as well as tumor peptide antigens including PMEL (LIYRRRLMK), NODAL (HAYIQSLLK), TRP-2 (RMYNMVPFF), all having in common hydrophobic amino acids at position 2 and Lys or Arg anchor residues at the C-terminus (PubMed:19543285, PubMed:21943705, PubMed:2456340, PubMed:32887977, PubMed:7504010, PubMed:7679507, PubMed:9862734). May also display spliced peptides resulting from the ligation of two separate proteasomal cleavage products that are not contiguous in the parental protein (PubMed:27049119). {ECO:0000269|PubMed:19543285, ECO:0000269|PubMed:21943705, ECO:0000269|PubMed:2456340, ECO:0000269|PubMed:27049119, ECO:0000269|PubMed:7504010, ECO:0000269|PubMed:7679507, ECO:0000269|PubMed:9862734}.; FUNCTION: Allele A*11:01: Presents several immunodominant epitopes derived from HIV-1 gag-pol and HHV-4 EBNA4, containing the peptide motif with Val, Ile, Thr, Leu, Tyr or Phe at position 2 and Lys anchor residue at the C-terminus. Important in the control of HIV-1, EBV and HBV infections (PubMed:10449296). Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) (PubMed:32887977). {ECO:0000269|PubMed:10449296, ECO:0000269|PubMed:32887977}.; FUNCTION: Allele A*23:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response. {ECO:0000269|PubMed:17182537}.; FUNCTION: Allele A*24:02: Presents viral epitopes derived from HIV-1 nef (RYPLTFGWCF), EBV lytic- and latent-cycle antigens BRLF1 (TYPVLEEMF), BMLF1 (DYNFVKQLF) and LMP2 (IYVLVMLVL), SARS-CoV nucleocapsid/N (QFKDNVILL), as well as tumor peptide antigens including PRAME (LYVDSLFFL), all sharing a common signature motif, namely an aromatic residue Tyr or Phe at position 2 and a nonhydrophobic anchor residue Phe, Leu or Iso at the C-terminus (PubMed:12393434, PubMed:20844028, PubMed:24192765, PubMed:9047241). Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response (PubMed:17182537, PubMed:18502829). {ECO:0000269|PubMed:12393434, ECO:0000269|PubMed:17182537, ECO:0000269|PubMed:18502829, ECO:0000269|PubMed:20844028, ECO:0000269|PubMed:24192765, ECO:0000269|PubMed:9047241}.; FUNCTION: Allele A*26:01: Presents several epitopes derived from HIV-1 gag-pol (EVIPMFSAL, ETKLGKAGY) and env (LVSDGGPNLY), carrying as anchor residues preferentially Glu at position 1, Val or Thr at position 2 and Tyr at the C-terminus. {ECO:0000269|PubMed:15893615}.; FUNCTION: Allele A*29:02: Presents peptides having a common motif, namely a Glu residue at position 2 and Tyr or Leu anchor residues at the C-terminus. {ECO:0000269|PubMed:8622959}.; FUNCTION: Allele A*32:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response. {ECO:0000269|PubMed:17182537}.; FUNCTION: Allele A*68:01: Presents viral epitopes derived from IAV NP (KTGGPIYKR) and HIV-1 tat (ITKGLGISYGR), having a common signature motif namely, Val or Thr at position 2 and positively charged residues Arg or Lys at the C-terminal anchor. {ECO:0000269|PubMed:1448153, ECO:0000269|PubMed:1448154, ECO:0000269|PubMed:2784196}.; FUNCTION: Allele A*74:01: Presents immunodominant HIV-1 epitopes derived from gag-pol (GQMVHQAISPR, QIYPGIKVR) and rev (RQIHSISER), carrying an aliphatic residue at position 2 and Arg anchor residue at the C-terminus. May contribute to viral load control in chronic HIV-1 infection. {ECO:0000269|PubMed:21498667}.
P04632 CAPNS1 S88 ochoa Calpain small subunit 1 (CSS1) (Calcium-activated neutral proteinase small subunit) (CANP small subunit) (Calcium-dependent protease small subunit) (CDPS) (Calcium-dependent protease small subunit 1) (Calpain regulatory subunit) Regulatory subunit of the calcium-regulated non-lysosomal thiol-protease which catalyzes limited proteolysis of substrates involved in cytoskeletal remodeling and signal transduction. Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:O88456}.
P04792 HSPB1 S83 ochoa|psp Heat shock protein beta-1 (HspB1) (28 kDa heat shock protein) (Estrogen-regulated 24 kDa protein) (Heat shock 27 kDa protein) (HSP 27) (Heat shock protein family B member 1) (Stress-responsive protein 27) (SRP27) Small heat shock protein which functions as a molecular chaperone probably maintaining denatured proteins in a folding-competent state (PubMed:10383393, PubMed:20178975). Plays a role in stress resistance and actin organization (PubMed:19166925). Through its molecular chaperone activity may regulate numerous biological processes including the phosphorylation and the axonal transport of neurofilament proteins (PubMed:23728742). {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:20178975, ECO:0000269|PubMed:23728742}.
P04792 HSPB1 S86 ochoa|psp Heat shock protein beta-1 (HspB1) (28 kDa heat shock protein) (Estrogen-regulated 24 kDa protein) (Heat shock 27 kDa protein) (HSP 27) (Heat shock protein family B member 1) (Stress-responsive protein 27) (SRP27) Small heat shock protein which functions as a molecular chaperone probably maintaining denatured proteins in a folding-competent state (PubMed:10383393, PubMed:20178975). Plays a role in stress resistance and actin organization (PubMed:19166925). Through its molecular chaperone activity may regulate numerous biological processes including the phosphorylation and the axonal transport of neurofilament proteins (PubMed:23728742). {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:20178975, ECO:0000269|PubMed:23728742}.
P07954 FH S46 ochoa|psp Fumarate hydratase, mitochondrial (Fumarase) (HsFH) (EC 4.2.1.2) Catalyzes the reversible stereospecific interconversion of fumarate to L-malate (PubMed:30761759). Experiments in other species have demonstrated that specific isoforms of this protein act in defined pathways and favor one direction over the other (Probable). {ECO:0000269|PubMed:30761759, ECO:0000305}.; FUNCTION: [Isoform Mitochondrial]: Catalyzes the hydration of fumarate to L-malate in the tricarboxylic acid (TCA) cycle to facilitate a transition step in the production of energy in the form of NADH. {ECO:0000250|UniProtKB:P10173}.; FUNCTION: [Isoform Cytoplasmic]: Catalyzes the dehydration of L-malate to fumarate (By similarity). Fumarate metabolism in the cytosol plays a role during urea cycle and arginine metabolism; fumarate being a by-product of the urea cycle and amino-acid catabolism (By similarity). Also plays a role in DNA repair by promoting non-homologous end-joining (NHEJ) (PubMed:20231875, PubMed:26237645). In response to DNA damage and phosphorylation by PRKDC, translocates to the nucleus and accumulates at DNA double-strand breaks (DSBs): acts by catalyzing formation of fumarate, an inhibitor of KDM2B histone demethylase activity, resulting in enhanced dimethylation of histone H3 'Lys-36' (H3K36me2) (PubMed:26237645). {ECO:0000250|UniProtKB:P97807, ECO:0000269|PubMed:20231875, ECO:0000269|PubMed:26237645}.
P08493 MGP S28 psp Matrix Gla protein (MGP) (Cell growth-inhibiting gene 36 protein) Associates with the organic matrix of bone and cartilage. Thought to act as an inhibitor of bone formation.
P08588 ADRB1 S312 psp Beta-1 adrenergic receptor (Beta-1 adrenoreceptor) (Beta-1 adrenoceptor) Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. This receptor binds epinephrine and norepinephrine with approximately equal affinity. Mediates Ras activation through G(s)-alpha- and cAMP-mediated signaling. Involved in the regulation of sleep/wake behaviors (PubMed:31473062). {ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:31473062}.
P08588 ADRB1 S412 psp Beta-1 adrenergic receptor (Beta-1 adrenoreceptor) (Beta-1 adrenoceptor) Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. This receptor binds epinephrine and norepinephrine with approximately equal affinity. Mediates Ras activation through G(s)-alpha- and cAMP-mediated signaling. Involved in the regulation of sleep/wake behaviors (PubMed:31473062). {ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:31473062}.
P10412 H1-4 S27 psp Histone H1.4 (Histone H1b) (Histone H1s-4) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P10588 NR2F6 S156 ochoa Nuclear receptor subfamily 2 group F member 6 (V-erbA-related protein 2) (EAR-2) Transcription factor predominantly involved in transcriptional repression. Binds to promoter/enhancer response elements that contain the imperfect 5'-AGGTCA-3' direct or inverted repeats with various spacings which are also recognized by other nuclear hormone receptors. Involved in modulation of hormonal responses. Represses transcriptional activity of the lutropin-choriogonadotropic hormone receptor/LHCGR gene, the renin/REN gene and the oxytocin-neurophysin/OXT gene. Represses the triiodothyronine-dependent and -independent transcriptional activity of the thyroid hormone receptor gene in a cell type-specific manner. The corepressing function towards thyroid hormone receptor beta/THRB involves at least in part the inhibition of THRB binding to triiodothyronine response elements (TREs) by NR2F6. Inhibits NFATC transcription factor DNA binding and subsequently its transcriptional activity. Acts as transcriptional repressor of IL-17 expression in Th-17 differentiated CD4(+) T cells and may be involved in induction and/or maintenance of peripheral immunological tolerance and autoimmunity. Involved in development of forebrain circadian clock; is required early in the development of the locus coeruleus (LC). {ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:10713182, ECO:0000269|PubMed:11682620, ECO:0000269|PubMed:18701084}.
P11831 SRF S79 psp Serum response factor (SRF) SRF is a transcription factor that binds to the serum response element (SRE), a short sequence of dyad symmetry located 300 bp to the 5' of the site of transcription initiation of some genes (such as FOS). Together with MRTFA transcription coactivator, controls expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration. The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. Required for cardiac differentiation and maturation. {ECO:0000250|UniProtKB:Q9JM73}.
P12931 SRC S69 ochoa Proto-oncogene tyrosine-protein kinase Src (EC 2.7.10.2) (Proto-oncogene c-Src) (pp60c-src) (p60-Src) Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors (PubMed:34234773). Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates such as AFAP1. Phosphorylation of AFAP1 allows the SRC SH2 domain to bind AFAP1 and to localize to actin filaments. Cytoskeletal reorganization is also controlled through the phosphorylation of cortactin (CTTN) (Probable). When cells adhere via focal adhesions to the extracellular matrix, signals are transmitted by integrins into the cell resulting in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN) (PubMed:21411625). In addition to phosphorylating focal adhesion proteins, SRC is also active at the sites of cell-cell contact adherens junctions and phosphorylates substrates such as beta-catenin (CTNNB1), delta-catenin (CTNND1), and plakoglobin (JUP). Another type of cell-cell junction, the gap junction, is also a target for SRC, which phosphorylates connexin-43 (GJA1). SRC is implicated in regulation of pre-mRNA-processing and phosphorylates RNA-binding proteins such as KHDRBS1 (Probable). Phosphorylates PKP3 at 'Tyr-195' in response to reactive oxygen species, which may cause the release of PKP3 from desmosome cell junctions into the cytoplasm (PubMed:25501895). Also plays a role in PDGF-mediated tyrosine phosphorylation of both STAT1 and STAT3, leading to increased DNA binding activity of these transcription factors (By similarity). Involved in the RAS pathway through phosphorylation of RASA1 and RASGRF1 (PubMed:11389730). Plays a role in EGF-mediated calcium-activated chloride channel activation (PubMed:18586953). Required for epidermal growth factor receptor (EGFR) internalization through phosphorylation of clathrin heavy chain (CLTC and CLTCL1) at 'Tyr-1477'. Involved in beta-arrestin (ARRB1 and ARRB2) desensitization through phosphorylation and activation of GRK2, leading to beta-arrestin phosphorylation and internalization. Has a critical role in the stimulation of the CDK20/MAPK3 mitogen-activated protein kinase cascade by epidermal growth factor (Probable). Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus (PubMed:7853507). Plays an important role in osteoclastic bone resorption in conjunction with PTK2B/PYK2. Both the formation of a SRC-PTK2B/PYK2 complex and SRC kinase activity are necessary for this function. Recruited to activated integrins by PTK2B/PYK2, thereby phosphorylating CBL, which in turn induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14585963, PubMed:8755529). Promotes energy production in osteoclasts by activating mitochondrial cytochrome C oxidase (PubMed:12615910). Phosphorylates DDR2 on tyrosine residues, thereby promoting its subsequent autophosphorylation (PubMed:16186108). Phosphorylates RUNX3 and COX2 on tyrosine residues, TNK2 on 'Tyr-284' and CBL on 'Tyr-731' (PubMed:20100835, PubMed:21309750). Enhances RIGI-elicited antiviral signaling (PubMed:19419966). Phosphorylates PDPK1 at 'Tyr-9', 'Tyr-373' and 'Tyr-376' (PubMed:14585963). Phosphorylates BCAR1 at 'Tyr-128' (PubMed:22710723). Phosphorylates CBLC at multiple tyrosine residues, phosphorylation at 'Tyr-341' activates CBLC E3 activity (PubMed:20525694). Phosphorylates synaptic vesicle protein synaptophysin (SYP) (By similarity). Involved in anchorage-independent cell growth (PubMed:19307596). Required for podosome formation (By similarity). Mediates IL6 signaling by activating YAP1-NOTCH pathway to induce inflammation-induced epithelial regeneration (PubMed:25731159). Phosphorylates OTUB1, promoting deubiquitination of RPTOR (PubMed:35927303). Phosphorylates caspase CASP8 at 'Tyr-380' which negatively regulates CASP8 processing and activation, down-regulating CASP8 proapoptotic function (PubMed:16619028). {ECO:0000250|UniProtKB:P05480, ECO:0000250|UniProtKB:Q9WUD9, ECO:0000269|PubMed:11389730, ECO:0000269|PubMed:12615910, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:16186108, ECO:0000269|PubMed:16619028, ECO:0000269|PubMed:18586953, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:19419966, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:21309750, ECO:0000269|PubMed:21411625, ECO:0000269|PubMed:22710723, ECO:0000269|PubMed:25501895, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:34234773, ECO:0000269|PubMed:35927303, ECO:0000269|PubMed:7853507, ECO:0000269|PubMed:8755529, ECO:0000269|PubMed:8759729, ECO:0000305|PubMed:11964124, ECO:0000305|PubMed:8672527, ECO:0000305|PubMed:9442882}.; FUNCTION: [Isoform 1]: Non-receptor protein tyrosine kinase which phosphorylates synaptophysin with high affinity. {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 2]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in L1CAM-mediated neurite elongation, possibly by acting downstream of L1CAM to drive cytoskeletal rearrangements involved in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 3]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in neurite elongation (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.
P13688 CEACAM1 S461 psp Cell adhesion molecule CEACAM1 (Biliary glycoprotein 1) (BGP-1) (Carcinoembryonic antigen-related cell adhesion molecule 1) (CEA cell adhesion molecule 1) (CD antigen CD66a) [Isoform 1]: Cell adhesion protein that mediates homophilic cell adhesion in a calcium-independent manner (By similarity). Plays a role as coinhibitory receptor in immune response, insulin action and also functions as an activator during angiogenesis (PubMed:18424730, PubMed:23696226, PubMed:25363763). Its coinhibitory receptor function is phosphorylation- and PTPN6 -dependent, which in turn, suppress signal transduction of associated receptors by dephosphorylation of their downstream effectors. Plays a role in immune response, of T cells, natural killer (NK) and neutrophils (PubMed:18424730, PubMed:23696226). Upon TCR/CD3 complex stimulation, inhibits TCR-mediated cytotoxicity by blocking granule exocytosis by mediating homophilic binding to adjacent cells, allowing interaction with and phosphorylation by LCK and interaction with the TCR/CD3 complex which recruits PTPN6 resulting in dephosphorylation of CD247 and ZAP70 (PubMed:18424730). Also inhibits T cell proliferation and cytokine production through inhibition of JNK cascade and plays a crucial role in regulating autoimmunity and anti-tumor immunity by inhibiting T cell through its interaction with HAVCR2 (PubMed:25363763). Upon natural killer (NK) cells activation, inhibit KLRK1-mediated cytolysis of CEACAM1-bearing tumor cells by trans-homophilic interactions with CEACAM1 on the target cell and lead to cis-interaction between CEACAM1 and KLRK1, allowing PTPN6 recruitment and then VAV1 dephosphorylation (PubMed:23696226). Upon neutrophils activation negatively regulates IL1B production by recruiting PTPN6 to a SYK-TLR4-CEACAM1 complex, that dephosphorylates SYK, reducing the production of reactive oxygen species (ROS) and lysosome disruption, which in turn, reduces the activity of the inflammasome. Down-regulates neutrophil production by acting as a coinhibitory receptor for CSF3R by down-regulating the CSF3R-STAT3 pathway through recruitment of PTPN6 that dephosphorylates CSF3R (By similarity). Also regulates insulin action by promoting INS clearance and regulating lipogenesis in liver through regulating insulin signaling (By similarity). Upon INS stimulation, undergoes phosphorylation by INSR leading to INS clearance by increasing receptor-mediated insulin endocytosis. This inernalization promotes interaction with FASN leading to receptor-mediated insulin degradation and to reduction of FASN activity leading to negative regulation of fatty acid synthesis. INSR-mediated phosphorylation also provokes a down-regulation of cell proliferation through SHC1 interaction resulting in decrease coupling of SHC1 to the MAPK3/ERK1-MAPK1/ERK2 and phosphatidylinositol 3-kinase pathways (By similarity). Functions as activator in angiogenesis by promoting blood vessel remodeling through endothelial cell differentiation and migration and in arteriogenesis by increasing the number of collateral arteries and collateral vessel calibers after ischemia. Also regulates vascular permeability through the VEGFR2 signaling pathway resulting in control of nitric oxide production (By similarity). Down-regulates cell growth in response to EGF through its interaction with SHC1 that mediates interaction with EGFR resulting in decrease coupling of SHC1 to the MAPK3/ERK1-MAPK1/ERK2 pathway (By similarity). Negatively regulates platelet aggregation by decreasing platelet adhesion on type I collagen through the GPVI-FcRgamma complex (By similarity). Inhibits cell migration and cell scattering through interaction with FLNA; interferes with the interaction of FLNA with RALA (PubMed:16291724). Mediates bile acid transport activity in a phosphorylation dependent manner (By similarity). Negatively regulates osteoclastogenesis (By similarity). {ECO:0000250|UniProtKB:P16573, ECO:0000250|UniProtKB:P31809, ECO:0000269|PubMed:16291724, ECO:0000269|PubMed:18424730, ECO:0000269|PubMed:23696226, ECO:0000269|PubMed:25363763}.; FUNCTION: [Isoform 8]: Cell adhesion protein that mediates homophilic cell adhesion in a calcium-independent manner (By similarity). Promotes populations of T cells regulating IgA production and secretion associated with control of the commensal microbiota and resistance to enteropathogens (By similarity). {ECO:0000250|UniProtKB:P16573, ECO:0000250|UniProtKB:P31809}.
P15559 NQO1 S40 psp NAD(P)H dehydrogenase [quinone] 1 (EC 1.6.5.2) (Azoreductase) (DT-diaphorase) (DTD) (Menadione reductase) (NAD(P)H:quinone oxidoreductase 1) (Phylloquinone reductase) (Quinone reductase 1) (QR1) Flavin-containing quinone reductase that catalyzes two-electron reduction of quinones to hydroquinones using either NADH or NADPH as electron donors. In a ping-pong kinetic mechanism, the electrons are sequentially transferred from NAD(P)H to flavin cofactor and then from reduced flavin to the quinone, bypassing the formation of semiquinone and reactive oxygen species (By similarity) (PubMed:8999809, PubMed:9271353). Regulates cellular redox state primarily through quinone detoxification. Reduces components of plasma membrane redox system such as coenzyme Q and vitamin quinones, producing antioxidant hydroquinone forms. In the process may function as superoxide scavenger to prevent hydroquinone oxidation and facilitate excretion (PubMed:15102952, PubMed:8999809, PubMed:9271353). Alternatively, can activate quinones and their derivatives by generating redox reactive hydroquinones with DNA cross-linking antitumor potential (PubMed:8999809). Acts as a gatekeeper of the core 20S proteasome known to degrade proteins with unstructured regions. Upon oxidative stress, interacts with tumor suppressors TP53 and TP73 in a NADH-dependent way and inhibits their ubiquitin-independent degradation by the 20S proteasome (PubMed:15687255, PubMed:28291250). {ECO:0000250|UniProtKB:P05982, ECO:0000269|PubMed:15102952, ECO:0000269|PubMed:15687255, ECO:0000269|PubMed:28291250, ECO:0000269|PubMed:8999809, ECO:0000269|PubMed:9271353}.
P17600 SYN1 S665 ochoa Synapsin-1 (Brain protein 4.1) (Synapsin I) Neuronal phosphoprotein that coats synaptic vesicles, and binds to the cytoskeleton. Acts as a regulator of synaptic vesicles trafficking, involved in the control of neurotransmitter release at the pre-synaptic terminal (PubMed:21441247, PubMed:23406870). Also involved in the regulation of axon outgrowth and synaptogenesis (By similarity). The complex formed with NOS1 and CAPON proteins is necessary for specific nitric-oxid functions at a presynaptic level (By similarity). {ECO:0000250|UniProtKB:O88935, ECO:0000250|UniProtKB:P09951, ECO:0000269|PubMed:21441247, ECO:0000269|PubMed:23406870}.
P17677 GAP43 S202 ochoa Neuromodulin (Axonal membrane protein GAP-43) (Growth-associated protein 43) (Neural phosphoprotein B-50) (pp46) This protein is associated with nerve growth. It is a major component of the motile 'growth cones' that form the tips of elongating axons. Plays a role in axonal and dendritic filopodia induction. {ECO:0000269|PubMed:14978216, ECO:0000269|PubMed:21152083}.
P17677 GAP43 S203 ochoa Neuromodulin (Axonal membrane protein GAP-43) (Growth-associated protein 43) (Neural phosphoprotein B-50) (pp46) This protein is associated with nerve growth. It is a major component of the motile 'growth cones' that form the tips of elongating axons. Plays a role in axonal and dendritic filopodia induction. {ECO:0000269|PubMed:14978216, ECO:0000269|PubMed:21152083}.
P18206 VCL S574 ochoa Vinculin (Metavinculin) (MV) Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}.
P20810 CAST S414 ochoa Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P21283 ATP6V1C1 S362 ochoa V-type proton ATPase subunit C 1 (V-ATPase subunit C 1) (Vacuolar proton pump subunit C 1) Subunit of the V1 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (PubMed:33065002). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Subunit C is necessary for the assembly of the catalytic sector of the enzyme and is likely to have a specific function in its catalytic activity (By similarity). {ECO:0000250|UniProtKB:P21282, ECO:0000250|UniProtKB:P31412, ECO:0000269|PubMed:33065002}.
P22059 OSBP S82 ochoa Oxysterol-binding protein 1 Lipid transporter involved in lipid countertransport between the Golgi complex and membranes of the endoplasmic reticulum: specifically exchanges sterol with phosphatidylinositol 4-phosphate (PI4P), delivering sterol to the Golgi in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum (PubMed:24209621). Binds cholesterol and a range of oxysterols including 25-hydroxycholesterol (PubMed:15746430, PubMed:17428193). Cholesterol binding promotes the formation of a complex with PP2A and a tyrosine phosphatase which dephosphorylates ERK1/2, whereas 25-hydroxycholesterol causes its disassembly (PubMed:15746430). Regulates cholesterol efflux by decreasing ABCA1 stability (PubMed:18450749). {ECO:0000269|PubMed:15746430, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18450749, ECO:0000269|PubMed:24209621}.
P23352 ANOS1 S43 ochoa Anosmin-1 (Adhesion molecule-like X-linked) (Kallmann syndrome protein) Has a dual branch-promoting and guidance activity, which may play an important role in the patterning of mitral and tufted cell collaterals to the olfactory cortex (By similarity). Chemoattractant for fetal olfactory epithelial cells. {ECO:0000250, ECO:0000269|PubMed:19696444}.
P23508 MCC S715 ochoa Colorectal mutant cancer protein (Protein MCC) Candidate for the putative colorectal tumor suppressor gene located at 5q21. Suppresses cell proliferation and the Wnt/b-catenin pathway in colorectal cancer cells. Inhibits DNA binding of b-catenin/TCF/LEF transcription factors. Involved in cell migration independently of RAC1, CDC42 and p21-activated kinase (PAK) activation (PubMed:18591935, PubMed:19555689, PubMed:22480440). Represses the beta-catenin pathway (canonical Wnt signaling pathway) in a CCAR2-dependent manner by sequestering CCAR2 to the cytoplasm, thereby impairing its ability to inhibit SIRT1 which is involved in the deacetylation and negative regulation of beta-catenin (CTNB1) transcriptional activity (PubMed:24824780). {ECO:0000269|PubMed:18591935, ECO:0000269|PubMed:19555689, ECO:0000269|PubMed:22480440, ECO:0000269|PubMed:24824780}.
P27694 RPA1 S148 ochoa Replication protein A 70 kDa DNA-binding subunit (RP-A p70) (Replication factor A protein 1) (RF-A protein 1) (Single-stranded DNA-binding protein) [Cleaved into: Replication protein A 70 kDa DNA-binding subunit, N-terminally processed] As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism (PubMed:17596542, PubMed:27723717, PubMed:27723720). Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage (PubMed:9430682). In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP activates the ATR kinase a master regulator of the DNA damage response (PubMed:24332808). It is required for the recruitment of the DNA double-strand break repair factors RAD51 and RAD52 to chromatin in response to DNA damage (PubMed:17765923). Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair (PubMed:7697716). Also plays a role in base excision repair (BER) probably through interaction with UNG (PubMed:9765279). Also recruits SMARCAL1/HARP, which is involved in replication fork restart, to sites of DNA damage. Plays a role in telomere maintenance (PubMed:17959650, PubMed:34767620). As part of the alternative replication protein A complex, aRPA, binds single-stranded DNA and probably plays a role in DNA repair. Compared to the RPA2-containing, canonical RPA complex, may not support chromosomal DNA replication and cell cycle progression through S-phase. The aRPA may not promote efficient priming by DNA polymerase alpha but could support DNA synthesis by polymerase delta in presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange (PubMed:19996105). RPA stimulates 5'-3' helicase activity of the BRIP1/FANCJ (PubMed:17596542). {ECO:0000269|PubMed:12791985, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:17765923, ECO:0000269|PubMed:17959650, ECO:0000269|PubMed:19116208, ECO:0000269|PubMed:19996105, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:34767620, ECO:0000269|PubMed:7697716, ECO:0000269|PubMed:7700386, ECO:0000269|PubMed:9430682, ECO:0000269|PubMed:9765279}.
P29966 MARCKS S29 ochoa Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}.
P31040 SDHA S456 ochoa Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial (EC 1.3.5.1) (Flavoprotein subunit of complex II) (Fp) (Malate dehydrogenase [quinone] flavoprotein subunit) (EC 1.1.5.-) Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q) (PubMed:10746566, PubMed:24781757). SDH also oxidizes malate to the non-canonical enol form of oxaloacetate, enol-oxaloacetate (By similarity). Enol-oxaloacetate, which is a potent inhibitor of the succinate dehydrogenase activity, is further isomerized into keto-oxaloacetate (By similarity). Can act as a tumor suppressor (PubMed:20484225). {ECO:0000250|UniProtKB:P31039, ECO:0000269|PubMed:10746566, ECO:0000269|PubMed:20484225, ECO:0000269|PubMed:24781757}.
P31270 HOXA11 S220 ochoa Homeobox protein Hox-A11 (Homeobox protein Hox-1I) Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis.
P34969 HTR7 S285 ochoa 5-hydroxytryptamine receptor 7 (5-HT-7) (5-HT7) (5-HT-X) (Serotonin receptor 7) G-protein coupled receptor for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone and a mitogen (PubMed:35714614, PubMed:8226867). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors (PubMed:35714614, PubMed:8226867). HTR7 is coupled to G(s) G alpha proteins and mediates activation of adenylate cyclase activity (PubMed:35714614). {ECO:0000269|PubMed:35714614, ECO:0000269|PubMed:8226867}.
P35568 IRS1 S1070 psp Insulin receptor substrate 1 (IRS-1) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}.
P40425 PBX2 S155 ochoa Pre-B-cell leukemia transcription factor 2 (Homeobox protein PBX2) (Protein G17) Transcriptional activator that binds the sequence 5'-ATCAATCAA-3'. Activates transcription of PF4 in complex with MEIS1. {ECO:0000269|PubMed:12609849}.
P40425 PBX2 S159 ochoa Pre-B-cell leukemia transcription factor 2 (Homeobox protein PBX2) (Protein G17) Transcriptional activator that binds the sequence 5'-ATCAATCAA-3'. Activates transcription of PF4 in complex with MEIS1. {ECO:0000269|PubMed:12609849}.
P41250 GARS1 S53 ochoa Glycine--tRNA ligase (EC 6.1.1.14) (Diadenosine tetraphosphate synthetase) (Ap4A synthetase) (EC 2.7.7.-) (Glycyl-tRNA synthetase) (GlyRS) (Glycyl-tRNA synthetase 1) Catalyzes the ATP-dependent ligation of glycine to the 3'-end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (Gly-AMP) (PubMed:17544401, PubMed:24898252, PubMed:28675565). Also produces diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways, by direct condensation of 2 ATPs. Thereby, may play a special role in Ap4A homeostasis (PubMed:19710017). {ECO:0000269|PubMed:17544401, ECO:0000269|PubMed:19710017, ECO:0000269|PubMed:24898252, ECO:0000269|PubMed:28675565}.
P46013 MKI67 S2793 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46939 UTRN S2213 ochoa Utrophin (Dystrophin-related protein 1) (DRP-1) May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}.
P47974 ZFP36L2 S57 ochoa mRNA decay activator protein ZFP36L2 (Butyrate response factor 2) (EGF-response factor 2) (ERF-2) (TPA-induced sequence 11d) (Zinc finger protein 36, C3H1 type-like 2) (ZFP36-like 2) Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:14981510, PubMed:25106868, PubMed:34611029). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:25106868). Functions by recruiting the CCR4-NOT deadenylase complex and probably other components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:25106868). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:14981510, PubMed:20506496, PubMed:25106868). Promotes ARE-containing mRNA decay of the low-density lipoprotein (LDL) receptor (LDLR) mRNA in response to phorbol 12-myristate 13-acetate (PMA) treatment in a p38 MAPK-dependent manner (PubMed:25106868). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs). Plays a role in mature peripheral neuron integrity by promoting ARE-containing mRNA decay of the transcriptional repressor REST mRNA. Plays a role in ovulation and oocyte meiotic maturation by promoting ARE-mediated mRNA decay of the luteinizing hormone receptor LHCGR mRNA. Acts as a negative regulator of erythroid cell differentiation: promotes glucocorticoid-induced self-renewal of erythroid cells by binding mRNAs that are induced or highly expressed during terminal erythroid differentiation and promotes their degradation, preventing erythroid cell differentiation. In association with ZFP36L1 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination process and functional immune cell formation. Together with ZFP36L1 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA. {ECO:0000250|UniProtKB:P23949, ECO:0000269|PubMed:14981510, ECO:0000269|PubMed:20506496, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:34611029}.
P49005 POLD2 S251 ochoa DNA polymerase delta subunit 2 (DNA polymerase delta subunit p50) Accessory component of both the DNA polymerase delta complex and the DNA polymerase zeta complex (PubMed:17317665, PubMed:22801543, PubMed:24449906). As a component of the trimeric and tetrameric DNA polymerase delta complexes (Pol-delta3 and Pol-delta4, respectively), plays a role in high fidelity genome replication, including in lagging strand synthesis, and repair (PubMed:12403614, PubMed:16510448, PubMed:19074196, PubMed:20334433, PubMed:24035200). Pol-delta3 and Pol-delta4 are characterized by the absence or the presence of POLD4. They exhibit differences in catalytic activity. Most notably, Pol-delta3 shows higher proofreading activity than Pol-delta4 (PubMed:19074196, PubMed:20334433). Although both Pol-delta3 and Pol-delta4 process Okazaki fragments in vitro, Pol-delta3 may also be better suited to fulfill this task, exhibiting near-absence of strand displacement activity compared to Pol-delta4 and stalling on encounter with the 5'-blocking oligonucleotides. Pol-delta3 idling process may avoid the formation of a gap, while maintaining a nick that can be readily ligated (PubMed:24035200). Along with DNA polymerase kappa, DNA polymerase delta carries out approximately half of nucleotide excision repair (NER) synthesis following UV irradiation (PubMed:20227374). Under conditions of DNA replication stress, required for the repair of broken replication forks through break-induced replication (BIR) (PubMed:24310611). Involved in the translesion synthesis (TLS) of templates carrying O6-methylguanine or abasic sites performed by Pol-delta4, independently of DNA polymerase zeta (REV3L) or eta (POLH). Facilitates abasic site bypass by DNA polymerase delta by promoting extension from the nucleotide inserted opposite the lesion. Also involved in TLS as a component of the DNA polymerase zeta complex (PubMed:24449906). Along with POLD3, dramatically increases the efficiency and processivity of DNA synthesis of the DNA polymerase zeta complex compared to the minimal zeta complex, consisting of only REV3L and REV7 (PubMed:24449906). {ECO:0000269|PubMed:12403614, ECO:0000269|PubMed:16510448, ECO:0000269|PubMed:19074196, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:20334433, ECO:0000269|PubMed:24035200, ECO:0000269|PubMed:24310611, ECO:0000269|PubMed:24449906}.
P49321 NASP S28 ochoa Nuclear autoantigenic sperm protein (NASP) Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.
P49354 FNTA S57 ochoa Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha (EC 2.5.1.58) (EC 2.5.1.59) (CAAX farnesyltransferase subunit alpha) (FTase-alpha) (Ras proteins prenyltransferase subunit alpha) (Type I protein geranyl-geranyltransferase subunit alpha) (GGTase-I-alpha) Essential subunit of both the farnesyltransferase and the geranylgeranyltransferase complex. Contributes to the transfer of a farnesyl or geranylgeranyl moiety from farnesyl or geranylgeranyl diphosphate to a cysteine at the fourth position from the C-terminus of several proteins having the C-terminal sequence Cys-aliphatic-aliphatic-X. May positively regulate neuromuscular junction development downstream of MUSK via its function in RAC1 prenylation and activation. {ECO:0000269|PubMed:12036349, ECO:0000269|PubMed:12825937, ECO:0000269|PubMed:16893176, ECO:0000269|PubMed:19246009, ECO:0000269|PubMed:8419339, ECO:0000269|PubMed:8494894}.
P49757 NUMB S438 ochoa Protein numb homolog (h-Numb) (Protein S171) Regulates clathrin-mediated receptor endocytosis (PubMed:18657069). Plays a role in the process of neurogenesis (By similarity). Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate (By similarity). Not required for the proliferation of neural progenitor cells before the onset of neurogenesis. Also involved postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity (By similarity). May also mediate local repair of brain ventricular wall damage (By similarity). {ECO:0000250|UniProtKB:Q9QZS3, ECO:0000269|PubMed:18657069}.
P51610 HCFC1 S1070 psp Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}.
P55011 SLC12A2 S123 ochoa Solute carrier family 12 member 2 (Basolateral Na-K-Cl symporter) (Bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2) (BSC2) (Na-K-2Cl cotransporter 1) (hNKCC1) Cation-chloride cotransporter which mediates the electroneutral transport of chloride, potassium and/or sodium ions across the membrane (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:33597714, PubMed:35585053, PubMed:36239040, PubMed:36306358, PubMed:7629105). Plays a vital role in the regulation of ionic balance and cell volume (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:7629105). {ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:32081947, ECO:0000269|PubMed:32294086, ECO:0000269|PubMed:33597714, ECO:0000269|PubMed:35585053, ECO:0000269|PubMed:36239040, ECO:0000269|PubMed:36306358, ECO:0000269|PubMed:7629105}.
P55036 PSMD4 S256 ochoa 26S proteasome non-ATPase regulatory subunit 4 (26S proteasome regulatory subunit RPN10) (26S proteasome regulatory subunit S5A) (Antisecretory factor 1) (AF) (ASF) (Multiubiquitin chain-binding protein) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMD4 acts as an ubiquitin receptor subunit through ubiquitin-interacting motifs and selects ubiquitin-conjugates for destruction. Displays a preferred selectivity for longer polyubiquitin chains. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:15826667}.
P55789 GFER S59 ochoa FAD-linked sulfhydryl oxidase ALR (EC 1.8.3.2) (Augmenter of liver regeneration) (hERV1) (Hepatopoietin) [Isoform 1]: FAD-dependent sulfhydryl oxidase that regenerates the redox-active disulfide bonds in CHCHD4/MIA40, a chaperone essential for disulfide bond formation and protein folding in the mitochondrial intermembrane space. The reduced form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with GFER/ERV1, resulting in regeneration of the essential disulfide bonds in CHCHD4/MIA40, while GFER/ERV1 becomes re-oxidized by donating electrons to cytochrome c or molecular oxygen. {ECO:0000269|PubMed:19397338, ECO:0000269|PubMed:20593814, ECO:0000269|PubMed:21383138, ECO:0000269|PubMed:22224850, ECO:0000269|PubMed:23186364, ECO:0000269|PubMed:23676665}.; FUNCTION: [Isoform 2]: May act as an autocrine hepatotrophic growth factor promoting liver regeneration.
P56270 MAZ S460 psp Myc-associated zinc finger protein (MAZI) (Pur-1) (Purine-binding transcription factor) (Serum amyloid A-activating factor-1) (SAF-1) (Transcription factor Zif87) (ZF87) (Zinc finger protein 801) Transcriptional regulator, potentially with dual roles in transcription initiation and termination. {ECO:0000303|PubMed:1502157}.; FUNCTION: [Isoform 1]: Binds DNA and functions as a transcriptional activator (PubMed:12270922). Binds to two G/A-rich sites, ME1a1 and ME1a2, within the MYC promoter having greater affinity for the former (PubMed:1502157). Also binds to multiple G/C-rich sites within the promoter of the Sp1 family of transcription factors (PubMed:1502157). {ECO:0000269|PubMed:12270922, ECO:0000269|PubMed:1502157}.; FUNCTION: [Isoform 2]: Binds DNA and functions as a transcriptional activator (PubMed:12270922). Inhibits MAZ isoform 1-mediated transcription (PubMed:12270922). {ECO:0000269|PubMed:12270922}.; FUNCTION: [Isoform 3]: Binds DNA and functions as a transcriptional activator. {ECO:0000269|PubMed:19583771}.
P68104 EEF1A1 S414 ochoa Elongation factor 1-alpha 1 (EF-1-alpha-1) (EC 3.6.5.-) (Elongation factor Tu) (EF-Tu) (Eukaryotic elongation factor 1 A-1) (eEF1A-1) (Leukocyte receptor cluster member 7) Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623). Also plays a role in the positive regulation of IFNG transcription in T-helper 1 cells as part of an IFNG promoter-binding complex with TXK and PARP1 (PubMed:17177976). Also plays a role in cytoskeleton organization by promoting actin bundling (By similarity). {ECO:0000250|UniProtKB:P68105, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:26593721, ECO:0000269|PubMed:26651998, ECO:0000269|PubMed:36123449, ECO:0000269|PubMed:36264623, ECO:0000269|PubMed:36638793}.; FUNCTION: (Microbial infection) Required for the translation of viral proteins and viral replication during human coronavirus SARS-CoV-2 infection. {ECO:0000269|PubMed:33495306}.
P78362 SRPK2 S248 ochoa SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}.
P80723 BASP1 S172 ochoa Brain acid soluble protein 1 (22 kDa neuronal tissue-enriched acidic protein) (Neuronal axonal membrane protein NAP-22) None
P82979 SARNP S138 ochoa SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}.
Q01650 SLC7A5 S31 ochoa Large neutral amino acids transporter small subunit 1 (4F2 light chain) (4F2 LC) (4F2LC) (CD98 light chain) (Integral membrane protein E16) (E16) (L-type amino acid transporter 1) (hLAT1) (Solute carrier family 7 member 5) (y+ system cationic amino acid transporter) The heterodimer with SLC3A2 functions as a sodium-independent, high-affinity transporter that mediates uptake of large neutral amino acids such as phenylalanine, tyrosine, leucine, histidine, methionine, tryptophan, valine, isoleucine and alanine (PubMed:10049700, PubMed:10574970, PubMed:11557028, PubMed:11564694, PubMed:12117417, PubMed:12225859, PubMed:15769744, PubMed:18262359, PubMed:25998567, PubMed:30867591, PubMed:9751058). The heterodimer with SLC3A2 mediates the uptake of L-DOPA (By similarity). Functions as an amino acid exchanger (PubMed:11557028, PubMed:12117417, PubMed:12225859, PubMed:30867591). May play a role in the transport of L-DOPA across the blood-brain barrier (By similarity). May act as the major transporter of tyrosine in fibroblasts (Probable). May mediate blood-to-retina L-leucine transport across the inner blood-retinal barrier (By similarity). Can mediate the transport of thyroid hormones diiodothyronine (T2), triiodothyronine (T3) and thyroxine (T4) across the cell membrane (PubMed:11564694). When associated with LAPTM4B, the heterodimer formed by SLC3A2 and SLC7A5 is recruited to lysosomes to promote leucine uptake into these organelles, and thereby mediates mTORC1 activation (PubMed:25998567). Involved in the uptake of toxic methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes (PubMed:12117417). Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the membrane (PubMed:15769744). {ECO:0000250|UniProtKB:Q63016, ECO:0000250|UniProtKB:Q9Z127, ECO:0000269|PubMed:10049700, ECO:0000269|PubMed:10574970, ECO:0000269|PubMed:11557028, ECO:0000269|PubMed:11564694, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12225859, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:18262359, ECO:0000269|PubMed:25998567, ECO:0000269|PubMed:30867591, ECO:0000269|PubMed:9751058, ECO:0000305|PubMed:18262359}.; FUNCTION: (Microbial infection) In case of hepatitis C virus/HCV infection, the complex formed by SLC3A2 and SLC7A5/LAT1 plays a role in HCV propagation by facilitating viral entry into host cell and increasing L-leucine uptake-mediated mTORC1 signaling activation, thereby contributing to HCV-mediated pathogenesis. {ECO:0000269|PubMed:30341327}.
Q02750 MAP2K1 S298 ochoa|psp Dual specificity mitogen-activated protein kinase kinase 1 (MAP kinase kinase 1) (MAPKK 1) (MKK1) (EC 2.7.12.2) (ERK activator kinase 1) (MAPK/ERK kinase 1) (MEK 1) Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2, leading to their activation and further transduction of the signal within the MAPK/ERK cascade. Activates BRAF in a KSR1 or KSR2-dependent manner; by binding to KSR1 or KSR2 releases the inhibitory intramolecular interaction between KSR1 or KSR2 protein kinase and N-terminal domains which promotes KSR1 or KSR2-BRAF dimerization and BRAF activation (PubMed:29433126). Depending on the cellular context, this pathway mediates diverse biological functions such as cell growth, adhesion, survival and differentiation, predominantly through the regulation of transcription, metabolism and cytoskeletal rearrangements. One target of the MAPK/ERK cascade is peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that promotes differentiation and apoptosis. MAP2K1/MEK1 has been shown to export PPARG from the nucleus. The MAPK/ERK cascade is also involved in the regulation of endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC), as well as in the fragmentation of the Golgi apparatus during mitosis. {ECO:0000269|PubMed:14737111, ECO:0000269|PubMed:17101779, ECO:0000269|PubMed:29433126}.
Q04637 EIF4G1 S1124 ochoa Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}.
Q04721 NOTCH2 S359 ochoa Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}.
