Motif 299 (n=486)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0AV96 | RBM47 | S540 | ochoa | RNA-binding protein 47 (RNA-binding motif protein 47) | Single-stranded RNA-binding protein that functions in a variety of RNA processes, including alternative splicing, RNA stabilization, and RNA editing (PubMed:24038582, PubMed:24916387, PubMed:27050523, PubMed:30844405, PubMed:31358901, PubMed:34160127). Functions as an enzyme-substrate adapter for the cytidine deaminase APOBEC1. With APOBEC1 forms an mRNA editing complex involved into cytidine to uridine editing of a variety of mRNA molecules (PubMed:24038582, PubMed:24916387, PubMed:30844405). Through the binding of their 3'UTR, also stabilizes a variety of mRNAs and regulates the expression of genes such as the interferon alpha/beta receptor and interleukin-10 (PubMed:34160127). Also involved in the alternative splicing of several genes including TJP1. Binds the pre-mRNA (U)GCAUG consensus sequences in downstream intronic regions of alternative exons, regulating their exclusion and inclusion into mRNAs (PubMed:27050523, PubMed:31358901). Independently of its RNA-binding activity, could negatively regulate MAVS by promoting its lysosomal degradation (By similarity). {ECO:0000250|UniProtKB:A0A8M1NHK4, ECO:0000269|PubMed:24038582, ECO:0000269|PubMed:24916387, ECO:0000269|PubMed:27050523, ECO:0000269|PubMed:30844405, ECO:0000269|PubMed:31358901, ECO:0000269|PubMed:34160127}. |
A0AV96 | RBM47 | Y541 | ochoa | RNA-binding protein 47 (RNA-binding motif protein 47) | Single-stranded RNA-binding protein that functions in a variety of RNA processes, including alternative splicing, RNA stabilization, and RNA editing (PubMed:24038582, PubMed:24916387, PubMed:27050523, PubMed:30844405, PubMed:31358901, PubMed:34160127). Functions as an enzyme-substrate adapter for the cytidine deaminase APOBEC1. With APOBEC1 forms an mRNA editing complex involved into cytidine to uridine editing of a variety of mRNA molecules (PubMed:24038582, PubMed:24916387, PubMed:30844405). Through the binding of their 3'UTR, also stabilizes a variety of mRNAs and regulates the expression of genes such as the interferon alpha/beta receptor and interleukin-10 (PubMed:34160127). Also involved in the alternative splicing of several genes including TJP1. Binds the pre-mRNA (U)GCAUG consensus sequences in downstream intronic regions of alternative exons, regulating their exclusion and inclusion into mRNAs (PubMed:27050523, PubMed:31358901). Independently of its RNA-binding activity, could negatively regulate MAVS by promoting its lysosomal degradation (By similarity). {ECO:0000250|UniProtKB:A0A8M1NHK4, ECO:0000269|PubMed:24038582, ECO:0000269|PubMed:24916387, ECO:0000269|PubMed:27050523, ECO:0000269|PubMed:30844405, ECO:0000269|PubMed:31358901, ECO:0000269|PubMed:34160127}. |
A5YKK6 | CNOT1 | S1014 | ochoa | CCR4-NOT transcription complex subunit 1 (CCR4-associated factor 1) (Negative regulator of transcription subunit 1 homolog) (NOT1H) (hNOT1) | Scaffolding component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Its scaffolding function implies its interaction with the catalytic complex module and diverse RNA-binding proteins mediating the complex recruitment to selected mRNA 3'UTRs. Involved in degradation of AU-rich element (ARE)-containing mRNAs probably via association with ZFP36. Mediates the recruitment of the CCR4-NOT complex to miRNA targets and to the RISC complex via association with TNRC6A, TNRC6B or TNRC6C. Acts as a transcriptional repressor. Represses the ligand-dependent transcriptional activation by nuclear receptors. Involved in the maintenance of embryonic stem (ES) cell identity. Plays a role in rapid sperm motility via mediating timely mRNA turnover (By similarity). {ECO:0000250|UniProtKB:Q6ZQ08, ECO:0000269|PubMed:10637334, ECO:0000269|PubMed:16778766, ECO:0000269|PubMed:21278420, ECO:0000269|PubMed:21976065, ECO:0000269|PubMed:21984185, ECO:0000269|PubMed:22367759, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:27558897, ECO:0000269|PubMed:32354837}. |
A6NNA2 | SRRM3 | S342 | ochoa | Serine/arginine repetitive matrix protein 3 | May play a role in regulating breast cancer cell invasiveness (PubMed:26053433). May be involved in RYBP-mediated breast cancer progression (PubMed:27748911). {ECO:0000269|PubMed:26053433, ECO:0000269|PubMed:27748911}. |
O00116 | AGPS | S65 | ochoa | Alkyldihydroxyacetonephosphate synthase, peroxisomal (Alkyl-DHAP synthase) (EC 2.5.1.26) (Aging-associated gene 5 protein) (Alkylglycerone-phosphate synthase) | Catalyzes the exchange of the acyl chain in acyl-dihydroxyacetonephosphate (acyl-DHAP) for a long chain fatty alcohol, yielding the first ether linked intermediate, i.e. alkyl-dihydroxyacetonephosphate (alkyl-DHAP), in the pathway of ether lipid biosynthesis. {ECO:0000269|PubMed:8399344, ECO:0000269|PubMed:9553082}. |