Q05086 UBE3A S217 ochoa Ubiquitin-protein ligase E3A (EC 2.3.2.26) (E6AP ubiquitin-protein ligase) (HECT-type ubiquitin transferase E3A) (Human papillomavirus E6-associated protein) (Oncogenic protein-associated protein E6-AP) (Renal carcinoma antigen NY-REN-54) E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and transfers it to its substrates (PubMed:10373495, PubMed:16772533, PubMed:19204938, PubMed:19233847, PubMed:19325566, PubMed:19591933, PubMed:22645313, PubMed:24273172, PubMed:24728990, PubMed:30020076). Several substrates have been identified including the BMAL1, ARC, LAMTOR1, RAD23A and RAD23B, MCM7 (which is involved in DNA replication), annexin A1, the PML tumor suppressor, and the cell cycle regulator CDKN1B (PubMed:10373495, PubMed:19204938, PubMed:19325566, PubMed:19591933, PubMed:22645313, PubMed:24728990, PubMed:30020076). Additionally, may function as a cellular quality control ubiquitin ligase by helping the degradation of the cytoplasmic misfolded proteins (PubMed:19233847). Finally, UBE3A also promotes its own degradation in vivo. Plays an important role in the regulation of the circadian clock: involved in the ubiquitination of the core clock component BMAL1, leading to its proteasomal degradation (PubMed:24728990). Acts as transcriptional coactivator of progesterone receptor PGR upon progesterone hormone activation (PubMed:16772533). Acts as a regulator of synaptic development by mediating ubiquitination and degradation of ARC (By similarity). Required for synaptic remodeling in neurons by mediating ubiquitination and degradation of LAMTOR1, thereby limiting mTORC1 signaling and activity-dependent synaptic remodeling (By similarity). Synergizes with WBP2 in enhancing PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:O08759, ECO:0000269|PubMed:10373495, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:19204938, ECO:0000269|PubMed:19233847, ECO:0000269|PubMed:19325566, ECO:0000269|PubMed:19591933, ECO:0000269|PubMed:22645313, ECO:0000269|PubMed:24273172, ECO:0000269|PubMed:24728990, ECO:0000269|PubMed:30020076}.; FUNCTION: (Microbial infection) Catalyzes the high-risk human papilloma virus E6-mediated ubiquitination of p53/TP53, contributing to the neoplastic progression of cells infected by these viruses. {ECO:0000269|PubMed:8380895}.
Q08357 SLC20A2 S407 ochoa Sodium-dependent phosphate transporter 2 (Gibbon ape leukemia virus receptor 2) (GLVR-2) (Phosphate transporter 2) (PiT-2) (Pit2) (hPit2) (Solute carrier family 20 member 2) Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion (PubMed:12205090, PubMed:15955065, PubMed:16790504, PubMed:17494632, PubMed:22327515, PubMed:28722801, PubMed:30704756). Plays a critical role in the determination of bone quality and strength by providing phosphate for bone mineralization (By similarity). Required to maintain normal cerebrospinal fluid phosphate levels (By similarity). Mediates phosphate-induced calcification of vascular smooth muscle cells (VCMCs) and can functionally compensate for loss of SLC20A1 in VCMCs (By similarity). {ECO:0000250|UniProtKB:Q80UP8, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:16790504, ECO:0000269|PubMed:17494632, ECO:0000269|PubMed:22327515, ECO:0000269|PubMed:28722801, ECO:0000269|PubMed:30704756}.; FUNCTION: (Microbial infection) Functions as a retroviral receptor and confers human cells susceptibility to infection to amphotropic murine leukemia virus (A-MuLV), 10A1 murine leukemia virus (10A1 MLV) and some feline leukemia virus subgroup B (FeLV-B) variants. {ECO:0000269|PubMed:11435563, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:8302848}.
Q09666 AHNAK S242 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12888 TP53BP1 S1037 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12888 TP53BP1 S1485 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12905 ILF2 S218 ochoa Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) Chromatin-interacting protein that forms a stable heterodimer with interleukin enhancer-binding factor 3/ILF3 and plays a role in several biological processes including transcription, innate immunity or cell growth (PubMed:18458058, PubMed:31212927). Essential for the efficient reshuttling of ILF3 (isoform 1 and isoform 2) into the nucleus. Together with ILF3, forms an RNA-binding complex that is required for mitotic progression and cytokinesis by regulating the expression of a cluster of mitotic genes. Mechanistically, competes with STAU1/STAU2-mediated mRNA decay (PubMed:32433969). Also plays a role in the inhibition of various viruses including Japanese encephalitis virus or enterovirus 71. {ECO:0000269|PubMed:10574923, ECO:0000269|PubMed:11739746, ECO:0000269|PubMed:18458058, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:31212927, ECO:0000269|PubMed:32433969, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}.
Q13148 TARDBP S342 psp TAR DNA-binding protein 43 (TDP-43) RNA-binding protein that is involved in various steps of RNA biogenesis and processing (PubMed:23519609). Preferentially binds, via its two RNA recognition motifs RRM1 and RRM2, to GU-repeats on RNA molecules predominantly localized within long introns and in the 3'UTR of mRNAs (PubMed:23519609, PubMed:24240615, PubMed:24464995). In turn, regulates the splicing of many non-coding and protein-coding RNAs including proteins involved in neuronal survival, as well as mRNAs that encode proteins relevant for neurodegenerative diseases (PubMed:21358640, PubMed:29438978). Plays a role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts (PubMed:28794432). Also regulates mRNA stability by recruiting CNOT7/CAF1 deadenylase on mRNA 3'UTR leading to poly(A) tail deadenylation and thus shortening (PubMed:30520513). In response to oxidative insult, associates with stalled ribosomes localized to stress granules (SGs) and contributes to cell survival (PubMed:19765185, PubMed:23398327). Also participates in the normal skeletal muscle formation and regeneration, forming cytoplasmic myo-granules and binding mRNAs that encode sarcomeric proteins (PubMed:30464263). Plays a role in the maintenance of the circadian clock periodicity via stabilization of the CRY1 and CRY2 proteins in a FBXL3-dependent manner (PubMed:27123980). Negatively regulates the expression of CDK6 (PubMed:19760257). Regulates the expression of HDAC6, ATG7 and VCP in a PPIA/CYPA-dependent manner (PubMed:25678563). {ECO:0000269|PubMed:11285240, ECO:0000269|PubMed:17481916, ECO:0000269|PubMed:19760257, ECO:0000269|PubMed:19765185, ECO:0000269|PubMed:21358640, ECO:0000269|PubMed:23398327, ECO:0000269|PubMed:23519609, ECO:0000269|PubMed:24240615, ECO:0000269|PubMed:24464995, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28794432, ECO:0000269|PubMed:29438978, ECO:0000269|PubMed:30464263, ECO:0000269|PubMed:30520513}.
Q13164 MAPK7 S496 psp Mitogen-activated protein kinase 7 (MAP kinase 7) (MAPK 7) (EC 2.7.11.24) (Big MAP kinase 1) (BMK-1) (Extracellular signal-regulated kinase 5) (ERK-5) Plays a role in various cellular processes such as proliferation, differentiation and cell survival. The upstream activator of MAPK7 is the MAPK kinase MAP2K5. Upon activation, it translocates to the nucleus and phosphorylates various downstream targets including MEF2C. EGF activates MAPK7 through a Ras-independent and MAP2K5-dependent pathway. As part of the MAPK/ERK signaling pathway, acts as a negative regulator of apoptosis in cardiomyocytes via interaction with STUB1/CHIP and promotion of STUB1-mediated ubiquitination and degradation of ICER-type isoforms of CREM (By similarity). May have a role in muscle cell differentiation. May be important for endothelial function and maintenance of blood vessel integrity. MAP2K5 and MAPK7 interact specifically with one another and not with MEK1/ERK1 or MEK2/ERK2 pathways. Phosphorylates SGK1 at Ser-78 and this is required for growth factor-induced cell cycle progression. Involved in the regulation of p53/TP53 by disrupting the PML-MDM2 interaction. {ECO:0000250|UniProtKB:P0C865, ECO:0000269|PubMed:11254654, ECO:0000269|PubMed:11278431, ECO:0000269|PubMed:22869143, ECO:0000269|PubMed:9384584, ECO:0000269|PubMed:9790194}.
Q13263 TRIM28 S26 ochoa Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}.
Q13573 SNW1 S182 ochoa SNW domain-containing protein 1 (Nuclear protein SkiP) (Nuclear receptor coactivator NCoA-62) (Ski-interacting protein) Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Required for the specific splicing of CDKN1A pre-mRNA; the function probably involves the recruitment of U2AF2 to the mRNA. May recruit PPIL1 to the spliceosome. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in transcriptional regulation. Modulates TGF-beta-mediated transcription via association with SMAD proteins, MYOD1-mediated transcription via association with PABPN1, RB1-mediated transcriptional repression, and retinoid-X receptor (RXR)- and vitamin D receptor (VDR)-dependent gene transcription in a cell line-specific manner probably involving coactivators NCOA1 and GRIP1. Is involved in NOTCH1-mediated transcriptional activation. Binds to multimerized forms of Notch intracellular domain (NICD) and is proposed to recruit transcriptional coactivators such as MAML1 to form an intermediate preactivation complex which associates with DNA-bound CBF-1/RBPJ to form a transcriptional activation complex by releasing SNW1 and redundant NOTCH1 NICD. {ECO:0000269|PubMed:10644367, ECO:0000269|PubMed:11278756, ECO:0000269|PubMed:11371506, ECO:0000269|PubMed:11514567, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12840015, ECO:0000269|PubMed:14985122, ECO:0000269|PubMed:15194481, ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:19818711, ECO:0000269|PubMed:21245387, ECO:0000269|PubMed:21460037, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:9632709, ECO:0000305|PubMed:33509932}.; FUNCTION: (Microbial infection) Is recruited by HIV-1 Tat to Tat:P-TEFb:TAR RNA complexes and is involved in Tat transcription by recruitment of MYC, MEN1 and TRRAP to the HIV promoter. {ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:19818711}.; FUNCTION: (Microbial infection) Proposed to be involved in transcriptional activation by EBV EBNA2 of CBF-1/RBPJ-repressed promoters. {ECO:0000269|PubMed:10644367}.
Q13613 MTMR1 S49 ochoa Phosphatidylinositol-3-phosphate phosphatase MTMR1 (EC 3.1.3.-) (Myotubularin-related protein 1) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (EC 3.1.3.95) Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate, generating phosphatidylinositol (PubMed:11733541, PubMed:27018598). Could also dephosphorylate phosphatidylinositol 3,5-bisphosphate to produce phosphatidylinositol 5-phosphate (PubMed:27018598). {ECO:0000269|PubMed:11733541, ECO:0000269|PubMed:27018598}.
Q13620 CUL4B S47 ochoa Cullin-4B (CUL-4B) Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14578910, PubMed:16322693, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948, PubMed:30166453, PubMed:33854232, PubMed:33854239). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition subunit (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948). CUL4B may act within the complex as a scaffold protein, contributing to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460). Plays a role as part of the E3 ubiquitin-protein ligase complex in polyubiquitination of CDT1, histone H2A, histone H3 and histone H4 in response to radiation-induced DNA damage (PubMed:14578910, PubMed:16678110, PubMed:18593899). Targeted to UV damaged chromatin by DDB2 and may be important for DNA repair and DNA replication (PubMed:16678110). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). Required for ubiquitination of cyclin E (CCNE1 or CCNE2), and consequently, normal G1 cell cycle progression (PubMed:16322693, PubMed:19801544). Regulates the mammalian target-of-rapamycin (mTOR) pathway involved in control of cell growth, size and metabolism (PubMed:18235224). Specific CUL4B regulation of the mTORC1-mediated pathway is dependent upon 26S proteasome function and requires interaction between CUL4B and MLST8 (PubMed:18235224). With CUL4A, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:16322693, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18235224, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19801544, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}.
Q14669 TRIP12 S987 ochoa E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}.
Q14677 CLINT1 S305 ochoa Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}.
Q14697 GANAB S916 ochoa Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}.
Q14980 NUMA1 S2051 ochoa Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}.
Q15172 PPP2R5A S28 psp Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform (PP2A B subunit isoform B'-alpha) (PP2A B subunit isoform B56-alpha) (PP2A B subunit isoform PR61-alpha) (PR61alpha) (PP2A B subunit isoform R5-alpha) The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment.
Q15424 SAFB S32 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q16585 SGCB S21 ochoa Beta-sarcoglycan (Beta-SG) (43 kDa dystrophin-associated glycoprotein) (43DAG) (A3b) Component of the sarcoglycan complex, a subcomplex of the dystrophin-glycoprotein complex which forms a link between the F-actin cytoskeleton and the extracellular matrix.
Q17R98 ZNF827 S152 ochoa Zinc finger protein 827 As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}.
Q32MZ4 LRRFIP1 S120 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q3LXA3 TKFC S350 ochoa Triokinase/FMN cyclase (Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing)) [Includes: ATP-dependent dihydroxyacetone kinase (DHA kinase) (EC 2.7.1.28) (EC 2.7.1.29) (Glycerone kinase) (Triokinase) (Triose kinase); FAD-AMP lyase (cyclizing) (EC 4.6.1.15) (FAD-AMP lyase (cyclic FMN forming)) (FMN cyclase)] Catalyzes both the phosphorylation of dihydroxyacetone and of glyceraldehyde, and the splitting of ribonucleoside diphosphate-X compounds among which FAD is the best substrate. Represses IFIH1-mediated cellular antiviral response (PubMed:17600090). {ECO:0000250|UniProtKB:F1RKQ4, ECO:0000250|UniProtKB:Q4KLZ6, ECO:0000269|PubMed:16289032, ECO:0000269|PubMed:17600090, ECO:0000269|PubMed:32004446, ECO:0000269|PubMed:4688871}.
Q4VCS5 AMOT S714 ochoa Angiomotin Plays a central role in tight junction maintenance via the complex formed with ARHGAP17, which acts by regulating the uptake of polarity proteins at tight junctions. Appears to regulate endothelial cell migration and tube formation. May also play a role in the assembly of endothelial cell-cell junctions. Repressor of YAP1 and WWTR1/TAZ transcription of target genes, potentially via regulation of Hippo signaling-mediated phosphorylation of YAP1 which results in its recruitment to tight junctions (PubMed:21205866). {ECO:0000269|PubMed:11257124, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21205866}.
Q4VCS5 AMOT S718 ochoa Angiomotin Plays a central role in tight junction maintenance via the complex formed with ARHGAP17, which acts by regulating the uptake of polarity proteins at tight junctions. Appears to regulate endothelial cell migration and tube formation. May also play a role in the assembly of endothelial cell-cell junctions. Repressor of YAP1 and WWTR1/TAZ transcription of target genes, potentially via regulation of Hippo signaling-mediated phosphorylation of YAP1 which results in its recruitment to tight junctions (PubMed:21205866). {ECO:0000269|PubMed:11257124, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21205866}.
Q504T8 MIDN S189 ochoa Midnolin (Midbrain nucleolar protein) Facilitates the ubiquitin-independent proteasomal degradation of stimulus-induced transcription factors such as FOSB, EGR1, NR4A1, and IRF4 to the proteasome for degradation (PubMed:37616343). Promotes also the degradation of other substrates such as CBX4 (By similarity). Plays a role in inhibiting the activity of glucokinase GCK and both glucose-induced and basal insulin secretion. {ECO:0000250|UniProtKB:D4AE48, ECO:0000250|UniProtKB:Q3TPJ7, ECO:0000269|PubMed:37616343}.
Q5FWE3 PRRT3 S911 ochoa Proline-rich transmembrane protein 3 None
Q5SY16 NOL9 S88 ochoa Polynucleotide 5'-hydroxyl-kinase NOL9 (EC 2.7.1.78) (Nucleolar protein 9) Polynucleotide kinase that can phosphorylate the 5'-hydroxyl groups of single-stranded and double-stranded RNA and DNA substrates (PubMed:21063389). Involved in rRNA processing and its kinase activity is required for the processing of the 32S precursor into 5.8S and 28S rRNAs, more specifically for the generation of the major 5.8S(S) form (PubMed:21063389). Required for the efficient pre-rRNA processing of internal transcribed spacer 2 (ITS2) (PubMed:21063389). Associates with LAS1L to form an ITS2 pre-rRNA endonuclease-kinase complex and is responsible for the transport of this complex into the nucleolus (PubMed:31288032). {ECO:0000269|PubMed:21063389, ECO:0000269|PubMed:31288032}.
Q5TGY3 AHDC1 S1549 ochoa Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}.
Q5U5Q3 MEX3C S229 ochoa RNA-binding E3 ubiquitin-protein ligase MEX3C (EC 2.3.2.27) (RING finger and KH domain-containing protein 2) (RING finger protein 194) (RING-type E3 ubiquitin transferase MEX3C) E3 ubiquitin ligase responsible for the post-transcriptional regulation of common HLA-A allotypes. Binds to the 3' UTR of HLA-A2 mRNA, and regulates its levels by promoting mRNA decay. RNA binding is sufficient to prevent translation, but ubiquitin ligase activity is required for mRNA degradation. {ECO:0000269|PubMed:22863774, ECO:0000269|PubMed:23446422}.
Q5VST9 OBSCN S7395 ochoa Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}.
Q5VTE0 EEF1A1P5 S414 ochoa Putative elongation factor 1-alpha-like 3 (EF-1-alpha-like 3) (Eukaryotic elongation factor 1 A-like 3) (eEF1A-like 3) (Eukaryotic translation elongation factor 1 alpha-1 pseudogene 5) This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. {ECO:0000250}.
Q5VZ18 SHE S101 ochoa SH2 domain-containing adapter protein E None
Q63ZY3 KANK2 S568 ochoa KN motif and ankyrin repeat domain-containing protein 2 (Ankyrin repeat domain-containing protein 25) (Matrix-remodeling-associated protein 3) (SRC-1-interacting protein) (SIP) (SRC-interacting protein) (SRC1-interacting protein) Involved in transcription regulation by sequestering in the cytoplasm nuclear receptor coactivators such as NCOA1, NCOA2 and NCOA3 (PubMed:17476305). Involved in regulation of caspase-independent apoptosis by sequestering the proapoptotic factor AIFM1 in mitochondria (PubMed:22371500). Pro-apoptotic stimuli can induce its proteasomal degradation allowing the translocation of AIFM1 to the nucleus to induce apoptosis (PubMed:22371500). Involved in the negative control of vitamin D receptor signaling pathway (PubMed:24671081). Involved in actin stress fibers formation through its interaction with ARHGDIA and the regulation of the Rho signaling pathway (PubMed:17996375, PubMed:25961457). May thereby play a role in cell adhesion and migration, regulating for instance podocytes migration during development of the kidney (PubMed:25961457). Through the Rho signaling pathway may also regulate cell proliferation (By similarity). {ECO:0000250|UniProtKB:Q8BX02, ECO:0000269|PubMed:17476305, ECO:0000269|PubMed:17996375, ECO:0000269|PubMed:22371500, ECO:0000269|PubMed:24671081, ECO:0000269|PubMed:25961457}.
Q641Q2 WASHC2A S1114 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q66K89 E4F1 S50 ochoa Transcription factor E4F1 (EC 2.3.2.27) (E4F transcription factor 1) (Putative E3 ubiquitin-protein ligase E4F1) (RING-type E3 ubiquitin transferase E4F1) (Transcription factor E4F) (p120E4F) (p50E4F) May function as a transcriptional repressor. May also function as a ubiquitin ligase mediating ubiquitination of chromatin-associated TP53. Functions in cell survival and proliferation through control of the cell cycle. Functions in the p53 and pRB tumor suppressor pathways and regulates the cyclin CCNA2 transcription.; FUNCTION: Identified as a cellular target of the adenoviral oncoprotein E1A, it is required for both transcriptional activation and repression of viral genes.
Q676U5 ATG16L1 S278 ochoa|psp Autophagy-related protein 16-1 (APG16-like 1) Plays an essential role in both canonical and non-canonical autophagy: interacts with ATG12-ATG5 to mediate the lipidation to ATG8 family proteins (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAPL1, GABARAPL2 and GABARAP) (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576, PubMed:29317426, PubMed:30778222, PubMed:33909989). Acts as a molecular hub, coordinating autophagy pathways via distinct domains that support either canonical or non-canonical signaling (PubMed:29317426, PubMed:30778222). During canonical autophagy, interacts with ATG12-ATG5 to mediate the conjugation of phosphatidylethanolamine (PE) to ATG8 proteins, to produce a membrane-bound activated form of ATG8 (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). Thereby, controls the elongation of the nascent autophagosomal membrane (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). As part of the ATG8 conjugation system with ATG5 and ATG12, required for recruitment of LRRK2 to stressed lysosomes and induction of LRRK2 kinase activity in response to lysosomal stress (By similarity). Also involved in non-canonical autophagy, a parallel pathway involving conjugation of ATG8 proteins to single membranes at endolysosomal compartments, probably by catalyzing conjugation of phosphatidylserine (PS) to ATG8 (PubMed:33909989). Non-canonical autophagy plays a key role in epithelial cells to limit lethal infection by influenza A (IAV) virus (By similarity). Regulates mitochondrial antiviral signaling (MAVS)-dependent type I interferon (IFN-I) production (PubMed:22749352, PubMed:25645662). Negatively regulates NOD1- and NOD2-driven inflammatory cytokine response (PubMed:24238340). Instead, promotes an autophagy-dependent antibacterial pathway together with NOD1 or NOD2 (PubMed:20637199). Plays a role in regulating morphology and function of Paneth cell (PubMed:18849966). {ECO:0000250|UniProtKB:Q8C0J2, ECO:0000269|PubMed:18849966, ECO:0000269|PubMed:20637199, ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:23376921, ECO:0000269|PubMed:23392225, ECO:0000269|PubMed:24238340, ECO:0000269|PubMed:24553140, ECO:0000269|PubMed:24954904, ECO:0000269|PubMed:25645662, ECO:0000269|PubMed:27273576, ECO:0000269|PubMed:29317426, ECO:0000269|PubMed:30778222, ECO:0000269|PubMed:33909989}.
Q69YW2 STUM S29 ochoa Protein stum homolog None
Q6FI81 CIAPIN1 S209 ochoa Anamorsin (Cytokine-induced apoptosis inhibitor 1) (Fe-S cluster assembly protein DRE2 homolog) Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis, facilitating the de novo assembly of a [4Fe-4S] cluster on the scaffold complex NUBP1-NUBP2. Electrons are transferred to CIAPIN1 from NADPH via the FAD- and FMN-containing protein NDOR1 (PubMed:23596212). NDOR1-CIAPIN1 are also required for the assembly of the diferric tyrosyl radical cofactor of ribonucleotide reductase (RNR), probably by providing electrons for reduction during radical cofactor maturation in the catalytic small subunit (By similarity). Has anti-apoptotic effects in the cell. Involved in negative control of cell death upon cytokine withdrawal. Promotes development of hematopoietic cells (By similarity). {ECO:0000250|UniProtKB:P36152, ECO:0000250|UniProtKB:Q8WTY4, ECO:0000255|HAMAP-Rule:MF_03115, ECO:0000269|PubMed:23596212}.
Q6L8Q7 PDE12 S103 ochoa 2',5'-phosphodiesterase 12 (2'-PDE) (2-PDE) (EC 3.1.4.-) (Mitochondrial deadenylase) (EC 3.1.13.4) Enzyme that cleaves 2',5'-phosphodiester bond linking adenosines of the 5'-triphosphorylated oligoadenylates, triphosphorylated oligoadenylates referred as 2-5A modulates the 2-5A system. Degrades triphosphorylated 2-5A to produce AMP and ATP (PubMed:26055709). Also cleaves 3',5'-phosphodiester bond of oligoadenylates (PubMed:21666256, PubMed:26055709, PubMed:30389976). Plays a role as a negative regulator of the 2-5A system that is one of the major pathways for antiviral and antitumor functions induced by interferons (IFNs). Suppression of this enzyme increases cellular 2-5A levels and decreases viral replication in cultured small-airway epithelial cells and Hela cells (PubMed:26055709). {ECO:0000269|PubMed:15231837, ECO:0000269|PubMed:21245038, ECO:0000269|PubMed:21666256, ECO:0000269|PubMed:22285541, ECO:0000269|PubMed:26055709, ECO:0000269|PubMed:30389976}.
Q6P6B1 ERICH5 S142 ochoa Glutamate-rich protein 5 None
Q6P6C2 ALKBH5 Y60 ochoa RNA demethylase ALKBH5 (EC 1.14.11.53) (Alkylated DNA repair protein alkB homolog 5) (Alpha-ketoglutarate-dependent dioxygenase alkB homolog 5) Dioxygenase that specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes (PubMed:23177736, PubMed:24489119, PubMed:24616105, PubMed:24778178, PubMed:34048572, PubMed:36944332, PubMed:37257451, PubMed:37369679). Demethylates RNA by oxidative demethylation, which requires molecular oxygen, alpha-ketoglutarate and iron (PubMed:21264265, PubMed:23177736, PubMed:24489119, PubMed:24616105, PubMed:24778178). Demethylation of m6A mRNA affects mRNA processing, translation and export (PubMed:23177736, PubMed:34048572, PubMed:36944332, PubMed:37257451). Can also demethylate N(6)-methyladenosine in single-stranded DNA (in vitro) (PubMed:24616105). Required for the late meiotic and haploid phases of spermatogenesis by mediating m6A demethylation in spermatocytes and round spermatids: m6A demethylation of target transcripts is required for correct splicing and the production of longer 3'-UTR mRNAs in male germ cells (By similarity). Involved in paraspeckle assembly, a nuclear membraneless organelle, by undergoing liquid-liquid phase separation (PubMed:37369679, PubMed:37474102). Paraspeckle assembly is coupled with m6A demethylation of RNAs, such as NEAT1 non-coding RNA (PubMed:37474102). Also acts as a negative regulator of T-cell development: inhibits gamma-delta T-cell proliferation via demethylation of JAG1 and NOTCH2 transcripts (By similarity). Inhibits regulatory T-cell (Treg) recruitment by mediating demethylation and destabilization of CCL28 mRNAs (By similarity). {ECO:0000250|UniProtKB:Q3TSG4, ECO:0000269|PubMed:21264265, ECO:0000269|PubMed:23177736, ECO:0000269|PubMed:24489119, ECO:0000269|PubMed:24616105, ECO:0000269|PubMed:24778178, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:36944332, ECO:0000269|PubMed:37257451, ECO:0000269|PubMed:37369679, ECO:0000269|PubMed:37474102}.
Q6PGN9 PSRC1 S225 psp Proline/serine-rich coiled-coil protein 1 Required for normal progression through mitosis. Required for normal congress of chromosomes at the metaphase plate, and for normal rate of chromosomal segregation during anaphase. Plays a role in the regulation of mitotic spindle dynamics. Increases the rate of turnover of microtubules on metaphase spindles, and contributes to the generation of normal tension across sister kinetochores. Recruits KIF2A and ANKRD53 to the mitotic spindle and spindle poles. May participate in p53/TP53-regulated growth suppression. {ECO:0000269|PubMed:18411309, ECO:0000269|PubMed:19738423, ECO:0000269|PubMed:26820536}.
Q6PL24 TMED8 S21 ochoa Protein TMED8 None
Q6WCQ1 MPRIP S625 ochoa Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}.
Q6ZRI6 C15orf39 S994 ochoa Uncharacterized protein C15orf39 None
Q6ZRV2 FAM83H S716 ochoa Protein FAM83H May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}.
Q7KZI7 MARK2 S535 ochoa Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}.
Q7Z2K8 GPRIN1 S914 ochoa G protein-regulated inducer of neurite outgrowth 1 (GRIN1) May be involved in neurite outgrowth. {ECO:0000250}.
Q7Z3B3 KANSL1 S26 ochoa KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}.
Q7Z3B3 KANSL1 S27 ochoa KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}.
Q7Z3J2 VPS35L S108 ochoa VPS35 endosomal protein-sorting factor-like (Esophageal cancer-associated protein) Acts as a component of the retriever complex. The retriever complex is a heterotrimeric complex related to retromer cargo-selective complex (CSC) and essential for retromer-independent retrieval and recycling of numerous cargos such as integrin alpha-5/beta-1 (ITGA5:ITGB1) (PubMed:28892079). The recruitment of the retriever complex to the endosomal membrane involves CCC and WASH complexes (PubMed:28892079). In the endosomes, drives the retrieval and recycling of NxxY-motif-containing cargo proteins by coupling to SNX17, a cargo essential for the homeostatic maintenance of numerous cell surface proteins associated with processes that include cell migration, cell adhesion, nutrient supply and cell signaling (PubMed:28892079). Involved in copper-dependent ATP7A trafficking between the trans-Golgi network and vesicles in the cell periphery; the function is proposed to depend on its association with the CCC complex and cooperation with the WASH complex on early endosomes. Seems not to be required for CCC complex stability (PubMed:25355947). {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.; FUNCTION: (Microbial infection) The heterotrimeric retriever complex, in collaboration with the CCC complex, mediates the exit of human papillomavirus to the cell surface. {ECO:0000269|PubMed:28892079}.
Q7Z478 DHX29 Y67 ochoa ATP-dependent RNA helicase DHX29 (EC 3.6.4.13) (DEAH box protein 29) (Nucleic acid helicase DDXx) ATP-binding RNA helicase involved in translation initiation. Part of the 43S pre-initiation complex that is required for efficient initiation on mRNAs of higher eukaryotes with structured 5'-UTRs by promoting efficient NTPase-dependent 48S complex formation. Specifically binds to the 40S ribosome near the mRNA entrance. Does not possess a processive helicase activity. {ECO:0000255|HAMAP-Rule:MF_03068, ECO:0000269|PubMed:19109895, ECO:0000269|PubMed:23706745}.
Q7Z478 DHX29 S68 ochoa ATP-dependent RNA helicase DHX29 (EC 3.6.4.13) (DEAH box protein 29) (Nucleic acid helicase DDXx) ATP-binding RNA helicase involved in translation initiation. Part of the 43S pre-initiation complex that is required for efficient initiation on mRNAs of higher eukaryotes with structured 5'-UTRs by promoting efficient NTPase-dependent 48S complex formation. Specifically binds to the 40S ribosome near the mRNA entrance. Does not possess a processive helicase activity. {ECO:0000255|HAMAP-Rule:MF_03068, ECO:0000269|PubMed:19109895, ECO:0000269|PubMed:23706745}.
Q7Z6E9 RBBP6 S861 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6J0 SH3RF1 S800 ochoa E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}.
Q7Z7C8 TAF8 S19 ochoa Transcription initiation factor TFIID subunit 8 (Protein taube nuss) (TBP-associated factor 43 kDa) (TBP-associated factor 8) (Transcription initiation factor TFIID 43 kDa subunit) (TAFII-43) (TAFII43) (hTAFII43) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF8 is involved in forming the TFIID-B module, together with TAF5 (PubMed:33795473). Mediates both basal and activator-dependent transcription (PubMed:14580349). Plays a role in the differentiation of preadipocyte fibroblasts to adipocytes, however, does not seem to play a role in differentiation of myoblasts (PubMed:14580349). Required for the integration of TAF10 in the TAF complex (PubMed:14580349). May be important for survival of cells of the inner cell mass which constitute the pluripotent cell population of the early embryo (By similarity). {ECO:0000250|UniProtKB:Q9EQH4, ECO:0000269|PubMed:14580349, ECO:0000269|PubMed:33795473}.
Q7Z7K6 CENPV S47 ochoa Centromere protein V (CENP-V) (Nuclear protein p30) (Proline-rich protein 6) Required for distribution of pericentromeric heterochromatin in interphase nuclei and for centromere formation and organization, chromosome alignment and cytokinesis. {ECO:0000269|PubMed:18772885}.
Q86U86 PBRM1 S378 ochoa Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q86U86 PBRM1 S952 ochoa Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q86YR5 GPSM1 S541 ochoa G-protein-signaling modulator 1 (Activator of G-protein signaling 3) Guanine nucleotide dissociation inhibitor (GDI) which functions as a receptor-independent activator of heterotrimeric G-protein signaling. Keeps G(i/o) alpha subunit in its GDP-bound form thus uncoupling heterotrimeric G-proteins signaling from G protein-coupled receptors. Controls spindle orientation and asymmetric cell fate of cerebral cortical progenitors. May also be involved in macroautophagy in intestinal cells. May play a role in drug addiction. {ECO:0000269|PubMed:11024022, ECO:0000269|PubMed:12642577}.
Q8IX21 SLF2 S50 ochoa SMC5-SMC6 complex localization factor protein 2 (Smc5/6 localization factor 1) Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of the SMC5-SMC6 complex to DNA lesions (PubMed:25931565). Plays a role in SMC5-SMC6 complex recruitment for viral restriction. Forms a complex with SIMC1 and this complex is required to recruit SMC5-SMC6 complex to PML nuclear bodies and sites of viral replication (PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}.
Q8IY63 AMOTL1 S720 ochoa Angiomotin-like protein 1 Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. {ECO:0000269|PubMed:22362771}.
Q8IY63 AMOTL1 S724 ochoa Angiomotin-like protein 1 Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. {ECO:0000269|PubMed:22362771}.
Q8IZD0 SAMD14 S151 ochoa Sterile alpha motif domain-containing protein 14 (SAM domain-containing protein 14) None
Q8IZL8 PELP1 S29 ochoa Proline-, glutamic acid- and leucine-rich protein 1 (Modulator of non-genomic activity of estrogen receptor) (Transcription factor HMX3) Coactivator of estrogen receptor-mediated transcription and a corepressor of other nuclear hormone receptors and sequence-specific transcription factors (PubMed:14963108). Plays a role in estrogen receptor (ER) genomic activity when present in the nuclear compartment by activating the ER target genes in a hormonal stimulation dependent manner. Can facilitate ER non-genomic signaling via SRC and PI3K interaction in the cytosol. Plays a role in E2-mediated cell cycle progression by interacting with RB1. May have important functional implications in ER/growth factor cross-talk. Interacts with several growth factor signaling components including EGFR and HRS. Functions as the key stabilizing component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes. Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit. Regulates pre-60S association of the critical remodeling factor MDN1 (PubMed:21326211). May promote tumorigenesis via its interaction with and modulation of several oncogenes including SRC, PI3K, STAT3 and EGFR. Plays a role in cancer cell metastasis via its ability to modulate E2-mediated cytoskeleton changes and cell migration via its interaction with SRC and PI3K. {ECO:0000269|PubMed:11481323, ECO:0000269|PubMed:12682072, ECO:0000269|PubMed:14963108, ECO:0000269|PubMed:15374949, ECO:0000269|PubMed:15456770, ECO:0000269|PubMed:15579769, ECO:0000269|PubMed:15994929, ECO:0000269|PubMed:16140940, ECO:0000269|PubMed:16352611, ECO:0000269|PubMed:16574651, ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}.
Q8N1S5 SLC39A11 S179 ochoa Zinc transporter ZIP11 (Solute carrier family 39 member 11) (Zrt- and Irt-like protein 11) (ZIP-11) Zinc importer that regulates cytosolic zinc concentrations either via zinc influx from the extracellular compartment or efflux from intracellular organelles such as Golgi apparatus. May transport copper ions as well. The transport mechanism remains to be elucidated. {ECO:0000250|UniProtKB:Q8BWY7}.
Q8N3D4 EHBP1L1 S1218 ochoa EH domain-binding protein 1-like protein 1 May act as Rab effector protein and play a role in vesicle trafficking. {ECO:0000305|PubMed:27552051}.
Q8N7J2 AMER2 S233 ochoa APC membrane recruitment protein 2 (Amer2) (Protein FAM123A) Negative regulator of the canonical Wnt signaling pathway involved in neuroectodermal patterning. Acts by specifically binding phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), translocating to the cell membrane and interacting with key regulators of the canonical Wnt signaling pathway, such as components of the beta-catenin destruction complex. {ECO:0000269|PubMed:22128170}.
Q8NBR6 MINDY2 S72 ochoa Ubiquitin carboxyl-terminal hydrolase MINDY-2 (EC 3.4.19.12) (Deubiquitinating enzyme MINDY-2) (Protein FAM63B) Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins (PubMed:27292798). Binds to polyubiquitin chains of different linkage types, including 'Lys-6', 'Lys-11', 'Lys-29', 'Lys-33', 'Lys-48' and 'Lys-63' (PubMed:28082312). May play a regulatory role at the level of protein turnover (PubMed:27292798). {ECO:0000269|PubMed:27292798, ECO:0000269|PubMed:28082312}.
Q8NBR6 MINDY2 S587 ochoa Ubiquitin carboxyl-terminal hydrolase MINDY-2 (EC 3.4.19.12) (Deubiquitinating enzyme MINDY-2) (Protein FAM63B) Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins (PubMed:27292798). Binds to polyubiquitin chains of different linkage types, including 'Lys-6', 'Lys-11', 'Lys-29', 'Lys-33', 'Lys-48' and 'Lys-63' (PubMed:28082312). May play a regulatory role at the level of protein turnover (PubMed:27292798). {ECO:0000269|PubMed:27292798, ECO:0000269|PubMed:28082312}.
Q8NDX1 PSD4 S905 ochoa PH and SEC7 domain-containing protein 4 (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6 B) (Exchange factor for ARF6 B) (Pleckstrin homology and SEC7 domain-containing protein 4) (Telomeric of interleukin-1 cluster protein) Guanine nucleotide exchange factor for ARF6 and ARL14/ARF7. Through ARL14 activation, controls the movement of MHC class II-containing vesicles along the actin cytoskeleton in dendritic cells. Involved in membrane recycling. Interacts with several phosphatidylinositol phosphate species, including phosphatidylinositol 3,4-bisphosphate, phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 4,5-bisphosphate. {ECO:0000269|PubMed:12082148, ECO:0000269|PubMed:21458045}.
Q8NEZ4 KMT2C S46 ochoa Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}.
Q8NHL6 LILRB1 S619 ochoa Leukocyte immunoglobulin-like receptor subfamily B member 1 (LIR-1) (Leukocyte immunoglobulin-like receptor 1) (CD85 antigen-like family member J) (Immunoglobulin-like transcript 2) (ILT-2) (Monocyte/macrophage immunoglobulin-like receptor 7) (MIR-7) (CD antigen CD85j) Receptor for class I MHC antigens. Recognizes a broad spectrum of HLA-A, HLA-B, HLA-C, HLA-G and HLA-F alleles (PubMed:16455647, PubMed:28636952). Receptor for H301/UL18, a human cytomegalovirus class I MHC homolog. Ligand binding results in inhibitory signals and down-regulation of the immune response. Engagement of LILRB1 present on natural killer cells or T-cells by class I MHC molecules protects the target cells from lysis. Interaction with HLA-B or HLA-E leads to inhibition of FCER1A signaling and serotonin release. Inhibits FCGR1A-mediated phosphorylation of cellular proteins and mobilization of intracellular calcium ions (PubMed:11907092, PubMed:9285411, PubMed:9842885). Recognizes HLA-G in complex with B2M/beta-2 microglobulin and a nonamer self-peptide (PubMed:16455647). Upon interaction with peptide-bound HLA-G-B2M complex, triggers secretion of growth-promoting factors by decidual NK cells (PubMed:19304799, PubMed:29262349). Reprograms B cells toward an immune suppressive phenotype (PubMed:24453251). {ECO:0000269|PubMed:11907092, ECO:0000269|PubMed:16455647, ECO:0000269|PubMed:19304799, ECO:0000269|PubMed:24453251, ECO:0000269|PubMed:28636952, ECO:0000269|PubMed:29262349, ECO:0000269|PubMed:9285411, ECO:0000269|PubMed:9842885}.
Q92608 DOCK2 S1731 ochoa Dedicator of cytokinesis protein 2 Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}.
Q92733 PRCC S267 ochoa Proline-rich protein PRCC (Papillary renal cell carcinoma translocation-associated gene protein) May regulate cell cycle progression through interaction with MAD2L2. {ECO:0000269|PubMed:11717438}.
Q92793 CREBBP S980 ochoa CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}.
Q93075 TATDN2 S111 ochoa 3'-5' RNA nuclease TATDN2 (EC 3.1.13.-) (TatD DNase domain containing 2) Mg(2+)-dependent 3'RNA exonuclease and endonuclease that resolves R-loops via specific degradation of R-loop RNA stucture (PubMed:37953292). Shows no activity against D-loop and minimal activity against the RNA strand of an RNA-DNA hybrid duplex oligomer. Has no 3' or 5' exonuclease activity, no uracil glycosylase activity, and no 5' flap endonuclease activity on DNA substrates (PubMed:37953292). May have a role in maintaining genomic stability through its role in R-loop resolution (PubMed:37953292). {ECO:0000269|PubMed:37953292}.
Q96BD0 SLCO4A1 S361 ochoa Solute carrier organic anion transporter family member 4A1 (OATP4A1) (Colon organic anion transporter) (Organic anion transporter polypeptide-related protein 1) (OATP-RP1) (OATPRP1) (POAT) (Organic anion-transporting polypeptide E) (OATP-E) (Sodium-independent organic anion transporter E) (Solute carrier family 21 member 12) Organic anion antiporter with apparent broad substrate specificity. Recognizes various substrates including thyroid hormones 3,3',5-triiodo-L-thyronine (T3), L-thyroxine (T4) and 3,3',5'-triiodo-L-thyronine (rT3), conjugated steroids such as estrone 3-sulfate and estradiol 17-beta glucuronide, bile acids such as taurocholate and prostanoids such as prostaglandin E2, likely operating in a tissue-specific manner (PubMed:10873595, PubMed:19129463, PubMed:30343886). May be involved in uptake of metabolites from the circulation into organs such as kidney, liver or placenta. Possibly drives the selective transport of thyroid hormones and estrogens coupled to an outward glutamate gradient across the microvillous membrane of the placenta (PubMed:30343886). The transport mechanism, its electrogenicity and potential tissue-specific counterions remain to be elucidated (Probable). {ECO:0000269|PubMed:10873595, ECO:0000269|PubMed:19129463, ECO:0000269|PubMed:30343886, ECO:0000305}.
Q96CC6 RHBDF1 S346 ochoa Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}.
Q96FI4 NEIL1 S269 psp Endonuclease 8-like 1 (EC 3.2.2.-) (EC 4.2.99.18) (DNA glycosylase/AP lyase Neil1) (DNA-(apurinic or apyrimidinic site) lyase Neil1) (Endonuclease VIII-like 1) (FPG1) (Nei homolog 1) (NEH1) (Nei-like protein 1) Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as a DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized pyrimidines, such as thymine glycol, formamidopyrimidine (Fapy) and 5-hydroxyuracil. Has marginal activity towards 8-oxoguanine. Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. Has DNA glycosylase/lyase activity towards mismatched uracil and thymine, in particular in U:C and T:C mismatches. Specifically binds 5-hydroxymethylcytosine (5hmC), suggesting that it acts as a specific reader of 5hmC. {ECO:0000269|PubMed:11904416, ECO:0000269|PubMed:12200441, ECO:0000269|PubMed:12509226, ECO:0000269|PubMed:14522990}.
Q96HC4 PDLIM5 S362 ochoa PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}.
Q96IF1 AJUBA S263 ochoa LIM domain-containing protein ajuba Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, mitosis, cell-cell adhesion, cell differentiation, proliferation and migration. Contributes to the linking and/or strengthening of epithelia cell-cell junctions in part by linking adhesive receptors to the actin cytoskeleton. May be involved in signal transduction from cell adhesion sites to the nucleus. Plays an important role in regulation of the kinase activity of AURKA for mitotic commitment. Also a component of the IL-1 signaling pathway modulating IL-1-induced NFKB1 activation by influencing the assembly and activity of the PRKCZ-SQSTM1-TRAF6 multiprotein signaling complex. Functions as an HDAC-dependent corepressor for a subset of GFI1 target genes. Acts as a transcriptional corepressor for SNAI1 and SNAI2/SLUG-dependent repression of E-cadherin transcription. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Positively regulates microRNA (miRNA)-mediated gene silencing. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. {ECO:0000269|PubMed:12417594, ECO:0000269|PubMed:13678582, ECO:0000269|PubMed:15870274, ECO:0000269|PubMed:16413547, ECO:0000269|PubMed:17909014, ECO:0000269|PubMed:18805794, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:22286099}.
Q96JH7 VCPIP1 S46 ochoa Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}.
Q96K37 SLC35E1 S19 ochoa Solute carrier family 35 member E1 Putative transporter. {ECO:0000250}.
Q96PE1 ADGRA2 S1116 ochoa Adhesion G protein-coupled receptor A2 (G-protein coupled receptor 124) (Tumor endothelial marker 5) Endothelial receptor which functions together with RECK to enable brain endothelial cells to selectively respond to Wnt7 signals (WNT7A or WNT7B) (PubMed:28289266, PubMed:30026314). Plays a key role in Wnt7-specific responses, such as endothelial cell sprouting and migration in the forebrain and neural tube, and establishment of the blood-brain barrier (By similarity). Acts as a Wnt7-specific coactivator of canonical Wnt signaling: required to deliver RECK-bound Wnt7 to frizzled by assembling a higher-order RECK-ADGRA2-Fzd-LRP5-LRP6 complex (PubMed:30026314). ADGRA2-tethering function does not rely on its G-protein coupled receptor (GPCR) structure but instead on its combined capacity to interact with RECK extracellularly and recruit the Dishevelled scaffolding protein intracellularly (PubMed:30026314). Binds to the glycosaminoglycans heparin, heparin sulfate, chondroitin sulfate and dermatan sulfate (PubMed:16982628). {ECO:0000250|UniProtKB:Q91ZV8, ECO:0000269|PubMed:16982628, ECO:0000269|PubMed:28289266, ECO:0000269|PubMed:30026314}.
Q96QE2 SLC2A13 S50 ochoa Proton myo-inositol cotransporter (H(+)-myo-inositol cotransporter) (Hmit) (H(+)-myo-inositol symporter) (Solute carrier family 2 member 13) H(+)-myo-inositol cotransporter (PubMed:11500374). Can also transport related stereoisomers (PubMed:11500374). {ECO:0000269|PubMed:11500374}.
Q96QE3 ATAD5 S821 ochoa ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}.
Q96S94 CCNL2 S32 ochoa Cyclin-L2 (Paneth cell-enhanced expression protein) Involved in pre-mRNA splicing. May induce cell death, possibly by acting on the transcription and RNA processing of apoptosis-related factors. {ECO:0000269|PubMed:14684736, ECO:0000269|PubMed:18216018}.
Q96T23 RSF1 S1096 ochoa Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}.
Q96T58 SPEN S1797 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q99611 SEPHS2 S31 ochoa Selenide, water dikinase 2 (EC 2.7.9.3) (Selenium donor protein 2) (Selenophosphate synthase 2) Synthesizes selenophosphate from selenide and ATP. {ECO:0000250|UniProtKB:P49903}.
Q9BQ61 TRIR S111 ochoa Telomerase RNA component interacting RNase (EC 3.1.13.-) (Exoribonuclease TRIR) Exoribonuclease that is part of the telomerase RNA 3' end processing complex and which has the ability to cleave all four unpaired RNA nucleotides from the 5' end or 3' end with higher efficiency for purine bases (PubMed:28322335). {ECO:0000269|PubMed:28322335}.
Q9BQ70 TCF25 S104 ochoa Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}.
Q9BT23 LIMD2 S22 ochoa LIM domain-containing protein 2 Acts as an activator of the protein-kinase ILK, thereby regulating cell motility (PubMed:24590809). {ECO:0000269|PubMed:24590809}.
Q9BTK6 PAGR1 S26 ochoa PAXIP1-associated glutamate-rich protein 1 (Glutamate-rich coactivator interacting with SRC1) (GAS) (PAXIP1-associated protein 1) (PTIP-associated protein 1) Its association with the histone methyltransferase MLL2/MLL3 complex is suggesting a role in epigenetic transcriptional activation. However, in association with PAXIP1/PTIP is proposed to function at least in part independently of the MLL2/MLL3 complex. Proposed to be recruited by PAXIP1 to sites of DNA damage where the PAGR1:PAXIP1 complex is required for cell survival in response to DNA damage independently of the MLL2/MLL3 complex (PubMed:19124460). However, its function in DNA damage has been questioned (By similarity). During immunoglobulin class switching in activated B-cells is involved in transcription regulation of downstream switch regions at the immunoglobulin heavy-chain (Igh) locus independently of the MLL2/MLL3 complex (By similarity). Involved in both estrogen receptor-regulated gene transcription and estrogen-stimulated G1/S cell-cycle transition (PubMed:19039327). Acts as a transcriptional cofactor for nuclear hormone receptors. Inhibits the induction properties of several steroid receptors such as NR3C1, AR and PPARG; the mechanism of inhibition appears to be gene-dependent (PubMed:23161582). {ECO:0000250|UniProtKB:Q99L02, ECO:0000269|PubMed:19039327, ECO:0000269|PubMed:19124460, ECO:0000269|PubMed:23161582, ECO:0000305}.
Q9BV36 MLPH S191 ochoa Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}.
Q9BV36 MLPH S510 ochoa Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}.
Q9BV73 CEP250 S2332 ochoa Centrosome-associated protein CEP250 (250 kDa centrosomal protein) (Cep250) (Centrosomal Nek2-associated protein 1) (C-Nap1) (Centrosomal protein 2) Plays an important role in centrosome cohesion during interphase (PubMed:30404835, PubMed:36282799). Recruits CCDC102B to the proximal ends of centrioles (PubMed:30404835). Maintains centrosome cohesion by forming intercentriolar linkages (PubMed:36282799). Accumulates at the proximal end of each centriole, forming supramolecular assemblies with viscous material properties that promote organelle cohesion (PubMed:36282799). May be involved in ciliogenesis (PubMed:28005958). {ECO:0000269|PubMed:28005958, ECO:0000269|PubMed:30404835, ECO:0000269|PubMed:36282799}.
Q9BVG8 KIFC3 S96 ochoa Kinesin-like protein KIFC3 Minus-end microtubule-dependent motor protein. Involved in apically targeted transport (By similarity). Required for zonula adherens maintenance. {ECO:0000250, ECO:0000269|PubMed:19041755}.
Q9BWF3 RBM4 S309 ochoa|psp RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) RNA-binding factor involved in multiple aspects of cellular processes like alternative splicing of pre-mRNA and translation regulation. Modulates alternative 5'-splice site and exon selection. Acts as a muscle cell differentiation-promoting factor. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation. Antagonizes the activity of the splicing factor PTBP1 to modulate muscle cell-specific exon selection of alpha tropomyosin. Binds to intronic pyrimidine-rich sequence of the TPM1 and MAPT pre-mRNAs. Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA. Exerts a suppressive activity on Cap-dependent translation via binding to CU-rich responsive elements within the 3'UTR of mRNAs, a process increased under stress conditions or during myocytes differentiation. Recruits EIF4A1 to stimulate IRES-dependent translation initiation in respons to cellular stress. Associates to internal ribosome entry segment (IRES) in target mRNA species under stress conditions. Plays a role for miRNA-guided RNA cleavage and translation suppression by promoting association of AGO2-containing miRNPs with their cognate target mRNAs. Associates with miRNAs during muscle cell differentiation. Binds preferentially to 5'-CGCGCG[GCA]-3' motif in vitro. {ECO:0000269|PubMed:12628928, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:16777844, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17284590, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:19801630, ECO:0000269|PubMed:21343338, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:37548402}.
Q9BXI3 NT5C1A S204 ochoa Cytosolic 5'-nucleotidase 1A (cN1A) (EC 3.1.3.5) (EC 3.1.3.89) (EC 3.1.3.99) (5'-deoxynucleotidase) (Cytosolic 5'-nucleotidase IA) (cN-I) (cN-IA) Catalyzes the hydrolysis of ribonucleotide and deoxyribonucleotide monophosphates, releasing inorganic phosphate and the corresponding nucleoside (PubMed:11133996, PubMed:34814800, PubMed:7599155, PubMed:8967393). AMP is the major substrate but can also hydrolyze dCMP and IMP (PubMed:11133996, PubMed:34814800, PubMed:7599155, PubMed:8967393). {ECO:0000269|PubMed:11133996, ECO:0000269|PubMed:34814800, ECO:0000269|PubMed:7599155, ECO:0000269|PubMed:8967393}.
Q9BZV1 UBXN6 S75 ochoa UBX domain-containing protein 6 (UBX domain-containing protein 1) May negatively regulate the ATPase activity of VCP, an ATP-driven segregase that associates with different cofactors to control a wide variety of cellular processes (PubMed:26475856). As a cofactor of VCP, it may play a role in the transport of CAV1 to lysosomes for degradation (PubMed:21822278, PubMed:23335559). It may also play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins (PubMed:19275885). Together with VCP and other cofactors, it may play a role in macroautophagy, regulating for instance the clearance of damaged lysosomes (PubMed:27753622). {ECO:0000269|PubMed:19275885, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26475856, ECO:0000269|PubMed:27753622}.
Q9C0C2 TNKS1BP1 S153 ochoa 182 kDa tankyrase-1-binding protein None
Q9GZV5 WWTR1 S117 ochoa|psp WW domain-containing transcription regulator protein 1 (Transcriptional coactivator with PDZ-binding motif) Transcriptional coactivator which acts as a downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:11118213, PubMed:18227151, PubMed:23911299). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18227151). WWTR1 enhances PAX8 and NKX2-1/TTF1-dependent gene activation (PubMed:19010321). In conjunction with YAP1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (PubMed:18568018). Plays a key role in coupling SMADs to the transcriptional machinery such as the mediator complex (PubMed:18568018). Regulates embryonic stem-cell self-renewal, promotes cell proliferation and epithelial-mesenchymal transition (PubMed:18227151, PubMed:18568018). {ECO:0000269|PubMed:11118213, ECO:0000269|PubMed:18227151, ECO:0000269|PubMed:18568018, ECO:0000269|PubMed:19010321, ECO:0000269|PubMed:23911299}.
Q9GZY8 MFF S275 psp Mitochondrial fission factor Plays a role in mitochondrial and peroxisomal fission (PubMed:18353969, PubMed:23530241, PubMed:24196833). Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface (PubMed:23530241). May be involved in regulation of synaptic vesicle membrane dynamics by recruitment of DNM1L to clathrin-containing vesicles (By similarity). {ECO:0000250|UniProtKB:Q4KM98, ECO:0000269|PubMed:18353969, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:24196833}.
Q9H1A4 ANAPC1 S364 ochoa|psp Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}.
Q9H1B7 IRF2BPL S553 ochoa Probable E3 ubiquitin-protein ligase IRF2BPL (EC 2.3.2.27) (Enhanced at puberty protein 1) (Interferon regulatory factor 2-binding protein-like) Probable E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins (PubMed:29374064). Through the degradation of CTNNB1, functions downstream of FOXF2 to negatively regulate the Wnt signaling pathway (PubMed:29374064). Probably plays a role in the development of the central nervous system and in neuronal maintenance (Probable). Also acts as a transcriptional regulator of genes controlling female reproductive function. May play a role in gene transcription by transactivating GNRH1 promoter and repressing PENK promoter (By similarity). {ECO:0000250|UniProtKB:Q5EIC4, ECO:0000269|PubMed:29374064, ECO:0000305|PubMed:17334524, ECO:0000305|PubMed:29374064, ECO:0000305|PubMed:30057031}.
Q9H400 LIME1 S74 ochoa Lck-interacting transmembrane adapter 1 (Lck-interacting membrane protein) (Lck-interacting molecule) Involved in BCR (B-cell antigen receptor)-mediated signaling in B-cells and TCR (T-cell antigen receptor)-mediated T-cell signaling in T-cells. In absence of TCR signaling, may be involved in CD4-mediated inhibition of T-cell activation. Couples activation of these receptors and their associated kinases with distal intracellular events such as calcium mobilization or MAPK activation through the recruitment of PLCG2, GRB2, GRAP2, and other signaling molecules. {ECO:0000269|PubMed:14610046}.
Q9H4A3 WNK1 S83 ochoa Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}.
Q9H6E5 TUT1 S750 ochoa Speckle targeted PIP5K1A-regulated poly(A) polymerase (Star-PAP) (EC 2.7.7.19) (RNA-binding motif protein 21) (RNA-binding protein 21) (U6 snRNA-specific terminal uridylyltransferase 1) (U6-TUTase) (EC 2.7.7.52) Poly(A) polymerase that creates the 3'-poly(A) tail of specific pre-mRNAs (PubMed:18288197, PubMed:21102410). Localizes to nuclear speckles together with PIP5K1A and mediates polyadenylation of a select set of mRNAs, such as HMOX1 (PubMed:18288197). In addition to polyadenylation, it is also required for the 3'-end cleavage of pre-mRNAs: binds to the 3'UTR of targeted pre-mRNAs and promotes the recruitment and assembly of the CPSF complex on the 3'UTR of pre-mRNAs (PubMed:21102410). In addition to adenylyltransferase activity, also has uridylyltransferase activity (PubMed:16790842, PubMed:18288197, PubMed:28589955). However, the ATP ratio is higher than UTP in cells, suggesting that it functions primarily as a poly(A) polymerase (PubMed:18288197). Acts as a specific terminal uridylyltransferase for U6 snRNA in vitro: responsible for a controlled elongation reaction that results in the restoration of the four 3'-terminal UMP-residues found in newly transcribed U6 snRNA (PubMed:16790842, PubMed:18288197, PubMed:28589955). Not involved in replication-dependent histone mRNA degradation. {ECO:0000269|PubMed:16790842, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:21102410, ECO:0000269|PubMed:28589955}.
Q9H6H4 REEP4 S152 ochoa|psp Receptor expression-enhancing protein 4 Microtubule-binding protein required to ensure proper cell division and nuclear envelope reassembly by sequestering the endoplasmic reticulum away from chromosomes during mitosis. Probably acts by clearing the endoplasmic reticulum membrane from metaphase chromosomes. {ECO:0000269|PubMed:23911198}.
Q9H714 RUBCNL S190 ochoa Protein associated with UVRAG as autophagy enhancer (Pacer) (Protein Rubicon-like) Regulator of autophagy that promotes autophagosome maturation by facilitating the biogenesis of phosphatidylinositol 3-phosphate (PtdIns(3)P) in late steps of autophagy (PubMed:28306502, PubMed:30704899). Acts by antagonizing RUBCN, thereby stimulating phosphatidylinositol 3-kinase activity of the PI3K/PI3KC3 complex (PubMed:28306502). Following anchorage to the autophagosomal SNARE STX17, promotes the recruitment of PI3K/PI3KC3 and HOPS complexes to the autophagosome to regulate the fusion specificity of autophagosomes with late endosomes/lysosomes (PubMed:28306502). Binds phosphoinositides phosphatidylinositol 3-phosphate (PtdIns(3)P), 4-phosphate (PtdIns(4)P) and 5-phosphate (PtdIns(5)P) (PubMed:28306502). In addition to its role in autophagy, acts as a regulator of lipid and glycogen homeostasis (By similarity). May act as a tumor suppressor (Probable). {ECO:0000250|UniProtKB:Q3TD16, ECO:0000269|PubMed:28306502, ECO:0000269|PubMed:30704899, ECO:0000305|PubMed:23522960}.
Q9H9B1 EHMT1 S383 ochoa Histone-lysine N-methyltransferase EHMT1 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 1) (Eu-HMTase1) (G9a-like protein 1) (GLP) (GLP1) (Histone H3-K9 methyltransferase 5) (H3-K9-HMTase 5) (Lysine N-methyltransferase 1D) Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. During G0 phase, it probably contributes to silencing of MYC- and E2F-responsive genes, suggesting a role in G0/G1 transition in cell cycle. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with probable chromatin reader BAZ2B (By similarity). {ECO:0000250|UniProtKB:Q5DW34, ECO:0000269|PubMed:12004135, ECO:0000269|PubMed:20118233}.
Q9HA92 RSAD1 S32 ochoa Radical S-adenosyl methionine domain-containing protein 1, mitochondrial (Putative heme chaperone) May be a heme chaperone, appears to bind heme. Homologous bacterial proteins do not have oxygen-independent coproporphyrinogen-III oxidase activity (Probable). Binds 1 [4Fe-4S] cluster. The cluster is coordinated with 3 cysteines and an exchangeable S-adenosyl-L-methionine (By similarity). {ECO:0000250|UniProtKB:P32131, ECO:0000305|PubMed:29282292}.
Q9HCE9 ANO8 S1013 ochoa Anoctamin-8 (Transmembrane protein 16H) Does not exhibit calcium-activated chloride channel (CaCC) activity.
Q9NQS7 INCENP S148 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NQV5 PRDM11 S63 ochoa PR domain-containing protein 11 (EC 2.1.1.-) May be involved in transcription regulation. {ECO:0000269|PubMed:25499759}.
Q9NUQ6 SPATS2L S392 ochoa SPATS2-like protein (DNA polymerase-transactivated protein 6) (Stress granule and nucleolar protein) (SGNP) None
Q9NWV8 BABAM1 S57 ochoa BRISC and BRCA1-A complex member 1 (Mediator of RAP80 interactions and targeting subunit of 40 kDa) (New component of the BRCA1-A complex) Component of the BRCA1-A complex, a complex that specifically recognizes 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. In the BRCA1-A complex, it is required for the complex integrity and its localization at DSBs. Component of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked ubiquitin in various substrates (PubMed:24075985, PubMed:26195665). In these 2 complexes, it is probably required to maintain the stability of BABAM2 and help the 'Lys-63'-linked deubiquitinase activity mediated by BRCC3/BRCC36 component. The BRISC complex is required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubiquitinating NUMA1 (PubMed:26195665). Plays a role in interferon signaling via its role in the deubiquitination of the interferon receptor IFNAR1; deubiquitination increases IFNAR1 activity by enhancing its stability and cell surface expression (PubMed:24075985). Down-regulates the response to bacterial lipopolysaccharide (LPS) via its role in IFNAR1 deubiquitination (PubMed:24075985). {ECO:0000269|PubMed:19261746, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19261749}.
Q9NYV4 CDK12 S423 ochoa Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}.
Q9P0U3 SENP1 S80 ochoa Sentrin-specific protease 1 (EC 3.4.22.-) (Sentrin/SUMO-specific protease SENP1) Protease that catalyzes two essential functions in the SUMO pathway (PubMed:10652325, PubMed:15199155, PubMed:15487983, PubMed:16253240, PubMed:16553580, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). The first is the hydrolysis of an alpha-linked peptide bond at the C-terminal end of the small ubiquitin-like modifier (SUMO) propeptides, SUMO1, SUMO2 and SUMO3 leading to the mature form of the proteins (PubMed:15487983). The second is the deconjugation of SUMO1, SUMO2 and SUMO3 from targeted proteins, by cleaving an epsilon-linked peptide bond between the C-terminal glycine of the mature SUMO and the lysine epsilon-amino group of the target protein (PubMed:15199155, PubMed:16253240, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). Deconjugates SUMO1 from HIPK2 (PubMed:16253240). Deconjugates SUMO1 from HDAC1 and BHLHE40/DEC1, which decreases its transcriptional repression activity (PubMed:15199155, PubMed:21829689). Deconjugates SUMO1 from CLOCK, which decreases its transcriptional activation activity (PubMed:23160374). Deconjugates SUMO2 from MTA1 (PubMed:21965678). Inhibits N(6)-methyladenosine (m6A) RNA methylation by mediating SUMO1 deconjugation from METTL3 and ALKBH5: METTL3 inhibits the m6A RNA methyltransferase activity, while ALKBH5 desumoylation promotes m6A demethylation (PubMed:29506078, PubMed:34048572, PubMed:37257451). Desumoylates CCAR2 which decreases its interaction with SIRT1 (PubMed:25406032). Deconjugates SUMO1 from GPS2 (PubMed:24943844). {ECO:0000269|PubMed:10652325, ECO:0000269|PubMed:15199155, ECO:0000269|PubMed:15487983, ECO:0000269|PubMed:16253240, ECO:0000269|PubMed:16553580, ECO:0000269|PubMed:21829689, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:23160374, ECO:0000269|PubMed:24943844, ECO:0000269|PubMed:25406032, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:37257451}.
Q9UH62 ARMCX3 S110 ochoa Armadillo repeat-containing X-linked protein 3 (ARM protein lost in epithelial cancers on chromosome X 3) (Protein ALEX3) Regulates mitochondrial aggregation and transport in axons in living neurons. May link mitochondria to the TRAK2-kinesin motor complex via its interaction with Miro and TRAK2. Mitochondrial distribution and dynamics is regulated through ARMCX3 protein degradation, which is promoted by PCK and negatively regulated by WNT1. Enhances the SOX10-mediated transactivation of the neuronal acetylcholine receptor subunit alpha-3 and beta-4 subunit gene promoters. {ECO:0000250|UniProtKB:Q8BHS6}.
Q9UHV7 MED13 S504 ochoa Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}.
Q9UIF8 BAZ2B S540 ochoa Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}.
Q9UIF8 BAZ2B S1507 ochoa Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}.
Q9UL51 HCN2 S80 ochoa Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2 (Brain cyclic nucleotide-gated channel 2) (BCNG-2) Hyperpolarization-activated ion channel that is permeable to sodium and potassium ions. Displays lower selectivity for K(+) over Na(+) ions (PubMed:10228147, PubMed:22006928). Contributes to the native pacemaker currents in heart (If) and in neurons (Ih) (PubMed:10228147, PubMed:10524219). Can also transport ammonium in the distal nephron (By similarity). Involved in the initiation of neuropathic pain in sensory neurons (By similarity). {ECO:0000250|UniProtKB:Q9JKA9, ECO:0000269|PubMed:10228147, ECO:0000269|PubMed:10524219, ECO:0000269|PubMed:22006928}.
Q9ULG1 INO80 S1487 ochoa Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}.
Q9ULG1 INO80 S1489 ochoa Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}.
Q9ULG1 INO80 S1490 ochoa Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}.
Q9UPT6 MAPK8IP3 S278 ochoa C-Jun-amino-terminal kinase-interacting protein 3 (JIP-3) (JNK-interacting protein 3) (JNK MAP kinase scaffold protein 3) (Mitogen-activated protein kinase 8-interacting protein 3) The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:12189133). May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). Promotes neuronal axon elongation in a kinesin- and JNK-dependent manner. Activates cofilin at axon tips via local activation of JNK, thereby regulating filopodial dynamics and enhancing axon elongation. Its binding to kinesin heavy chains (KHC), promotes kinesin-1 motility along microtubules and is essential for axon elongation and regeneration. Regulates cortical neuronal migration by mediating NTRK2/TRKB anterograde axonal transport during brain development (By similarity). Acts as an adapter that bridges the interaction between NTRK2/TRKB and KLC1 and drives NTRK2/TRKB axonal but not dendritic anterograde transport, which is essential for subsequent BDNF-triggered signaling and filopodia formation (PubMed:21775604). {ECO:0000250|UniProtKB:Q9ESN9, ECO:0000269|PubMed:12189133, ECO:0000269|PubMed:21775604}.
Q9UQ35 SRRM2 S2280 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S2376 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9Y2J4 AMOTL2 S602 ochoa Angiomotin-like protein 2 (Leman coiled-coil protein) (LCCP) Regulates the translocation of phosphorylated SRC to peripheral cell-matrix adhesion sites. Required for proper architecture of actin filaments. Plays a role in coupling actin fibers to cell junctions in endothelial cells and is therefore required for correct endothelial cell morphology via facilitating transcellular transmission of mechanical force resulting in endothelial cell elongation (By similarity). Required for the anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane which facilitates organization of radial actin fiber structure and cellular response to contractile forces (PubMed:28842668). This contributes to maintenance of cell area, size, shape, epithelial sheet organization and trophectoderm cell properties that facilitate blastocyst zona hatching (PubMed:28842668). Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. Participates in angiogenesis. Activates the Hippo signaling pathway in response to cell contact inhibition via interaction with and ubiquitination by Crumbs complex-bound WWP1 (PubMed:34404733). Ubiquitinated AMOTL2 then interacts with LATS2 which in turn phosphorylates YAP1, excluding it from the nucleus and localizing it to the cytoplasm and tight junctions, therefore ultimately repressing YAP1-driven transcription of target genes (PubMed:17293535, PubMed:21205866, PubMed:26598551). Acts to inhibit WWTR1/TAZ transcriptional coactivator activity via sequestering WWTR1/TAZ in the cytoplasm and at tight junctions (PubMed:23911299). Regulates the size and protein composition of the podosome cortex and core at myofibril neuromuscular junctions (PubMed:23525008). Selectively promotes FGF-induced MAPK activation through SRC (PubMed:17293535). May play a role in the polarity, proliferation and migration of endothelial cells. {ECO:0000250|UniProtKB:Q8K371, ECO:0000269|PubMed:17293535, ECO:0000269|PubMed:21205866, ECO:0000269|PubMed:21937427, ECO:0000269|PubMed:22362771, ECO:0000269|PubMed:23525008, ECO:0000269|PubMed:23911299, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:28842668, ECO:0000269|PubMed:34404733}.
Q9Y2J4 AMOTL2 S606 ochoa Angiomotin-like protein 2 (Leman coiled-coil protein) (LCCP) Regulates the translocation of phosphorylated SRC to peripheral cell-matrix adhesion sites. Required for proper architecture of actin filaments. Plays a role in coupling actin fibers to cell junctions in endothelial cells and is therefore required for correct endothelial cell morphology via facilitating transcellular transmission of mechanical force resulting in endothelial cell elongation (By similarity). Required for the anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane which facilitates organization of radial actin fiber structure and cellular response to contractile forces (PubMed:28842668). This contributes to maintenance of cell area, size, shape, epithelial sheet organization and trophectoderm cell properties that facilitate blastocyst zona hatching (PubMed:28842668). Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. Participates in angiogenesis. Activates the Hippo signaling pathway in response to cell contact inhibition via interaction with and ubiquitination by Crumbs complex-bound WWP1 (PubMed:34404733). Ubiquitinated AMOTL2 then interacts with LATS2 which in turn phosphorylates YAP1, excluding it from the nucleus and localizing it to the cytoplasm and tight junctions, therefore ultimately repressing YAP1-driven transcription of target genes (PubMed:17293535, PubMed:21205866, PubMed:26598551). Acts to inhibit WWTR1/TAZ transcriptional coactivator activity via sequestering WWTR1/TAZ in the cytoplasm and at tight junctions (PubMed:23911299). Regulates the size and protein composition of the podosome cortex and core at myofibril neuromuscular junctions (PubMed:23525008). Selectively promotes FGF-induced MAPK activation through SRC (PubMed:17293535). May play a role in the polarity, proliferation and migration of endothelial cells. {ECO:0000250|UniProtKB:Q8K371, ECO:0000269|PubMed:17293535, ECO:0000269|PubMed:21205866, ECO:0000269|PubMed:21937427, ECO:0000269|PubMed:22362771, ECO:0000269|PubMed:23525008, ECO:0000269|PubMed:23911299, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:28842668, ECO:0000269|PubMed:34404733}.
Q9Y2U8 LEMD3 S19 ochoa Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}.
Q9Y2U8 LEMD3 S144 ochoa Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}.
Q9Y490 TLN1 S1052 ochoa Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y490 TLN1 S1260 ochoa Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y4H2 IRS2 S391 ochoa|psp Insulin receptor substrate 2 (IRS-2) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}.
Q9Y4H2 IRS2 S714 ochoa Insulin receptor substrate 2 (IRS-2) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}.
Q9Y4H2 IRS2 S730 ochoa Insulin receptor substrate 2 (IRS-2) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}.
Q9Y6R0 NUMBL S263 ochoa Numb-like protein (Numb-related protein) (Numb-R) Plays a role in the process of neurogenesis. Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate. Not required for the proliferation of neural progenitor cells before the onset of embryonic neurogenesis. Also required postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity. Negative regulator of NF-kappa-B signaling pathway. The inhibition of NF-kappa-B activation is mediated at least in part, by preventing MAP3K7IP2 to interact with polyubiquitin chains of TRAF6 and RIPK1 and by stimulating the 'Lys-48'-linked polyubiquitination and degradation of TRAF6 in cortical neurons. {ECO:0000269|PubMed:18299187, ECO:0000269|PubMed:20079715}.
Q14160 SCRIB S917 Sugiyama Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}.
P11279 LAMP1 S335 Sugiyama Lysosome-associated membrane glycoprotein 1 (LAMP-1) (Lysosome-associated membrane protein 1) (CD107 antigen-like family member A) (CD antigen CD107a) Lysosomal membrane glycoprotein which plays an important role in lysosome biogenesis, lysosomal pH regulation, autophagy and cholesterol homeostasis (PubMed:37390818). Acts as an important regulator of lysosomal lumen pH regulation by acting as a direct inhibitor of the proton channel TMEM175, facilitating lysosomal acidification for optimal hydrolase activity (PubMed:37390818). Also plays an important role in NK-cells cytotoxicity (PubMed:2022921, PubMed:23632890). Mechanistically, participates in cytotoxic granule movement to the cell surface and perforin trafficking to the lytic granule (PubMed:23632890). In addition, protects NK-cells from degranulation-associated damage induced by their own cytotoxic granule content (PubMed:23847195). Presents carbohydrate ligands to selectins (PubMed:7685349). {ECO:0000269|PubMed:2022921, ECO:0000269|PubMed:23632890, ECO:0000269|PubMed:23847195, ECO:0000269|PubMed:37390818, ECO:0000269|PubMed:7685349}.; FUNCTION: (Microbial infection) Acts as a receptor for Lassa virus glycoprotein (PubMed:24970085, PubMed:25972533, PubMed:27605678, PubMed:28448640). Also promotes fusion of the virus with host membrane in less acidic endosomes (PubMed:29295909). {ECO:0000269|PubMed:24970085, ECO:0000269|PubMed:25972533, ECO:0000269|PubMed:27605678, ECO:0000269|PubMed:28448640, ECO:0000269|PubMed:29295909}.; FUNCTION: (Microbial infection) Supports the FURIN-mediated cleavage of mumps virus fusion protein F by interacting with both FURIN and the unprocessed form but not the processed form of the viral protein F. {ECO:0000269|PubMed:32295904}.
P20933 AGA Y270 Sugiyama N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase (EC 3.5.1.26) (Aspartylglucosaminidase) (Glycosylasparaginase) (N4-(N-acetyl-beta-glucosaminyl)-L-asparagine amidase) [Cleaved into: Glycosylasparaginase alpha chain; Glycosylasparaginase beta chain] Cleaves the GlcNAc-Asn bond which joins oligosaccharides to the peptide of asparagine-linked glycoproteins. {ECO:0000269|PubMed:1703489, ECO:0000269|PubMed:1904874, ECO:0000269|PubMed:2401370}.
Q8NBP7 PCSK9 S487 Sugiyama Proprotein convertase subtilisin/kexin type 9 (EC 3.4.21.-) (Neural apoptosis-regulated convertase 1) (NARC-1) (Proprotein convertase 9) (PC9) (Subtilisin/kexin-like protease PC9) Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments (PubMed:18039658). Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation (PubMed:17461796, PubMed:18197702, PubMed:18799458, PubMed:22074827). Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway (PubMed:18660751). Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways. {ECO:0000269|PubMed:17461796, ECO:0000269|PubMed:18039658, ECO:0000269|PubMed:18197702, ECO:0000269|PubMed:18660751, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22074827, ECO:0000269|PubMed:22493497, ECO:0000269|PubMed:22580899}.
P51617 IRAK1 S588 Sugiyama Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}.
Q9BX68 HINT2 S57 Sugiyama Adenosine 5'-monophosphoramidase HINT2 (EC 3.9.1.-) (HINT-3) (HIT-17kDa) (Histidine triad nucleotide-binding protein 2, mitochondrial) (HINT-2) (PKCI-1-related HIT protein) Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (PubMed:16762638, PubMed:31990367). Hydrolyzes adenosine 5'-O-p-nitrophenylphosphoramidate (AMP-pNA) (PubMed:16762638). Hydrolyzes fluorogenic purine nucleoside tryptamine phosphoramidates in vitro (PubMed:31990367). May be involved in steroid biosynthesis (PubMed:18653718). May play a role in apoptosis (PubMed:16762638). {ECO:0000269|PubMed:16762638, ECO:0000269|PubMed:18653718, ECO:0000269|PubMed:31990367}.
Q15751 HERC1 S3244 Sugiyama Probable E3 ubiquitin-protein ligase HERC1 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 1) (HECT-type E3 ubiquitin transferase HERC1) (p532) (p619) Involved in membrane trafficking via some guanine nucleotide exchange factor (GEF) activity and its ability to bind clathrin. Acts as a GEF for Arf and Rab, by exchanging bound GDP for free GTP. Binds phosphatidylinositol 4,5-bisphosphate, which is required for GEF activity. May also act as a E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:15642342, ECO:0000269|PubMed:8861955, ECO:0000269|PubMed:9233772}.
Q8TF05 PPP4R1 S547 Sugiyama Serine/threonine-protein phosphatase 4 regulatory subunit 1 Regulatory subunit of serine/threonine-protein phosphatase 4. May play a role in regulation of cell division in renal glomeruli. The PPP4C-PPP4R1 PP4 complex may play a role in dephosphorylation and regulation of HDAC3. Plays a role in the inhibition of TNF-induced NF-kappa-B activation by regulating the dephosphorylation of TRAF2. {ECO:0000269|PubMed:15805470}.; FUNCTION: (Microbial infection) Participates in merkel polyomavirus-mediated inhibition of NF-kappa-B by bridging viral small tumor antigen with NEMO. {ECO:0000269|PubMed:28445980}.
P52888 THOP1 S29 Sugiyama Thimet oligopeptidase (EC 3.4.24.15) (Endopeptidase 24.15) (MP78) Involved in the metabolism of neuropeptides under 20 amino acid residues long. Involved in cytoplasmic peptide degradation (PubMed:17251185, PubMed:7639763). Able to degrade the amyloid-beta precursor protein and generate amyloidogenic fragments (PubMed:17251185, PubMed:7639763). Also acts as a regulator of cannabinoid signaling pathway by mediating degradation of hemopressin, an antagonist peptide of the cannabinoid receptor CNR1 (By similarity). {ECO:0000250|UniProtKB:P24155, ECO:0000269|PubMed:17251185, ECO:0000269|PubMed:7639763}.
P55084 HADHB S248 Sugiyama Trifunctional enzyme subunit beta, mitochondrial (TP-beta) [Includes: 3-ketoacyl-CoA thiolase (EC 2.3.1.155) (EC 2.3.1.16) (Acetyl-CoA acyltransferase) (Beta-ketothiolase)] Mitochondrial trifunctional enzyme catalyzes the last three of the four reactions of the mitochondrial beta-oxidation pathway (PubMed:29915090, PubMed:30850536, PubMed:8135828). The mitochondrial beta-oxidation pathway is the major energy-producing process in tissues and is performed through four consecutive reactions breaking down fatty acids into acetyl-CoA (PubMed:29915090). Among the enzymes involved in this pathway, the trifunctional enzyme exhibits specificity for long-chain fatty acids (PubMed:30850536). Mitochondrial trifunctional enzyme is a heterotetrameric complex composed of two proteins, the trifunctional enzyme subunit alpha/HADHA carries the 2,3-enoyl-CoA hydratase and the 3-hydroxyacyl-CoA dehydrogenase activities, while the trifunctional enzyme subunit beta/HADHB described here bears the 3-ketoacyl-CoA thiolase activity (PubMed:29915090, PubMed:30850536, PubMed:8135828). {ECO:0000269|PubMed:29915090, ECO:0000269|PubMed:30850536, ECO:0000269|PubMed:8135828, ECO:0000303|PubMed:29915090, ECO:0000303|PubMed:30850536}.
Q99575 POP1 S127 Sugiyama Ribonucleases P/MRP protein subunit POP1 (hPOP1) Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}.
Q15043 SLC39A14 S56 Sugiyama Metal cation symporter ZIP14 (LIV-1 subfamily of ZIP zinc transporter 4) (LZT-Hs4) (Solute carrier family 39 member 14) (Zrt- and Irt-like protein 14) (ZIP-14) Electroneutral transporter of the plasma membrane mediating the cellular uptake of the divalent metal cations zinc, manganese and iron that are important for tissue homeostasis, metabolism, development and immunity (PubMed:15642354, PubMed:27231142, PubMed:29621230). Functions as an energy-dependent symporter, transporting through the membranes an electroneutral complex composed of a divalent metal cation and two bicarbonate anions (By similarity). Beside these endogenous cellular substrates, can also import cadmium a non-essential metal which is cytotoxic and carcinogenic (By similarity). Controls the cellular uptake by the intestinal epithelium of systemic zinc, which is in turn required to maintain tight junctions and the intestinal permeability (By similarity). Modifies the activity of zinc-dependent phosphodiesterases, thereby indirectly regulating G protein-coupled receptor signaling pathways important for gluconeogenesis and chondrocyte differentiation (By similarity). Regulates insulin receptor signaling, glucose uptake, glycogen synthesis and gluconeogenesis in hepatocytes through the zinc-dependent intracellular catabolism of insulin (PubMed:27703010). Through zinc cellular uptake also plays a role in the adaptation of cells to endoplasmic reticulum stress (By similarity). Major manganese transporter of the basolateral membrane of intestinal epithelial cells, it plays a central role in manganese systemic homeostasis through intestinal manganese uptake (PubMed:31028174). Also involved in manganese extracellular uptake by cells of the blood-brain barrier (PubMed:31699897). May also play a role in manganese and zinc homeostasis participating in their elimination from the blood through the hepatobiliary excretion (By similarity). Also functions in the extracellular uptake of free iron. May also function intracellularly and mediate the transport from endosomes to cytosol of iron endocytosed by transferrin (PubMed:20682781). Plays a role in innate immunity by regulating the expression of cytokines by activated macrophages (PubMed:23052185). {ECO:0000250|UniProtKB:Q75N73, ECO:0000269|PubMed:15642354, ECO:0000269|PubMed:20682781, ECO:0000269|PubMed:23052185, ECO:0000269|PubMed:27231142, ECO:0000269|PubMed:27703010, ECO:0000269|PubMed:29621230, ECO:0000269|PubMed:31028174, ECO:0000269|PubMed:31699897}.
O15230 LAMA5 S2648 Sugiyama Laminin subunit alpha-5 (Laminin-10 subunit alpha) (Laminin-11 subunit alpha) (Laminin-15 subunit alpha) Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. Plays a role in the regulation of skeletogenesis, through a mechanism that involves integrin-mediated signaling and PTK2B/PYK2 (PubMed:33242826). {ECO:0000269|PubMed:33242826}.
Q53SF7 COBLL1 S876 PSP Cordon-bleu protein-like 1 None
P18858 LIG1 S388 Sugiyama DNA ligase 1 (EC 6.5.1.1) (DNA ligase I) (Polydeoxyribonucleotide synthase [ATP] 1) DNA ligase that seals nicks in double-stranded during DNA repair (PubMed:30395541). Also involved in DNA replication and DNA recombination. {ECO:0000269|PubMed:30395541}.
Q08378 GOLGA3 S1036 Sugiyama Golgin subfamily A member 3 (Golgi complex-associated protein of 170 kDa) (GCP170) (Golgin-160) Golgi auto-antigen; probably involved in maintaining Golgi structure.
Q86UR5 RIMS1 S242 SIGNOR Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}.
A0A0A6YYC7 ZFP91-CNTF S82 ochoa E3 ubiquitin-protein ligase ZFP91 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase ZFP91) (Zinc finger protein 91 homolog) Atypical E3 ubiquitin-protein ligase that mediates 'Lys-63'-linked ubiquitination of MAP3K14/NIK, leading to stabilize and activate MAP3K14/NIK. It thereby acts as an activator of the non-canonical NF-kappa-B2/NFKB2 pathway. May also play an important role in cell proliferation and/or anti-apoptosis. {ECO:0000256|ARBA:ARBA00054990}.
A2A288 ZC3H12D S336 ochoa Probable ribonuclease ZC3H12D (EC 3.1.-.-) (MCP-induced protein 4) (Transformed follicular lymphoma) (Zinc finger CCCH domain-containing protein 12D) (p34) May regulate cell growth likely by suppressing RB1 phosphorylation (PubMed:19531561). May function as RNase and regulate the levels of target RNA species (Potential). In association with ZC3H12A enhances the degradation of interleukin IL-6 mRNA level in activated macrophages (PubMed:26134560). Serve as a tumor suppressor in certain leukemia cells (PubMed:17210687). Overexpression inhibits the G1 to S phase progression through suppression of RB1 phosphorylation (PubMed:19531561). {ECO:0000269|PubMed:17210687, ECO:0000269|PubMed:19531561, ECO:0000269|PubMed:26134560, ECO:0000305}.
A6NFI3 ZNF316 T565 ochoa Zinc finger protein 316 May be involved in transcriptional regulation. {ECO:0000250}.
B0YJ81 HACD1 S22 ochoa Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 1 (EC 4.2.1.134) (3-hydroxyacyl-CoA dehydratase 1) (HACD1) (Cementum-attachment protein) (CAP) (Protein-tyrosine phosphatase-like member A) [Isoform 1]: Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators. {ECO:0000269|PubMed:18554506}.; FUNCTION: [Isoform 2]: In tooth development, may play a role in the recruitment and the differentiation of cells that contribute to cementum formation. May also bind hydroxyapatite and regulate its crystal nucleation to form cementum. {ECO:0000269|PubMed:22067203}.
E7EW31 PROB1 S862 ochoa Proline-rich basic protein 1 None
H3BQZ7 HNRNPUL2-BSCL2 T135 ochoa Heterogeneous nuclear ribonucleoprotein U-like protein 2 None
H3BQZ7 HNRNPUL2-BSCL2 S138 ochoa Heterogeneous nuclear ribonucleoprotein U-like protein 2 None
O00116 AGPS S80 ochoa Alkyldihydroxyacetonephosphate synthase, peroxisomal (Alkyl-DHAP synthase) (EC 2.5.1.26) (Aging-associated gene 5 protein) (Alkylglycerone-phosphate synthase) Catalyzes the exchange of the acyl chain in acyl-dihydroxyacetonephosphate (acyl-DHAP) for a long chain fatty alcohol, yielding the first ether linked intermediate, i.e. alkyl-dihydroxyacetonephosphate (alkyl-DHAP), in the pathway of ether lipid biosynthesis. {ECO:0000269|PubMed:8399344, ECO:0000269|PubMed:9553082}.
O00116 AGPS T82 ochoa Alkyldihydroxyacetonephosphate synthase, peroxisomal (Alkyl-DHAP synthase) (EC 2.5.1.26) (Aging-associated gene 5 protein) (Alkylglycerone-phosphate synthase) Catalyzes the exchange of the acyl chain in acyl-dihydroxyacetonephosphate (acyl-DHAP) for a long chain fatty alcohol, yielding the first ether linked intermediate, i.e. alkyl-dihydroxyacetonephosphate (alkyl-DHAP), in the pathway of ether lipid biosynthesis. {ECO:0000269|PubMed:8399344, ECO:0000269|PubMed:9553082}.
O00512 BCL9 S917 ochoa B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}.
O14497 ARID1A S357 ochoa AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
O14497 ARID1A S366 ochoa AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
O14519 CDK2AP1 S26 ochoa Cyclin-dependent kinase 2-associated protein 1 (CDK2-associated protein 1) (Deleted in oral cancer 1) (DOC-1) (Putative oral cancer suppressor) Inhibitor of cyclin-dependent kinase CDK2 (By similarity). Also acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:20523938, PubMed:28977666). {ECO:0000250|UniProtKB:O35207, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:20523938, ECO:0000269|PubMed:28977666}.
O14654 IRS4 S1185 ochoa Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}.
O14979 HNRNPDL T119 ochoa Heterogeneous nuclear ribonucleoprotein D-like (hnRNP D-like) (hnRNP DL) (AU-rich element RNA-binding factor) (JKT41-binding protein) (Protein laAUF1) Acts as a transcriptional regulator. Promotes transcription repression. Promotes transcription activation in differentiated myotubes (By similarity). Binds to double- and single-stranded DNA sequences. Binds to the transcription suppressor CATR sequence of the COX5B promoter (By similarity). Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Binds both to nuclear and cytoplasmic poly(A) mRNAs. Binds to poly(G) and poly(A), but not to poly(U) or poly(C) RNA homopolymers. Binds to the 5'-ACUAGC-3' RNA consensus sequence. {ECO:0000250, ECO:0000269|PubMed:9538234}.
O15119 TBX3 S680 ochoa T-box transcription factor TBX3 (T-box protein 3) Transcriptional repressor involved in developmental processes (PubMed:10468588). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:12000749). Probably plays a role in limb pattern formation (PubMed:10468588). Required for mammary placode induction, and maintenance of the mammary buds during development (By similarity). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX2 (By similarity). Required, together with TBX2, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with, TBX2 in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). {ECO:0000250|UniProtKB:P70324, ECO:0000269|PubMed:10468588, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537}.
O15417 TNRC18 S1359 ochoa Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) None
O43824 GTPBP6 S43 ochoa Putative GTP-binding protein 6 (Pseudoautosomal GTP-binding protein-like) None
O60264 SMARCA5 S66 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A5) (EC 3.6.4.-) (Sucrose nonfermenting protein 2 homolog) (hSNF2H) ATPase that possesses intrinsic ATP-dependent nucleosome-remodeling activity (PubMed:12972596, PubMed:28801535). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair; this may require intact histone H4 tails (PubMed:10880450, PubMed:12198550, PubMed:12434153, PubMed:12972596, PubMed:23911928, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A/ACF1-, BAZ1B/WSTF-, BAZ2A/TIP5- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:15543136, PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Binds to core histones together with RSF1, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Involved in DNA replication and together with BAZ1A/ACF1 is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). Probably plays a role in repression of RNA polymerase I dependent transcription of the rDNA locus, through the recruitment of the SIN3/HDAC1 corepressor complex to the rDNA promoter (By similarity). Essential component of the WICH-5 ISWI chromatin-remodeling complex (also called the WICH complex), a chromatin-remodeling complex that mobilizes nucleosomes and reconfigures irregular chromatin to a regular nucleosomal array structure (PubMed:11980720, PubMed:15543136). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the histone H2AX phosphorylation at 'Tyr-142', and is involved in the maintenance of chromatin structures during DNA replication processes (By similarity). Essential component of NoRC-5 ISWI chromatin-remodeling complex, a complex that mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). {ECO:0000250|UniProtKB:Q91ZW3, ECO:0000269|PubMed:10880450, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:12198550, ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:28801535}.
O60346 PHLPP1 S50 ochoa|psp PH domain leucine-rich repeat-containing protein phosphatase 1 (EC 3.1.3.16) (Pleckstrin homology domain-containing family E member 1) (PH domain-containing family E member 1) (Suprachiasmatic nucleus circadian oscillatory protein) (hSCOP) Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT2 and AKT3, 'Ser-660' of PRKCB and 'Ser-657' of PRKCA (PubMed:15808505, PubMed:17386267, PubMed:18162466). Isoform 2 seems to have a major role in regulating Akt signaling in hippocampal neurons (By similarity). Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and suppression of tumor growth. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation (PubMed:18162466). Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor (PubMed:19079341). Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). May act as a negative regulator of K-Ras signaling in membrane rafts (By similarity). Involved in the hippocampus-dependent long-term memory formation (By similarity). Involved in circadian control by regulating the consolidation of circadian periodicity after resetting (By similarity). Involved in development and function of regulatory T-cells (By similarity). {ECO:0000250|UniProtKB:Q8CHE4, ECO:0000250|UniProtKB:Q9WTR8, ECO:0000269|PubMed:15808505, ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}.