O00178 | GTPBP1 | S24 | ochoa | GTP-binding protein 1 (G-protein 1) (GP-1) (GP1) | Promotes degradation of target mRNA species. Plays a role in the regulation of circadian mRNA stability. Binds GTP and has GTPase activity (By similarity). {ECO:0000250|UniProtKB:D2XV59}. |
O00178 | GTPBP1 | S25 | ochoa | GTP-binding protein 1 (G-protein 1) (GP-1) (GP1) | Promotes degradation of target mRNA species. Plays a role in the regulation of circadian mRNA stability. Binds GTP and has GTPase activity (By similarity). {ECO:0000250|UniProtKB:D2XV59}. |
O00303 | EIF3F | S46 | psp | Eukaryotic translation initiation factor 3 subunit F (eIF3f) (Deubiquitinating enzyme eIF3f) (EC 3.4.19.12) (Eukaryotic translation initiation factor 3 subunit 5) (eIF-3-epsilon) (eIF3 p47) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03005, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: Deubiquitinates activated NOTCH1, promoting its nuclear import, thereby acting as a positive regulator of Notch signaling. {ECO:0000269|PubMed:21124883}. |
O00458 | IFRD1 | S21 | ochoa | Interferon-related developmental regulator 1 (Nerve growth factor-inducible protein PC4) | Could play a role in regulating gene activity in the proliferative and/or differentiative pathways induced by NGF. May be an autocrine factor that attenuates or amplifies the initial ligand-induced signal (By similarity). {ECO:0000250}. |
O14490 | DLGAP1 | S595 | ochoa | Disks large-associated protein 1 (DAP-1) (Guanylate kinase-associated protein) (hGKAP) (PSD-95/SAP90-binding protein 1) (SAP90/PSD-95-associated protein 1) (SAPAP1) | Part of the postsynaptic scaffold in neuronal cells. |
O14492 | SH2B2 | S157 | ochoa | SH2B adapter protein 2 (Adapter protein with pleckstrin homology and Src homology 2 domains) (SH2 and PH domain-containing adapter protein APS) | Adapter protein for several members of the tyrosine kinase receptor family. Involved in multiple signaling pathways. May be involved in coupling from immunoreceptor to Ras signaling. Acts as a negative regulator of cytokine signaling in collaboration with CBL. Binds to EPOR and suppresses EPO-induced STAT5 activation, possibly through a masking effect on STAT5 docking sites in EPOR. Suppresses PDGF-induced mitogenesis. May induce cytoskeletal reorganization via interaction with VAV3. {ECO:0000269|PubMed:10374881, ECO:0000269|PubMed:12400014, ECO:0000269|PubMed:15378031, ECO:0000269|PubMed:9989826}. |
O14654 | IRS4 | S1089 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14654 | IRS4 | S1091 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14745 | NHERF1 | S269 | ochoa|psp | Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (NHERF-1) (Ezrin-radixin-moesin-binding phosphoprotein 50) (EBP50) (Regulatory cofactor of Na(+)/H(+) exchanger) (Sodium-hydrogen exchanger regulatory factor 1) (Solute carrier family 9 isoform A3 regulatory factor 1) | Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for recycling of internalized ADRB2. Was first known to play a role in the regulation of the activity and subcellular location of SLC9A3. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3. May enhance Wnt signaling. May participate in HTR4 targeting to microvilli (By similarity). Involved in the regulation of phosphate reabsorption in the renal proximal tubules. Involved in sperm capacitation. May participate in the regulation of the chloride and bicarbonate homeostasis in spermatozoa. {ECO:0000250, ECO:0000269|PubMed:10499588, ECO:0000269|PubMed:18784102, ECO:0000269|PubMed:9096337, ECO:0000269|PubMed:9430655}. |
O14795 | UNC13B | S1251 | ochoa | Protein unc-13 homolog B (Munc13-2) (munc13) | Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-depending refilling of readily releasable vesicle pool (RRP) (By similarity). Essential for synaptic vesicle maturation in a subset of excitatory/glutamatergic but not inhibitory/GABA-mediated synapses (By similarity). In collaboration with UNC13A, facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). {ECO:0000250|UniProtKB:Q9Z1N9}. |
O14813 | PHOX2A | S153 | psp | Paired mesoderm homeobox protein 2A (ARIX1 homeodomain protein) (Aristaless homeobox protein homolog) (Paired-like homeobox 2A) | May be involved in regulating the specificity of expression of the catecholamine biosynthetic genes. Acts as a transcription activator/factor. Could maintain the noradrenergic phenotype. |