O60346 PHLPP1 T56 psp PH domain leucine-rich repeat-containing protein phosphatase 1 (EC 3.1.3.16) (Pleckstrin homology domain-containing family E member 1) (PH domain-containing family E member 1) (Suprachiasmatic nucleus circadian oscillatory protein) (hSCOP) Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT2 and AKT3, 'Ser-660' of PRKCB and 'Ser-657' of PRKCA (PubMed:15808505, PubMed:17386267, PubMed:18162466). Isoform 2 seems to have a major role in regulating Akt signaling in hippocampal neurons (By similarity). Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and suppression of tumor growth. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation (PubMed:18162466). Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor (PubMed:19079341). Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). May act as a negative regulator of K-Ras signaling in membrane rafts (By similarity). Involved in the hippocampus-dependent long-term memory formation (By similarity). Involved in circadian control by regulating the consolidation of circadian periodicity after resetting (By similarity). Involved in development and function of regulatory T-cells (By similarity). {ECO:0000250|UniProtKB:Q8CHE4, ECO:0000250|UniProtKB:Q9WTR8, ECO:0000269|PubMed:15808505, ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}.
O75427 LRCH4 T19 ochoa Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}.
O75427 LRCH4 T20 ochoa Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}.
O75427 LRCH4 S25 ochoa Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}.
O94811 TPPP S23 ochoa Tubulin polymerization-promoting protein (TPPP) (EC 3.6.5.-) (25 kDa brain-specific protein) (TPPP/p25) (p24) (p25-alpha) Regulator of microtubule dynamics that plays a key role in myelination by promoting elongation of the myelin sheath (PubMed:31522887). Acts as a microtubule nucleation factor in oligodendrocytes: specifically localizes to the postsynaptic Golgi apparatus region, also named Golgi outpost, and promotes microtubule nucleation, an important step for elongation of the myelin sheath (PubMed:31522887, PubMed:33831707). Required for both uniform polarized growth of distal microtubules as well as directing the branching of proximal processes (PubMed:31522887). Shows magnesium-dependent GTPase activity; the role of the GTPase activity is unclear (PubMed:21316364, PubMed:21995432). In addition to microtubule nucleation activity, also involved in microtubule bundling and stabilization of existing microtubules, thereby maintaining the integrity of the microtubule network (PubMed:17105200, PubMed:17693641, PubMed:18028908, PubMed:26289831). Regulates microtubule dynamics by promoting tubulin acetylation: acts by inhibiting the tubulin deacetylase activity of HDAC6 (PubMed:20308065, PubMed:23093407). Also regulates cell migration: phosphorylation by ROCK1 inhibits interaction with HDAC6, resulting in decreased acetylation of tubulin and increased cell motility (PubMed:23093407). Plays a role in cell proliferation by regulating the G1/S-phase transition (PubMed:23355470). Involved in astral microtubule organization and mitotic spindle orientation during early stage of mitosis; this process is regulated by phosphorylation by LIMK2 (PubMed:22328514). {ECO:0000269|PubMed:17105200, ECO:0000269|PubMed:17693641, ECO:0000269|PubMed:18028908, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:21316364, ECO:0000269|PubMed:21995432, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:26289831, ECO:0000269|PubMed:31522887}.
O94880 PHF14 S163 ochoa PHD finger protein 14 Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}.
O94880 PHF14 S165 ochoa PHD finger protein 14 Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}.
O95425 SVIL S620 ochoa Supervillin (Archvillin) (p205/p250) [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}.
O95817 BAG3 T144 ochoa BAG family molecular chaperone regulator 3 (BAG-3) (Bcl-2-associated athanogene 3) (Bcl-2-binding protein Bis) (Docking protein CAIR-1) Co-chaperone and adapter protein that connects different classes of molecular chaperones including heat shock proteins 70 (HSP70s), e.g. HSPA1A/HSP70 or HSPA8/HSC70, and small heat shock proteins (sHSPs), e.g. HSPB8 (PubMed:27884606, PubMed:30559338). Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from HSP70s, thereby triggering client protein release (PubMed:27884606, PubMed:30559338). Nucleotide release is mediated via BAG3 binding to the nucleotide-binding domain (NBD) of HSP70s, whereas client release is mediated via binding to the substrate-binding domain (SBD) (PubMed:27474739, PubMed:9873016). Has anti-apoptotic activity (PubMed:10597216). Plays a role in the HSF1 nucleocytoplasmic transport (PubMed:26159920). {ECO:0000269|PubMed:10597216, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:26159920, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27884606, ECO:0000269|PubMed:30559338, ECO:0000269|PubMed:9873016}.
O95817 BAG3 S173 ochoa BAG family molecular chaperone regulator 3 (BAG-3) (Bcl-2-associated athanogene 3) (Bcl-2-binding protein Bis) (Docking protein CAIR-1) Co-chaperone and adapter protein that connects different classes of molecular chaperones including heat shock proteins 70 (HSP70s), e.g. HSPA1A/HSP70 or HSPA8/HSC70, and small heat shock proteins (sHSPs), e.g. HSPB8 (PubMed:27884606, PubMed:30559338). Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from HSP70s, thereby triggering client protein release (PubMed:27884606, PubMed:30559338). Nucleotide release is mediated via BAG3 binding to the nucleotide-binding domain (NBD) of HSP70s, whereas client release is mediated via binding to the substrate-binding domain (SBD) (PubMed:27474739, PubMed:9873016). Has anti-apoptotic activity (PubMed:10597216). Plays a role in the HSF1 nucleocytoplasmic transport (PubMed:26159920). {ECO:0000269|PubMed:10597216, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:26159920, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27884606, ECO:0000269|PubMed:30559338, ECO:0000269|PubMed:9873016}.
O96005 CLPTM1 S21 ochoa Putative lipid scramblase CLPTM1 (Cleft lip and palate transmembrane protein 1) Involved in GABAergic but not glutamatergic transmission. Binds and traps GABAA receptors in the endoplasmic reticulum (ER). Modulates postsynaptic GABAergic transmission, and therefore inhibitory neurotransmission, by reducing the plasma membrane expression of these receptors. Altered GABAergic signaling is one among many causes of cleft palate (By similarity). Might function as a lipid scramblase, translocating lipids in membranes from one leaflet to the other one (By similarity). Required for efficient glycosylphosphatidylinositol (GPI) inositol deacylation in the ER, which is a crucial step to switch GPI-anchored proteins (GPI-APs) from protein folding to transport states (PubMed:29255114). May play a role in T-cell development (By similarity). {ECO:0000250|UniProtKB:Q8VBZ3, ECO:0000250|UniProtKB:Q96KA5, ECO:0000269|PubMed:29255114}.
O96005 CLPTM1 S22 ochoa Putative lipid scramblase CLPTM1 (Cleft lip and palate transmembrane protein 1) Involved in GABAergic but not glutamatergic transmission. Binds and traps GABAA receptors in the endoplasmic reticulum (ER). Modulates postsynaptic GABAergic transmission, and therefore inhibitory neurotransmission, by reducing the plasma membrane expression of these receptors. Altered GABAergic signaling is one among many causes of cleft palate (By similarity). Might function as a lipid scramblase, translocating lipids in membranes from one leaflet to the other one (By similarity). Required for efficient glycosylphosphatidylinositol (GPI) inositol deacylation in the ER, which is a crucial step to switch GPI-anchored proteins (GPI-APs) from protein folding to transport states (PubMed:29255114). May play a role in T-cell development (By similarity). {ECO:0000250|UniProtKB:Q8VBZ3, ECO:0000250|UniProtKB:Q96KA5, ECO:0000269|PubMed:29255114}.
P05386 RPLP1 T84 ochoa Large ribosomal subunit protein P1 (60S acidic ribosomal protein P1) Plays an important role in the elongation step of protein synthesis.
P07199 CENPB S156 ochoa Major centromere autoantigen B (Centromere protein B) (CENP-B) Interacts with centromeric heterochromatin in chromosomes and binds to a specific 17 bp subset of alphoid satellite DNA, called the CENP-B box (PubMed:11726497). May organize arrays of centromere satellite DNA into a higher-order structure which then directs centromere formation and kinetochore assembly in mammalian chromosomes (Probable). {ECO:0000269|PubMed:11726497, ECO:0000305}.
P07199 CENPB S165 ochoa Major centromere autoantigen B (Centromere protein B) (CENP-B) Interacts with centromeric heterochromatin in chromosomes and binds to a specific 17 bp subset of alphoid satellite DNA, called the CENP-B box (PubMed:11726497). May organize arrays of centromere satellite DNA into a higher-order structure which then directs centromere formation and kinetochore assembly in mammalian chromosomes (Probable). {ECO:0000269|PubMed:11726497, ECO:0000305}.
P09017 HOXC4 S243 ochoa Homeobox protein Hox-C4 (Homeobox protein CP19) (Homeobox protein Hox-3E) Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis.
P11831 SRF S77 psp Serum response factor (SRF) SRF is a transcription factor that binds to the serum response element (SRE), a short sequence of dyad symmetry located 300 bp to the 5' of the site of transcription initiation of some genes (such as FOS). Together with MRTFA transcription coactivator, controls expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration. The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. Required for cardiac differentiation and maturation. {ECO:0000250|UniProtKB:Q9JM73}.
P12931 SRC S70 ochoa|psp Proto-oncogene tyrosine-protein kinase Src (EC 2.7.10.2) (Proto-oncogene c-Src) (pp60c-src) (p60-Src) Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors (PubMed:34234773). Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates such as AFAP1. Phosphorylation of AFAP1 allows the SRC SH2 domain to bind AFAP1 and to localize to actin filaments. Cytoskeletal reorganization is also controlled through the phosphorylation of cortactin (CTTN) (Probable). When cells adhere via focal adhesions to the extracellular matrix, signals are transmitted by integrins into the cell resulting in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN) (PubMed:21411625). In addition to phosphorylating focal adhesion proteins, SRC is also active at the sites of cell-cell contact adherens junctions and phosphorylates substrates such as beta-catenin (CTNNB1), delta-catenin (CTNND1), and plakoglobin (JUP). Another type of cell-cell junction, the gap junction, is also a target for SRC, which phosphorylates connexin-43 (GJA1). SRC is implicated in regulation of pre-mRNA-processing and phosphorylates RNA-binding proteins such as KHDRBS1 (Probable). Phosphorylates PKP3 at 'Tyr-195' in response to reactive oxygen species, which may cause the release of PKP3 from desmosome cell junctions into the cytoplasm (PubMed:25501895). Also plays a role in PDGF-mediated tyrosine phosphorylation of both STAT1 and STAT3, leading to increased DNA binding activity of these transcription factors (By similarity). Involved in the RAS pathway through phosphorylation of RASA1 and RASGRF1 (PubMed:11389730). Plays a role in EGF-mediated calcium-activated chloride channel activation (PubMed:18586953). Required for epidermal growth factor receptor (EGFR) internalization through phosphorylation of clathrin heavy chain (CLTC and CLTCL1) at 'Tyr-1477'. Involved in beta-arrestin (ARRB1 and ARRB2) desensitization through phosphorylation and activation of GRK2, leading to beta-arrestin phosphorylation and internalization. Has a critical role in the stimulation of the CDK20/MAPK3 mitogen-activated protein kinase cascade by epidermal growth factor (Probable). Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus (PubMed:7853507). Plays an important role in osteoclastic bone resorption in conjunction with PTK2B/PYK2. Both the formation of a SRC-PTK2B/PYK2 complex and SRC kinase activity are necessary for this function. Recruited to activated integrins by PTK2B/PYK2, thereby phosphorylating CBL, which in turn induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14585963, PubMed:8755529). Promotes energy production in osteoclasts by activating mitochondrial cytochrome C oxidase (PubMed:12615910). Phosphorylates DDR2 on tyrosine residues, thereby promoting its subsequent autophosphorylation (PubMed:16186108). Phosphorylates RUNX3 and COX2 on tyrosine residues, TNK2 on 'Tyr-284' and CBL on 'Tyr-731' (PubMed:20100835, PubMed:21309750). Enhances RIGI-elicited antiviral signaling (PubMed:19419966). Phosphorylates PDPK1 at 'Tyr-9', 'Tyr-373' and 'Tyr-376' (PubMed:14585963). Phosphorylates BCAR1 at 'Tyr-128' (PubMed:22710723). Phosphorylates CBLC at multiple tyrosine residues, phosphorylation at 'Tyr-341' activates CBLC E3 activity (PubMed:20525694). Phosphorylates synaptic vesicle protein synaptophysin (SYP) (By similarity). Involved in anchorage-independent cell growth (PubMed:19307596). Required for podosome formation (By similarity). Mediates IL6 signaling by activating YAP1-NOTCH pathway to induce inflammation-induced epithelial regeneration (PubMed:25731159). Phosphorylates OTUB1, promoting deubiquitination of RPTOR (PubMed:35927303). Phosphorylates caspase CASP8 at 'Tyr-380' which negatively regulates CASP8 processing and activation, down-regulating CASP8 proapoptotic function (PubMed:16619028). {ECO:0000250|UniProtKB:P05480, ECO:0000250|UniProtKB:Q9WUD9, ECO:0000269|PubMed:11389730, ECO:0000269|PubMed:12615910, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:16186108, ECO:0000269|PubMed:16619028, ECO:0000269|PubMed:18586953, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:19419966, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:21309750, ECO:0000269|PubMed:21411625, ECO:0000269|PubMed:22710723, ECO:0000269|PubMed:25501895, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:34234773, ECO:0000269|PubMed:35927303, ECO:0000269|PubMed:7853507, ECO:0000269|PubMed:8755529, ECO:0000269|PubMed:8759729, ECO:0000305|PubMed:11964124, ECO:0000305|PubMed:8672527, ECO:0000305|PubMed:9442882}.; FUNCTION: [Isoform 1]: Non-receptor protein tyrosine kinase which phosphorylates synaptophysin with high affinity. {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 2]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in L1CAM-mediated neurite elongation, possibly by acting downstream of L1CAM to drive cytoskeletal rearrangements involved in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 3]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in neurite elongation (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.
P12980 LYL1 S260 ochoa Protein lyl-1 (Class A basic helix-loop-helix protein 18) (bHLHa18) (Lymphoblastic leukemia-derived sequence 1) None
P14859 POU2F1 S143 psp POU domain, class 2, transcription factor 1 (NF-A1) (Octamer-binding protein 1) (Oct-1) (Octamer-binding transcription factor 1) (OTF-1) Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3') and activates the promoters of the genes for some small nuclear RNAs (snRNA) and of genes such as those for histone H2B and immunoglobulins. Modulates transcription transactivation by NR3C1, AR and PGR. {ECO:0000269|PubMed:10480874, ECO:0000269|PubMed:1684878, ECO:0000269|PubMed:7859290}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, POU2F1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and HCFC1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000305|PubMed:12826401}.
P16989 YBX3 S38 ochoa Y-box-binding protein 3 (Cold shock domain-containing protein A) (DNA-binding protein A) (Single-strand DNA-binding protein NF-GMB) Binds to the GM-CSF promoter. Seems to act as a repressor. Also binds to full-length mRNA and to short RNA sequences containing the consensus site 5'-UCCAUCA-3'. May have a role in translation repression (By similarity). {ECO:0000250}.
P16989 YBX3 T65 ochoa Y-box-binding protein 3 (Cold shock domain-containing protein A) (DNA-binding protein A) (Single-strand DNA-binding protein NF-GMB) Binds to the GM-CSF promoter. Seems to act as a repressor. Also binds to full-length mRNA and to short RNA sequences containing the consensus site 5'-UCCAUCA-3'. May have a role in translation repression (By similarity). {ECO:0000250}.
P16989 YBX3 T67 ochoa Y-box-binding protein 3 (Cold shock domain-containing protein A) (DNA-binding protein A) (Single-strand DNA-binding protein NF-GMB) Binds to the GM-CSF promoter. Seems to act as a repressor. Also binds to full-length mRNA and to short RNA sequences containing the consensus site 5'-UCCAUCA-3'. May have a role in translation repression (By similarity). {ECO:0000250}.
P16989 YBX3 S79 ochoa Y-box-binding protein 3 (Cold shock domain-containing protein A) (DNA-binding protein A) (Single-strand DNA-binding protein NF-GMB) Binds to the GM-CSF promoter. Seems to act as a repressor. Also binds to full-length mRNA and to short RNA sequences containing the consensus site 5'-UCCAUCA-3'. May have a role in translation repression (By similarity). {ECO:0000250}.
P17676 CEBPB S65 ochoa CCAAT/enhancer-binding protein beta (C/EBP beta) (Liver activator protein) (LAP) (Liver-enriched inhibitory protein) (LIP) (Nuclear factor NF-IL6) (Transcription factor 5) (TCF-5) Important transcription factor regulating the expression of genes involved in immune and inflammatory responses (PubMed:12048245, PubMed:1741402, PubMed:18647749, PubMed:9374525). Also plays a significant role in adipogenesis, as well as in the gluconeogenic pathway, liver regeneration, and hematopoiesis. The consensus recognition site is 5'-T[TG]NNGNAA[TG]-3'. Its functional capacity is governed by protein interactions and post-translational protein modifications. During early embryogenesis, plays essential and redundant roles with CEBPA. Has a promitotic effect on many cell types such as hepatocytes and adipocytes but has an antiproliferative effect on T-cells by repressing MYC expression, facilitating differentiation along the T-helper 2 lineage. Binds to regulatory regions of several acute-phase and cytokines genes and plays a role in the regulation of acute-phase reaction and inflammation. Also plays a role in intracellular bacteria killing (By similarity). During adipogenesis, is rapidly expressed and, after activation by phosphorylation, induces CEBPA and PPARG, which turn on the series of adipocyte genes that give rise to the adipocyte phenotype. The delayed transactivation of the CEBPA and PPARG genes by CEBPB appears necessary to allow mitotic clonal expansion and thereby progression of terminal differentiation (PubMed:20829347). Essential for female reproduction because of a critical role in ovarian follicle development (By similarity). Restricts osteoclastogenesis: together with NFE2L1; represses expression of DSPP during odontoblast differentiation (By similarity). {ECO:0000250|UniProtKB:P21272, ECO:0000250|UniProtKB:P28033, ECO:0000269|PubMed:12048245, ECO:0000269|PubMed:18647749, ECO:0000269|PubMed:20829347, ECO:0000269|PubMed:9374525, ECO:0000303|PubMed:25451943}.; FUNCTION: [Isoform 2]: Essential for gene expression induction in activated macrophages. Plays a major role in immune responses such as CD4(+) T-cell response, granuloma formation and endotoxin shock. Not essential for intracellular bacteria killing. {ECO:0000250|UniProtKB:P28033}.; FUNCTION: [Isoform 3]: Acts as a dominant negative through heterodimerization with isoform 2 (PubMed:11741938). Promotes osteoblast differentiation and osteoclastogenesis (By similarity). {ECO:0000250|UniProtKB:P21272, ECO:0000250|UniProtKB:P28033, ECO:0000269|PubMed:11741938}.
P18887 XRCC1 S226 ochoa DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}.
P19419 ELK1 S202 ochoa ETS domain-containing protein Elk-1 Transcription factor that binds to purine-rich DNA sequences (PubMed:10799319, PubMed:7889942). Forms a ternary complex with SRF and the ETS and SRF motifs of the serum response element (SRE) on the promoter region of immediate early genes such as FOS and IER2 (PubMed:1630903). Induces target gene transcription upon JNK and MAPK-signaling pathways stimulation (PubMed:7889942). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:1630903, ECO:0000269|PubMed:7889942}.
P20719 HOXA5 S92 ochoa Homeobox protein Hox-A5 (Homeobox protein Hox-1C) Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Also binds to its own promoter. Binds specifically to the motif 5'-CYYNATTA[TG]Y-3'.
P20719 HOXA5 S95 ochoa Homeobox protein Hox-A5 (Homeobox protein Hox-1C) Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Also binds to its own promoter. Binds specifically to the motif 5'-CYYNATTA[TG]Y-3'.
P22681 CBL S866 psp E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}.
P29353 SHC1 S388 ochoa SHC-transforming protein 1 (SHC-transforming protein 3) (SHC-transforming protein A) (Src homology 2 domain-containing-transforming protein C1) (SH2 domain protein C1) Signaling adapter that couples activated growth factor receptors to signaling pathways. Participates in a signaling cascade initiated by activated KIT and KITLG/SCF. Isoform p46Shc and isoform p52Shc, once phosphorylated, couple activated receptor tyrosine kinases to Ras via the recruitment of the GRB2/SOS complex and are implicated in the cytoplasmic propagation of mitogenic signals. Isoform p46Shc and isoform p52Shc may thus function as initiators of the Ras signaling cascade in various non-neuronal systems. Isoform p66Shc does not mediate Ras activation, but is involved in signal transduction pathways that regulate the cellular response to oxidative stress and life span. Isoform p66Shc acts as a downstream target of the tumor suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. The expression of isoform p66Shc has been correlated with life span (By similarity). Participates in signaling downstream of the angiopoietin receptor TEK/TIE2, and plays a role in the regulation of endothelial cell migration and sprouting angiogenesis. {ECO:0000250, ECO:0000269|PubMed:14665640}.
P29966 MARCKS S27 ochoa Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}.
P35408 PTGER4 S245 ochoa Prostaglandin E2 receptor EP4 subtype (PGE receptor EP4 subtype) (PGE2 receptor EP4 subtype) (Prostanoid EP4 receptor) Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. Has a relaxing effect on smooth muscle. May play an important role in regulating renal hemodynamics, intestinal epithelial transport, adrenal aldosterone secretion, and uterine function.
P35713 SOX18 S53 ochoa Transcription factor SOX-18 Transcriptional activator that binds to the consensus sequence 5'-AACAAAG-3' in the promoter of target genes and plays an essential role in embryonic cardiovascular development and lymphangiogenesis. Activates transcription of PROX1 and other genes coding for lymphatic endothelial markers. Plays an essential role in triggering the differentiation of lymph vessels, but is not required for the maintenance of differentiated lymphatic endothelial cells. Plays an important role in postnatal angiogenesis, where it is functionally redundant with SOX17. Interaction with MEF2C enhances transcriptional activation. Besides, required for normal hair development. {ECO:0000250|UniProtKB:P43680}.
P35713 SOX18 S57 ochoa Transcription factor SOX-18 Transcriptional activator that binds to the consensus sequence 5'-AACAAAG-3' in the promoter of target genes and plays an essential role in embryonic cardiovascular development and lymphangiogenesis. Activates transcription of PROX1 and other genes coding for lymphatic endothelial markers. Plays an essential role in triggering the differentiation of lymph vessels, but is not required for the maintenance of differentiated lymphatic endothelial cells. Plays an important role in postnatal angiogenesis, where it is functionally redundant with SOX17. Interaction with MEF2C enhances transcriptional activation. Besides, required for normal hair development. {ECO:0000250|UniProtKB:P43680}.
P38935 IGHMBP2 S701 ochoa DNA-binding protein SMUBP-2 (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent helicase IGHMBP2) (Glial factor 1) (GF-1) (Immunoglobulin mu-binding protein 2) 5' to 3' helicase that unwinds RNA and DNA duplexes in an ATP-dependent reaction (PubMed:19158098, PubMed:22999958, PubMed:30218034). Specific to 5'-phosphorylated single-stranded guanine-rich sequences (PubMed:22999958, PubMed:8349627). May play a role in RNA metabolism, ribosome biogenesis or initiation of translation (PubMed:19158098, PubMed:19299493). May play a role in regulation of transcription (By similarity). Interacts with tRNA-Tyr (PubMed:19299493). {ECO:0000250|UniProtKB:Q9EQN5, ECO:0000269|PubMed:19158098, ECO:0000269|PubMed:19299493, ECO:0000269|PubMed:22999958, ECO:0000269|PubMed:30218034, ECO:0000269|PubMed:8349627}.
P41225 SOX3 S250 ochoa Transcription factor SOX-3 Transcription factor required during the formation of the hypothalamo-pituitary axis. May function as a switch in neuronal development. Keeps neural cells undifferentiated by counteracting the activity of proneural proteins and suppresses neuronal differentiation. Required also within the pharyngeal epithelia for craniofacial morphogenesis. Controls a genetic switch in male development. Is necessary for initiating male sex determination by directing the development of supporting cell precursors (pre-Sertoli cells) as Sertoli rather than granulosa cells (By similarity). {ECO:0000250, ECO:0000269|PubMed:21183788}.
P46379 BAG6 S1086 ochoa Large proline-rich protein BAG6 (BAG family molecular chaperone regulator 6) (BCL2-associated athanogene 6) (BAG-6) (HLA-B-associated transcript 3) (Protein G3) (Protein Scythe) ATP-independent molecular chaperone preventing the aggregation of misfolded and hydrophobic patches-containing proteins (PubMed:21636303). Functions as part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, which maintains these client proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20516149, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20516149, PubMed:20676083, PubMed:25535373, PubMed:28104892). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated by RNF126, an E3 ubiquitin-protein ligase associated with BAG6 and are sorted to the proteasome (PubMed:24981174, PubMed:27193484, PubMed:28104892). SGTA which prevents the recruitment of RNF126 to BAG6 may negatively regulate the ubiquitination and the proteasomal degradation of client proteins (PubMed:23129660, PubMed:25179605, PubMed:27193484). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these retrotranslocated proteins in an unfolded yet soluble state condition in the cytosol to ensure their proper delivery to the proteasome (PubMed:21636303). BAG6 is also required for selective ubiquitin-mediated degradation of defective nascent chain polypeptides by the proteasome. In this context, it may participate in the production of antigenic peptides and play a role in antigen presentation in immune response (By similarity). BAG6 is also involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation. BAG6 may ensure the proper degradation of these proteins and thereby protects the endoplasmic reticulum from protein overload upon stress (PubMed:26565908). By inhibiting the polyubiquitination and subsequent proteasomal degradation of HSPA2 it may also play a role in the assembly of the synaptonemal complex during spermatogenesis (By similarity). Also positively regulates apoptosis by interacting with and stabilizing the proapoptotic factor AIFM1 (By similarity). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:Q9Z1R2, ECO:0000269|PubMed:20516149, ECO:0000269|PubMed:20676083, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:21743475, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:24981174, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: Involved in DNA damage-induced apoptosis: following DNA damage, accumulates in the nucleus and forms a complex with p300/EP300, enhancing p300/EP300-mediated p53/TP53 acetylation leading to increase p53/TP53 transcriptional activity (PubMed:17403783). When nuclear, may also act as a component of some chromatin regulator complex that regulates histone 3 'Lys-4' dimethylation (H3K4me2) (PubMed:18765639). {ECO:0000269|PubMed:17403783, ECO:0000269|PubMed:18765639}.; FUNCTION: Released extracellularly via exosomes, it is a ligand of the natural killer/NK cells receptor NCR3 and stimulates NK cells cytotoxicity. It may thereby trigger NK cells cytotoxicity against neighboring tumor cells and immature myeloid dendritic cells (DC). {ECO:0000269|PubMed:18055229, ECO:0000269|PubMed:18852879}.; FUNCTION: Mediates ricin-induced apoptosis. {ECO:0000269|PubMed:14960581}.
P49006 MARCKSL1 S162 ochoa MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}.
P49006 MARCKSL1 S177 ochoa MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}.
P52701 MSH6 S43 ochoa DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}.
P53350 PLK1 S49 psp Serine/threonine-protein kinase PLK1 (EC 2.7.11.21) (Polo-like kinase 1) (PLK-1) (Serine/threonine-protein kinase 13) (STPK13) Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase-promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Polo-like kinase proteins act by binding and phosphorylating proteins that are already phosphorylated on a specific motif recognized by the POLO box domains (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Phosphorylates BORA, BUB1B/BUBR1, CCNB1, CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, CENPU, NEDD1, NINL, NPM1, NUDC, PKMYT1/MYT1, KIZ, MRE11, PPP1R12A/MYPT1, POLQ, PRC1, RACGAP1/CYK4, RAD51, RHNO1, SGO1, STAG2/SA2, TEX14, TOPORS, p73/TP73, TPT1, WEE1 and HNRNPU (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17218258, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:22325354, PubMed:23455478, PubMed:23509069, PubMed:25986610, PubMed:26811421, PubMed:28512243, PubMed:37440612, PubMed:37674080, PubMed:8991084). Plays a key role in centrosome functions and the assembly of bipolar spindles by phosphorylating KIZ, NEDD1 and NINL (PubMed:16980960, PubMed:19509060). NEDD1 phosphorylation promotes subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation (PubMed:19509060). Phosphorylation of NINL component of the centrosome leads to NINL dissociation from other centrosomal proteins (PubMed:12852856). Involved in mitosis exit and cytokinesis by phosphorylating CEP55, ECT2, KIF20A/MKLP2, CENPU, PRC1 and RACGAP1 (PubMed:12939256, PubMed:16247472, PubMed:17351640, PubMed:19468300, PubMed:19468302). Recruited at the central spindle by phosphorylating and docking PRC1 and KIF20A/MKLP2; creates its own docking sites on PRC1 and KIF20A/MKLP2 by mediating phosphorylation of sites subsequently recognized by the POLO box domains (PubMed:12939256, PubMed:17351640). Phosphorylates RACGAP1, thereby creating a docking site for the Rho GTP exchange factor ECT2 that is essential for the cleavage furrow formation (PubMed:19468300, PubMed:19468302). Promotes the central spindle recruitment of ECT2 (PubMed:16247472). Plays a central role in G2/M transition of mitotic cell cycle by phosphorylating CCNB1, CDC25C, FOXM1, CENPU, PKMYT1/MYT1, PPP1R12A/MYPT1 and WEE1 (PubMed:11202906, PubMed:12447691, PubMed:12524548, PubMed:19160488). Part of a regulatory circuit that promotes the activation of CDK1 by phosphorylating the positive regulator CDC25C and inhibiting the negative regulators WEE1 and PKMYT1/MYT1 (PubMed:11202906). Also acts by mediating phosphorylation of cyclin-B1 (CCNB1) on centrosomes in prophase (PubMed:12447691, PubMed:12524548). Phosphorylates FOXM1, a key mitotic transcription regulator, leading to enhance FOXM1 transcriptional activity (PubMed:19160488). Involved in kinetochore functions and sister chromatid cohesion by phosphorylating BUB1B/BUBR1, FBXO5/EMI1 and STAG2/SA2 (PubMed:15148369, PubMed:15469984, PubMed:17376779, PubMed:18331714). PLK1 is high on non-attached kinetochores suggesting a role of PLK1 in kinetochore attachment or in spindle assembly checkpoint (SAC) regulation (PubMed:17617734). Required for kinetochore localization of BUB1B (PubMed:17376779). Regulates the dissociation of cohesin from chromosomes by phosphorylating cohesin subunits such as STAG2/SA2 (By similarity). Phosphorylates SGO1: required for spindle pole localization of isoform 3 of SGO1 and plays a role in regulating its centriole cohesion function (PubMed:18331714). Mediates phosphorylation of FBXO5/EMI1, a negative regulator of the APC/C complex during prophase, leading to FBXO5/EMI1 ubiquitination and degradation by the proteasome (PubMed:15148369, PubMed:15469984). Acts as a negative regulator of p53 family members: phosphorylates TOPORS, leading to inhibit the sumoylation of p53/TP53 and simultaneously enhance the ubiquitination and subsequent degradation of p53/TP53 (PubMed:19473992). Phosphorylates the transactivation domain of the transcription factor p73/TP73, leading to inhibit p73/TP73-mediated transcriptional activation and pro-apoptotic functions. Phosphorylates BORA, and thereby promotes the degradation of BORA (PubMed:18521620). Contributes to the regulation of AURKA function (PubMed:18615013, PubMed:18662541). Also required for recovery after DNA damage checkpoint and entry into mitosis (PubMed:18615013, PubMed:18662541). Phosphorylates MISP, leading to stabilization of cortical and astral microtubule attachments required for proper spindle positioning (PubMed:23509069). Together with MEIKIN, acts as a regulator of kinetochore function during meiosis I: required both for mono-orientation of kinetochores on sister chromosomes and protection of centromeric cohesin from separase-mediated cleavage (By similarity). Phosphorylates CEP68 and is required for its degradation (PubMed:25503564). Regulates nuclear envelope breakdown during prophase by phosphorylating DCTN1 resulting in its localization in the nuclear envelope (PubMed:20679239). Phosphorylates the heat shock transcription factor HSF1, promoting HSF1 nuclear translocation upon heat shock (PubMed:15661742). Phosphorylates HSF1 also in the early mitotic period; this phosphorylation regulates HSF1 localization to the spindle pole, the recruitment of the SCF(BTRC) ubiquitin ligase complex induicing HSF1 degradation, and hence mitotic progression (PubMed:18794143). Regulates mitotic progression by phosphorylating RIOK2 (PubMed:21880710). Through the phosphorylation of DZIP1 regulates the localization during mitosis of the BBSome, a ciliary protein complex involved in cilium biogenesis (PubMed:27979967). Regulates DNA repair during mitosis by mediating phosphorylation of POLQ and RHNO1, thereby promoting POLQ recruitment to DNA damage sites (PubMed:37440612, PubMed:37674080). Phosphorylates ATXN10 which may play a role in the regulation of cytokinesis and may stimulate the proteasome-mediated degradation of ATXN10 (PubMed:21857149). {ECO:0000250|UniProtKB:P70032, ECO:0000250|UniProtKB:Q5F2C3, ECO:0000269|PubMed:11202906, ECO:0000269|PubMed:12207013, ECO:0000269|PubMed:12447691, ECO:0000269|PubMed:12524548, ECO:0000269|PubMed:12738781, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:12939256, ECO:0000269|PubMed:14532005, ECO:0000269|PubMed:14734534, ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:15148369, ECO:0000269|PubMed:15469984, ECO:0000269|PubMed:15661742, ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:16247472, ECO:0000269|PubMed:16980960, ECO:0000269|PubMed:17081991, ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:17351640, ECO:0000269|PubMed:17376779, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:18418051, ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:18521620, ECO:0000269|PubMed:18615013, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:19351716, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:19509060, ECO:0000269|PubMed:19597481, ECO:0000269|PubMed:20679239, ECO:0000269|PubMed:21857149, ECO:0000269|PubMed:21880710, ECO:0000269|PubMed:22325354, ECO:0000269|PubMed:23455478, ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:25986610, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:27979967, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080, ECO:0000269|PubMed:8991084}.
P55036 PSMD4 T253 ochoa 26S proteasome non-ATPase regulatory subunit 4 (26S proteasome regulatory subunit RPN10) (26S proteasome regulatory subunit S5A) (Antisecretory factor 1) (AF) (ASF) (Multiubiquitin chain-binding protein) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMD4 acts as an ubiquitin receptor subunit through ubiquitin-interacting motifs and selects ubiquitin-conjugates for destruction. Displays a preferred selectivity for longer polyubiquitin chains. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:15826667}.
P58012 FOXL2 S238 psp Forkhead box protein L2 Transcriptional regulator. Critical factor essential for ovary differentiation and maintenance, and repression of the genetic program for somatic testis determination. Prevents trans-differentiation of ovary to testis through transcriptional repression of the Sertoli cell-promoting gene SOX9 (By similarity). Has apoptotic activity in ovarian cells. Suppresses ESR1-mediated transcription of PTGS2/COX2 stimulated by tamoxifen (By similarity). Is a regulator of CYP19 expression (By similarity). Participates in SMAD3-dependent transcription of FST via the intronic SMAD-binding element (By similarity). Is a transcriptional repressor of STAR. Activates SIRT1 transcription under cellular stress conditions. Activates transcription of OSR2. {ECO:0000250, ECO:0000269|PubMed:16153597, ECO:0000269|PubMed:19010791, ECO:0000269|PubMed:19429596, ECO:0000269|PubMed:19744555}.
P67809 YBX1 T29 ochoa Y-box-binding protein 1 (YB-1) (CCAAT-binding transcription factor I subunit A) (CBF-A) (DNA-binding protein B) (DBPB) (Enhancer factor I subunit A) (EFI-A) (Nuclease-sensitive element-binding protein 1) (Y-box transcription factor) DNA- and RNA-binding protein involved in various processes, such as translational repression, RNA stabilization, mRNA splicing, DNA repair and transcription regulation (PubMed:10817758, PubMed:11698476, PubMed:14718551, PubMed:18809583, PubMed:31358969, PubMed:8188694). Predominantly acts as a RNA-binding protein: binds preferentially to the 5'-[CU]CUGCG-3' RNA motif and specifically recognizes mRNA transcripts modified by C5-methylcytosine (m5C) (PubMed:19561594, PubMed:31358969). Promotes mRNA stabilization: acts by binding to m5C-containing mRNAs and recruiting the mRNA stability maintainer ELAVL1, thereby preventing mRNA decay (PubMed:10817758, PubMed:11698476, PubMed:31358969). Component of the CRD-mediated complex that promotes MYC mRNA stability (PubMed:19029303). Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Plays a key role in RNA composition of extracellular exosomes by defining the sorting of small non-coding RNAs, such as tRNAs, Y RNAs, Vault RNAs and miRNAs (PubMed:27559612, PubMed:29073095). Probably sorts RNAs in exosomes by recognizing and binding C5-methylcytosine (m5C)-containing RNAs (PubMed:28341602, PubMed:29073095). Acts as a key effector of epidermal progenitors by preventing epidermal progenitor senescence: acts by regulating the translation of a senescence-associated subset of cytokine mRNAs, possibly by binding to m5C-containing mRNAs (PubMed:29712925). Also involved in pre-mRNA alternative splicing regulation: binds to splice sites in pre-mRNA and regulates splice site selection (PubMed:12604611). Binds to TSC22D1 transcripts, thereby inhibiting their translation and negatively regulating TGF-beta-mediated transcription of COL1A2 (By similarity). Also able to bind DNA: regulates transcription of the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at 'Lys-6' and 'Lys-7' (PubMed:18809583). Binds to promoters that contain a Y-box (5'-CTGATTGGCCAA-3'), such as MDR1 and HLA class II genes (PubMed:18809583, PubMed:8188694). Promotes separation of DNA strands that contain mismatches or are modified by cisplatin (PubMed:14718551). Has endonucleolytic activity and can introduce nicks or breaks into double-stranded DNA, suggesting a role in DNA repair (PubMed:14718551). The secreted form acts as an extracellular mitogen and stimulates cell migration and proliferation (PubMed:19483673). {ECO:0000250|UniProtKB:P62960, ECO:0000250|UniProtKB:Q28618, ECO:0000269|PubMed:10817758, ECO:0000269|PubMed:11698476, ECO:0000269|PubMed:12604611, ECO:0000269|PubMed:14718551, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19483673, ECO:0000269|PubMed:19561594, ECO:0000269|PubMed:27559612, ECO:0000269|PubMed:28341602, ECO:0000269|PubMed:29073095, ECO:0000269|PubMed:29712925, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:8188694}.
P67809 YBX1 T30 ochoa Y-box-binding protein 1 (YB-1) (CCAAT-binding transcription factor I subunit A) (CBF-A) (DNA-binding protein B) (DBPB) (Enhancer factor I subunit A) (EFI-A) (Nuclease-sensitive element-binding protein 1) (Y-box transcription factor) DNA- and RNA-binding protein involved in various processes, such as translational repression, RNA stabilization, mRNA splicing, DNA repair and transcription regulation (PubMed:10817758, PubMed:11698476, PubMed:14718551, PubMed:18809583, PubMed:31358969, PubMed:8188694). Predominantly acts as a RNA-binding protein: binds preferentially to the 5'-[CU]CUGCG-3' RNA motif and specifically recognizes mRNA transcripts modified by C5-methylcytosine (m5C) (PubMed:19561594, PubMed:31358969). Promotes mRNA stabilization: acts by binding to m5C-containing mRNAs and recruiting the mRNA stability maintainer ELAVL1, thereby preventing mRNA decay (PubMed:10817758, PubMed:11698476, PubMed:31358969). Component of the CRD-mediated complex that promotes MYC mRNA stability (PubMed:19029303). Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Plays a key role in RNA composition of extracellular exosomes by defining the sorting of small non-coding RNAs, such as tRNAs, Y RNAs, Vault RNAs and miRNAs (PubMed:27559612, PubMed:29073095). Probably sorts RNAs in exosomes by recognizing and binding C5-methylcytosine (m5C)-containing RNAs (PubMed:28341602, PubMed:29073095). Acts as a key effector of epidermal progenitors by preventing epidermal progenitor senescence: acts by regulating the translation of a senescence-associated subset of cytokine mRNAs, possibly by binding to m5C-containing mRNAs (PubMed:29712925). Also involved in pre-mRNA alternative splicing regulation: binds to splice sites in pre-mRNA and regulates splice site selection (PubMed:12604611). Binds to TSC22D1 transcripts, thereby inhibiting their translation and negatively regulating TGF-beta-mediated transcription of COL1A2 (By similarity). Also able to bind DNA: regulates transcription of the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at 'Lys-6' and 'Lys-7' (PubMed:18809583). Binds to promoters that contain a Y-box (5'-CTGATTGGCCAA-3'), such as MDR1 and HLA class II genes (PubMed:18809583, PubMed:8188694). Promotes separation of DNA strands that contain mismatches or are modified by cisplatin (PubMed:14718551). Has endonucleolytic activity and can introduce nicks or breaks into double-stranded DNA, suggesting a role in DNA repair (PubMed:14718551). The secreted form acts as an extracellular mitogen and stimulates cell migration and proliferation (PubMed:19483673). {ECO:0000250|UniProtKB:P62960, ECO:0000250|UniProtKB:Q28618, ECO:0000269|PubMed:10817758, ECO:0000269|PubMed:11698476, ECO:0000269|PubMed:12604611, ECO:0000269|PubMed:14718551, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19483673, ECO:0000269|PubMed:19561594, ECO:0000269|PubMed:27559612, ECO:0000269|PubMed:28341602, ECO:0000269|PubMed:29073095, ECO:0000269|PubMed:29712925, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:8188694}.
P67809 YBX1 S32 ochoa Y-box-binding protein 1 (YB-1) (CCAAT-binding transcription factor I subunit A) (CBF-A) (DNA-binding protein B) (DBPB) (Enhancer factor I subunit A) (EFI-A) (Nuclease-sensitive element-binding protein 1) (Y-box transcription factor) DNA- and RNA-binding protein involved in various processes, such as translational repression, RNA stabilization, mRNA splicing, DNA repair and transcription regulation (PubMed:10817758, PubMed:11698476, PubMed:14718551, PubMed:18809583, PubMed:31358969, PubMed:8188694). Predominantly acts as a RNA-binding protein: binds preferentially to the 5'-[CU]CUGCG-3' RNA motif and specifically recognizes mRNA transcripts modified by C5-methylcytosine (m5C) (PubMed:19561594, PubMed:31358969). Promotes mRNA stabilization: acts by binding to m5C-containing mRNAs and recruiting the mRNA stability maintainer ELAVL1, thereby preventing mRNA decay (PubMed:10817758, PubMed:11698476, PubMed:31358969). Component of the CRD-mediated complex that promotes MYC mRNA stability (PubMed:19029303). Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Plays a key role in RNA composition of extracellular exosomes by defining the sorting of small non-coding RNAs, such as tRNAs, Y RNAs, Vault RNAs and miRNAs (PubMed:27559612, PubMed:29073095). Probably sorts RNAs in exosomes by recognizing and binding C5-methylcytosine (m5C)-containing RNAs (PubMed:28341602, PubMed:29073095). Acts as a key effector of epidermal progenitors by preventing epidermal progenitor senescence: acts by regulating the translation of a senescence-associated subset of cytokine mRNAs, possibly by binding to m5C-containing mRNAs (PubMed:29712925). Also involved in pre-mRNA alternative splicing regulation: binds to splice sites in pre-mRNA and regulates splice site selection (PubMed:12604611). Binds to TSC22D1 transcripts, thereby inhibiting their translation and negatively regulating TGF-beta-mediated transcription of COL1A2 (By similarity). Also able to bind DNA: regulates transcription of the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at 'Lys-6' and 'Lys-7' (PubMed:18809583). Binds to promoters that contain a Y-box (5'-CTGATTGGCCAA-3'), such as MDR1 and HLA class II genes (PubMed:18809583, PubMed:8188694). Promotes separation of DNA strands that contain mismatches or are modified by cisplatin (PubMed:14718551). Has endonucleolytic activity and can introduce nicks or breaks into double-stranded DNA, suggesting a role in DNA repair (PubMed:14718551). The secreted form acts as an extracellular mitogen and stimulates cell migration and proliferation (PubMed:19483673). {ECO:0000250|UniProtKB:P62960, ECO:0000250|UniProtKB:Q28618, ECO:0000269|PubMed:10817758, ECO:0000269|PubMed:11698476, ECO:0000269|PubMed:12604611, ECO:0000269|PubMed:14718551, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19483673, ECO:0000269|PubMed:19561594, ECO:0000269|PubMed:27559612, ECO:0000269|PubMed:28341602, ECO:0000269|PubMed:29073095, ECO:0000269|PubMed:29712925, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:8188694}.
P80723 BASP1 S142 ochoa Brain acid soluble protein 1 (22 kDa neuronal tissue-enriched acidic protein) (Neuronal axonal membrane protein NAP-22) None
P80723 BASP1 S170 ochoa Brain acid soluble protein 1 (22 kDa neuronal tissue-enriched acidic protein) (Neuronal axonal membrane protein NAP-22) None
P80723 BASP1 S205 ochoa Brain acid soluble protein 1 (22 kDa neuronal tissue-enriched acidic protein) (Neuronal axonal membrane protein NAP-22) None
P85037 FOXK1 S101 ochoa Forkhead box protein K1 (Myocyte nuclear factor) (MNF) Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}.
Q02952 AKAP12 S910 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q12872 SFSWAP S891 ochoa Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}.
Q13233 MAP3K1 S154 ochoa Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}.
Q13263 TRIM28 S19 ochoa Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}.
Q13263 TRIM28 T541 ochoa Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}.
Q13310 PABPC4 S531 ochoa Polyadenylate-binding protein 4 (PABP-4) (Poly(A)-binding protein 4) (Activated-platelet protein 1) (APP-1) (Inducible poly(A)-binding protein) (iPABP) Binds the poly(A) tail of mRNA (PubMed:8524242). Binds to SMIM26 mRNA and plays a role in its post-transcriptional regulation (PubMed:37009826). May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity). {ECO:0000250|UniProtKB:P11940, ECO:0000269|PubMed:37009826, ECO:0000269|PubMed:8524242}.
Q14004 CDK13 S490 ochoa Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}.
Q14004 CDK13 T492 ochoa Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}.
Q14004 CDK13 S493 ochoa Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}.
Q14004 CDK13 T494 ochoa Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}.
Q14004 CDK13 T496 ochoa Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}.
Q14004 CDK13 T500 ochoa Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}.
Q1KMD3 HNRNPUL2 T135 ochoa Heterogeneous nuclear ribonucleoprotein U-like protein 2 (Scaffold-attachment factor A2) (SAF-A2) None
Q1KMD3 HNRNPUL2 S138 ochoa Heterogeneous nuclear ribonucleoprotein U-like protein 2 (Scaffold-attachment factor A2) (SAF-A2) None
Q2M2I8 AAK1 S676 ochoa AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}.
Q2M3G4 SHROOM1 S133 ochoa Protein Shroom1 (Apical protein 2) May be involved in the assembly of microtubule arrays during cell elongation. {ECO:0000250}.
Q2M3G4 SHROOM1 S137 ochoa Protein Shroom1 (Apical protein 2) May be involved in the assembly of microtubule arrays during cell elongation. {ECO:0000250}.
Q2QGD7 ZXDC S171 ochoa Zinc finger protein ZXDC (ZXD-like zinc finger protein) Cooperates with CIITA to promote transcription of MHC class I and MHC class II genes. {ECO:0000269|PubMed:16600381, ECO:0000269|PubMed:17493635, ECO:0000269|PubMed:17696781}.
Q504T8 MIDN S186 ochoa Midnolin (Midbrain nucleolar protein) Facilitates the ubiquitin-independent proteasomal degradation of stimulus-induced transcription factors such as FOSB, EGR1, NR4A1, and IRF4 to the proteasome for degradation (PubMed:37616343). Promotes also the degradation of other substrates such as CBX4 (By similarity). Plays a role in inhibiting the activity of glucokinase GCK and both glucose-induced and basal insulin secretion. {ECO:0000250|UniProtKB:D4AE48, ECO:0000250|UniProtKB:Q3TPJ7, ECO:0000269|PubMed:37616343}.
Q53H80 AKIRIN2 S57 ochoa Akirin-2 Molecular adapter that acts as a bridge between a variety of multiprotein complexes, and which is involved in embryonic development, immunity, myogenesis and brain development (PubMed:34711951). Plays a key role in nuclear protein degradation by promoting import of proteasomes into the nucleus: directly binds to fully assembled 20S proteasomes at one end and to nuclear import receptor IPO9 at the other end, bridging them together and mediating the import of pre-assembled proteasome complexes through the nuclear pore (PubMed:34711951). Involved in innate immunity by regulating the production of interleukin-6 (IL6) downstream of Toll-like receptor (TLR): acts by bridging the NF-kappa-B inhibitor NFKBIZ and the SWI/SNF complex, leading to promote induction of IL6 (By similarity). Also involved in adaptive immunity by promoting B-cell activation (By similarity). Involved in brain development: required for the survival and proliferation of cerebral cortical progenitor cells (By similarity). Involved in myogenesis: required for skeletal muscle formation and skeletal development, possibly by regulating expression of muscle differentiation factors (By similarity). Also plays a role in facilitating interdigital tissue regression during limb development (By similarity). {ECO:0000250|UniProtKB:B1AXD8, ECO:0000269|PubMed:34711951}.
Q5T0Z8 C6orf132 Y1142 ochoa Uncharacterized protein C6orf132 None
Q5T1J5 CHCHD2P9 S41 ochoa Putative coiled-coil-helix-coiled-coil-helix domain-containing protein CHCHD2P9, mitochondrial (Coiled-coil-helix-coiled-coil-helix domain-containing 2 pseudogene 9) None
Q5TCZ1 SH3PXD2A S1041 ochoa SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}.
Q5U5Q3 MEX3C S88 ochoa RNA-binding E3 ubiquitin-protein ligase MEX3C (EC 2.3.2.27) (RING finger and KH domain-containing protein 2) (RING finger protein 194) (RING-type E3 ubiquitin transferase MEX3C) E3 ubiquitin ligase responsible for the post-transcriptional regulation of common HLA-A allotypes. Binds to the 3' UTR of HLA-A2 mRNA, and regulates its levels by promoting mRNA decay. RNA binding is sufficient to prevent translation, but ubiquitin ligase activity is required for mRNA degradation. {ECO:0000269|PubMed:22863774, ECO:0000269|PubMed:23446422}.
Q5VSG8 MANEAL T77 ochoa Glycoprotein endo-alpha-1,2-mannosidase-like protein (EC 3.2.1.-) None
Q5VV17 OTUD1 S216 ochoa OTU domain-containing protein 1 (EC 3.4.19.12) (DUBA-7) Deubiquitinating enzyme that specifically hydrolyzes 'Lys-63'-linked polyubiquitin to monoubiquitin (PubMed:23827681). Required for the stability and translation of a subset mRNAs with a high abundance of rare codons by mediating deubiquitination of 40S ribosomal protein RPS10/eS10, thereby antagonizing ZNF598-mediated 40S ubiquitination (PubMed:36445135). The abundance of rare codons in mRNAs can limit the translation rate and can lead to ribosome collisions that trigger activation of ribosome quality control (RQC) pathway by ZNF598 (PubMed:36445135). OTUD1-mediated deubiquitination prevents activation of the RQC and subsequent dissociation of ribosomes and stimulates formation of polysomes and translation (PubMed:36445135). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:36445135}.
Q63ZY3 KANK2 T362 ochoa KN motif and ankyrin repeat domain-containing protein 2 (Ankyrin repeat domain-containing protein 25) (Matrix-remodeling-associated protein 3) (SRC-1-interacting protein) (SIP) (SRC-interacting protein) (SRC1-interacting protein) Involved in transcription regulation by sequestering in the cytoplasm nuclear receptor coactivators such as NCOA1, NCOA2 and NCOA3 (PubMed:17476305). Involved in regulation of caspase-independent apoptosis by sequestering the proapoptotic factor AIFM1 in mitochondria (PubMed:22371500). Pro-apoptotic stimuli can induce its proteasomal degradation allowing the translocation of AIFM1 to the nucleus to induce apoptosis (PubMed:22371500). Involved in the negative control of vitamin D receptor signaling pathway (PubMed:24671081). Involved in actin stress fibers formation through its interaction with ARHGDIA and the regulation of the Rho signaling pathway (PubMed:17996375, PubMed:25961457). May thereby play a role in cell adhesion and migration, regulating for instance podocytes migration during development of the kidney (PubMed:25961457). Through the Rho signaling pathway may also regulate cell proliferation (By similarity). {ECO:0000250|UniProtKB:Q8BX02, ECO:0000269|PubMed:17476305, ECO:0000269|PubMed:17996375, ECO:0000269|PubMed:22371500, ECO:0000269|PubMed:24671081, ECO:0000269|PubMed:25961457}.
Q69YW2 STUM S28 ochoa Protein stum homolog None
Q6NV74 CRACDL S520 ochoa CRACD-like protein None
Q6P0Q8 MAST2 S1429 ochoa Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}.
Q6SPF0 SAMD1 S28 ochoa Sterile alpha motif domain-containing protein 1 (SAM domain-containing protein 1) (Atherin) Unmethylated CpG islands (CGIs)-binding protein which localizes to H3K4me3-decorated CGIs, where it acts as a transcriptional repressor (PubMed:33980486). Tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs (PubMed:33980486). Plays a role in atherogenesis by binding with LDL on cell surface and promoting LDL oxidation which leads to the formation of foam cell (PubMed:16159594, PubMed:34006929). {ECO:0000269|PubMed:16159594, ECO:0000269|PubMed:33980486, ECO:0000269|PubMed:34006929}.
Q6SPF0 SAMD1 T157 ochoa Sterile alpha motif domain-containing protein 1 (SAM domain-containing protein 1) (Atherin) Unmethylated CpG islands (CGIs)-binding protein which localizes to H3K4me3-decorated CGIs, where it acts as a transcriptional repressor (PubMed:33980486). Tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs (PubMed:33980486). Plays a role in atherogenesis by binding with LDL on cell surface and promoting LDL oxidation which leads to the formation of foam cell (PubMed:16159594, PubMed:34006929). {ECO:0000269|PubMed:16159594, ECO:0000269|PubMed:33980486, ECO:0000269|PubMed:34006929}.
Q6SPF0 SAMD1 S161 ochoa Sterile alpha motif domain-containing protein 1 (SAM domain-containing protein 1) (Atherin) Unmethylated CpG islands (CGIs)-binding protein which localizes to H3K4me3-decorated CGIs, where it acts as a transcriptional repressor (PubMed:33980486). Tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs (PubMed:33980486). Plays a role in atherogenesis by binding with LDL on cell surface and promoting LDL oxidation which leads to the formation of foam cell (PubMed:16159594, PubMed:34006929). {ECO:0000269|PubMed:16159594, ECO:0000269|PubMed:33980486, ECO:0000269|PubMed:34006929}.
Q6ZRV2 FAM83H T714 ochoa Protein FAM83H May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}.
Q7KZI7 MARK2 S533 ochoa Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}.
Q7KZI7 MARK2 S537 ochoa Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}.
Q7L311 ARMCX2 S244 ochoa Armadillo repeat-containing X-linked protein 2 (ARM protein lost in epithelial cancers on chromosome X 2) (Protein ALEX2) May regulate the dynamics and distribution of mitochondria in neural cells. {ECO:0000250|UniProtKB:Q6A058}.
Q7L3V2 RTL10 S34 ochoa Protein Bop (BH3-only protein) (Retrotransposon Gag-like protein 10) Could induce apoptosis in a BH3 domain-dependent manner. The direct interaction network of Bcl-2 family members may play a key role in modulation RTL10/BOP intrinsic apoptotic signaling activity. {ECO:0000269|PubMed:23055042}.
Q7L590 MCM10 S488 ochoa Protein MCM10 homolog (HsMCM10) Acts as a replication initiation factor that brings together the MCM2-7 helicase and the DNA polymerase alpha/primase complex in order to initiate DNA replication. Additionally, plays a role in preventing DNA damage during replication. Key effector of the RBBP6 and ZBTB38-mediated regulation of DNA-replication and common fragile sites stability; acts as a direct target of transcriptional repression by ZBTB38 (PubMed:24726359). {ECO:0000269|PubMed:11095689, ECO:0000269|PubMed:15136575, ECO:0000269|PubMed:17699597, ECO:0000269|PubMed:19608746, ECO:0000269|PubMed:24726359, ECO:0000269|PubMed:32865517}.
Q7RTV3 ZNF367 S117 ochoa Zinc finger protein 367 (C2H2 zinc finger protein ZFF29) Transcriptional activator. Isoform 1 may be involved in transcriptional activation of erythroid genes. {ECO:0000269|PubMed:15344908}.
Q7Z2T5 TRMT1L S66 ochoa tRNA (guanine(27)-N(2))-dimethyltransferase (EC 2.1.1.-) (tRNA methyltransferase 1-like protein) (TRMT1-like protein) Specifically dimethylates a single guanine residue at position 27 of tRNA(Tyr) using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:39786990, PubMed:39786998). Dimethylation at position 27 of tRNA(Tyr) is required for efficient translation of tyrosine codons (PubMed:39786990, PubMed:39786998). Also required to maintain 3-(3-amino-3-carboxypropyl)uridine (acp3U) in the D-loop of several cytoplasmic tRNAs (PubMed:39786990, PubMed:39786998). {ECO:0000269|PubMed:39786990, ECO:0000269|PubMed:39786998}.
Q7Z2T5 TRMT1L S68 ochoa tRNA (guanine(27)-N(2))-dimethyltransferase (EC 2.1.1.-) (tRNA methyltransferase 1-like protein) (TRMT1-like protein) Specifically dimethylates a single guanine residue at position 27 of tRNA(Tyr) using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:39786990, PubMed:39786998). Dimethylation at position 27 of tRNA(Tyr) is required for efficient translation of tyrosine codons (PubMed:39786990, PubMed:39786998). Also required to maintain 3-(3-amino-3-carboxypropyl)uridine (acp3U) in the D-loop of several cytoplasmic tRNAs (PubMed:39786990, PubMed:39786998). {ECO:0000269|PubMed:39786990, ECO:0000269|PubMed:39786998}.
Q7Z2T5 TRMT1L S71 ochoa tRNA (guanine(27)-N(2))-dimethyltransferase (EC 2.1.1.-) (tRNA methyltransferase 1-like protein) (TRMT1-like protein) Specifically dimethylates a single guanine residue at position 27 of tRNA(Tyr) using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:39786990, PubMed:39786998). Dimethylation at position 27 of tRNA(Tyr) is required for efficient translation of tyrosine codons (PubMed:39786990, PubMed:39786998). Also required to maintain 3-(3-amino-3-carboxypropyl)uridine (acp3U) in the D-loop of several cytoplasmic tRNAs (PubMed:39786990, PubMed:39786998). {ECO:0000269|PubMed:39786990, ECO:0000269|PubMed:39786998}.
Q7Z478 DHX29 S27 ochoa ATP-dependent RNA helicase DHX29 (EC 3.6.4.13) (DEAH box protein 29) (Nucleic acid helicase DDXx) ATP-binding RNA helicase involved in translation initiation. Part of the 43S pre-initiation complex that is required for efficient initiation on mRNAs of higher eukaryotes with structured 5'-UTRs by promoting efficient NTPase-dependent 48S complex formation. Specifically binds to the 40S ribosome near the mRNA entrance. Does not possess a processive helicase activity. {ECO:0000255|HAMAP-Rule:MF_03068, ECO:0000269|PubMed:19109895, ECO:0000269|PubMed:23706745}.
Q7Z5L9 IRF2BP2 S293 ochoa Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}.
Q7Z6J0 SH3RF1 S801 ochoa E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}.
Q7Z7K6 CENPV S45 ochoa Centromere protein V (CENP-V) (Nuclear protein p30) (Proline-rich protein 6) Required for distribution of pericentromeric heterochromatin in interphase nuclei and for centromere formation and organization, chromosome alignment and cytokinesis. {ECO:0000269|PubMed:18772885}.
Q86U42 PABPN1 S19 ochoa Polyadenylate-binding protein 2 (PABP-2) (Poly(A)-binding protein 2) (Nuclear poly(A)-binding protein 1) (Poly(A)-binding protein II) (PABII) (Polyadenylate-binding nuclear protein 1) Involved in the 3'-end formation of mRNA precursors (pre-mRNA) by the addition of a poly(A) tail of 200-250 nt to the upstream cleavage product (By similarity). Stimulates poly(A) polymerase (PAPOLA) conferring processivity on the poly(A) tail elongation reaction and also controls the poly(A) tail length (By similarity). Increases the affinity of poly(A) polymerase for RNA (By similarity). Is also present at various stages of mRNA metabolism including nucleocytoplasmic trafficking and nonsense-mediated decay (NMD) of mRNA. Cooperates with SKIP to synergistically activate E-box-mediated transcription through MYOD1 and may regulate the expression of muscle-specific genes (PubMed:11371506). Binds to poly(A) and to poly(G) with high affinity (By similarity). May protect the poly(A) tail from degradation (By similarity). Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters (PubMed:27871484). {ECO:0000250|UniProtKB:Q28165, ECO:0000269|PubMed:11371506, ECO:0000269|PubMed:27871484}.
Q86UP3 ZFHX4 S2349 ochoa Zinc finger homeobox protein 4 (Zinc finger homeodomain protein 4) (ZFH-4) May play a role in neural and muscle differentiation (By similarity). May be involved in transcriptional regulation. {ECO:0000250}.
Q86VQ1 GLCCI1 S105 ochoa Glucocorticoid-induced transcript 1 protein None
Q86XP1 DGKH S38 ochoa Diacylglycerol kinase eta (DAG kinase eta) (EC 2.7.1.107) (Diglyceride kinase eta) (DGK-eta) Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:12810723, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable) (PubMed:12810723, PubMed:23949095). Plays a key role in promoting cell growth (PubMed:19710016). Activates the Ras/B-Raf/C-Raf/MEK/ERK signaling pathway induced by EGF (PubMed:19710016). Regulates the recruitment of RAF1 and BRAF from cytoplasm to membranes and their heterodimerization (PubMed:19710016). {ECO:0000269|PubMed:12810723, ECO:0000269|PubMed:19710016, ECO:0000269|PubMed:23949095, ECO:0000305}.
Q86XP1 DGKH S39 ochoa Diacylglycerol kinase eta (DAG kinase eta) (EC 2.7.1.107) (Diglyceride kinase eta) (DGK-eta) Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:12810723, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable) (PubMed:12810723, PubMed:23949095). Plays a key role in promoting cell growth (PubMed:19710016). Activates the Ras/B-Raf/C-Raf/MEK/ERK signaling pathway induced by EGF (PubMed:19710016). Regulates the recruitment of RAF1 and BRAF from cytoplasm to membranes and their heterodimerization (PubMed:19710016). {ECO:0000269|PubMed:12810723, ECO:0000269|PubMed:19710016, ECO:0000269|PubMed:23949095, ECO:0000305}.
Q86Y01 DTX1 S279 ochoa E3 ubiquitin-protein ligase DTX1 (EC 2.3.2.27) (Protein deltex-1) (Deltex1) (hDTX1) (RING-type E3 ubiquitin transferase DTX1) Functions as a ubiquitin ligase protein in vivo, mediating ubiquitination and promoting degradation of MEKK1, suggesting that it may regulate the Notch pathway via some ubiquitin ligase activity (By similarity). Regulator of Notch signaling, a signaling pathway involved in cell-cell communications that regulates a broad spectrum of cell-fate determinations. Mainly acts as a positive regulator of Notch, but it also acts as a negative regulator, depending on the developmental and cell context. Mediates the antineural activity of Notch, possibly by inhibiting the transcriptional activation mediated by MATCH1. Involved in neurogenesis, lymphogenesis and myogenesis, and may also be involved in MZB (Marginal zone B) cell differentiation. Promotes B-cell development at the expense of T-cell development, suggesting that it can antagonize NOTCH1. {ECO:0000250, ECO:0000269|PubMed:11564735, ECO:0000269|PubMed:11869684, ECO:0000269|PubMed:9590294}.
Q8IXZ2 ZC3H3 S866 ochoa Zinc finger CCCH domain-containing protein 3 (Smad-interacting CPSF-like factor) Required for the export of polyadenylated mRNAs from the nucleus (PubMed:19364924). Enhances ACVR1B-induced SMAD-dependent transcription. Binds to single-stranded DNA but not to double-stranded DNA in vitro. Involved in RNA cleavage (By similarity). {ECO:0000250|UniProtKB:Q8CHP0, ECO:0000269|PubMed:19364924}.
Q8IYB3 SRRM1 T854 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IYB3 SRRM1 T855 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IYB3 SRRM1 T856 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IZ21 PHACTR4 S224 ochoa Phosphatase and actin regulator 4 Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}.
Q8N128 FAM177A1 S34 ochoa Protein FAM177A1 None
Q8N3E9 PLCD3 S34 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-3 (EC 3.1.4.11) (Phosphoinositide phospholipase C-delta-3) (Phospholipase C-delta-3) (PLC-delta-3) Hydrolyzes the phosphatidylinositol 4,5-bisphosphate (PIP2) to generate 2 second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG mediates the activation of protein kinase C (PKC), while IP3 releases Ca(2+) from intracellular stores. Essential for trophoblast and placental development. May participate in cytokinesis by hydrolyzing PIP2 at the cleavage furrow (PubMed:10336610). Regulates neurite outgrowth through the inhibition of RhoA/Rho kinase signaling (By similarity). {ECO:0000250|UniProtKB:Q8K2J0, ECO:0000269|PubMed:10336610}.
Q8N3E9 PLCD3 S39 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-3 (EC 3.1.4.11) (Phosphoinositide phospholipase C-delta-3) (Phospholipase C-delta-3) (PLC-delta-3) Hydrolyzes the phosphatidylinositol 4,5-bisphosphate (PIP2) to generate 2 second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG mediates the activation of protein kinase C (PKC), while IP3 releases Ca(2+) from intracellular stores. Essential for trophoblast and placental development. May participate in cytokinesis by hydrolyzing PIP2 at the cleavage furrow (PubMed:10336610). Regulates neurite outgrowth through the inhibition of RhoA/Rho kinase signaling (By similarity). {ECO:0000250|UniProtKB:Q8K2J0, ECO:0000269|PubMed:10336610}.
Q8N3X6 LCORL S26 ochoa Ligand-dependent nuclear receptor corepressor-like protein (LCoR-like protein) May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3'. May play a role in spermatogenesis (By similarity). {ECO:0000250}.
Q8N5H7 SH2D3C S446 ochoa SH2 domain-containing protein 3C (Cas/HEF1-associated signal transducer) (Chat-H) (Novel SH2-containing protein 3) (SH2 domain-containing Eph receptor-binding protein 1) (SHEP1) Acts as an adapter protein that mediates cell signaling pathways involved in cellular functions such as cell adhesion and migration, tissue organization, and the regulation of the immune response (PubMed:12432078, PubMed:20881139). Plays a role in integrin-mediated cell adhesion through BCAR1-CRK-RAPGEF1 signaling and activation of the small GTPase RAP1 (PubMed:12432078). Promotes cell migration and invasion through the extracellular matrix (PubMed:20881139). Required for marginal zone B-cell development and thymus-independent type 2 immune responses (By similarity). Mediates migration and adhesion of B cells in the splenic marginal zone via promoting hyperphosphorylation of NEDD9/CASL (By similarity). Plays a role in CXCL13-induced chemotaxis of B-cells (By similarity). Plays a role in the migration of olfactory sensory neurons (OSNs) into the forebrain and the innervation of the olfactory bulb by the OSN axons during development (By similarity). Required for the efficient tyrosine phosphorylation of BCAR1 in OSN axons (By similarity). {ECO:0000250|UniProtKB:Q9QZS8, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:20881139}.; FUNCTION: [Isoform 1]: Important regulator of chemokine-induced, integrin-mediated T lymphocyte adhesion and migration, acting upstream of RAP1 (By similarity). Required for tissue-specific adhesion of T lymphocytes to peripheral tissues (By similarity). Required for basal and CXCL2 stimulated serine-threonine phosphorylation of NEDD9 (By similarity). May be involved in the regulation of T-cell receptor-mediated IL2 production through the activation of the JNK pathway in T-cells (By similarity). {ECO:0000250|UniProtKB:Q9QZS8}.; FUNCTION: [Isoform 2]: May be involved in the BCAR1/CAS-mediated JNK activation pathway. {ECO:0000250|UniProtKB:Q9QZS8}.
Q8N6I1 EID2 S94 ochoa EP300-interacting inhibitor of differentiation 2 (EID-2) (CREBBP/EP300 inhibitor 2) (EID-1-like inhibitor of differentiation 2) Interacts with EP300 and acts as a repressor of MYOD-dependent transcription and muscle differentiation. Inhibits EP300 histone acetyltransferase activity. Acts as a repressor of TGFB/SMAD transcriptional responses. May act as a repressor of the TGFB/SMAD3-dependent signaling by selectively blocking formation of TGFB-induced SMAD3-SMAD4 complex. {ECO:0000269|PubMed:12586827, ECO:0000269|PubMed:14585496, ECO:0000269|PubMed:14612439}.
Q8NBR6 MINDY2 S589 ochoa Ubiquitin carboxyl-terminal hydrolase MINDY-2 (EC 3.4.19.12) (Deubiquitinating enzyme MINDY-2) (Protein FAM63B) Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins (PubMed:27292798). Binds to polyubiquitin chains of different linkage types, including 'Lys-6', 'Lys-11', 'Lys-29', 'Lys-33', 'Lys-48' and 'Lys-63' (PubMed:28082312). May play a regulatory role at the level of protein turnover (PubMed:27292798). {ECO:0000269|PubMed:27292798, ECO:0000269|PubMed:28082312}.
Q8NBR6 MINDY2 S590 ochoa Ubiquitin carboxyl-terminal hydrolase MINDY-2 (EC 3.4.19.12) (Deubiquitinating enzyme MINDY-2) (Protein FAM63B) Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins (PubMed:27292798). Binds to polyubiquitin chains of different linkage types, including 'Lys-6', 'Lys-11', 'Lys-29', 'Lys-33', 'Lys-48' and 'Lys-63' (PubMed:28082312). May play a regulatory role at the level of protein turnover (PubMed:27292798). {ECO:0000269|PubMed:27292798, ECO:0000269|PubMed:28082312}.
Q8NHG8 ZNRF2 S80 ochoa E3 ubiquitin-protein ligase ZNRF2 (EC 2.3.2.27) (Protein Ells2) (RING finger protein 202) (RING-type E3 ubiquitin transferase ZNRF2) (Zinc/RING finger protein 2) E3 ubiquitin-protein ligase that plays a role in the establishment and maintenance of neuronal transmission and plasticity. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Acts also as a positive regulator of mTORC1 activation by amino acids, which functions upstream of the V-ATPase and of Rag-GTPases (PubMed:27244671). In turn, phosphorylation by mTOR leads to its inhibition via targeting to the cytosol allowing a self-regulating feedback mechanism (PubMed:27244671). {ECO:0000269|PubMed:14561866, ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:27244671}.
Q8NHG8 ZNRF2 S82 ochoa E3 ubiquitin-protein ligase ZNRF2 (EC 2.3.2.27) (Protein Ells2) (RING finger protein 202) (RING-type E3 ubiquitin transferase ZNRF2) (Zinc/RING finger protein 2) E3 ubiquitin-protein ligase that plays a role in the establishment and maintenance of neuronal transmission and plasticity. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Acts also as a positive regulator of mTORC1 activation by amino acids, which functions upstream of the V-ATPase and of Rag-GTPases (PubMed:27244671). In turn, phosphorylation by mTOR leads to its inhibition via targeting to the cytosol allowing a self-regulating feedback mechanism (PubMed:27244671). {ECO:0000269|PubMed:14561866, ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:27244671}.
Q8NHG8 ZNRF2 S89 ochoa E3 ubiquitin-protein ligase ZNRF2 (EC 2.3.2.27) (Protein Ells2) (RING finger protein 202) (RING-type E3 ubiquitin transferase ZNRF2) (Zinc/RING finger protein 2) E3 ubiquitin-protein ligase that plays a role in the establishment and maintenance of neuronal transmission and plasticity. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Acts also as a positive regulator of mTORC1 activation by amino acids, which functions upstream of the V-ATPase and of Rag-GTPases (PubMed:27244671). In turn, phosphorylation by mTOR leads to its inhibition via targeting to the cytosol allowing a self-regulating feedback mechanism (PubMed:27244671). {ECO:0000269|PubMed:14561866, ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:27244671}.
Q8TB72 PUM2 S489 ochoa Pumilio homolog 2 (Pumilio-2) Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (, PubMed:21397187). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:22345517). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). May regulate DCUN1D3 mRNA levels (PubMed:25349211). May support proliferation and self-renewal of stem cells. Binds specifically to miRNA MIR199A precursor, with PUM1, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25349211, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233}.
Q8TB72 PUM2 T492 ochoa Pumilio homolog 2 (Pumilio-2) Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (, PubMed:21397187). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:22345517). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). May regulate DCUN1D3 mRNA levels (PubMed:25349211). May support proliferation and self-renewal of stem cells. Binds specifically to miRNA MIR199A precursor, with PUM1, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25349211, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233}.
Q8WXD9 CASKIN1 S1364 ochoa Caskin-1 (CASK-interacting protein 1) May link the scaffolding protein CASK to downstream intracellular effectors. {ECO:0000250}.
Q92522 H1-10 S154 ochoa Histone H1.10 (Histone H1x) Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures.
Q92945 KHSRP Y583 psp Far upstream element-binding protein 2 (FUSE-binding protein 2) (KH type-splicing regulatory protein) (KSRP) (p75) Binds to the dendritic targeting element and may play a role in mRNA trafficking (By similarity). Part of a ternary complex that binds to the downstream control sequence (DCS) of the pre-mRNA. Mediates exon inclusion in transcripts that are subject to tissue-specific alternative splicing. May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly by recruiting degradation machinery to ARE-containing mRNAs. {ECO:0000250, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:8940189, ECO:0000269|PubMed:9136930}.
Q96GE9 DMAC1 S37 ochoa Distal membrane-arm assembly complex protein 1 (Transmembrane protein 261) Required for the assembly of the mitochondrial NADH:ubiquinone oxidoreductase complex (complex I). Involved in the assembly of the distal region of complex I. {ECO:0000269|PubMed:27626371}.
Q96HP0 DOCK6 S1232 ochoa Dedicator of cytokinesis protein 6 Acts as a guanine nucleotide exchange factor (GEF) for CDC42 and RAC1 small GTPases. Through its activation of CDC42 and RAC1, may regulate neurite outgrowth (By similarity). {ECO:0000250, ECO:0000269|PubMed:17196961}.
Q96JP5 ZFP91 S82 ochoa E3 ubiquitin-protein ligase ZFP91 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase ZFP91) (Zinc finger protein 757) (Zinc finger protein 91 homolog) (Zfp-91) Atypical E3 ubiquitin-protein ligase that mediates 'Lys-63'-linked ubiquitination of MAP3K14/NIK, leading to stabilize and activate MAP3K14/NIK. It thereby acts as an activator of the non-canonical NF-kappa-B2/NFKB2 pathway. May also play an important role in cell proliferation and/or anti-apoptosis. {ECO:0000269|PubMed:12738986, ECO:0000269|PubMed:20682767}.
Q96PE1 ADGRA2 S1107 ochoa Adhesion G protein-coupled receptor A2 (G-protein coupled receptor 124) (Tumor endothelial marker 5) Endothelial receptor which functions together with RECK to enable brain endothelial cells to selectively respond to Wnt7 signals (WNT7A or WNT7B) (PubMed:28289266, PubMed:30026314). Plays a key role in Wnt7-specific responses, such as endothelial cell sprouting and migration in the forebrain and neural tube, and establishment of the blood-brain barrier (By similarity). Acts as a Wnt7-specific coactivator of canonical Wnt signaling: required to deliver RECK-bound Wnt7 to frizzled by assembling a higher-order RECK-ADGRA2-Fzd-LRP5-LRP6 complex (PubMed:30026314). ADGRA2-tethering function does not rely on its G-protein coupled receptor (GPCR) structure but instead on its combined capacity to interact with RECK extracellularly and recruit the Dishevelled scaffolding protein intracellularly (PubMed:30026314). Binds to the glycosaminoglycans heparin, heparin sulfate, chondroitin sulfate and dermatan sulfate (PubMed:16982628). {ECO:0000250|UniProtKB:Q91ZV8, ECO:0000269|PubMed:16982628, ECO:0000269|PubMed:28289266, ECO:0000269|PubMed:30026314}.
Q96PK6 RBM14 T518 ochoa RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}.
Q96S55 WRNIP1 S65 ochoa ATPase WRNIP1 (EC 3.6.1.-) (Werner helicase-interacting protein 1) Functions as a modulator of initiation or reinitiation events during DNA polymerase delta-mediated DNA synthesis. In the presence of ATP, stimulation of DNA polymerase delta-mediated DNA synthesis is decreased. Also plays a role in the innate immune defense against viruses. Stabilizes the RIGI dsRNA interaction and promotes RIGI 'Lys-63'-linked polyubiquitination. In turn, RIGI transmits the signal through mitochondrial MAVS. {ECO:0000269|PubMed:15670210, ECO:0000269|PubMed:29053956}.
Q96S94 CCNL2 S25 ochoa Cyclin-L2 (Paneth cell-enhanced expression protein) Involved in pre-mRNA splicing. May induce cell death, possibly by acting on the transcription and RNA processing of apoptosis-related factors. {ECO:0000269|PubMed:14684736, ECO:0000269|PubMed:18216018}.
Q96S94 CCNL2 S30 ochoa Cyclin-L2 (Paneth cell-enhanced expression protein) Involved in pre-mRNA splicing. May induce cell death, possibly by acting on the transcription and RNA processing of apoptosis-related factors. {ECO:0000269|PubMed:14684736, ECO:0000269|PubMed:18216018}.
Q99856 ARID3A S77 ochoa AT-rich interactive domain-containing protein 3A (ARID domain-containing protein 3A) (B-cell regulator of IgH transcription) (Bright) (Dead ringer-like protein 1) (E2F-binding protein 1) Transcription factor which may be involved in the control of cell cycle progression by the RB1/E2F1 pathway and in B-cell differentiation. {ECO:0000269|PubMed:11812999, ECO:0000269|PubMed:12692263}.
Q99856 ARID3A S81 ochoa AT-rich interactive domain-containing protein 3A (ARID domain-containing protein 3A) (B-cell regulator of IgH transcription) (Bright) (Dead ringer-like protein 1) (E2F-binding protein 1) Transcription factor which may be involved in the control of cell cycle progression by the RB1/E2F1 pathway and in B-cell differentiation. {ECO:0000269|PubMed:11812999, ECO:0000269|PubMed:12692263}.
Q9BTC0 DIDO1 T1303 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9BTC0 DIDO1 S1306 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9BTC0 DIDO1 S1308 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9BTC0 DIDO1 S1312 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9BWF3 RBM4 S300 ochoa RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) RNA-binding factor involved in multiple aspects of cellular processes like alternative splicing of pre-mRNA and translation regulation. Modulates alternative 5'-splice site and exon selection. Acts as a muscle cell differentiation-promoting factor. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation. Antagonizes the activity of the splicing factor PTBP1 to modulate muscle cell-specific exon selection of alpha tropomyosin. Binds to intronic pyrimidine-rich sequence of the TPM1 and MAPT pre-mRNAs. Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA. Exerts a suppressive activity on Cap-dependent translation via binding to CU-rich responsive elements within the 3'UTR of mRNAs, a process increased under stress conditions or during myocytes differentiation. Recruits EIF4A1 to stimulate IRES-dependent translation initiation in respons to cellular stress. Associates to internal ribosome entry segment (IRES) in target mRNA species under stress conditions. Plays a role for miRNA-guided RNA cleavage and translation suppression by promoting association of AGO2-containing miRNPs with their cognate target mRNAs. Associates with miRNAs during muscle cell differentiation. Binds preferentially to 5'-CGCGCG[GCA]-3' motif in vitro. {ECO:0000269|PubMed:12628928, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:16777844, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17284590, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:19801630, ECO:0000269|PubMed:21343338, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:37548402}.
Q9BWF3 RBM4 T301 ochoa RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) RNA-binding factor involved in multiple aspects of cellular processes like alternative splicing of pre-mRNA and translation regulation. Modulates alternative 5'-splice site and exon selection. Acts as a muscle cell differentiation-promoting factor. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation. Antagonizes the activity of the splicing factor PTBP1 to modulate muscle cell-specific exon selection of alpha tropomyosin. Binds to intronic pyrimidine-rich sequence of the TPM1 and MAPT pre-mRNAs. Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA. Exerts a suppressive activity on Cap-dependent translation via binding to CU-rich responsive elements within the 3'UTR of mRNAs, a process increased under stress conditions or during myocytes differentiation. Recruits EIF4A1 to stimulate IRES-dependent translation initiation in respons to cellular stress. Associates to internal ribosome entry segment (IRES) in target mRNA species under stress conditions. Plays a role for miRNA-guided RNA cleavage and translation suppression by promoting association of AGO2-containing miRNPs with their cognate target mRNAs. Associates with miRNAs during muscle cell differentiation. Binds preferentially to 5'-CGCGCG[GCA]-3' motif in vitro. {ECO:0000269|PubMed:12628928, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:16777844, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17284590, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:19801630, ECO:0000269|PubMed:21343338, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:37548402}.
Q9BWF3 RBM4 S302 ochoa RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) RNA-binding factor involved in multiple aspects of cellular processes like alternative splicing of pre-mRNA and translation regulation. Modulates alternative 5'-splice site and exon selection. Acts as a muscle cell differentiation-promoting factor. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation. Antagonizes the activity of the splicing factor PTBP1 to modulate muscle cell-specific exon selection of alpha tropomyosin. Binds to intronic pyrimidine-rich sequence of the TPM1 and MAPT pre-mRNAs. Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA. Exerts a suppressive activity on Cap-dependent translation via binding to CU-rich responsive elements within the 3'UTR of mRNAs, a process increased under stress conditions or during myocytes differentiation. Recruits EIF4A1 to stimulate IRES-dependent translation initiation in respons to cellular stress. Associates to internal ribosome entry segment (IRES) in target mRNA species under stress conditions. Plays a role for miRNA-guided RNA cleavage and translation suppression by promoting association of AGO2-containing miRNPs with their cognate target mRNAs. Associates with miRNAs during muscle cell differentiation. Binds preferentially to 5'-CGCGCG[GCA]-3' motif in vitro. {ECO:0000269|PubMed:12628928, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:16777844, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17284590, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:19801630, ECO:0000269|PubMed:21343338, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:37548402}.
Q9BX46 RBM24 S181 psp RNA-binding protein 24 (RNA-binding motif protein 24) (RNA-binding region-containing protein 6) Multifunctional RNA-binding protein involved in the regulation of pre-mRNA splicing, mRNA stability and mRNA translation important for cell fate decision and differentiation (PubMed:20977548, PubMed:24375645, PubMed:29104163, PubMed:29358667). Plays a major role in pre-mRNA alternative splicing regulation (PubMed:26990106, PubMed:29104163). Mediates preferentially muscle-specific exon inclusion in numerous mRNAs important for striated cardiac and skeletal muscle cell differentiation (PubMed:29104163). Binds to intronic splicing enhancer (ISE) composed of stretches of GU-rich motifs localized in flanking intron of exon that will be included by alternative splicing (By similarity). Involved in embryonic stem cell (ESC) transition to cardiac cell differentiation by promoting pre-mRNA alternative splicing events of several pluripotency and/or differentiation genes (PubMed:26990106). Plays a role in the regulation of mRNA stability (PubMed:20977548, PubMed:24356969, PubMed:24375645, PubMed:29104163). Binds to 3'-untranslated region (UTR) AU-rich elements in target transcripts, such as CDKN1A and MYOG, leading to maintain their stabilities (PubMed:20977548, PubMed:24356969). Involved in myogenic differentiation by regulating MYOG levels (PubMed:20977548). Binds to multiple regions in the mRNA 3'-UTR of TP63 isoform 2, hence inducing its destabilization (PubMed:24375645). Also promotes the destabilization of the CHRM2 mRNA via its binding to a region in the coding sequence (PubMed:29104163). Plays a role in the regulation of mRNA translation (PubMed:29358667). Mediates repression of p53/TP53 mRNA translation through its binding to U-rich element in the 3'-UTR, hence preventing EIF4E from binding to p53/TP53 mRNA and translation initiation (PubMed:29358667). Binds to a huge amount of mRNAs (PubMed:29104163). Required for embryonic heart development, sarcomer and M-band formation in striated muscles (By similarity). Together with RBM20, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:D3Z4I3, ECO:0000250|UniProtKB:M0R7T6, ECO:0000269|PubMed:20977548, ECO:0000269|PubMed:24356969, ECO:0000269|PubMed:24375645, ECO:0000269|PubMed:26990106, ECO:0000269|PubMed:29104163, ECO:0000269|PubMed:29358667}.; FUNCTION: (Microbial infection) Promotes hepatitis C virus (HCV) replication over translation through the inhibition of viral protein expression. Decreases viral translation by linking viral 5'- and 3'-UTRs, blocking 80S ribosome assembly on the viral IRES and enhancing the interaction of the mature core protein and 5'-UTR. {ECO:0000269|PubMed:29380205}.
Q9BYB0 SHANK3 S1127 ochoa SH3 and multiple ankyrin repeat domains protein 3 (Shank3) (Proline-rich synapse-associated protein 2) (ProSAP2) Major scaffold postsynaptic density protein which interacts with multiple proteins and complexes to orchestrate the dendritic spine and synapse formation, maturation and maintenance. Interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and HOMER, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction through the interaction with Arp2/3 and WAVE1 complex as well as the promotion of the F-actin clusters. By way of this control of actin dynamics, participates in the regulation of developing neurons growth cone motility and the NMDA receptor-signaling. Also modulates GRIA1 exocytosis and GRM5/MGLUR5 expression and signaling to control the AMPA and metabotropic glutamate receptor-mediated synaptic transmission and plasticity. May be required at an early stage of synapse formation and be inhibited by IGF1 to promote synapse maturation. {ECO:0000269|PubMed:24132240}.
Q9BZK7 TBL1XR1 S123 ochoa|psp F-box-like/WD repeat-containing protein TBL1XR1 (Nuclear receptor corepressor/HDAC3 complex subunit TBLR1) (TBL1-related protein 1) (Transducin beta-like 1X-related protein 1) F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units. Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of the N-Cor corepressor complex that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of N-Cor complex, thereby allowing cofactor exchange, and transcription activation. {ECO:0000269|PubMed:14980219}.
Q9GZT9 EGLN1 S136 ochoa|psp Egl nine homolog 1 (EC 1.14.11.29) (Hypoxia-inducible factor prolyl hydroxylase 2) (HIF-PH2) (HIF-prolyl hydroxylase 2) (HPH-2) (Prolyl hydroxylase domain-containing protein 2) (PHD2) (SM-20) Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF1B. Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Under hypoxic conditions, the hydroxylation reaction is attenuated allowing HIFs to escape degradation resulting in their translocation to the nucleus, heterodimerization with HIF1B, and increased expression of hypoxy-inducible genes. EGLN1 is the most important isozyme under normoxia and, through regulating the stability of HIF1, involved in various hypoxia-influenced processes such as angiogenesis in retinal and cardiac functionality. Target proteins are preferentially recognized via a LXXLAP motif. {ECO:0000269|PubMed:11595184, ECO:0000269|PubMed:12181324, ECO:0000269|PubMed:12351678, ECO:0000269|PubMed:15897452, ECO:0000269|PubMed:19339211, ECO:0000269|PubMed:21792862, ECO:0000269|PubMed:25129147}.
Q9H1K1 ISCU S20 ochoa Iron-sulfur cluster assembly enzyme ISCU (NifU-like N-terminal domain-containing protein) (NifU-like protein) [Isoform 1]: Mitochondrial scaffold protein, of the core iron-sulfur cluster (ISC) assembly complex, that provides the structural architecture on which the [2Fe-2S] clusters are assembled (PubMed:34824239). The core iron-sulfur cluster (ISC) assembly complex is involved in the de novo synthesis of a [2Fe-2S] cluster, the first step of the mitochondrial iron-sulfur protein biogenesis. This process is initiated by the cysteine desulfurase complex (NFS1:LYRM4:NDUFAB1) that produces persulfide which is delivered on the scaffold protein ISCU in a FXN-dependent manner. Then this complex is stabilized by FDX2 which provides reducing equivalents to accomplish the [2Fe-2S] cluster assembly. Finally, the [2Fe-2S] cluster is transferred from ISCU to chaperone proteins, including HSCB, HSPA9 and GLRX5 (Probable) (PubMed:24971490, PubMed:29576242, PubMed:30031876, PubMed:34824239). Exists as two slow interchanging conformational states, a structured (S) and disordered (D) form (PubMed:23940031). May modulate NFS1 desulfurase activity in a zinc-dependent manner (PubMed:30031876). Modulates the interaction between FXN and the cysteine desulfurase complex (PubMed:29576242). {ECO:0000269|PubMed:23940031, ECO:0000269|PubMed:24971490, ECO:0000269|PubMed:29576242, ECO:0000269|PubMed:30031876, ECO:0000269|PubMed:34824239, ECO:0000305|PubMed:23940031}.; FUNCTION: [Isoform 2]: Cytoplasmic scaffold protein, of the cytoplasmic core iron-sulfur cluster (ISC) assembly complex that provides the structural architecture on which the Fe-S clusters are assembled and may be involved in the cytoplasmic iron-sulfur protein biogenesis. {ECO:0000269|PubMed:16517407, ECO:0000269|PubMed:16527810, ECO:0000269|PubMed:29309586}.
Q9H400 LIME1 Y145 psp Lck-interacting transmembrane adapter 1 (Lck-interacting membrane protein) (Lck-interacting molecule) Involved in BCR (B-cell antigen receptor)-mediated signaling in B-cells and TCR (T-cell antigen receptor)-mediated T-cell signaling in T-cells. In absence of TCR signaling, may be involved in CD4-mediated inhibition of T-cell activation. Couples activation of these receptors and their associated kinases with distal intracellular events such as calcium mobilization or MAPK activation through the recruitment of PLCG2, GRB2, GRAP2, and other signaling molecules. {ECO:0000269|PubMed:14610046}.
Q9H7L9 SUDS3 Y23 ochoa Sin3 histone deacetylase corepressor complex component SDS3 (45 kDa Sin3-associated polypeptide) (Suppressor of defective silencing 3 protein homolog) Regulatory protein which represses transcription and augments histone deacetylase activity of HDAC1. May have a potential role in tumor suppressor pathways through regulation of apoptosis. May function in the assembly and/or enzymatic activity of the mSin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes. {ECO:0000269|PubMed:12724404, ECO:0000269|PubMed:21239494}.
Q9HA92 RSAD1 S30 ochoa Radical S-adenosyl methionine domain-containing protein 1, mitochondrial (Putative heme chaperone) May be a heme chaperone, appears to bind heme. Homologous bacterial proteins do not have oxygen-independent coproporphyrinogen-III oxidase activity (Probable). Binds 1 [4Fe-4S] cluster. The cluster is coordinated with 3 cysteines and an exchangeable S-adenosyl-L-methionine (By similarity). {ECO:0000250|UniProtKB:P32131, ECO:0000305|PubMed:29282292}.
Q9NQS7 INCENP S142 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NQS7 INCENP S143 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NQS7 INCENP T145 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NQX5 NPDC1 S236 ochoa Neural proliferation differentiation and control protein 1 (NPDC-1) Suppresses oncogenic transformation in neural and non-neural cells and down-regulates neural cell proliferation. Might be involved in transcriptional regulation (By similarity). {ECO:0000250}.
Q9NR12 PDLIM7 S111 ochoa PDZ and LIM domain protein 7 (LIM mineralization protein) (LMP) (Protein enigma) May function as a scaffold on which the coordinated assembly of proteins can occur. May play a role as an adapter that, via its PDZ domain, localizes LIM-binding proteins to actin filaments of both skeletal muscle and nonmuscle tissues. Involved in both of the two fundamental mechanisms of bone formation, direct bone formation (e.g. embryonic flat bones mandible and cranium), and endochondral bone formation (e.g. embryonic long bone development). Plays a role during fracture repair. Involved in BMP6 signaling pathway (By similarity). {ECO:0000250, ECO:0000269|PubMed:11874232, ECO:0000269|PubMed:7929196}.
Q9P1Y5 CAMSAP3 S207 ochoa Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}.
Q9P219 CCDC88C S1930 ochoa Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}.
Q9P244 LRFN1 S632 ochoa Leucine-rich repeat and fibronectin type III domain-containing protein 1 (Synaptic adhesion-like molecule 2) Promotes neurite outgrowth in hippocampal neurons. Involved in the regulation and maintenance of excitatory synapses. Induces the clustering of excitatory postsynaptic proteins, including DLG4, DLGAP1, GRIA1 and GRIN1 (By similarity). {ECO:0000250}.
Q9UKD1 GMEB2 S379 ochoa Glucocorticoid modulatory element-binding protein 2 (GMEB-2) (DNA-binding protein p79PIF) (Parvovirus initiation factor p79) (PIF p79) Trans-acting factor that binds to glucocorticoid modulatory elements (GME) present in the TAT (tyrosine aminotransferase) promoter and increases sensitivity to low concentrations of glucocorticoids. Also binds to the transferrin receptor promoter. Essential auxiliary factor for the replication of parvoviruses.
Q9UKL0 RCOR1 S40 ochoa REST corepressor 1 (Protein CoREST) Essential component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it serves as a molecular beacon for the recruitment of molecular machinery, including MeCP2 and SUV39H1, that imposes silencing across a chromosomal interval. Plays a central role in demethylation of Lys-4 of histone H3 by promoting demethylase activity of KDM1A on core histones and nucleosomal substrates. It also protects KDM1A from the proteasome. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development and controls hematopoietic differentiation. {ECO:0000269|PubMed:11171972, ECO:0000269|PubMed:11516394, ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:12493763, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16140033}.
Q9UKL0 RCOR1 T44 ochoa REST corepressor 1 (Protein CoREST) Essential component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it serves as a molecular beacon for the recruitment of molecular machinery, including MeCP2 and SUV39H1, that imposes silencing across a chromosomal interval. Plays a central role in demethylation of Lys-4 of histone H3 by promoting demethylase activity of KDM1A on core histones and nucleosomal substrates. It also protects KDM1A from the proteasome. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development and controls hematopoietic differentiation. {ECO:0000269|PubMed:11171972, ECO:0000269|PubMed:11516394, ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:12493763, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16140033}.
Q9UKL0 RCOR1 S47 ochoa REST corepressor 1 (Protein CoREST) Essential component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it serves as a molecular beacon for the recruitment of molecular machinery, including MeCP2 and SUV39H1, that imposes silencing across a chromosomal interval. Plays a central role in demethylation of Lys-4 of histone H3 by promoting demethylase activity of KDM1A on core histones and nucleosomal substrates. It also protects KDM1A from the proteasome. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development and controls hematopoietic differentiation. {ECO:0000269|PubMed:11171972, ECO:0000269|PubMed:11516394, ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:12493763, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16140033}.
Q9UKL0 RCOR1 S52 ochoa REST corepressor 1 (Protein CoREST) Essential component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it serves as a molecular beacon for the recruitment of molecular machinery, including MeCP2 and SUV39H1, that imposes silencing across a chromosomal interval. Plays a central role in demethylation of Lys-4 of histone H3 by promoting demethylase activity of KDM1A on core histones and nucleosomal substrates. It also protects KDM1A from the proteasome. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development and controls hematopoietic differentiation. {ECO:0000269|PubMed:11171972, ECO:0000269|PubMed:11516394, ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:12493763, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16140033}.
Q9UKL0 RCOR1 S53 ochoa REST corepressor 1 (Protein CoREST) Essential component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it serves as a molecular beacon for the recruitment of molecular machinery, including MeCP2 and SUV39H1, that imposes silencing across a chromosomal interval. Plays a central role in demethylation of Lys-4 of histone H3 by promoting demethylase activity of KDM1A on core histones and nucleosomal substrates. It also protects KDM1A from the proteasome. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development and controls hematopoietic differentiation. {ECO:0000269|PubMed:11171972, ECO:0000269|PubMed:11516394, ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:12493763, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16140033}.
Q9UKY4 POMT2 S41 ochoa Protein O-mannosyl-transferase 2 (EC 2.4.1.109) (Dolichyl-phosphate-mannose--protein mannosyltransferase 2) Transfers mannosyl residues to the hydroxyl group of serine or threonine residues. Coexpression of both POMT1 and POMT2 is necessary for enzyme activity, expression of either POMT1 or POMT2 alone is insufficient (PubMed:14699049, PubMed:28512129). Essentially dedicated to O-mannosylation of alpha-DAG1 and few other proteins but not of cadherins and protocaherins (PubMed:28512129). {ECO:0000269|PubMed:14699049, ECO:0000269|PubMed:28512129}.
Q9UQ35 SRRM2 T2252 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQB3 CTNND2 Y499 ochoa Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}.
Q9Y261 FOXA2 S295 ochoa Hepatocyte nuclear factor 3-beta (HNF-3-beta) (HNF-3B) (Forkhead box protein A2) (Transcription factor 3B) (TCF-3B) Transcription factor that is involved in embryonic development, establishment of tissue-specific gene expression and regulation of gene expression in differentiated tissues. Is thought to act as a 'pioneer' factor opening the compacted chromatin for other proteins through interactions with nucleosomal core histones and thereby replacing linker histones at target enhancer and/or promoter sites. Binds DNA with the consensus sequence 5'-[AC]A[AT]T[AG]TT[GT][AG][CT]T[CT]-3' (By similarity). In embryonic development is required for notochord formation. Involved in the development of multiple endoderm-derived organ systems such as the liver, pancreas and lungs; FOXA1 and FOXA2 seem to have at least in part redundant roles. Originally described as a transcription activator for a number of liver genes such as AFP, albumin, tyrosine aminotransferase, PEPCK, etc. Interacts with the cis-acting regulatory regions of these genes. Involved in glucose homeostasis; regulates the expression of genes important for glucose sensing in pancreatic beta-cells and glucose homeostasis. Involved in regulation of fat metabolism. Binds to fibrinogen beta promoter and is involved in IL6-induced fibrinogen beta transcriptional activation. {ECO:0000250}.
Q9Y3L3 SH3BP1 T534 ochoa SH3 domain-binding protein 1 GTPase activating protein (GAP) which specifically converts GTP-bound Rho-type GTPases including RAC1 and CDC42 in their inactive GDP-bound form. By specifically inactivating RAC1 at the leading edge of migrating cells, it regulates the spatiotemporal organization of cell protrusions which is important for proper cell migration (PubMed:21658605). Also negatively regulates CDC42 in the process of actin remodeling and the formation of epithelial cell junctions (PubMed:22891260). Through its GAP activity toward RAC1 and/or CDC42 plays a specific role in phagocytosis of large particles. Specifically recruited by a PI3 kinase/PI3K-dependent mechanism to sites of large particles engagement, inactivates RAC1 and/or CDC42 allowing the reorganization of the underlying actin cytoskeleton required for engulfment (PubMed:26465210). It also plays a role in angiogenesis and the process of repulsive guidance as part of a semaphorin-plexin signaling pathway. Following the binding of PLXND1 to extracellular SEMA3E it dissociates from PLXND1 and inactivates RAC1, inducing the intracellular reorganization of the actin cytoskeleton and the collapse of cells (PubMed:24841563). {ECO:0000269|PubMed:21658605, ECO:0000269|PubMed:22891260, ECO:0000269|PubMed:24841563, ECO:0000269|PubMed:26465210}.
Q9Y3L3 SH3BP1 S536 ochoa SH3 domain-binding protein 1 GTPase activating protein (GAP) which specifically converts GTP-bound Rho-type GTPases including RAC1 and CDC42 in their inactive GDP-bound form. By specifically inactivating RAC1 at the leading edge of migrating cells, it regulates the spatiotemporal organization of cell protrusions which is important for proper cell migration (PubMed:21658605). Also negatively regulates CDC42 in the process of actin remodeling and the formation of epithelial cell junctions (PubMed:22891260). Through its GAP activity toward RAC1 and/or CDC42 plays a specific role in phagocytosis of large particles. Specifically recruited by a PI3 kinase/PI3K-dependent mechanism to sites of large particles engagement, inactivates RAC1 and/or CDC42 allowing the reorganization of the underlying actin cytoskeleton required for engulfment (PubMed:26465210). It also plays a role in angiogenesis and the process of repulsive guidance as part of a semaphorin-plexin signaling pathway. Following the binding of PLXND1 to extracellular SEMA3E it dissociates from PLXND1 and inactivates RAC1, inducing the intracellular reorganization of the actin cytoskeleton and the collapse of cells (PubMed:24841563). {ECO:0000269|PubMed:21658605, ECO:0000269|PubMed:22891260, ECO:0000269|PubMed:24841563, ECO:0000269|PubMed:26465210}.
Q9Y490 TLN1 S940 ochoa Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y490 TLN1 T941 ochoa Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y490 TLN1 S945 ochoa Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y4B5 MTCL1 S87 ochoa Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}.
Q9Y4H2 IRS2 S174 ochoa Insulin receptor substrate 2 (IRS-2) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}.
Q9Y4H2 IRS2 S388 ochoa Insulin receptor substrate 2 (IRS-2) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}.
Q9Y4H2 IRS2 T713 ochoa Insulin receptor substrate 2 (IRS-2) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}.
Q9Y5W3 KLF2 T244 ochoa Krueppel-like factor 2 (Lung krueppel-like factor) Transcription factor that binds to the CACCC box in the promoter of target genes such as HBB/beta globin or NOV and activates their transcription (PubMed:21063504). Might be involved in transcriptional regulation by modulating the binding of the RARA nuclear receptor to RARE DNA elements (PubMed:28167758). {ECO:0000269|PubMed:21063504, ECO:0000269|PubMed:28167758}.
Q9Y5W3 KLF2 S248 ochoa Krueppel-like factor 2 (Lung krueppel-like factor) Transcription factor that binds to the CACCC box in the promoter of target genes such as HBB/beta globin or NOV and activates their transcription (PubMed:21063504). Might be involved in transcriptional regulation by modulating the binding of the RARA nuclear receptor to RARE DNA elements (PubMed:28167758). {ECO:0000269|PubMed:21063504, ECO:0000269|PubMed:28167758}.
Q9Y6H1 CHCHD2 S41 ochoa Coiled-coil-helix-coiled-coil-helix domain-containing protein 2 (Aging-associated gene 10 protein) (HCV NS2 trans-regulated protein) (NS2TP) Transcription factor. Binds to the oxygen responsive element of COX4I2 and activates its transcription under hypoxia conditions (4% oxygen), as well as normoxia conditions (20% oxygen) (PubMed:23303788). {ECO:0000269|PubMed:23303788}.
Q9Y6X6 MYO16 S1341 ochoa Unconventional myosin-XVI (Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 3) (Unconventional myosin-16) Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. May be involved in targeting of the catalytic subunit of protein phosphatase 1 during brain development. Activates PI3K and concomitantly recruits the WAVE1 complex to the close vicinity of PI3K and regulates neuronal morphogenesis (By similarity). {ECO:0000250}.
P05388 RPLP0 T128 Sugiyama Large ribosomal subunit protein uL10 (60S acidic ribosomal protein P0) (60S ribosomal protein L10E) Ribosomal protein P0 is the functional equivalent of E.coli protein L10.
Q8NHW5 RPLP0P6 T128 Sugiyama Putative ribosomal protein uL10-like (60S acidic ribosomal protein P0-like) (Large ribosomal subunit protein uL10-like) Ribosomal protein P0 is the functional equivalent of E.coli protein L10. {ECO:0000250}.
Q8NE71 ABCF1 S293 Sugiyama ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}.
O60285 NUAK1 S22 ochoa NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}.
O60508 CDC40 S22 ochoa Pre-mRNA-processing factor 17 (Cell division cycle 40 homolog) (EH-binding protein 3) (Ehb3) (PRP17 homolog) (hPRP17) Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:33220177). Plays an important role in embryonic brain development; this function does not require proline isomerization (PubMed:33220177). {ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:33220177, ECO:0000269|PubMed:9830021}.
O95336 PGLS S46 ochoa 6-phosphogluconolactonase (6PGL) (EC 3.1.1.31) Hydrolysis of 6-phosphogluconolactone to 6-phosphogluconate. {ECO:0000269|PubMed:10518023}.
O95817 BAG3 T145 ochoa BAG family molecular chaperone regulator 3 (BAG-3) (Bcl-2-associated athanogene 3) (Bcl-2-binding protein Bis) (Docking protein CAIR-1) Co-chaperone and adapter protein that connects different classes of molecular chaperones including heat shock proteins 70 (HSP70s), e.g. HSPA1A/HSP70 or HSPA8/HSC70, and small heat shock proteins (sHSPs), e.g. HSPB8 (PubMed:27884606, PubMed:30559338). Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from HSP70s, thereby triggering client protein release (PubMed:27884606, PubMed:30559338). Nucleotide release is mediated via BAG3 binding to the nucleotide-binding domain (NBD) of HSP70s, whereas client release is mediated via binding to the substrate-binding domain (SBD) (PubMed:27474739, PubMed:9873016). Has anti-apoptotic activity (PubMed:10597216). Plays a role in the HSF1 nucleocytoplasmic transport (PubMed:26159920). {ECO:0000269|PubMed:10597216, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:26159920, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27884606, ECO:0000269|PubMed:30559338, ECO:0000269|PubMed:9873016}.
P05388 RPLP0 T286 ochoa Large ribosomal subunit protein uL10 (60S acidic ribosomal protein P0) (60S ribosomal protein L10E) Ribosomal protein P0 is the functional equivalent of E.coli protein L10.
P06576 ATP5F1B S51 ochoa ATP synthase F(1) complex subunit beta, mitochondrial (EC 7.1.2.2) (ATP synthase F1 subunit beta) Catalytic subunit beta, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable) (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the subunit alpha (ATP5F1A), forms the catalytic core in the F(1) domain (PubMed:37244256). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:25168243, ECO:0000305|PubMed:36239646, ECO:0000305|PubMed:37244256}.
P08865 RPSA S79 ochoa Small ribosomal subunit protein uS2 (37 kDa laminin receptor precursor) (37LRP) (37/67 kDa laminin receptor) (LRP/LR) (40S ribosomal protein SA) (67 kDa laminin receptor) (67LR) (Colon carcinoma laminin-binding protein) (Laminin receptor 1) (LamR) (Laminin-binding protein precursor p40) (LBP/p40) (Multidrug resistance-associated protein MGr1-Ag) (NEM/1CHD4) Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Also functions as a cell surface receptor for laminin. Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways. May play a role in cell fate determination and tissue morphogenesis. Acts as a PPP1R16B-dependent substrate of PPP1CA. {ECO:0000255|HAMAP-Rule:MF_03016, ECO:0000269|PubMed:16263087, ECO:0000269|PubMed:6300843}.; FUNCTION: (Microbial infection) Acts as a receptor for the Adeno-associated viruses 2,3,8 and 9. {ECO:0000269|PubMed:16973587}.; FUNCTION: (Microbial infection) Acts as a receptor for the Dengue virus. {ECO:0000269|PubMed:15507651}.; FUNCTION: (Microbial infection) Acts as a receptor for the Sindbis virus. {ECO:0000269|PubMed:1385835}.; FUNCTION: (Microbial infection) Acts as a receptor for the Venezuelan equine encephalitis virus. {ECO:0000269|PubMed:1385835}.; FUNCTION: (Microbial infection) Acts as a receptor for the pathogenic prion protein. {ECO:0000269|PubMed:11689427, ECO:0000269|PubMed:9396609}.; FUNCTION: (Microbial infection) Acts as a receptor for bacteria. {ECO:0000269|PubMed:15516338}.
P16402 H1-3 S42 ochoa Histone H1.3 (Histone H1c) (Histone H1s-2) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P17676 CEBPB S257 ochoa CCAAT/enhancer-binding protein beta (C/EBP beta) (Liver activator protein) (LAP) (Liver-enriched inhibitory protein) (LIP) (Nuclear factor NF-IL6) (Transcription factor 5) (TCF-5) Important transcription factor regulating the expression of genes involved in immune and inflammatory responses (PubMed:12048245, PubMed:1741402, PubMed:18647749, PubMed:9374525). Also plays a significant role in adipogenesis, as well as in the gluconeogenic pathway, liver regeneration, and hematopoiesis. The consensus recognition site is 5'-T[TG]NNGNAA[TG]-3'. Its functional capacity is governed by protein interactions and post-translational protein modifications. During early embryogenesis, plays essential and redundant roles with CEBPA. Has a promitotic effect on many cell types such as hepatocytes and adipocytes but has an antiproliferative effect on T-cells by repressing MYC expression, facilitating differentiation along the T-helper 2 lineage. Binds to regulatory regions of several acute-phase and cytokines genes and plays a role in the regulation of acute-phase reaction and inflammation. Also plays a role in intracellular bacteria killing (By similarity). During adipogenesis, is rapidly expressed and, after activation by phosphorylation, induces CEBPA and PPARG, which turn on the series of adipocyte genes that give rise to the adipocyte phenotype. The delayed transactivation of the CEBPA and PPARG genes by CEBPB appears necessary to allow mitotic clonal expansion and thereby progression of terminal differentiation (PubMed:20829347). Essential for female reproduction because of a critical role in ovarian follicle development (By similarity). Restricts osteoclastogenesis: together with NFE2L1; represses expression of DSPP during odontoblast differentiation (By similarity). {ECO:0000250|UniProtKB:P21272, ECO:0000250|UniProtKB:P28033, ECO:0000269|PubMed:12048245, ECO:0000269|PubMed:18647749, ECO:0000269|PubMed:20829347, ECO:0000269|PubMed:9374525, ECO:0000303|PubMed:25451943}.; FUNCTION: [Isoform 2]: Essential for gene expression induction in activated macrophages. Plays a major role in immune responses such as CD4(+) T-cell response, granuloma formation and endotoxin shock. Not essential for intracellular bacteria killing. {ECO:0000250|UniProtKB:P28033}.; FUNCTION: [Isoform 3]: Acts as a dominant negative through heterodimerization with isoform 2 (PubMed:11741938). Promotes osteoblast differentiation and osteoclastogenesis (By similarity). {ECO:0000250|UniProtKB:P21272, ECO:0000250|UniProtKB:P28033, ECO:0000269|PubMed:11741938}.
P29966 MARCKS S63 ochoa Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}.
P50552 VASP S245 ochoa Vasodilator-stimulated phosphoprotein (VASP) Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance, lamellipodial and filopodial dynamics, platelet activation and cell migration. VASP promotes actin filament elongation. It protects the barbed end of growing actin filaments against capping and increases the rate of actin polymerization in the presence of capping protein. VASP stimulates actin filament elongation by promoting the transfer of profilin-bound actin monomers onto the barbed end of growing actin filaments. Plays a role in actin-based mobility of Listeria monocytogenes in host cells. Regulates actin dynamics in platelets and plays an important role in regulating platelet aggregation. {ECO:0000269|PubMed:10087267, ECO:0000269|PubMed:10438535, ECO:0000269|PubMed:15939738, ECO:0000269|PubMed:17082196, ECO:0000269|PubMed:18559661}.
P85037 FOXK1 S299 ochoa Forkhead box protein K1 (Myocyte nuclear factor) (MNF) Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}.
Q01543 FLI1 S39 ochoa Friend leukemia integration 1 transcription factor (Proto-oncogene Fli-1) (Transcription factor ERGB) Sequence-specific transcriptional activator (PubMed:24100448, PubMed:26316623, PubMed:28255014). Recognizes the DNA sequence 5'-C[CA]GGAAGT-3'. {ECO:0000269|PubMed:24100448, ECO:0000269|PubMed:26316623, ECO:0000269|PubMed:28255014}.
Q02086 SP2 S25 ochoa Transcription factor Sp2 Binds to GC box promoters elements and selectively activates mRNA synthesis from genes that contain functional recognition sites.
Q02978 SLC25A11 S19 ochoa Mitochondrial 2-oxoglutarate/malate carrier protein (OGCP) (alpha-oxoglutarate carrier) (Solute carrier family 25 member 11) (SLC25A11) Catalyzes the transport of 2-oxoglutarate (alpha-oxoglutarate) across the inner mitochondrial membrane in an electroneutral exchange for malate. Can also exchange 2-oxoglutarate for other dicarboxylic acids such as malonate, succinate, maleate and oxaloacetate, although with lower affinity. Contributes to several metabolic processes, including the malate-aspartate shuttle, the oxoglutarate/isocitrate shuttle, in gluconeogenesis from lactate, and in nitrogen metabolism (By similarity). Maintains mitochondrial fusion and fission events, and the organization and morphology of cristae (PubMed:21448454). Involved in the regulation of apoptosis (By similarity). Helps protect from cytotoxic-induced apoptosis by modulating glutathione levels in mitochondria (By similarity). {ECO:0000250|UniProtKB:P22292, ECO:0000250|UniProtKB:P97700, ECO:0000250|UniProtKB:Q9CR62, ECO:0000269|PubMed:21448454}.
Q12872 SFSWAP S897 ochoa Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}.
Q16799 RTN1 S71 ochoa Reticulon-1 (Neuroendocrine-specific protein) Inhibits amyloid precursor protein processing, probably by blocking BACE1 activity. {ECO:0000269|PubMed:15286784}.
Q2M2I8 AAK1 S678 ochoa AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}.
Q53GA4 PHLDA2 S135 ochoa Pleckstrin homology-like domain family A member 2 (Beckwith-Wiedemann syndrome chromosomal region 1 candidate gene C protein) (Imprinted in placenta and liver protein) (Tumor-suppressing STF cDNA 3 protein) (Tumor-suppressing subchromosomal transferable fragment candidate gene 3 protein) (p17-Beckwith-Wiedemann region 1 C) (p17-BWR1C) Plays a role in regulating placenta growth. May act via its PH domain that competes with other PH domain-containing proteins, thereby preventing their binding to membrane lipids (By similarity). {ECO:0000250}.
Q5SW79 CEP170 S1560 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q7Z3B3 KANSL1 S30 ochoa KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}.
Q7Z7K6 CENPV S24 ochoa Centromere protein V (CENP-V) (Nuclear protein p30) (Proline-rich protein 6) Required for distribution of pericentromeric heterochromatin in interphase nuclei and for centromere formation and organization, chromosome alignment and cytokinesis. {ECO:0000269|PubMed:18772885}.
Q86U86 PBRM1 S375 ochoa Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q8IXZ2 ZC3H3 S864 ochoa Zinc finger CCCH domain-containing protein 3 (Smad-interacting CPSF-like factor) Required for the export of polyadenylated mRNAs from the nucleus (PubMed:19364924). Enhances ACVR1B-induced SMAD-dependent transcription. Binds to single-stranded DNA but not to double-stranded DNA in vitro. Involved in RNA cleavage (By similarity). {ECO:0000250|UniProtKB:Q8CHP0, ECO:0000269|PubMed:19364924}.
Q8N1G1 REXO1 S719 ochoa RNA exonuclease 1 homolog (EC 3.1.-.-) (Elongin-A-binding protein 1) (EloA-BP1) (Transcription elongation factor B polypeptide 3-binding protein 1) Seems to have no detectable effect on transcription elongation in vitro. {ECO:0000269|PubMed:12943681}.
Q8N201 INTS1 S81 ochoa Integrator complex subunit 1 (Int1) Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:25201415, PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:26308897, PubMed:30737432). Within the integrator complex, INTS1 is involved in the post-termination step: INTS1 displaces INTS3 and the SOSS factors, allowing the integrator complex to return to the closed conformation, ready to bind to the paused elongation complex for another termination cycle (PubMed:38570683). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:25201415, ECO:0000269|PubMed:26308897, ECO:0000269|PubMed:30737432, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}.
Q8N3V7 SYNPO S702 ochoa Synaptopodin Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}.
Q8N884 CGAS S37 psp Cyclic GMP-AMP synthase (cGAMP synthase) (cGAS) (h-cGAS) (EC 2.7.7.86) (2'3'-cGAMP synthase) (Mab-21 domain-containing protein 1) Nucleotidyltransferase that catalyzes the formation of cyclic GMP-AMP (2',3'-cGAMP) from ATP and GTP and plays a key role in innate immunity (PubMed:21478870, PubMed:23258413, PubMed:23707061, PubMed:23707065, PubMed:23722159, PubMed:24077100, PubMed:24116191, PubMed:24462292, PubMed:25131990, PubMed:26300263, PubMed:29976794, PubMed:30799039, PubMed:31142647, PubMed:32814054, PubMed:33273464, PubMed:33542149, PubMed:37217469, PubMed:37802025). Catalysis involves both the formation of a 2',5' phosphodiester linkage at the GpA step and the formation of a 3',5' phosphodiester linkage at the ApG step, producing c[G(2',5')pA(3',5')p] (PubMed:28214358, PubMed:28363908). Acts as a key DNA sensor: directly binds double-stranded DNA (dsDNA), inducing the formation of liquid-like droplets in which CGAS is activated, leading to synthesis of 2',3'-cGAMP, a second messenger that binds to and activates STING1, thereby triggering type-I interferon production (PubMed:28314590, PubMed:28363908, PubMed:29976794, PubMed:32817552, PubMed:33230297, PubMed:33606975, PubMed:35322803, PubMed:35438208, PubMed:35460603, PubMed:35503863). Preferentially recognizes and binds curved long dsDNAs of a minimal length of 40 bp (PubMed:30007416). Acts as a key foreign DNA sensor, the presence of double-stranded DNA (dsDNA) in the cytoplasm being a danger signal that triggers the immune responses (PubMed:28363908). Has antiviral activity by sensing the presence of dsDNA from DNA viruses in the cytoplasm (PubMed:28363908, PubMed:35613581). Also acts as an innate immune sensor of infection by retroviruses, such as HIV-2, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:23929945, PubMed:24269171, PubMed:30270045, PubMed:32852081). In contrast, HIV-1 is poorly sensed by CGAS, due to its capsid that cloaks viral DNA from CGAS detection (PubMed:24269171, PubMed:30270045, PubMed:32852081). Detection of retroviral reverse-transcribed DNA in the cytosol may be indirect and be mediated via interaction with PQBP1, which directly binds reverse-transcribed retroviral DNA (PubMed:26046437). Also detects the presence of DNA from bacteria, such as M.tuberculosis (PubMed:26048138). 2',3'-cGAMP can be transferred from producing cells to neighboring cells through gap junctions, leading to promote STING1 activation and convey immune response to connecting cells (PubMed:24077100). 2',3'-cGAMP can also be transferred between cells by virtue of packaging within viral particles contributing to IFN-induction in newly infected cells in a cGAS-independent but STING1-dependent manner (PubMed:26229115). Also senses the presence of neutrophil extracellular traps (NETs) that are translocated to the cytosol following phagocytosis, leading to synthesis of 2',3'-cGAMP (PubMed:33688080). In addition to foreign DNA, can also be activated by endogenous nuclear or mitochondrial DNA (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297). When self-DNA leaks into the cytosol during cellular stress (such as mitochondrial stress, SARS-CoV-2 infection causing severe COVID-19 disease, DNA damage, mitotic arrest or senescence), or is present in form of cytosolic micronuclei, CGAS is activated leading to a state of sterile inflammation (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297, PubMed:35045565). Acts as a regulator of cellular senescence by binding to cytosolic chromatin fragments that are present in senescent cells, leading to trigger type-I interferon production via STING1 and promote cellular senescence (By similarity). Also involved in the inflammatory response to genome instability and double-stranded DNA breaks: acts by localizing to micronuclei arising from genome instability (PubMed:28738408, PubMed:28759889). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, CGAS binds self-DNA exposed to the cytosol, leading to 2',3'-cGAMP synthesis and subsequent activation of STING1 and type-I interferon production (PubMed:28738408, PubMed:28759889). Activated in response to prolonged mitotic arrest, promoting mitotic cell death (PubMed:31299200). In a healthy cell, CGAS is however kept inactive even in cellular events that directly expose it to self-DNA, such as mitosis, when cGAS associates with chromatin directly after nuclear envelope breakdown or remains in the form of postmitotic persistent nuclear cGAS pools bound to chromatin (PubMed:31299200, PubMed:33542149). Nuclear CGAS is inactivated by chromatin via direct interaction with nucleosomes, which block CGAS from DNA binding and thus prevent CGAS-induced autoimmunity (PubMed:31299200, PubMed:32911482, PubMed:32912999, PubMed:33051594, PubMed:33542149). Also acts as a suppressor of DNA repair in response to DNA damage: inhibits homologous recombination repair by interacting with PARP1, the CGAS-PARP1 interaction leading to impede the formation of the PARP1-TIMELESS complex (PubMed:30356214, PubMed:31544964). In addition to DNA, also sense translation stress: in response to translation stress, translocates to the cytosol and associates with collided ribosomes, promoting its activation and triggering type-I interferon production (PubMed:34111399). In contrast to other mammals, human CGAS displays species-specific mechanisms of DNA recognition and produces less 2',3'-cGAMP, allowing a more fine-tuned response to pathogens (PubMed:30007416). {ECO:0000250|UniProtKB:Q8C6L5, ECO:0000269|PubMed:21478870, ECO:0000269|PubMed:23258413, ECO:0000269|PubMed:23707061, ECO:0000269|PubMed:23707065, ECO:0000269|PubMed:23722159, ECO:0000269|PubMed:23929945, ECO:0000269|PubMed:24077100, ECO:0000269|PubMed:24116191, ECO:0000269|PubMed:24269171, ECO:0000269|PubMed:24462292, ECO:0000269|PubMed:25131990, ECO:0000269|PubMed:26046437, ECO:0000269|PubMed:26048138, ECO:0000269|PubMed:26229115, ECO:0000269|PubMed:26300263, ECO:0000269|PubMed:28214358, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:28363908, ECO:0000269|PubMed:28738408, ECO:0000269|PubMed:28759889, ECO:0000269|PubMed:29976794, ECO:0000269|PubMed:30007416, ECO:0000269|PubMed:30270045, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:30799039, ECO:0000269|PubMed:31142647, ECO:0000269|PubMed:31299200, ECO:0000269|PubMed:31544964, ECO:0000269|PubMed:32814054, ECO:0000269|PubMed:32817552, ECO:0000269|PubMed:32852081, ECO:0000269|PubMed:32911482, ECO:0000269|PubMed:32912999, ECO:0000269|PubMed:33031745, ECO:0000269|PubMed:33051594, ECO:0000269|PubMed:33230297, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33542149, ECO:0000269|PubMed:33606975, ECO:0000269|PubMed:33688080, ECO:0000269|PubMed:34111399, ECO:0000269|PubMed:35045565, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:35438208, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:35503863, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:37217469, ECO:0000269|PubMed:37802025}.
Q969Y2 GTPBP3 S24 ochoa 5-taurinomethyluridine-[tRNA] synthase subunit GTPB3, mitochondrial (EC 3.6.1.-) (GTP-binding protein 3) (Mitochondrial GTP-binding protein 1) (tRNA modification GTPase GTPBP3, mitochondrial) GTPase component of the GTPBP3-MTO1 complex that catalyzes the 5-taurinomethyluridine (taum(5)U) modification at the 34th wobble position (U34) of mitochondrial tRNAs (mt-tRNAs), which plays a role in mt-tRNA decoding and mitochondrial translation (PubMed:29390138, PubMed:33619562). Taum(5)U formation on mammalian mt-tRNA requires the presence of both GTPBP3-mediated GTPase activity and MTO1 catalytic activity (PubMed:29390138). {ECO:0000269|PubMed:29390138, ECO:0000269|PubMed:33619562}.
Q96C12 ARMC5 S98 ochoa Armadillo repeat-containing protein 5 Substrate-recognition component of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:39504960, PubMed:39667934). The BCR(ARMC5) complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the BCR(ARMC5) complex acts by mediating ubiquitination of Pol II subunit POLR2A phosphorylated at 'Ser-5' of the C-terminal domain (CTD), leading to POLR2A degradation (PubMed:35687106, PubMed:38225631, PubMed:39504960, PubMed:39667934). The BCR(ARMC5) complex acts in parallel of the integrator complex and is specific for RNA Pol II originating from the promoter-proximal zone: it does not ubiquitinate elongation-stalled RNA Pol II (PubMed:39667934). The BCR(ARMC5) complex also acts as a regulator of fatty acid desaturation by mediating ubiquitination and degradation of SCAP-free SREBF1 and SREBF2 (PubMed:35862218). Involved in fetal development, T-cell function and adrenal gland growth homeostasis (PubMed:24283224, PubMed:28676429). Plays a role in steroidogenesis, modulates steroidogenic enzymes expression and cortisol production (PubMed:24283224, PubMed:28676429). {ECO:0000269|PubMed:24283224, ECO:0000269|PubMed:28676429, ECO:0000269|PubMed:35687106, ECO:0000269|PubMed:35862218, ECO:0000269|PubMed:38225631, ECO:0000269|PubMed:39504960, ECO:0000269|PubMed:39667934}.
Q96E14 RMI2 S20 ochoa RecQ-mediated genome instability protein 2 (hRMI2) (BLM-associated protein of 18 kDa) (BLAP18) Essential component of the RMI complex, a complex that plays an important role in the processing of homologous recombination intermediates. It is required to regulate sister chromatid segregation and to limit DNA crossover. Essential for the stability, localization, and function of BLM, TOP3A, and complexes containing BLM. In the RMI complex, it is required to target BLM to chromatin and stress-induced nuclear foci and mitotic phosphorylation of BLM. {ECO:0000269|PubMed:18923082, ECO:0000269|PubMed:18923083, ECO:0000269|PubMed:27977684}.
Q96PK6 RBM14 S521 ochoa RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}.
Q96SN8 CDK5RAP2 S366 ochoa CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}.
Q9BTC0 DIDO1 S1302 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9GZT9 EGLN1 S125 ochoa|psp Egl nine homolog 1 (EC 1.14.11.29) (Hypoxia-inducible factor prolyl hydroxylase 2) (HIF-PH2) (HIF-prolyl hydroxylase 2) (HPH-2) (Prolyl hydroxylase domain-containing protein 2) (PHD2) (SM-20) Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF1B. Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Under hypoxic conditions, the hydroxylation reaction is attenuated allowing HIFs to escape degradation resulting in their translocation to the nucleus, heterodimerization with HIF1B, and increased expression of hypoxy-inducible genes. EGLN1 is the most important isozyme under normoxia and, through regulating the stability of HIF1, involved in various hypoxia-influenced processes such as angiogenesis in retinal and cardiac functionality. Target proteins are preferentially recognized via a LXXLAP motif. {ECO:0000269|PubMed:11595184, ECO:0000269|PubMed:12181324, ECO:0000269|PubMed:12351678, ECO:0000269|PubMed:15897452, ECO:0000269|PubMed:19339211, ECO:0000269|PubMed:21792862, ECO:0000269|PubMed:25129147}.
Q9HCE9 ANO8 S1017 ochoa Anoctamin-8 (Transmembrane protein 16H) Does not exhibit calcium-activated chloride channel (CaCC) activity.
Q9NPB0 SAYSD1 S25 ochoa SAYSvFN domain-containing protein 1 Ufmylation 'reader' component of a translocation-associated quality control pathway, a mechanism that takes place when a ribosome has stalled during translation, and which is required to degrade clogged substrates (PubMed:36848233). Specifically recognizes and binds ufmylated ribosomes when a ribosome has stalled, promoting the transport of stalled nascent chain via the TRAPP complex to lysosomes for degradation (PubMed:36848233). {ECO:0000269|PubMed:36848233}.
Q9NZT2 OGFR S484 ochoa Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation.
Q9P1Y6 PHRF1 S925 ochoa PHD and RING finger domain-containing protein 1 None
Q9P260 RELCH S93 ochoa RAB11-binding protein RELCH (LisH domain and HEAT repeat-containing protein KIAA1468) (RAB11 binding and LisH domain, coiled-coil and HEAT repeat-containing) (RAB11-binding protein containing LisH, coiled-coil, and HEAT repeats) Regulates intracellular cholesterol distribution from recycling endosomes to the trans-Golgi network through interactions with RAB11 and OSBP (PubMed:29514919). Functions in membrane tethering and promotes OSBP-mediated cholesterol transfer between RAB11-bound recycling endosomes and OSBP-bound Golgi-like membranes (PubMed:29514919). {ECO:0000269|PubMed:29514919}.
Q9UDT6 CLIP2 S48 ochoa CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}.
Q9UI08 EVL S242 ochoa Ena/VASP-like protein (Ena/vasodilator-stimulated phosphoprotein-like) Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. EVL enhances actin nucleation and polymerization.
Q9UQ35 SRRM2 S2365 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
P51617 IRAK1 S571 Sugiyama Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}.
Q9Y490 TLN1 T2204 Sugiyama Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q99575 POP1 S126 Sugiyama Ribonucleases P/MRP protein subunit POP1 (hPOP1) Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}.
Download
reactome_id name p -log10_p
R-HSA-383280 Nuclear Receptor transcription pathway 0.000032 4.490
R-HSA-350054 Notch-HLH transcription pathway 0.001132 2.946
R-HSA-9842663 Signaling by LTK 0.001055 2.977
R-HSA-8853659 RET signaling 0.001305 2.884
R-HSA-9616334 Defective Base Excision Repair Associated with NEIL1 0.026895 1.570
R-HSA-5632968 Defective Mismatch Repair Associated With MSH6 0.053067 1.275
R-HSA-5619111 Defective SLC20A2 causes idiopathic basal ganglia calcification 1 (IBGC1) 0.078538 1.105
R-HSA-74713 IRS activation 0.016022 1.795
R-HSA-9022537 Loss of MECP2 binding ability to the NCoR/SMRT complex 0.020558 1.687
R-HSA-198765 Signalling to ERK5 0.103325 0.986
R-HSA-5083629 Defective POMT2 causes MDDGA2, MDDGB2 and MDDGC2 0.103325 0.986
R-HSA-68881 Mitotic Metaphase/Anaphase Transition 0.103325 0.986
R-HSA-5083633 Defective POMT1 causes MDDGA1, MDDGB1 and MDDGC1 0.103325 0.986
R-HSA-112412 SOS-mediated signalling 0.031003 1.509
R-HSA-8941237 Invadopodia formation 0.127446 0.895
R-HSA-9944971 Loss of Function of KMT2D in Kabuki Syndrome 0.127446 0.895
R-HSA-9944997 Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome 0.127446 0.895
R-HSA-2428933 SHC-related events triggered by IGF1R 0.009961 2.002
R-HSA-5649702 APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... 0.043097 1.366
R-HSA-1296061 HCN channels 0.150921 0.821
R-HSA-9818035 NFE2L2 regulating ER-stress associated genes 0.150921 0.821
R-HSA-9652169 Signaling by MAP2K mutants 0.150921 0.821
R-HSA-5083630 Defective LFNG causes SCDO3 0.150921 0.821
R-HSA-69183 Processive synthesis on the lagging strand 0.015718 1.804
R-HSA-5696397 Gap-filling DNA repair synthesis and ligation in GG-NER 0.006779 2.169
R-HSA-9034864 Activated NTRK3 signals through RAS 0.056635 1.247
R-HSA-9818026 NFE2L2 regulating inflammation associated genes 0.173765 0.760
R-HSA-9706377 FLT3 signaling by CBL mutants 0.173765 0.760
R-HSA-9026519 Activated NTRK2 signals through RAS 0.063887 1.195
R-HSA-9613829 Chaperone Mediated Autophagy 0.025766 1.589
R-HSA-5651801 PCNA-Dependent Long Patch Base Excision Repair 0.025766 1.589
R-HSA-9820865 Z-decay: degradation of maternal mRNAs by zygotically expressed factors 0.071432 1.146
R-HSA-9017802 Noncanonical activation of NOTCH3 0.195995 0.708
R-HSA-9796292 Formation of axial mesoderm 0.079248 1.101
R-HSA-69166 Removal of the Flap Intermediate 0.087316 1.059
R-HSA-9027283 Erythropoietin activates STAT5 0.217629 0.662
R-HSA-6802953 RAS signaling downstream of NF1 loss-of-function variants 0.217629 0.662
R-HSA-9027284 Erythropoietin activates RAS 0.095616 1.019
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 0.104131 0.982
R-HSA-176412 Phosphorylation of the APC/C 0.104131 0.982
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 0.238682 0.622
R-HSA-1912399 Pre-NOTCH Processing in the Endoplasmic Reticulum 0.238682 0.622
R-HSA-141430 Inactivation of APC/C via direct inhibition of the APC/C complex 0.112842 0.948
R-HSA-174414 Processive synthesis on the C-strand of the telomere 0.062613 1.203
R-HSA-174437 Removal of the Flap Intermediate from the C-strand 0.121733 0.915
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 0.121733 0.915
R-HSA-164940 Nef mediated downregulation of MHC class I complex cell surface expression 0.259170 0.586
R-HSA-1250196 SHC1 events in ERBB2 signaling 0.076712 1.115
R-HSA-9818032 NFE2L2 regulating MDR associated enzymes 0.279108 0.554
R-HSA-5674135 MAP2K and MAPK activation 0.046491 1.333
R-HSA-389513 Co-inhibition by CTLA4 0.149332 0.826
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 0.032245 1.492
R-HSA-5654704 SHC-mediated cascade:FGFR3 0.158792 0.799
R-HSA-179409 APC-Cdc20 mediated degradation of Nek2A 0.158792 0.799
R-HSA-110056 MAPK3 (ERK1) activation 0.298510 0.525
R-HSA-9027277 Erythropoietin activates Phospholipase C gamma (PLCG) 0.298510 0.525
R-HSA-5654719 SHC-mediated cascade:FGFR4 0.168358 0.774
R-HSA-5696400 Dual Incision in GG-NER 0.102952 0.987
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 0.317392 0.498
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 0.317392 0.498
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 0.317392 0.498
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 0.046645 1.331
R-HSA-380259 Loss of Nlp from mitotic centrosomes 0.046645 1.331
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 0.051359 1.289
R-HSA-8854518 AURKA Activation by TPX2 0.053816 1.269
R-HSA-72187 mRNA 3'-end processing 0.083451 1.079
R-HSA-5654688 SHC-mediated cascade:FGFR1 0.197580 0.704
R-HSA-429947 Deadenylation of mRNA 0.197580 0.704
R-HSA-202670 ERKs are inactivated 0.335766 0.474
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 0.335766 0.474
R-HSA-5339716 Signaling by GSK3beta mutants 0.335766 0.474
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 0.061592 1.210
R-HSA-2197563 NOTCH2 intracellular domain regulates transcription 0.353647 0.451
R-HSA-9027276 Erythropoietin activates Phosphoinositide-3-kinase (PI3K) 0.353647 0.451
R-HSA-937039 IRAK1 recruits IKK complex 0.353647 0.451
R-HSA-975144 IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 0.353647 0.451
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 0.353647 0.451
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 0.353647 0.451
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 0.353647 0.451
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 0.353647 0.451
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 0.353647 0.451
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 0.051826 1.285
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 0.072896 1.137
R-HSA-5654699 SHC-mediated cascade:FGFR2 0.227350 0.643
R-HSA-380287 Centrosome maturation 0.078945 1.103
R-HSA-170660 Adenylate cyclase activating pathway 0.371047 0.431
R-HSA-9006335 Signaling by Erythropoietin 0.247369 0.607
R-HSA-9709570 Impaired BRCA2 binding to RAD51 0.247369 0.607
R-HSA-141424 Amplification of signal from the kinetochores 0.116761 0.933
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 0.116761 0.933
R-HSA-9937080 Developmental Lineage of Multipotent Pancreatic Progenitor Cells 0.277481 0.557
R-HSA-170670 Adenylate cyclase inhibitory pathway 0.404458 0.393
R-HSA-180336 SHC1 events in EGFR signaling 0.404458 0.393
R-HSA-196299 Beta-catenin phosphorylation cascade 0.404458 0.393
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 0.232870 0.633
R-HSA-72649 Translation initiation complex formation 0.240046 0.620
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 0.254503 0.594
R-HSA-72702 Ribosomal scanning and start codon recognition 0.254503 0.594
R-HSA-6782135 Dual incision in TC-NER 0.269078 0.570
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 0.231725 0.635
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 0.297554 0.526
R-HSA-72689 Formation of a pool of free 40S subunits 0.328007 0.484
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 0.379630 0.421
R-HSA-1980145 Signaling by NOTCH2 0.307516 0.512
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 0.015945 1.797
R-HSA-2979096 NOTCH2 Activation and Transmission of Signal to the Nucleus 0.158792 0.799
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 0.015945 1.797
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 0.015945 1.797
R-HSA-9818030 NFE2L2 regulating tumorigenic genes 0.371047 0.431
R-HSA-5358565 Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) 0.003321 2.479
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 0.075124 1.124
R-HSA-209543 p75NTR recruits signalling complexes 0.071432 1.146
R-HSA-5656169 Termination of translesion DNA synthesis 0.247369 0.607
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 0.136336 0.865
R-HSA-74749 Signal attenuation 0.005672 2.246
R-HSA-2892245 POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation 0.238682 0.622
R-HSA-69618 Mitotic Spindle Checkpoint 0.085870 1.066
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 0.376375 0.424
R-HSA-73893 DNA Damage Bypass 0.204606 0.689
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 0.042084 1.376
R-HSA-5696398 Nucleotide Excision Repair 0.103483 0.985
R-HSA-354192 Integrin signaling 0.022949 1.639
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 0.049862 1.302
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 0.092067 1.036
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 0.269078 0.570
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 0.078945 1.103
R-HSA-9913351 Formation of the dystrophin-glycoprotein complex (DGC) 0.019383 1.713
R-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production 0.016022 1.795
R-HSA-9603381 Activated NTRK3 signals through PI3K 0.031003 1.509
R-HSA-198203 PI3K/AKT activation 0.049697 1.304
R-HSA-8874081 MET activates PTK2 signaling 0.217383 0.663
R-HSA-110312 Translesion synthesis by REV1 0.404458 0.393
R-HSA-5696394 DNA Damage Recognition in GG-NER 0.297525 0.526
R-HSA-5696395 Formation of Incision Complex in GG-NER 0.366689 0.436
R-HSA-156902 Peptide chain elongation 0.273457 0.563
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 0.102952 0.987
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 0.217383 0.663
R-HSA-68962 Activation of the pre-replicative complex 0.257403 0.589
R-HSA-156842 Eukaryotic Translation Elongation 0.148735 0.828
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 0.364948 0.438
R-HSA-453276 Regulation of mitotic cell cycle 0.364948 0.438
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 0.102144 0.991
R-HSA-193639 p75NTR signals via NF-kB 0.095616 1.019
R-HSA-191650 Regulation of gap junction activity 0.150921 0.821
R-HSA-1236977 Endosomal/Vacuolar pathway 0.335766 0.474
R-HSA-77285 Beta oxidation of myristoyl-CoA to lauroyl-CoA 0.353647 0.451
R-HSA-8866427 VLDLR internalisation and degradation 0.353647 0.451
R-HSA-77305 Beta oxidation of palmitoyl-CoA to myristoyl-CoA 0.353647 0.451
R-HSA-73863 RNA Polymerase I Transcription Termination 0.227350 0.643
R-HSA-76009 Platelet Aggregation (Plug Formation) 0.058613 1.232
R-HSA-69186 Lagging Strand Synthesis 0.035093 1.455
R-HSA-72737 Cap-dependent Translation Initiation 0.282547 0.549
R-HSA-74751 Insulin receptor signalling cascade 0.313250 0.504
R-HSA-8941856 RUNX3 regulates NOTCH signaling 0.071432 1.146
R-HSA-9656223 Signaling by RAF1 mutants 0.046491 1.333
R-HSA-198753 ERK/MAPK targets 0.158792 0.799
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 0.061882 1.208
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 0.061882 1.208
R-HSA-9649948 Signaling downstream of RAS mutants 0.061882 1.208
R-HSA-72613 Eukaryotic Translation Initiation 0.282547 0.549
R-HSA-2428924 IGF1R signaling cascade 0.015029 1.823
R-HSA-167044 Signalling to RAS 0.158792 0.799
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 0.132201 0.879
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 0.308733 0.510
R-HSA-6802957 Oncogenic MAPK signaling 0.043932 1.357
R-HSA-8849473 PTK6 Expression 0.031003 1.509
R-HSA-110381 Resolution of AP sites via the single-nucleotide replacement pathway 0.173765 0.760
R-HSA-141405 Inhibition of the proteolytic activity of APC/C required for the onset of anapha... 0.112842 0.948
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 0.033515 1.475
R-HSA-6807004 Negative regulation of MET activity 0.149332 0.826
R-HSA-9832991 Formation of the posterior neural plate 0.317392 0.498
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 0.072254 1.141
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 0.042084 1.376
R-HSA-190373 FGFR1c ligand binding and activation 0.371047 0.431
R-HSA-418885 DCC mediated attractive signaling 0.404458 0.393
R-HSA-176187 Activation of ATR in response to replication stress 0.287511 0.541
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 0.307516 0.512
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 0.231725 0.635
R-HSA-5693607 Processing of DNA double-strand break ends 0.098641 1.006
R-HSA-1268020 Mitochondrial protein import 0.126318 0.899
R-HSA-9711097 Cellular response to starvation 0.348467 0.458
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 0.059653 1.224
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 0.008512 2.070
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 0.015967 1.797
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 0.005126 2.290
R-HSA-5619507 Activation of HOX genes during differentiation 0.005126 2.290
R-HSA-8875360 InlB-mediated entry of Listeria monocytogenes into host cell 0.404458 0.393
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 0.207387 0.683
R-HSA-2467813 Separation of Sister Chromatids 0.377276 0.423
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 0.040076 1.397
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 0.040076 1.397
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 0.040076 1.397
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 0.040076 1.397
R-HSA-1980143 Signaling by NOTCH1 0.008962 2.048
R-HSA-9854311 Maturation of TCA enzymes and regulation of TCA cycle 0.138366 0.859
R-HSA-3214815 HDACs deacetylate histones 0.095444 1.020
R-HSA-9933937 Formation of the canonical BAF (cBAF) complex 0.387980 0.411
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 0.404458 0.393
R-HSA-3371568 Attenuation phase 0.366689 0.436
R-HSA-5358508 Mismatch Repair 0.003884 2.411
R-HSA-74752 Signaling by Insulin receptor 0.303621 0.518
R-HSA-2428928 IRS-related events triggered by IGF1R 0.291105 0.536
R-HSA-5685942 HDR through Homologous Recombination (HRR) 0.335435 0.474
R-HSA-5693538 Homology Directed Repair 0.030137 1.521
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 0.010811 1.966
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 0.058208 1.235
R-HSA-9818027 NFE2L2 regulating anti-oxidant/detoxification enzymes 0.097448 1.011
R-HSA-1234158 Regulation of gene expression by Hypoxia-inducible Factor 0.335766 0.474
R-HSA-427413 NoRC negatively regulates rRNA expression 0.171218 0.766
R-HSA-177929 Signaling by EGFR 0.032245 1.492
R-HSA-68877 Mitotic Prometaphase 0.068277 1.166
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 0.076712 1.115
R-HSA-6802949 Signaling by RAS mutants 0.061882 1.208
R-HSA-2032785 YAP1- and WWTR1 (TAZ)-stimulated gene expression 0.387980 0.411
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 0.307516 0.512
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 0.206146 0.686
R-HSA-8876384 Listeria monocytogenes entry into host cells 0.168358 0.774
R-HSA-69190 DNA strand elongation 0.086816 1.061
R-HSA-9843745 Adipogenesis 0.215330 0.667
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 0.010906 1.962
R-HSA-73933 Resolution of Abasic Sites (AP sites) 0.010811 1.966
R-HSA-168315 Inhibition of Host mRNA Processing and RNA Silencing 0.078538 1.105
R-HSA-5632928 Defective Mismatch Repair Associated With MSH2 0.078538 1.105
R-HSA-5368598 Negative regulation of TCF-dependent signaling by DVL-interacting proteins 0.127446 0.895
R-HSA-176417 Phosphorylation of Emi1 0.195995 0.708
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 0.079248 1.101
R-HSA-8932506 DAG1 core M1 glycosylations 0.238682 0.622
R-HSA-390696 Adrenoceptors 0.259170 0.586
R-HSA-181429 Serotonin Neurotransmitter Release Cycle 0.130789 0.883
R-HSA-4839744 Signaling by APC mutants 0.317392 0.498
R-HSA-192905 vRNP Assembly 0.317392 0.498
R-HSA-9818028 NFE2L2 regulates pentose phosphate pathway genes 0.335766 0.474
R-HSA-209560 NF-kB is activated and signals survival 0.335766 0.474
R-HSA-68884 Mitotic Telophase/Cytokinesis 0.335766 0.474
R-HSA-75896 Plasmalogen biosynthesis 0.335766 0.474
R-HSA-4839748 Signaling by AMER1 mutants 0.335766 0.474
R-HSA-4839735 Signaling by AXIN mutants 0.335766 0.474
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 0.353647 0.451
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 0.150981 0.821
R-HSA-162658 Golgi Cisternae Pericentriolar Stack Reorganization 0.371047 0.431
R-HSA-73856 RNA Polymerase II Transcription Termination 0.121673 0.915
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 0.307516 0.512
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 0.327410 0.485
R-HSA-1234174 Cellular response to hypoxia 0.320644 0.494
R-HSA-73762 RNA Polymerase I Transcription Initiation 0.395559 0.403
R-HSA-212165 Epigenetic regulation of gene expression 0.007065 2.151
R-HSA-5693532 DNA Double-Strand Break Repair 0.020530 1.688
R-HSA-110373 Resolution of AP sites via the multiple-nucleotide patch replacement pathway 0.058208 1.235
R-HSA-73894 DNA Repair 0.060100 1.221
R-HSA-156711 Polo-like kinase mediated events 0.130789 0.883
R-HSA-5654726 Negative regulation of FGFR1 signaling 0.092067 1.036
R-HSA-9823730 Formation of definitive endoderm 0.149332 0.826
R-HSA-5689603 UCH proteinases 0.401511 0.396
R-HSA-9932444 ATP-dependent chromatin remodelers 0.207457 0.683
R-HSA-9932451 SWI/SNF chromatin remodelers 0.207457 0.683
R-HSA-9768777 Regulation of NPAS4 gene transcription 0.043097 1.366
R-HSA-9617629 Regulation of FOXO transcriptional activity by acetylation 0.353647 0.451
R-HSA-8939246 RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... 0.259170 0.586
R-HSA-9620244 Long-term potentiation 0.207457 0.683
R-HSA-5654732 Negative regulation of FGFR3 signaling 0.237348 0.625
R-HSA-5654733 Negative regulation of FGFR4 signaling 0.247369 0.607
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 0.084045 1.075
R-HSA-5654727 Negative regulation of FGFR2 signaling 0.307516 0.512
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 0.298477 0.525
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 0.364948 0.438
R-HSA-2408557 Selenocysteine synthesis 0.364758 0.438
R-HSA-9034015 Signaling by NTRK3 (TRKC) 0.006779 2.169
R-HSA-157118 Signaling by NOTCH 0.103146 0.987
R-HSA-5693606 DNA Double Strand Break Response 0.017964 1.746
R-HSA-9634597 GPER1 signaling 0.019648 1.707
R-HSA-212676 Dopamine Neurotransmitter Release Cycle 0.178020 0.750
R-HSA-8876493 InlA-mediated entry of Listeria monocytogenes into host cells 0.317392 0.498
R-HSA-8851805 MET activates RAS signaling 0.353647 0.451
R-HSA-199418 Negative regulation of the PI3K/AKT network 0.047593 1.322
R-HSA-171007 p38MAPK events 0.404458 0.393
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 0.347147 0.459
R-HSA-9707616 Heme signaling 0.298477 0.525
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 0.236689 0.626
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 0.395559 0.403
R-HSA-2644603 Signaling by NOTCH1 in Cancer 0.040076 1.397
R-HSA-1433559 Regulation of KIT signaling 0.087316 1.059
R-HSA-69481 G2/M Checkpoints 0.194320 0.711
R-HSA-1295596 Spry regulation of FGF signaling 0.095616 1.019
R-HSA-9768759 Regulation of NPAS4 gene expression 0.121733 0.915
R-HSA-1912422 Pre-NOTCH Expression and Processing 0.256828 0.590
R-HSA-9768727 Regulation of CDH1 posttranslational processing and trafficking to plasma membra... 0.097448 1.011
R-HSA-418555 G alpha (s) signalling events 0.151601 0.819
R-HSA-5684996 MAPK1/MAPK3 signaling 0.095894 1.018
R-HSA-9675135 Diseases of DNA repair 0.061882 1.208
R-HSA-8983432 Interleukin-15 signaling 0.353647 0.451
R-HSA-71403 Citric acid cycle (TCA cycle) 0.192739 0.715
R-HSA-3371556 Cellular response to heat stress 0.308733 0.510
R-HSA-187687 Signalling to ERKs 0.108578 0.964
R-HSA-9854909 Regulation of MITF-M dependent genes involved in invasion 0.016022 1.795
R-HSA-5423599 Diseases of Mismatch Repair (MMR) 0.127446 0.895
R-HSA-2028269 Signaling by Hippo 0.003321 2.479
R-HSA-9675151 Disorders of Developmental Biology 0.020400 1.690
R-HSA-429593 Inositol transporters 0.173765 0.760
R-HSA-5358606 Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) 0.022997 1.638
R-HSA-5674499 Negative feedback regulation of MAPK pathway 0.195995 0.708
R-HSA-8951671 RUNX3 regulates YAP1-mediated transcription 0.217629 0.662
R-HSA-8932504 DAG1 core M2 glycosylations 0.259170 0.586
R-HSA-442380 Zinc influx into cells by the SLC39 gene family 0.279108 0.554
R-HSA-1362409 Mitochondrial iron-sulfur cluster biogenesis 0.149332 0.826
R-HSA-9706019 RHOBTB3 ATPase cycle 0.317392 0.498
R-HSA-9623433 NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis 0.335766 0.474
R-HSA-3000171 Non-integrin membrane-ECM interactions 0.192739 0.715
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 0.220735 0.656
R-HSA-8875878 MET promotes cell motility 0.347147 0.459
R-HSA-5673001 RAF/MAP kinase cascade 0.084368 1.074
R-HSA-180786 Extension of Telomeres 0.276402 0.558
R-HSA-9609507 Protein localization 0.324614 0.489
R-HSA-975155 MyD88 dependent cascade initiated on endosome 0.236689 0.626
R-HSA-6794361 Neurexins and neuroligins 0.225735 0.646
R-HSA-6806834 Signaling by MET 0.095200 1.021
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 0.247369 0.607
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 0.108198 0.966
R-HSA-170968 Frs2-mediated activation 0.371047 0.431
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 0.197668 0.704
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 0.158792 0.799
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 0.158792 0.799
R-HSA-187037 Signaling by NTRK1 (TRKA) 0.018004 1.745
R-HSA-6794362 Protein-protein interactions at synapses 0.249719 0.603
R-HSA-110362 POLB-Dependent Long Patch Base Excision Repair 0.335766 0.474
R-HSA-975871 MyD88 cascade initiated on plasma membrane 0.179398 0.746
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 0.364948 0.438
R-HSA-9616222 Transcriptional regulation of granulopoiesis 0.126318 0.899
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 0.179398 0.746
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 0.179398 0.746
R-HSA-69275 G2/M Transition 0.327534 0.485
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 0.210659 0.676
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 0.176517 0.753
R-HSA-73884 Base Excision Repair 0.136336 0.865
R-HSA-453274 Mitotic G2-G2/M phases 0.336230 0.473
R-HSA-9764790 Positive Regulation of CDH1 Gene Transcription 0.049697 1.304
R-HSA-9818749 Regulation of NFE2L2 gene expression 0.217629 0.662
R-HSA-3371511 HSF1 activation 0.114319 0.942
R-HSA-1643713 Signaling by EGFR in Cancer 0.217383 0.663
R-HSA-380994 ATF4 activates genes in response to endoplasmic reticulum stress 0.237348 0.625
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 0.317480 0.498
R-HSA-69278 Cell Cycle, Mitotic 0.184028 0.735
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 0.256828 0.590
R-HSA-9009391 Extra-nuclear estrogen signaling 0.035724 1.447
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 0.272195 0.565
R-HSA-1640170 Cell Cycle 0.068999 1.161
R-HSA-5637810 Constitutive Signaling by EGFRvIII 0.121733 0.915
R-HSA-5637812 Signaling by EGFRvIII in Cancer 0.121733 0.915
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 0.328040 0.484
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 0.298211 0.525
R-HSA-5654736 Signaling by FGFR1 0.032245 1.492
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 0.298211 0.525
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 0.372297 0.429
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 0.314013 0.503
R-HSA-166520 Signaling by NTRKs 0.002370 2.625
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 0.006320 2.199
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 0.231725 0.635
R-HSA-9605308 Diseases of Base Excision Repair 0.195995 0.708
R-HSA-73886 Chromosome Maintenance 0.308733 0.510
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 0.314013 0.503
R-HSA-427652 Sodium-coupled phosphate cotransporters 0.195995 0.708
R-HSA-2980767 Activation of NIMA Kinases NEK9, NEK6, NEK7 0.217629 0.662
R-HSA-210744 Regulation of gene expression in late stage (branching morphogenesis) pancreatic... 0.104131 0.982
R-HSA-426117 Cation-coupled Chloride cotransporters 0.238682 0.622
R-HSA-418886 Netrin mediated repulsion signals 0.238682 0.622
R-HSA-8849469 PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 0.259170 0.586
R-HSA-8866907 Activation of the TFAP2 (AP-2) family of transcription factors 0.279108 0.554
R-HSA-9683686 Maturation of spike protein 0.298510 0.525
R-HSA-5673000 RAF activation 0.102952 0.987
R-HSA-8932505 DAG1 core M3 glycosylations 0.317392 0.498
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 0.187764 0.726
R-HSA-9634638 Estrogen-dependent nuclear events downstream of ESR-membrane signaling 0.187764 0.726
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 0.036838 1.434
R-HSA-69091 Polymerase switching 0.353647 0.451
R-HSA-69109 Leading Strand Synthesis 0.353647 0.451
R-HSA-69473 G2/M DNA damage checkpoint 0.075888 1.120
R-HSA-5685939 HDR through MMEJ (alt-NHEJ) 0.371047 0.431
R-HSA-450294 MAP kinase activation 0.121673 0.915
R-HSA-77310 Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA 0.387980 0.411
R-HSA-77350 Beta oxidation of hexanoyl-CoA to butanoyl-CoA 0.387980 0.411
R-HSA-77348 Beta oxidation of octanoyl-CoA to hexanoyl-CoA 0.387980 0.411
R-HSA-1592230 Mitochondrial biogenesis 0.151159 0.821
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 0.337301 0.472
R-HSA-9725554 Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin 0.356945 0.447
R-HSA-2262752 Cellular responses to stress 0.399411 0.399
R-HSA-5683057 MAPK family signaling cascades 0.133384 0.875
R-HSA-5654743 Signaling by FGFR4 0.052359 1.281
R-HSA-9031628 NGF-stimulated transcription 0.197668 0.704
R-HSA-69620 Cell Cycle Checkpoints 0.082133 1.085
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 0.099613 1.002
R-HSA-1266738 Developmental Biology 0.024529 1.610
R-HSA-5654741 Signaling by FGFR3 0.058613 1.232
R-HSA-1236394 Signaling by ERBB4 0.386945 0.412
R-HSA-448424 Interleukin-17 signaling 0.165976 0.780
R-HSA-4839726 Chromatin organization 0.035587 1.449
R-HSA-3214841 PKMTs methylate histone lysines 0.144628 0.840
R-HSA-8953897 Cellular responses to stimuli 0.301836 0.520
R-HSA-430116 GP1b-IX-V activation signalling 0.279108 0.554
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 0.086816 1.061
R-HSA-8876725 Protein methylation 0.404458 0.393
R-HSA-193704 p75 NTR receptor-mediated signalling 0.352502 0.453
R-HSA-190236 Signaling by FGFR 0.179398 0.746
R-HSA-9816359 Maternal to zygotic transition (MZT) 0.084045 1.075
R-HSA-5654738 Signaling by FGFR2 0.220735 0.656
R-HSA-437239 Recycling pathway of L1 0.190790 0.719
R-HSA-162582 Signal Transduction 0.104297 0.982
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 0.023477 1.629
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 0.067167 1.173
R-HSA-422475 Axon guidance 0.098351 1.007
R-HSA-1251985 Nuclear signaling by ERBB4 0.366689 0.436
R-HSA-9825895 Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... 0.036857 1.433
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 0.071432 1.146
R-HSA-9005895 Pervasive developmental disorders 0.071432 1.146
R-HSA-9697154 Disorders of Nervous System Development 0.071432 1.146
R-HSA-164944 Nef and signal transduction 0.217629 0.662
R-HSA-1253288 Downregulation of ERBB4 signaling 0.259170 0.586
R-HSA-428542 Regulation of commissural axon pathfinding by SLIT and ROBO 0.279108 0.554
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 0.178020 0.750
R-HSA-9823739 Formation of the anterior neural plate 0.404458 0.393
R-HSA-9930044 Nuclear RNA decay 0.287511 0.541
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 0.287511 0.541
R-HSA-2559583 Cellular Senescence 0.301683 0.520
R-HSA-9675108 Nervous system development 0.069163 1.160
R-HSA-1852241 Organelle biogenesis and maintenance 0.325395 0.488
R-HSA-8878159 Transcriptional regulation by RUNX3 0.340247 0.468
R-HSA-1912408 Pre-NOTCH Transcription and Translation 0.140417 0.853
R-HSA-8941326 RUNX2 regulates bone development 0.031210 1.506
R-HSA-381042 PERK regulates gene expression 0.317480 0.498
R-HSA-3247509 Chromatin modifying enzymes 0.024067 1.619
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 0.029002 1.538
R-HSA-5654708 Downstream signaling of activated FGFR3 0.247369 0.607
R-HSA-5654716 Downstream signaling of activated FGFR4 0.257403 0.589
R-HSA-5654696 Downstream signaling of activated FGFR2 0.317480 0.498
R-HSA-140342 Apoptosis induced DNA fragmentation 0.049697 1.304
R-HSA-390666 Serotonin receptors 0.298510 0.525
R-HSA-2691232 Constitutive Signaling by NOTCH1 HD Domain Mutants 0.353647 0.451
R-HSA-2691230 Signaling by NOTCH1 HD Domain Mutants in Cancer 0.353647 0.451
R-HSA-9730414 MITF-M-regulated melanocyte development 0.012908 1.889
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 0.387980 0.411
R-HSA-5578768 Physiological factors 0.387980 0.411
R-HSA-5654687 Downstream signaling of activated FGFR1 0.317480 0.498
R-HSA-74160 Gene expression (Transcription) 0.265200 0.576
R-HSA-9012852 Signaling by NOTCH3 0.095444 1.020
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 0.095200 1.021
R-HSA-9857377 Regulation of MITF-M-dependent genes involved in lysosome biogenesis and autopha... 0.178020 0.750
R-HSA-8853884 Transcriptional Regulation by VENTX 0.144628 0.840
R-HSA-435354 Zinc transporters 0.387980 0.411
R-HSA-1227986 Signaling by ERBB2 0.117104 0.931
R-HSA-376176 Signaling by ROBO receptors 0.262314 0.581
R-HSA-8939211 ESR-mediated signaling 0.097256 1.012
R-HSA-9033500 TYSND1 cleaves peroxisomal proteins 0.195995 0.708
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 0.007634 2.117
R-HSA-9032500 Activated NTRK2 signals through FYN 0.259170 0.586
R-HSA-201556 Signaling by ALK 0.038414 1.416
R-HSA-8934903 Receptor Mediated Mitophagy 0.298510 0.525
R-HSA-210990 PECAM1 interactions 0.317392 0.498
R-HSA-9856872 Malate-aspartate shuttle 0.387980 0.411
R-HSA-170834 Signaling by TGF-beta Receptor Complex 0.174878 0.757
R-HSA-9860931 Response of endothelial cells to shear stress 0.097416 1.011
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 0.049862 1.302
R-HSA-8863678 Neurodegenerative Diseases 0.049862 1.302
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 0.257403 0.589
R-HSA-8983711 OAS antiviral response 0.353647 0.451
R-HSA-9006115 Signaling by NTRK2 (TRKB) 0.062613 1.203
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 0.272113 0.565
R-HSA-9764265 Regulation of CDH1 Expression and Function 0.272113 0.565
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 0.046712 1.331
R-HSA-201681 TCF dependent signaling in response to WNT 0.190200 0.721
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 0.395330 0.403
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion 0.104131 0.982
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 0.062613 1.203
R-HSA-8851680 Butyrophilin (BTN) family interactions 0.279108 0.554
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 0.387980 0.411
R-HSA-9856651 MITF-M-dependent gene expression 0.007222 2.141
R-HSA-73857 RNA Polymerase II Transcription 0.276610 0.558
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 0.357584 0.447
R-HSA-6804116 TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest 0.104131 0.982
R-HSA-5675221 Negative regulation of MAPK pathway 0.386000 0.413
R-HSA-9855142 Cellular responses to mechanical stimuli 0.133127 0.876
R-HSA-9700206 Signaling by ALK in cancer 0.046712 1.331
R-HSA-9013695 NOTCH4 Intracellular Domain Regulates Transcription 0.035093 1.455
R-HSA-391908 Prostanoid ligand receptors 0.317392 0.498
R-HSA-9619665 EGR2 and SOX10-mediated initiation of Schwann cell myelination 0.297525 0.526
R-HSA-9634815 Transcriptional Regulation by NPAS4 0.225735 0.646
R-HSA-9006931 Signaling by Nuclear Receptors 0.250071 0.602
R-HSA-2586552 Signaling by Leptin 0.049697 1.304
R-HSA-9020558 Interleukin-2 signaling 0.317392 0.498
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 0.236126 0.627
R-HSA-9762292 Regulation of CDH11 function 0.298510 0.525
R-HSA-9825892 Regulation of MITF-M-dependent genes involved in cell cycle and proliferation 0.168358 0.774
R-HSA-9865881 Complex III assembly 0.197580 0.704
R-HSA-391160 Signal regulatory protein family interactions 0.387980 0.411
R-HSA-446353 Cell-extracellular matrix interactions 0.404458 0.393
R-HSA-8878166 Transcriptional regulation by RUNX2 0.298211 0.525
R-HSA-9958790 SLC-mediated transport of inorganic anions 0.347147 0.459
R-HSA-373760 L1CAM interactions 0.282547 0.549
R-HSA-418990 Adherens junctions interactions 0.324979 0.488
R-HSA-8986944 Transcriptional Regulation by MECP2 0.021153 1.675
R-HSA-1482798 Acyl chain remodeling of CL 0.387980 0.411
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 0.217383 0.663
R-HSA-73943 Reversal of alkylation damage by DNA dioxygenases 0.353647 0.451
R-HSA-186712 Regulation of beta-cell development 0.276402 0.558
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 0.305860 0.514
R-HSA-8848021 Signaling by PTK6 0.305860 0.514
R-HSA-9733709 Cardiogenesis 0.287511 0.541
R-HSA-373755 Semaphorin interactions 0.305860 0.514
R-HSA-9022692 Regulation of MECP2 expression and activity 0.287511 0.541
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 0.261778 0.582
R-HSA-381038 XBP1(S) activates chaperone genes 0.047778 1.321
R-HSA-73942 DNA Damage Reversal 0.404458 0.393
R-HSA-202433 Generation of second messenger molecules 0.366689 0.436
R-HSA-381070 IRE1alpha activates chaperones 0.060532 1.218
R-HSA-9694301 Maturation of replicase proteins 0.238682 0.622
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 0.140687 0.852
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 0.307516 0.512
R-HSA-75153 Apoptotic execution phase 0.183974 0.735
R-HSA-381119 Unfolded Protein Response (UPR) 0.066685 1.176
R-HSA-1059683 Interleukin-6 signaling 0.371047 0.431
R-HSA-9013694 Signaling by NOTCH4 0.386945 0.412
R-HSA-1266695 Interleukin-7 signaling 0.207457 0.683
R-HSA-982772 Growth hormone receptor signaling 0.187764 0.726
R-HSA-9020591 Interleukin-12 signaling 0.198247 0.703
R-HSA-447115 Interleukin-12 family signaling 0.267484 0.573
R-HSA-1433557 Signaling by SCF-KIT 0.405050 0.392
R-HSA-75876 Synthesis of very long-chain fatty acyl-CoAs 0.405050 0.392
R-HSA-69239 Synthesis of DNA 0.407501 0.390
R-HSA-375280 Amine ligand-binding receptors 0.414468 0.383
R-HSA-3214858 RMTs methylate histone arginines 0.414468 0.383
R-HSA-69231 Cyclin D associated events in G1 0.414468 0.383
R-HSA-69236 G1 Phase 0.414468 0.383
R-HSA-68886 M Phase 0.419105 0.378
R-HSA-450604 KSRP (KHSRP) binds and destabilizes mRNA 0.420494 0.376
R-HSA-5656121 Translesion synthesis by POLI 0.420494 0.376
R-HSA-9687136 Aberrant regulation of mitotic exit in cancer due to RB1 defects 0.420494 0.376
R-HSA-9706369 Negative regulation of FLT3 0.420494 0.376
R-HSA-169893 Prolonged ERK activation events 0.420494 0.376
R-HSA-70350 Fructose catabolism 0.420494 0.376
R-HSA-9733458 Induction of Cell-Cell Fusion 0.420494 0.376
R-HSA-983169 Class I MHC mediated antigen processing & presentation 0.422401 0.374
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 0.423169 0.373
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 0.423812 0.373
R-HSA-774815 Nucleosome assembly 0.423812 0.373
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 0.423812 0.373
R-HSA-446728 Cell junction organization 0.424925 0.372
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 0.425663 0.371
R-HSA-166166 MyD88-independent TLR4 cascade 0.425663 0.371
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 0.433078 0.363
R-HSA-1500931 Cell-Cell communication 0.433885 0.363
R-HSA-2892247 POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation 0.436098 0.360
R-HSA-1250347 SHC1 events in ERBB4 signaling 0.436098 0.360
R-HSA-5655862 Translesion synthesis by POLK 0.436098 0.360
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 0.436098 0.360
R-HSA-975110 TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling 0.436098 0.360
R-HSA-77595 Processing of Intronless Pre-mRNAs 0.436098 0.360
R-HSA-77288 mitochondrial fatty acid beta-oxidation of unsaturated fatty acids 0.436098 0.360
R-HSA-918233 TRAF3-dependent IRF activation pathway 0.436098 0.360
R-HSA-1566977 Fibronectin matrix formation 0.436098 0.360
R-HSA-77346 Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA 0.436098 0.360
R-HSA-399997 Acetylcholine regulates insulin secretion 0.436098 0.360
R-HSA-6787450 tRNA modification in the mitochondrion 0.436098 0.360
R-HSA-9690406 Transcriptional regulation of testis differentiation 0.436098 0.360
R-HSA-927802 Nonsense-Mediated Decay (NMD) 0.437694 0.359
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 0.437694 0.359
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 0.444554 0.352
R-HSA-176407 Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase 0.451284 0.346
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to cla... 0.451284 0.346
R-HSA-5210891 Uptake and function of anthrax toxins 0.451284 0.346
R-HSA-389356 Co-stimulation by CD28 0.451366 0.345
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 0.451366 0.345
R-HSA-9707564 Cytoprotection by HMOX1 0.451614 0.345
R-HSA-212436 Generic Transcription Pathway 0.452038 0.345
R-HSA-421270 Cell-cell junction organization 0.459383 0.338
R-HSA-68882 Mitotic Anaphase 0.463536 0.334
R-HSA-3928664 Ephrin signaling 0.466061 0.332
R-HSA-2564830 Cytosolic iron-sulfur cluster assembly 0.466061 0.332
R-HSA-8849932 Synaptic adhesion-like molecules 0.466061 0.332
R-HSA-164378 PKA activation in glucagon signalling 0.466061 0.332
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 0.466061 0.332
R-HSA-190242 FGFR1 ligand binding and activation 0.466061 0.332
R-HSA-9665348 Signaling by ERBB2 ECD mutants 0.466061 0.332
R-HSA-163615 PKA activation 0.466061 0.332
R-HSA-9614657 FOXO-mediated transcription of cell death genes 0.466061 0.332
R-HSA-4419969 Depolymerization of the Nuclear Lamina 0.466061 0.332
R-HSA-428643 Organic anion transport by SLC5/17/25 transporters 0.466061 0.332
R-HSA-432142 Platelet sensitization by LDL 0.466061 0.332
R-HSA-180292 GAB1 signalosome 0.466061 0.332
R-HSA-6804760 Regulation of TP53 Activity through Methylation 0.466061 0.332
R-HSA-210993 Tie2 Signaling 0.466061 0.332
R-HSA-9926550 Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... 0.466061 0.332
R-HSA-2555396 Mitotic Metaphase and Anaphase 0.467880 0.330
R-HSA-109704 PI3K Cascade 0.469314 0.329
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 0.473243 0.325
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 0.478157 0.320
R-HSA-3371571 HSF1-dependent transactivation 0.478157 0.320
R-HSA-9758941 Gastrulation 0.478423 0.320
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 0.479469 0.319
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 0.479469 0.319
R-HSA-1912420 Pre-NOTCH Processing in Golgi 0.480442 0.318
R-HSA-912631 Regulation of signaling by CBL 0.480442 0.318
R-HSA-174048 APC/C:Cdc20 mediated degradation of Cyclin B 0.480442 0.318
R-HSA-9709603 Impaired BRCA2 binding to PALB2 0.480442 0.318
R-HSA-110320 Translesion Synthesis by POLH 0.480442 0.318
R-HSA-9754189 Germ layer formation at gastrulation 0.480442 0.318
R-HSA-9834899 Specification of the neural plate border 0.480442 0.318
R-HSA-881907 Gastrin-CREB signalling pathway via PKC and MAPK 0.480442 0.318
R-HSA-1834941 STING mediated induction of host immune responses 0.480442 0.318
R-HSA-9694631 Maturation of nucleoprotein 0.480442 0.318
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 0.486908 0.313
R-HSA-73772 RNA Polymerase I Promoter Escape 0.486908 0.313
R-HSA-1257604 PIP3 activates AKT signaling 0.489692 0.310
R-HSA-9645723 Diseases of programmed cell death 0.493146 0.307
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 0.493857 0.306
R-HSA-163210 Formation of ATP by chemiosmotic coupling 0.494435 0.306
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 0.494435 0.306
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 0.494435 0.306
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 0.494435 0.306
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 0.494435 0.306
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 0.494435 0.306
R-HSA-9609523 Insertion of tail-anchored proteins into the endoplasmic reticulum membrane 0.494435 0.306
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 0.494435 0.306
R-HSA-8848584 Wax and plasmalogen biosynthesis 0.494435 0.306
R-HSA-445144 Signal transduction by L1 0.494435 0.306
R-HSA-391903 Eicosanoid ligand-binding receptors 0.494435 0.306
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 0.495568 0.305
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 0.495568 0.305
R-HSA-432722 Golgi Associated Vesicle Biogenesis 0.495568 0.305
R-HSA-445355 Smooth Muscle Contraction 0.495568 0.305
R-HSA-69306 DNA Replication 0.498965 0.302
R-HSA-195721 Signaling by WNT 0.500957 0.300
R-HSA-73887 Death Receptor Signaling 0.504053 0.298
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 0.504053 0.298
R-HSA-8878171 Transcriptional regulation by RUNX1 0.506541 0.295
R-HSA-264642 Acetylcholine Neurotransmitter Release Cycle 0.508053 0.294
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 0.508053 0.294
R-HSA-5357786 TNFR1-induced proapoptotic signaling 0.508053 0.294
R-HSA-111931 PKA-mediated phosphorylation of CREB 0.508053 0.294
R-HSA-9819196 Zygotic genome activation (ZGA) 0.508053 0.294
R-HSA-210991 Basigin interactions 0.508053 0.294
R-HSA-162594 Early Phase of HIV Life Cycle 0.508053 0.294
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 0.512605 0.290
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 0.513322 0.290
R-HSA-9612973 Autophagy 0.514167 0.289
R-HSA-193648 NRAGE signals death through JNK 0.520981 0.283
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 0.521305 0.283
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 0.521305 0.283
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 0.521305 0.283
R-HSA-450302 activated TAK1 mediates p38 MAPK activation 0.521305 0.283
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 0.521305 0.283
R-HSA-72163 mRNA Splicing - Major Pathway 0.523701 0.281
R-HSA-9772573 Late SARS-CoV-2 Infection Events 0.526533 0.279
R-HSA-9006925 Intracellular signaling by second messengers 0.526810 0.278
R-HSA-112399 IRS-mediated signalling 0.529260 0.276
R-HSA-2980766 Nuclear Envelope Breakdown 0.529260 0.276
R-HSA-9764561 Regulation of CDH1 Function 0.529260 0.276
R-HSA-9006936 Signaling by TGFB family members 0.534135 0.272
R-HSA-76071 RNA Polymerase III Transcription Initiation From Type 3 Promoter 0.534201 0.272
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 0.534201 0.272
R-HSA-112409 RAF-independent MAPK1/3 activation 0.534201 0.272
R-HSA-9669938 Signaling by KIT in disease 0.534201 0.272
R-HSA-8964038 LDL clearance 0.534201 0.272
R-HSA-5652084 Fructose metabolism 0.534201 0.272
R-HSA-166208 mTORC1-mediated signalling 0.534201 0.272
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 0.534201 0.272
R-HSA-9694676 Translation of Replicase and Assembly of the Replication Transcription Complex 0.534201 0.272
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 0.537441 0.270
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 0.539545 0.268
R-HSA-9837999 Mitochondrial protein degradation 0.539545 0.268
R-HSA-114608 Platelet degranulation 0.541749 0.266
R-HSA-429914 Deadenylation-dependent mRNA decay 0.545524 0.263
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 0.545973 0.263
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 0.545973 0.263
R-HSA-912526 Interleukin receptor SHC signaling 0.546750 0.262
R-HSA-9648895 Response of EIF2AK1 (HRI) to heme deficiency 0.546750 0.262
R-HSA-9830674 Formation of the ureteric bud 0.546750 0.262
R-HSA-879518 Organic anion transport by SLCO transporters 0.546750 0.262
R-HSA-76002 Platelet activation, signaling and aggregation 0.550439 0.259
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 0.552349 0.258
R-HSA-72764 Eukaryotic Translation Termination 0.552349 0.258
R-HSA-933542 TRAF6 mediated NF-kB activation 0.558961 0.253
R-HSA-181430 Norepinephrine Neurotransmitter Release Cycle 0.558961 0.253
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 0.558961 0.253
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 0.558961 0.253
R-HSA-5621575 CD209 (DC-SIGN) signaling 0.558961 0.253
R-HSA-418592 ADP signalling through P2Y purinoceptor 1 0.558961 0.253
R-HSA-6783589 Interleukin-6 family signaling 0.558961 0.253
R-HSA-9793380 Formation of paraxial mesoderm 0.561392 0.251
R-HSA-157579 Telomere Maintenance 0.564940 0.248
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 0.569176 0.245
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 0.569176 0.245
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 0.569435 0.245
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 0.570845 0.243
R-HSA-3000157 Laminin interactions 0.570845 0.243
R-HSA-174411 Polymerase switching on the C-strand of the telomere 0.570845 0.243
R-HSA-400685 Sema4D in semaphorin signaling 0.570845 0.243
R-HSA-3214842 HDMs demethylate histones 0.570845 0.243
R-HSA-5218921 VEGFR2 mediated cell proliferation 0.570845 0.243
R-HSA-72172 mRNA Splicing 0.572524 0.242
R-HSA-9909396 Circadian clock 0.574220 0.241
R-HSA-1474228 Degradation of the extracellular matrix 0.574220 0.241
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 0.576861 0.239
R-HSA-3214847 HATs acetylate histones 0.577313 0.239
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 0.579505 0.237
R-HSA-3295583 TRP channels 0.582409 0.235
R-HSA-5689901 Metalloprotease DUBs 0.582409 0.235
R-HSA-525793 Myogenesis 0.582409 0.235
R-HSA-210500 Glutamate Neurotransmitter Release Cycle 0.582409 0.235
R-HSA-400042 Adrenaline,noradrenaline inhibits insulin secretion 0.582409 0.235
R-HSA-9638630 Attachment of bacteria to epithelial cells 0.582409 0.235
R-HSA-8934593 Regulation of RUNX1 Expression and Activity 0.582409 0.235
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 0.587005 0.231
R-HSA-449147 Signaling by Interleukins 0.592924 0.227
R-HSA-3928663 EPHA-mediated growth cone collapse 0.593662 0.226
R-HSA-8949613 Cristae formation 0.593662 0.226
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 0.593662 0.226
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 0.593662 0.226
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 0.593662 0.226
R-HSA-9842860 Regulation of endogenous retroelements 0.595454 0.225
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 0.595454 0.225
R-HSA-9018519 Estrogen-dependent gene expression 0.600265 0.222
R-HSA-192823 Viral mRNA Translation 0.601387 0.221
R-HSA-77387 Insulin receptor recycling 0.604612 0.219
R-HSA-9948299 Ribosome-associated quality control 0.610411 0.214
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 0.613770 0.212
R-HSA-9615710 Late endosomal microautophagy 0.615268 0.211
R-HSA-9664565 Signaling by ERBB2 KD Mutants 0.615268 0.211
R-HSA-9674555 Signaling by CSF3 (G-CSF) 0.615268 0.211
R-HSA-210745 Regulation of gene expression in beta cells 0.615268 0.211
R-HSA-9759475 Regulation of CDH11 Expression and Function 0.615268 0.211
R-HSA-1474244 Extracellular matrix organization 0.618733 0.208
R-HSA-611105 Respiratory electron transport 0.623330 0.205
R-HSA-9692914 SARS-CoV-1-host interactions 0.624544 0.204
R-HSA-2424491 DAP12 signaling 0.625638 0.204
R-HSA-9687139 Aberrant regulation of mitotic cell cycle due to RB1 defects 0.625638 0.204
R-HSA-456926 Thrombin signalling through proteinase activated receptors (PARs) 0.625638 0.204
R-HSA-76046 RNA Polymerase III Transcription Initiation 0.625638 0.204
R-HSA-1227990 Signaling by ERBB2 in Cancer 0.625638 0.204
R-HSA-888590 GABA synthesis, release, reuptake and degradation 0.625638 0.204
R-HSA-168255 Influenza Infection 0.627735 0.202
R-HSA-9764560 Regulation of CDH1 Gene Transcription 0.627830 0.202
R-HSA-75105 Fatty acyl-CoA biosynthesis 0.627830 0.202
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 0.630187 0.201
R-HSA-3906995 Diseases associated with O-glycosylation of proteins 0.634709 0.197
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 0.635075 0.197
R-HSA-182971 EGFR downregulation 0.635728 0.197
R-HSA-9833109 Evasion by RSV of host interferon responses 0.635728 0.197
R-HSA-186763 Downstream signal transduction 0.635728 0.197
R-HSA-2672351 Stimuli-sensing channels 0.635771 0.197
R-HSA-69002 DNA Replication Pre-Initiation 0.641297 0.193
R-HSA-199992 trans-Golgi Network Vesicle Budding 0.641489 0.193
R-HSA-74259 Purine catabolism 0.641489 0.193
R-HSA-4791275 Signaling by WNT in cancer 0.645547 0.190
R-HSA-350562 Regulation of ornithine decarboxylase (ODC) 0.645547 0.190
R-HSA-9675126 Diseases of mitotic cell cycle 0.645547 0.190
R-HSA-8931838 DAG1 glycosylations 0.645547 0.190
R-HSA-111465 Apoptotic cleavage of cellular proteins 0.645547 0.190
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 0.648169 0.188
R-HSA-9734767 Developmental Cell Lineages 0.652601 0.185
R-HSA-6798695 Neutrophil degranulation 0.653096 0.185
R-HSA-453279 Mitotic G1 phase and G1/S transition 0.654065 0.184
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 0.655102 0.184
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 0.655102 0.184
R-HSA-1839124 FGFR1 mutant receptor activation 0.655102 0.184
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 0.655102 0.184
R-HSA-9764260 Regulation of Expression and Function of Type II Classical Cadherins 0.655102 0.184
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 0.655102 0.184
R-HSA-1169408 ISG15 antiviral mechanism 0.661233 0.180
R-HSA-69242 S Phase 0.663309 0.178
R-HSA-5693537 Resolution of D-Loop Structures 0.664400 0.178
R-HSA-163359 Glucagon signaling in metabolic regulation 0.664400 0.178
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 0.664400 0.178
R-HSA-114508 Effects of PIP2 hydrolysis 0.664400 0.178
R-HSA-8868773 rRNA processing in the nucleus and cytosol 0.665952 0.177
R-HSA-73854 RNA Polymerase I Promoter Clearance 0.667617 0.175
R-HSA-9679191 Potential therapeutics for SARS 0.672384 0.172
R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 0.673448 0.172
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 0.673448 0.172
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 0.673448 0.172
R-HSA-901042 Calnexin/calreticulin cycle 0.673448 0.172
R-HSA-168638 NOD1/2 Signaling Pathway 0.673448 0.172
R-HSA-392518 Signal amplification 0.673448 0.172
R-HSA-5205647 Mitophagy 0.673448 0.172
R-HSA-9768919 NPAS4 regulates expression of target genes 0.673448 0.172
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 0.673905 0.171
R-HSA-9694635 Translation of Structural Proteins 0.673905 0.171
R-HSA-5617833 Cilium Assembly 0.674089 0.171
R-HSA-9694516 SARS-CoV-2 Infection 0.676520 0.170
R-HSA-168898 Toll-like Receptor Cascades 0.678108 0.169
R-HSA-73864 RNA Polymerase I Transcription 0.680095 0.167
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 0.680095 0.167
R-HSA-9955298 SLC-mediated transport of organic anions 0.680095 0.167
R-HSA-416482 G alpha (12/13) signalling events 0.680095 0.167
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 0.681290 0.167
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 0.682094 0.166
R-HSA-917977 Transferrin endocytosis and recycling 0.682253 0.166
R-HSA-9925561 Developmental Lineage of Pancreatic Acinar Cells 0.686189 0.164
R-HSA-74158 RNA Polymerase III Transcription 0.690821 0.161
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 0.690821 0.161
R-HSA-111933 Calmodulin induced events 0.690821 0.161
R-HSA-111997 CaM pathway 0.690821 0.161
R-HSA-9682385 FLT3 signaling in disease 0.690821 0.161
R-HSA-9833482 PKR-mediated signaling 0.692188 0.160
R-HSA-1989781 PPARA activates gene expression 0.694329 0.158
R-HSA-168273 Influenza Viral RNA Transcription and Replication 0.694329 0.158
R-HSA-9609690 HCMV Early Events 0.697706 0.156
R-HSA-2219528 PI3K/AKT Signaling in Cancer 0.698168 0.156
R-HSA-933541 TRAF6 mediated IRF7 activation 0.699158 0.155
R-HSA-5689896 Ovarian tumor domain proteases 0.699158 0.155
R-HSA-202733 Cell surface interactions at the vascular wall 0.702158 0.154
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 0.702808 0.153
R-HSA-9679506 SARS-CoV Infections 0.704879 0.152
R-HSA-452723 Transcriptional regulation of pluripotent stem cells 0.707271 0.150
R-HSA-9931953 Biofilm formation 0.707271 0.150
R-HSA-68875 Mitotic Prophase 0.707739 0.150
R-HSA-877300 Interferon gamma signaling 0.711116 0.148
R-HSA-9759194 Nuclear events mediated by NFE2L2 0.712437 0.147
R-HSA-8964043 Plasma lipoprotein clearance 0.715165 0.146
R-HSA-168276 NS1 Mediated Effects on Host Pathways 0.715165 0.146
R-HSA-8953750 Transcriptional Regulation by E2F6 0.715165 0.146
R-HSA-9648002 RAS processing 0.715165 0.146
R-HSA-71336 Pentose phosphate pathway 0.715165 0.146
R-HSA-5633007 Regulation of TP53 Activity 0.715207 0.146
R-HSA-1500620 Meiosis 0.720776 0.142
R-HSA-9646399 Aggrephagy 0.722848 0.141
R-HSA-8941858 Regulation of RUNX3 expression and activity 0.722848 0.141
R-HSA-451927 Interleukin-2 family signaling 0.722848 0.141
R-HSA-71240 Tryptophan catabolism 0.722848 0.141
R-HSA-379726 Mitochondrial tRNA aminoacylation 0.722848 0.141
R-HSA-9694548 Maturation of spike protein 0.730323 0.136
R-HSA-9607240 FLT3 Signaling 0.730323 0.136
R-HSA-2408522 Selenoamino acid metabolism 0.731143 0.136
R-HSA-1280215 Cytokine Signaling in Immune system 0.732042 0.135
R-HSA-438064 Post NMDA receptor activation events 0.736833 0.133
R-HSA-5610780 Degradation of GLI1 by the proteasome 0.737597 0.132
R-HSA-5655302 Signaling by FGFR1 in disease 0.737597 0.132
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 0.737597 0.132
R-HSA-9683701 Translation of Structural Proteins 0.737597 0.132
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 0.737597 0.132
R-HSA-9663891 Selective autophagy 0.742008 0.130
R-HSA-991365 Activation of GABAB receptors 0.744676 0.128
R-HSA-977444 GABA B receptor activation 0.744676 0.128
R-HSA-73928 Depyrimidination 0.744676 0.128
R-HSA-110329 Cleavage of the damaged pyrimidine 0.744676 0.128
R-HSA-381676 Glucagon-like Peptide-1 (GLP1) regulates insulin secretion 0.744676 0.128
R-HSA-379716 Cytosolic tRNA aminoacylation 0.744676 0.128
R-HSA-111996 Ca-dependent events 0.744676 0.128
R-HSA-165159 MTOR signalling 0.744676 0.128
R-HSA-73621 Pyrimidine catabolism 0.751564 0.124
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 0.751564 0.124
R-HSA-112310 Neurotransmitter release cycle 0.752097 0.124
R-HSA-2172127 DAP12 interactions 0.758266 0.120
R-HSA-373752 Netrin-1 signaling 0.758266 0.120
R-HSA-3928662 EPHB-mediated forward signaling 0.758266 0.120
R-HSA-9907900 Proteasome assembly 0.758266 0.120
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 0.758266 0.120
R-HSA-5688426 Deubiquitination 0.760594 0.119
R-HSA-77286 mitochondrial fatty acid beta-oxidation of saturated fatty acids 0.764788 0.116
R-HSA-4608870 Asymmetric localization of PCP proteins 0.764788 0.116
R-HSA-9660821 ADORA2B mediated anti-inflammatory cytokines production 0.764788 0.116
R-HSA-432040 Vasopressin regulates renal water homeostasis via Aquaporins 0.764788 0.116
R-HSA-6783310 Fanconi Anemia Pathway 0.764788 0.116
R-HSA-1489509 DAG and IP3 signaling 0.764788 0.116
R-HSA-72165 mRNA Splicing - Minor Pathway 0.771135 0.113
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 0.771135 0.113
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 0.771135 0.113
R-HSA-2299718 Condensation of Prophase Chromosomes 0.771135 0.113
R-HSA-2514859 Inactivation, recovery and regulation of the phototransduction cascade 0.771135 0.113
R-HSA-5357905 Regulation of TNFR1 signaling 0.771135 0.113
R-HSA-913531 Interferon Signaling 0.772627 0.112
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 0.774928 0.111
R-HSA-9678108 SARS-CoV-1 Infection 0.774928 0.111
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 0.777310 0.109
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 0.777310 0.109
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 0.777310 0.109
R-HSA-425410 Metal ion SLC transporters 0.783320 0.106
R-HSA-157858 Gap junction trafficking and regulation 0.789167 0.103
R-HSA-532668 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 0.789167 0.103
R-HSA-9766229 Degradation of CDH1 0.789167 0.103
R-HSA-8953854 Metabolism of RNA 0.789849 0.102
R-HSA-5658442 Regulation of RAS by GAPs 0.794858 0.100
R-HSA-8957275 Post-translational protein phosphorylation 0.797581 0.098
R-HSA-422356 Regulation of insulin secretion 0.797581 0.098
R-HSA-912446 Meiotic recombination 0.800394 0.097
R-HSA-2514856 The phototransduction cascade 0.800394 0.097
R-HSA-9614085 FOXO-mediated transcription 0.801698 0.096
R-HSA-1632852 Macroautophagy 0.804991 0.094
R-HSA-5610787 Hedgehog 'off' state 0.805741 0.094
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 0.805782 0.094
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 0.805782 0.094
R-HSA-5339562 Uptake and actions of bacterial toxins 0.805782 0.094
R-HSA-9705683 SARS-CoV-2-host interactions 0.806223 0.094
R-HSA-9020702 Interleukin-1 signaling 0.809710 0.092
R-HSA-9639288 Amino acids regulate mTORC1 0.811025 0.091
R-HSA-1221632 Meiotic synapsis 0.811025 0.091
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 0.813607 0.090
R-HSA-1483255 PI Metabolism 0.813607 0.090
R-HSA-8856828 Clathrin-mediated endocytosis 0.815001 0.089
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 0.816126 0.088
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 0.816126 0.088
R-HSA-73929 Base-Excision Repair, AP Site Formation 0.816126 0.088
R-HSA-72312 rRNA processing 0.816995 0.088
R-HSA-983712 Ion channel transport 0.818698 0.087
R-HSA-418597 G alpha (z) signalling events 0.821090 0.086
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 0.821188 0.086
R-HSA-9833110 RSV-host interactions 0.824874 0.084
R-HSA-75893 TNF signaling 0.825921 0.083
R-HSA-9772572 Early SARS-CoV-2 Infection Events 0.835195 0.078
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 0.838944 0.076
R-HSA-9755511 KEAP1-NFE2L2 pathway 0.839587 0.076
R-HSA-9033241 Peroxisomal protein import 0.839645 0.076
R-HSA-352230 Amino acid transport across the plasma membrane 0.839645 0.076
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 0.843975 0.074
R-HSA-977443 GABA receptor activation 0.843975 0.074
R-HSA-8943724 Regulation of PTEN gene transcription 0.843975 0.074
R-HSA-351202 Metabolism of polyamines 0.843975 0.074
R-HSA-1660661 Sphingolipid de novo biosynthesis 0.843975 0.074
R-HSA-379724 tRNA Aminoacylation 0.843975 0.074
R-HSA-202403 TCR signaling 0.845589 0.073
R-HSA-445717 Aquaporin-mediated transport 0.848189 0.072
R-HSA-8939902 Regulation of RUNX2 expression and activity 0.848189 0.072
R-HSA-112043 PLC beta mediated events 0.848189 0.072
R-HSA-2871796 FCERI mediated MAPK activation 0.851985 0.070
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 0.852289 0.069
R-HSA-6784531 tRNA processing in the nucleus 0.852289 0.069
R-HSA-186797 Signaling by PDGF 0.852289 0.069
R-HSA-375165 NCAM signaling for neurite out-growth 0.852289 0.069
R-HSA-3700989 Transcriptional Regulation by TP53 0.853992 0.069
R-HSA-6799198 Complex I biogenesis 0.856279 0.067
R-HSA-112316 Neuronal System 0.858916 0.066
R-HSA-9609646 HCMV Infection 0.859651 0.066
R-HSA-9824446 Viral Infection Pathways 0.860124 0.065
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 0.860161 0.065
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 0.861126 0.065
R-HSA-1428517 Aerobic respiration and respiratory electron transport 0.862460 0.064
R-HSA-72766 Translation 0.865353 0.063
R-HSA-4420097 VEGFA-VEGFR2 Pathway 0.866931 0.062
R-HSA-909733 Interferon alpha/beta signaling 0.866931 0.062
R-HSA-109581 Apoptosis 0.868758 0.061
R-HSA-112040 G-protein mediated events 0.871191 0.060
R-HSA-9830369 Kidney development 0.871191 0.060
R-HSA-9958863 SLC-mediated transport of amino acids 0.871191 0.060
R-HSA-388841 Regulation of T cell activation by CD28 family 0.871888 0.060
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 0.874671 0.058
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 0.874671 0.058
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 0.881353 0.055
R-HSA-195253 Degradation of beta-catenin by the destruction complex 0.881353 0.055
R-HSA-5632684 Hedgehog 'on' state 0.884559 0.053
R-HSA-3000178 ECM proteoglycans 0.884559 0.053
R-HSA-109582 Hemostasis 0.886921 0.052
R-HSA-162909 Host Interactions of HIV factors 0.890394 0.050
R-HSA-69052 Switching of origins to a post-replicative state 0.890715 0.050
R-HSA-9909648 Regulation of PD-L1(CD274) expression 0.893153 0.049
R-HSA-1226099 Signaling by FGFR in disease 0.893669 0.049
R-HSA-1222556 ROS and RNS production in phagocytes 0.893669 0.049
R-HSA-9711123 Cellular response to chemical stress 0.893672 0.049
R-HSA-194138 Signaling by VEGF 0.895059 0.048
R-HSA-69206 G1/S Transition 0.895059 0.048
R-HSA-8852135 Protein ubiquitination 0.896543 0.047
R-HSA-917937 Iron uptake and transport 0.896543 0.047
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 0.896543 0.047
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 0.897322 0.047
R-HSA-8956319 Nucleotide catabolism 0.903841 0.044
R-HSA-4086400 PCP/CE pathway 0.904709 0.043
R-HSA-9659379 Sensory processing of sound 0.907285 0.042
R-HSA-1474165 Reproduction 0.907970 0.042
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 0.909792 0.041
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 0.919161 0.037
R-HSA-163685 Integration of energy metabolism 0.921152 0.036
R-HSA-5687128 MAPK6/MAPK4 signaling 0.921347 0.036
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 0.922884 0.035
R-HSA-5358351 Signaling by Hedgehog 0.924580 0.034
R-HSA-390466 Chaperonin-mediated protein folding 0.927559 0.033
R-HSA-9664407 Parasite infection 0.927866 0.033
R-HSA-9664417 Leishmania phagocytosis 0.927866 0.033
R-HSA-9664422 FCGR3A-mediated phagocytosis 0.927866 0.033
R-HSA-168256 Immune System 0.931239 0.031
R-HSA-1236974 ER-Phagosome pathway 0.931426 0.031
R-HSA-1280218 Adaptive Immune System 0.932290 0.030
R-HSA-389948 Co-inhibition by PD-1 0.937925 0.028
R-HSA-2682334 EPH-Ephrin signaling 0.938552 0.028
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 0.938552 0.028
R-HSA-391251 Protein folding 0.938552 0.028
R-HSA-425407 SLC-mediated transmembrane transport 0.938642 0.027
R-HSA-2029481 FCGR activation 0.940215 0.027
R-HSA-68867 Assembly of the pre-replicative complex 0.940215 0.027
R-HSA-77289 Mitochondrial Fatty Acid Beta-Oxidation 0.943408 0.025
R-HSA-5357801 Programmed Cell Death 0.944925 0.025
R-HSA-446652 Interleukin-1 family signaling 0.946148 0.024
R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 0.946430 0.024
R-HSA-1296071 Potassium Channels 0.946430 0.024
R-HSA-5607764 CLEC7A (Dectin-1) signaling 0.946430 0.024
R-HSA-388396 GPCR downstream signalling 0.949648 0.022
R-HSA-192105 Synthesis of bile acids and bile salts 0.950664 0.022
R-HSA-382556 ABC-family proteins mediated transport 0.952000 0.021
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 0.952164 0.021
R-HSA-397014 Muscle contraction 0.952164 0.021
R-HSA-111885 Opioid Signalling 0.956992 0.019
R-HSA-112315 Transmission across Chemical Synapses 0.957356 0.019
R-HSA-418346 Platelet homeostasis 0.960393 0.018
R-HSA-1236975 Antigen processing-Cross presentation 0.962510 0.017
R-HSA-194068 Bile acid and bile salt metabolism 0.964514 0.016
R-HSA-162906 HIV Infection 0.964792 0.016
R-HSA-72306 tRNA processing 0.965134 0.015
R-HSA-5621481 C-type lectin receptors (CLRs) 0.965930 0.015
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 0.966217 0.015
R-HSA-1483249 Inositol phosphate metabolism 0.966411 0.015
R-HSA-9664433 Leishmania parasite growth and survival 0.967471 0.014
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 0.967471 0.014
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 0.968216 0.014
R-HSA-2871809 FCERI mediated Ca+2 mobilization 0.970723 0.013
R-HSA-3781865 Diseases of glycosylation 0.974816 0.011
R-HSA-6809371 Formation of the cornified envelope 0.977140 0.010
R-HSA-372790 Signaling by GPCR 0.982071 0.008
R-HSA-5576891 Cardiac conduction 0.982153 0.008
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 0.983901 0.007
R-HSA-8957322 Metabolism of steroids 0.984566 0.007
R-HSA-3858494 Beta-catenin independent WNT signaling 0.984869 0.007
R-HSA-5173105 O-linked glycosylation 0.985280 0.006
R-HSA-6807070 PTEN Regulation 0.986069 0.006
R-HSA-1643685 Disease 0.986754 0.006
R-HSA-168249 Innate Immune System 0.986764 0.006
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 0.986815 0.006
R-HSA-9658195 Leishmania infection 0.988822 0.005
R-HSA-9824443 Parasitic Infection Pathways 0.988822 0.005
R-HSA-5663205 Infectious disease 0.988872 0.005
R-HSA-2187338 Visual phototransduction 0.989127 0.005
R-HSA-8951664 Neddylation 0.989771 0.004
R-HSA-418594 G alpha (i) signalling events 0.991092 0.004
R-HSA-9610379 HCMV Late Events 0.991745 0.004
R-HSA-162587 HIV Life Cycle 0.991745 0.004
R-HSA-1483257 Phospholipid metabolism 0.991777 0.004
R-HSA-15869 Metabolism of nucleotides 0.992876 0.003
R-HSA-5619102 SLC transporter disorders 0.993734 0.003
R-HSA-5689880 Ub-specific processing proteases 0.994835 0.002
R-HSA-9824439 Bacterial Infection Pathways 0.996116 0.002
R-HSA-375276 Peptide ligand-binding receptors 0.996392 0.002
R-HSA-416476 G alpha (q) signalling events 0.996403 0.002
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 0.996432 0.002
R-HSA-428157 Sphingolipid metabolism 0.997616 0.001
R-HSA-9640148 Infection with Enterobacteria 0.997744 0.001
R-HSA-1483206 Glycerophospholipid biosynthesis 0.997744 0.001
R-HSA-6805567 Keratinization 0.997980 0.001
R-HSA-382551 Transport of small molecules 0.998547 0.001
R-HSA-5619115 Disorders of transmembrane transporters 0.999351 0.000
R-HSA-8978868 Fatty acid metabolism 0.999381 0.000
R-HSA-71291 Metabolism of amino acids and derivatives 0.999588 0.000
R-HSA-597592 Post-translational protein modification 0.999671 0.000
R-HSA-199991 Membrane Trafficking 0.999780 0.000
R-HSA-5668914 Diseases of metabolism 0.999943 0.000
R-HSA-500792 GPCR ligand binding 0.999956 0.000
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 0.999973 0.000
R-HSA-392499 Metabolism of proteins 0.999980 0.000
R-HSA-5653656 Vesicle-mediated transport 0.999993 0.000
R-HSA-446203 Asparagine N-linked glycosylation 0.999995 0.000
R-HSA-556833 Metabolism of lipids 1.000000 0.000
R-HSA-9709957 Sensory Perception 1.000000 0.000
R-HSA-1430728 Metabolism 1.000000 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
CLK3CLK3 0.879 0.384 1 0.900
HIPK4HIPK4 0.873 0.395 1 0.871
HIPK2HIPK2 0.868 0.434 1 0.812
COTCOT 0.867 0.155 2 0.853
DYRK2DYRK2 0.867 0.410 1 0.867
KISKIS 0.866 0.378 1 0.866
SRPK1SRPK1 0.864 0.269 -3 0.760
JNK2JNK2 0.863 0.424 1 0.818
MOSMOS 0.861 0.175 1 0.835
ERK5ERK5 0.861 0.289 1 0.907
NLKNLK 0.860 0.298 1 0.907
CDK18CDK18 0.860 0.409 1 0.812
HIPK1HIPK1 0.860 0.395 1 0.875
CDC7CDC7 0.860 0.106 1 0.800
P38BP38B 0.859 0.420 1 0.843
CDKL5CDKL5 0.859 0.232 -3 0.789
CDK8CDK8 0.859 0.361 1 0.842
CDK19CDK19 0.858 0.379 1 0.820
ICKICK 0.858 0.287 -3 0.830
PIM3PIM3 0.858 0.140 -3 0.829
JNK3JNK3 0.858 0.397 1 0.842
CLK2CLK2 0.857 0.329 -3 0.746
PRKD1PRKD1 0.857 0.228 -3 0.835
SKMLCKSKMLCK 0.857 0.194 -2 0.858
NDR2NDR2 0.857 0.158 -3 0.832
CDKL1CDKL1 0.856 0.170 -3 0.792
CDK7CDK7 0.856 0.355 1 0.857
P38AP38A 0.856 0.400 1 0.883
MTORMTOR 0.856 0.133 1 0.797
P38GP38G 0.855 0.391 1 0.767
DYRK4DYRK4 0.854 0.392 1 0.826
MAKMAK 0.853 0.415 -2 0.798
CDK5CDK5 0.853 0.365 1 0.868
ERK1ERK1 0.853 0.379 1 0.834
PRPKPRPK 0.853 0.011 -1 0.836
CDK1CDK1 0.852 0.348 1 0.829
P38DP38D 0.851 0.401 1 0.787
ATRATR 0.849 0.057 1 0.797
GRK1GRK1 0.849 0.139 -2 0.775
RSK2RSK2 0.849 0.123 -3 0.768
CDK13CDK13 0.849 0.331 1 0.838
DYRK1ADYRK1A 0.848 0.331 1 0.876
CDK17CDK17 0.848 0.361 1 0.770
CLK4CLK4 0.847 0.238 -3 0.754
CAMK1BCAMK1B 0.847 0.029 -3 0.826
HIPK3HIPK3 0.847 0.360 1 0.862
AURCAURC 0.847 0.156 -2 0.654
CDK3CDK3 0.846 0.334 1 0.788
SRPK2SRPK2 0.845 0.190 -3 0.681
PIM1PIM1 0.845 0.116 -3 0.777
CDK12CDK12 0.845 0.338 1 0.818
BMPR2BMPR2 0.844 -0.104 -2 0.839
DYRK1BDYRK1B 0.844 0.342 1 0.841
P90RSKP90RSK 0.844 0.101 -3 0.772
PRKD2PRKD2 0.844 0.128 -3 0.771
CLK1CLK1 0.844 0.248 -3 0.731
NUAK2NUAK2 0.844 0.066 -3 0.820
CAMLCKCAMLCK 0.843 0.067 -2 0.824
RAF1RAF1 0.843 -0.109 1 0.771
BMPR1BBMPR1B 0.843 0.128 1 0.760
SRPK3SRPK3 0.843 0.162 -3 0.723
DAPK2DAPK2 0.843 0.074 -3 0.834
NDR1NDR1 0.842 0.045 -3 0.813
MARK4MARK4 0.842 0.076 4 0.801
CHAK2CHAK2 0.842 0.042 -1 0.811
IKKBIKKB 0.841 -0.076 -2 0.683
WNK1WNK1 0.841 0.023 -2 0.862
PDHK4PDHK4 0.841 -0.189 1 0.805
CDK9CDK9 0.841 0.315 1 0.843
TBK1TBK1 0.841 -0.069 1 0.669
LATS1LATS1 0.840 0.132 -3 0.840
NIKNIK 0.840 -0.018 -3 0.835
CDK14CDK14 0.840 0.340 1 0.837
DYRK3DYRK3 0.839 0.295 1 0.864
LATS2LATS2 0.839 0.056 -5 0.746
RSK3RSK3 0.839 0.089 -3 0.760
AMPKA1AMPKA1 0.839 0.045 -3 0.830
CAMK2DCAMK2D 0.839 0.041 -3 0.812
NEK6NEK6 0.838 -0.003 -2 0.818
DSTYKDSTYK 0.838 -0.081 2 0.861
CDK16CDK16 0.838 0.348 1 0.783
PKN3PKN3 0.838 0.001 -3 0.803
TSSK1TSSK1 0.838 0.098 -3 0.852
CAMK2GCAMK2G 0.838 -0.086 2 0.793
GRK5GRK5 0.838 -0.082 -3 0.815
PRP4PRP4 0.838 0.245 -3 0.774
GRK7GRK7 0.837 0.100 1 0.732
MST4MST4 0.837 0.022 2 0.834
HUNKHUNK 0.837 -0.036 2 0.799
PKACBPKACB 0.837 0.134 -2 0.659
CDK10CDK10 0.837 0.324 1 0.831
IKKEIKKE 0.836 -0.093 1 0.661
ERK2ERK2 0.836 0.292 1 0.853
PKACGPKACG 0.836 0.058 -2 0.712
MPSK1MPSK1 0.836 0.255 1 0.777
GCN2GCN2 0.836 -0.155 2 0.784
RIPK3RIPK3 0.836 -0.067 3 0.721
TGFBR2TGFBR2 0.836 -0.043 -2 0.768
MAPKAPK2MAPKAPK2 0.835 0.076 -3 0.733
IKKAIKKA 0.835 -0.000 -2 0.682
TSSK2TSSK2 0.835 0.053 -5 0.828
MLK2MLK2 0.835 0.018 2 0.796
JNK1JNK1 0.835 0.327 1 0.807
AMPKA2AMPKA2 0.834 0.052 -3 0.801
MAPKAPK3MAPKAPK3 0.834 0.033 -3 0.769
ULK2ULK2 0.834 -0.137 2 0.756
PKCDPKCD 0.834 0.036 2 0.747
PDHK1PDHK1 0.834 -0.186 1 0.779
RSK4RSK4 0.834 0.106 -3 0.745
TGFBR1TGFBR1 0.833 0.044 -2 0.777
PKN2PKN2 0.833 -0.008 -3 0.808
CAMK2ACAMK2A 0.833 0.073 2 0.788
MASTLMASTL 0.833 -0.124 -2 0.767
PAK1PAK1 0.833 0.061 -2 0.775
MOKMOK 0.832 0.326 1 0.878
P70S6KBP70S6KB 0.832 0.025 -3 0.769
MLK1MLK1 0.832 -0.116 2 0.782
ALK4ALK4 0.831 -0.005 -2 0.800
MNK2MNK2 0.831 0.076 -2 0.768
GSK3AGSK3A 0.831 0.186 4 0.498
CAMK2BCAMK2B 0.831 0.036 2 0.776
GRK6GRK6 0.830 -0.071 1 0.777
MSK1MSK1 0.830 0.085 -3 0.747
VRK2VRK2 0.829 0.043 1 0.840
QSKQSK 0.829 0.067 4 0.770
NIM1NIM1 0.829 0.008 3 0.768
PKCBPKCB 0.829 0.050 2 0.696
SGK3SGK3 0.829 0.097 -3 0.757
AKT2AKT2 0.828 0.100 -3 0.689
NEK7NEK7 0.828 -0.173 -3 0.794
PAK3PAK3 0.828 0.025 -2 0.762
PKRPKR 0.827 -0.010 1 0.784
NEK9NEK9 0.827 -0.121 2 0.811
MSK2MSK2 0.827 0.036 -3 0.750
DLKDLK 0.827 -0.193 1 0.767
MLK3MLK3 0.826 -0.033 2 0.702
PRKD3PRKD3 0.826 0.052 -3 0.740
DNAPKDNAPK 0.826 0.047 1 0.676
PRKXPRKX 0.826 0.119 -3 0.685
AURBAURB 0.826 0.066 -2 0.645
FAM20CFAM20C 0.826 0.050 2 0.599
ATMATM 0.826 -0.031 1 0.734
CDK2CDK2 0.826 0.183 1 0.863
PKG2PKG2 0.826 0.075 -2 0.654
BCKDKBCKDK 0.826 -0.144 -1 0.767
IRE1IRE1 0.826 -0.051 1 0.740
PKCAPKCA 0.826 0.040 2 0.685
RIPK1RIPK1 0.825 -0.164 1 0.750
SMG1SMG1 0.825 -0.006 1 0.750
CK1ECK1E 0.824 0.066 -3 0.588
TLK2TLK2 0.824 -0.006 1 0.728
GRK4GRK4 0.824 -0.118 -2 0.801
ANKRD3ANKRD3 0.823 -0.193 1 0.794
PASKPASK 0.823 0.085 -3 0.851
MNK1MNK1 0.823 0.043 -2 0.772
ALK2ALK2 0.823 -0.006 -2 0.781
PKCZPKCZ 0.823 0.013 2 0.742
MEK1MEK1 0.823 -0.143 2 0.825
DCAMKL1DCAMKL1 0.823 0.048 -3 0.777
PKCGPKCG 0.823 0.005 2 0.691
PIM2PIM2 0.822 0.067 -3 0.733
ACVR2BACVR2B 0.822 -0.019 -2 0.761
MYLK4MYLK4 0.821 0.017 -2 0.754
ACVR2AACVR2A 0.821 -0.034 -2 0.750
ULK1ULK1 0.820 -0.197 -3 0.755
GSK3BGSK3B 0.820 0.093 4 0.491
WNK3WNK3 0.820 -0.259 1 0.747
MELKMELK 0.820 -0.026 -3 0.780
YSK4YSK4 0.820 -0.120 1 0.703
MARK3MARK3 0.819 0.031 4 0.727
AURAAURA 0.819 0.045 -2 0.629
MST3MST3 0.819 0.030 2 0.812
NUAK1NUAK1 0.819 -0.022 -3 0.758
CDK4CDK4 0.819 0.300 1 0.808
PAK6PAK6 0.819 0.065 -2 0.679
PLK1PLK1 0.818 -0.119 -2 0.750
CDK6CDK6 0.818 0.286 1 0.823
TTBK2TTBK2 0.818 -0.172 2 0.674
QIKQIK 0.818 -0.074 -3 0.798
BRSK1BRSK1 0.818 0.003 -3 0.772
ERK7ERK7 0.818 0.116 2 0.511
PAK2PAK2 0.818 -0.028 -2 0.751
PKACAPKACA 0.817 0.089 -2 0.612
NEK2NEK2 0.817 -0.084 2 0.782
SIKSIK 0.817 0.010 -3 0.737
CAMK4CAMK4 0.817 -0.123 -3 0.786
BMPR1ABMPR1A 0.816 0.026 1 0.731
MARK2MARK2 0.816 -0.003 4 0.699
PHKG1PHKG1 0.816 -0.057 -3 0.805
CK1DCK1D 0.816 0.055 -3 0.538
MLK4MLK4 0.816 -0.103 2 0.688
GAKGAK 0.815 0.077 1 0.831
CHK1CHK1 0.815 -0.036 -3 0.797
GRK2GRK2 0.815 -0.061 -2 0.689
NEK5NEK5 0.815 -0.046 1 0.773
PKCHPKCH 0.815 -0.040 2 0.679
MEKK2MEKK2 0.814 -0.073 2 0.779
LKB1LKB1 0.814 0.045 -3 0.797
SSTKSSTK 0.814 0.043 4 0.761
BRSK2BRSK2 0.814 -0.047 -3 0.783
IRE2IRE2 0.813 -0.102 2 0.710
TAO3TAO3 0.813 -0.023 1 0.740
MEK5MEK5 0.813 -0.193 2 0.801
WNK4WNK4 0.812 -0.067 -2 0.852
AKT1AKT1 0.812 0.065 -3 0.706
BRAFBRAF 0.812 -0.129 -4 0.769
CHAK1CHAK1 0.811 -0.158 2 0.744
MEKK1MEKK1 0.810 -0.149 1 0.746
PLK4PLK4 0.810 -0.078 2 0.605
DAPK3DAPK3 0.810 0.048 -3 0.782
CK1A2CK1A2 0.810 0.034 -3 0.539
PERKPERK 0.810 -0.146 -2 0.788
DRAK1DRAK1 0.809 -0.099 1 0.718
MEKK3MEKK3 0.809 -0.185 1 0.743
PLK3PLK3 0.809 -0.133 2 0.749
SMMLCKSMMLCK 0.809 -0.029 -3 0.788
SGK1SGK1 0.808 0.096 -3 0.623
GCKGCK 0.807 -0.003 1 0.743
ZAKZAK 0.807 -0.167 1 0.708
BUB1BUB1 0.807 0.136 -5 0.765
TLK1TLK1 0.807 -0.126 -2 0.804
PDK1PDK1 0.807 -0.026 1 0.744
MARK1MARK1 0.807 -0.054 4 0.741
CK1G1CK1G1 0.807 0.018 -3 0.561
AKT3AKT3 0.806 0.093 -3 0.647
PINK1PINK1 0.806 -0.117 1 0.846
TNIKTNIK 0.806 0.038 3 0.851
IRAK4IRAK4 0.806 -0.110 1 0.737
PKCTPKCT 0.806 -0.018 2 0.688
PBKPBK 0.805 0.105 1 0.772
MEKK6MEKK6 0.805 -0.007 1 0.745
DCAMKL2DCAMKL2 0.805 -0.056 -3 0.783
ROCK2ROCK2 0.805 0.080 -3 0.773
CAMK1GCAMK1G 0.805 -0.064 -3 0.734
DAPK1DAPK1 0.804 0.042 -3 0.770
NEK11NEK11 0.804 -0.140 1 0.735
MAPKAPK5MAPKAPK5 0.804 -0.092 -3 0.708
MAP3K15MAP3K15 0.804 -0.012 1 0.700
CAMKK2CAMKK2 0.803 -0.089 -2 0.681
GRK3GRK3 0.803 -0.047 -2 0.656
HRIHRI 0.803 -0.236 -2 0.802
HPK1HPK1 0.802 -0.013 1 0.728
PKCEPKCE 0.802 0.016 2 0.677
HGKHGK 0.801 -0.027 3 0.845
KHS1KHS1 0.801 0.040 1 0.717
CAMK1DCAMK1D 0.801 -0.014 -3 0.673
PKCIPKCI 0.801 -0.035 2 0.705
SBKSBK 0.800 0.094 -3 0.580
CK2A2CK2A2 0.800 0.025 1 0.678
CAMKK1CAMKK1 0.800 -0.172 -2 0.682
EEF2KEEF2K 0.800 -0.046 3 0.808
TAO2TAO2 0.800 -0.126 2 0.810
SNRKSNRK 0.800 -0.195 2 0.649
P70S6KP70S6K 0.800 -0.028 -3 0.690
MINKMINK 0.799 -0.053 1 0.723
PAK5PAK5 0.799 0.011 -2 0.623
LRRK2LRRK2 0.798 -0.094 2 0.813
KHS2KHS2 0.798 0.028 1 0.733
MST2MST2 0.798 -0.125 1 0.745
MRCKBMRCKB 0.798 0.040 -3 0.716
PAK4PAK4 0.797 0.033 -2 0.637
VRK1VRK1 0.797 -0.083 2 0.811
DMPK1DMPK1 0.797 0.079 -3 0.739
NEK4NEK4 0.797 -0.129 1 0.725
NEK1NEK1 0.796 -0.071 1 0.736
TAK1TAK1 0.796 -0.139 1 0.749
NEK8NEK8 0.796 -0.229 2 0.782
MRCKAMRCKA 0.794 0.010 -3 0.727
CHK2CHK2 0.792 -0.006 -3 0.638
LOKLOK 0.792 -0.086 -2 0.709
CK2A1CK2A1 0.791 0.016 1 0.655
PKN1PKN1 0.791 -0.022 -3 0.711
HASPINHASPIN 0.791 0.043 -1 0.714
PLK2PLK2 0.789 -0.071 -3 0.739
PHKG2PHKG2 0.789 -0.123 -3 0.762
YSK1YSK1 0.788 -0.082 2 0.780
CRIKCRIK 0.788 0.054 -3 0.711
CAMK1ACAMK1A 0.787 -0.010 -3 0.651
ROCK1ROCK1 0.785 0.029 -3 0.731
PDHK3_TYRPDHK3_TYR 0.785 0.321 4 0.866
MST1MST1 0.785 -0.188 1 0.721
OSR1OSR1 0.785 -0.066 2 0.782
SLKSLK 0.785 -0.130 -2 0.657
BIKEBIKE 0.785 0.058 1 0.742
IRAK1IRAK1 0.785 -0.321 -1 0.713
MEK2MEK2 0.783 -0.238 2 0.793
TTBK1TTBK1 0.783 -0.245 2 0.589
TTKTTK 0.782 -0.084 -2 0.786
MYO3BMYO3B 0.780 -0.036 2 0.791
ASK1ASK1 0.779 -0.095 1 0.687
PKG1PKG1 0.779 0.000 -2 0.574
STK33STK33 0.779 -0.181 2 0.584
AAK1AAK1 0.778 0.124 1 0.664
NEK3NEK3 0.778 -0.137 1 0.702
CK1ACK1A 0.777 0.023 -3 0.451
MAP2K4_TYRMAP2K4_TYR 0.775 0.121 -1 0.854
YANK3YANK3 0.774 -0.066 2 0.381
PKMYT1_TYRPKMYT1_TYR 0.773 0.147 3 0.843
PDHK4_TYRPDHK4_TYR 0.773 0.080 2 0.862
MAP2K6_TYRMAP2K6_TYR 0.773 0.083 -1 0.853
LIMK2_TYRLIMK2_TYR 0.771 0.149 -3 0.847
TESK1_TYRTESK1_TYR 0.771 0.020 3 0.874
MYO3AMYO3A 0.769 -0.125 1 0.718
ALPHAK3ALPHAK3 0.769 -0.140 -1 0.736
RIPK2RIPK2 0.768 -0.354 1 0.665
TAO1TAO1 0.768 -0.139 1 0.661
MAP2K7_TYRMAP2K7_TYR 0.766 -0.117 2 0.835
BMPR2_TYRBMPR2_TYR 0.766 -0.014 -1 0.836
PDHK1_TYRPDHK1_TYR 0.766 -0.032 -1 0.845
EPHA6EPHA6 0.761 0.022 -1 0.797
EPHB4EPHB4 0.758 -0.009 -1 0.768
STLK3STLK3 0.758 -0.227 1 0.672
ABL2ABL2 0.758 0.023 -1 0.751
PINK1_TYRPINK1_TYR 0.757 -0.233 1 0.796
TXKTXK 0.757 0.049 1 0.789
LIMK1_TYRLIMK1_TYR 0.756 -0.111 2 0.820
RETRET 0.755 -0.128 1 0.744
FGRFGR 0.755 -0.038 1 0.814
ABL1ABL1 0.753 0.005 -1 0.743
TNK2TNK2 0.753 0.011 3 0.728
ROS1ROS1 0.753 -0.086 3 0.747
CSF1RCSF1R 0.751 -0.087 3 0.770
TYRO3TYRO3 0.751 -0.128 3 0.776
DDR1DDR1 0.751 -0.120 4 0.793
MST1RMST1R 0.751 -0.156 3 0.791
JAK2JAK2 0.751 -0.120 1 0.740
YES1YES1 0.750 -0.070 -1 0.788
TYK2TYK2 0.749 -0.206 1 0.738
CK1G3CK1G3 0.749 -0.032 -3 0.403
BLKBLK 0.748 0.014 -1 0.769
TNNI3K_TYRTNNI3K_TYR 0.748 0.019 1 0.768
LCKLCK 0.748 -0.018 -1 0.765
FERFER 0.746 -0.152 1 0.818
TNK1TNK1 0.746 -0.032 3 0.766
HCKHCK 0.746 -0.090 -1 0.764
JAK3JAK3 0.745 -0.151 1 0.727
EPHA4EPHA4 0.745 -0.086 2 0.752
SRMSSRMS 0.745 -0.102 1 0.791
ITKITK 0.744 -0.082 -1 0.734
INSRRINSRR 0.743 -0.154 3 0.716
FYNFYN 0.742 -0.016 -1 0.746
EPHB1EPHB1 0.742 -0.133 1 0.787
JAK1JAK1 0.742 -0.067 1 0.680
MERTKMERTK 0.742 -0.082 3 0.757
EPHB3EPHB3 0.741 -0.107 -1 0.746
NEK10_TYRNEK10_TYR 0.741 -0.114 1 0.624
EPHB2EPHB2 0.740 -0.104 -1 0.737
KDRKDR 0.740 -0.139 3 0.734
KITKIT 0.740 -0.160 3 0.770
FGFR2FGFR2 0.740 -0.173 3 0.771
METMET 0.740 -0.111 3 0.763
BMXBMX 0.739 -0.072 -1 0.659
YANK2YANK2 0.739 -0.103 2 0.395
DDR2DDR2 0.737 -0.021 3 0.697
AXLAXL 0.736 -0.166 3 0.750
FGFR1FGFR1 0.734 -0.193 3 0.738
PDGFRBPDGFRB 0.733 -0.266 3 0.780
EPHA7EPHA7 0.732 -0.120 2 0.747
TEKTEK 0.732 -0.214 3 0.702
TECTEC 0.732 -0.159 -1 0.668
CK1G2CK1G2 0.731 -0.045 -3 0.487
PTK2BPTK2B 0.731 -0.076 -1 0.707
FLT3FLT3 0.731 -0.265 3 0.773
WEE1_TYRWEE1_TYR 0.731 -0.156 -1 0.705
FLT1FLT1 0.730 -0.183 -1 0.771
ALKALK 0.729 -0.193 3 0.686
LTKLTK 0.729 -0.176 3 0.717
EPHA1EPHA1 0.729 -0.148 3 0.741
BTKBTK 0.728 -0.257 -1 0.701
FGFR3FGFR3 0.728 -0.190 3 0.737
EPHA3EPHA3 0.728 -0.181 2 0.721
LYNLYN 0.728 -0.136 3 0.694
SRCSRC 0.728 -0.097 -1 0.741
FRKFRK 0.727 -0.162 -1 0.767
PTK6PTK6 0.727 -0.242 -1 0.670
PTK2PTK2 0.727 -0.034 -1 0.735
NTRK1NTRK1 0.725 -0.279 -1 0.764
PDGFRAPDGFRA 0.725 -0.313 3 0.776
SYKSYK 0.725 -0.046 -1 0.719
NTRK3NTRK3 0.724 -0.173 -1 0.720
ERBB2ERBB2 0.724 -0.242 1 0.696
INSRINSR 0.724 -0.204 3 0.695
EPHA5EPHA5 0.723 -0.148 2 0.734
MATKMATK 0.722 -0.163 -1 0.677
EPHA8EPHA8 0.721 -0.147 -1 0.726
EGFREGFR 0.721 -0.140 1 0.610
CSKCSK 0.720 -0.175 2 0.752
FLT4FLT4 0.719 -0.282 3 0.729
NTRK2NTRK2 0.718 -0.314 3 0.720
FGFR4FGFR4 0.716 -0.164 -1 0.707
ERBB4ERBB4 0.712 -0.106 1 0.639
EPHA2EPHA2 0.712 -0.150 -1 0.697
ZAP70ZAP70 0.711 -0.036 -1 0.656
IGF1RIGF1R 0.708 -0.209 3 0.633
MUSKMUSK 0.703 -0.221 1 0.607
FESFES 0.696 -0.200 -1 0.635