O14828 | SCAMP3 | S85 | ochoa | Secretory carrier-associated membrane protein 3 (Secretory carrier membrane protein 3) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O14828 | SCAMP3 | Y86 | ochoa|psp | Secretory carrier-associated membrane protein 3 (Secretory carrier membrane protein 3) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O14828 | SCAMP3 | S87 | ochoa | Secretory carrier-associated membrane protein 3 (Secretory carrier membrane protein 3) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O14828 | SCAMP3 | T88 | ochoa | Secretory carrier-associated membrane protein 3 (Secretory carrier membrane protein 3) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O15018 | PDZD2 | S1481 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15127 | SCAMP2 | S311 | ochoa | Secretory carrier-associated membrane protein 2 (Secretory carrier membrane protein 2) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O15270 | SPTLC2 | Y29 | ochoa | Serine palmitoyltransferase 2 (EC 2.3.1.50) (Long chain base biosynthesis protein 2) (LCB 2) (Long chain base biosynthesis protein 2a) (LCB2a) (Serine-palmitoyl-CoA transferase 2) (SPT 2) | Component of the serine palmitoyltransferase multisubunit enzyme (SPT) that catalyzes the initial and rate-limiting step in sphingolipid biosynthesis by condensing L-serine and activated acyl-CoA (most commonly palmitoyl-CoA) to form long-chain bases (PubMed:19416851, PubMed:19648650, PubMed:20504773, PubMed:20920666). The SPT complex is composed of SPTLC1, SPTLC2 or SPTLC3 and SPTSSA or SPTSSB. Within this complex, the heterodimer consisting of SPTLC1 and SPTLC2/SPTLC3 forms the catalytic core (PubMed:19416851). The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference (PubMed:19416851). The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA (PubMed:19416851, PubMed:19648650). The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to use a broader range of acyl-CoAs, without apparent preference (PubMed:19416851, PubMed:19648650). Crucial for adipogenesis (By similarity). {ECO:0000250|UniProtKB:P97363, ECO:0000269|PubMed:19416851, ECO:0000269|PubMed:19648650, ECO:0000269|PubMed:20504773, ECO:0000269|PubMed:20920666}. |
O15270 | SPTLC2 | S32 | ochoa | Serine palmitoyltransferase 2 (EC 2.3.1.50) (Long chain base biosynthesis protein 2) (LCB 2) (Long chain base biosynthesis protein 2a) (LCB2a) (Serine-palmitoyl-CoA transferase 2) (SPT 2) | Component of the serine palmitoyltransferase multisubunit enzyme (SPT) that catalyzes the initial and rate-limiting step in sphingolipid biosynthesis by condensing L-serine and activated acyl-CoA (most commonly palmitoyl-CoA) to form long-chain bases (PubMed:19416851, PubMed:19648650, PubMed:20504773, PubMed:20920666). The SPT complex is composed of SPTLC1, SPTLC2 or SPTLC3 and SPTSSA or SPTSSB. Within this complex, the heterodimer consisting of SPTLC1 and SPTLC2/SPTLC3 forms the catalytic core (PubMed:19416851). The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference (PubMed:19416851). The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA (PubMed:19416851, PubMed:19648650). The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to use a broader range of acyl-CoAs, without apparent preference (PubMed:19416851, PubMed:19648650). Crucial for adipogenesis (By similarity). {ECO:0000250|UniProtKB:P97363, ECO:0000269|PubMed:19416851, ECO:0000269|PubMed:19648650, ECO:0000269|PubMed:20504773, ECO:0000269|PubMed:20920666}. |
O15270 | SPTLC2 | S33 | ochoa | Serine palmitoyltransferase 2 (EC 2.3.1.50) (Long chain base biosynthesis protein 2) (LCB 2) (Long chain base biosynthesis protein 2a) (LCB2a) (Serine-palmitoyl-CoA transferase 2) (SPT 2) | Component of the serine palmitoyltransferase multisubunit enzyme (SPT) that catalyzes the initial and rate-limiting step in sphingolipid biosynthesis by condensing L-serine and activated acyl-CoA (most commonly palmitoyl-CoA) to form long-chain bases (PubMed:19416851, PubMed:19648650, PubMed:20504773, PubMed:20920666). The SPT complex is composed of SPTLC1, SPTLC2 or SPTLC3 and SPTSSA or SPTSSB. Within this complex, the heterodimer consisting of SPTLC1 and SPTLC2/SPTLC3 forms the catalytic core (PubMed:19416851). The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference (PubMed:19416851). The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA (PubMed:19416851, PubMed:19648650). The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to use a broader range of acyl-CoAs, without apparent preference (PubMed:19416851, PubMed:19648650). Crucial for adipogenesis (By similarity). {ECO:0000250|UniProtKB:P97363, ECO:0000269|PubMed:19416851, ECO:0000269|PubMed:19648650, ECO:0000269|PubMed:20504773, ECO:0000269|PubMed:20920666}. |
O43242 | PSMD3 | T48 | ochoa | 26S proteasome non-ATPase regulatory subunit 3 (26S proteasome regulatory subunit RPN3) (26S proteasome regulatory subunit S3) (Proteasome subunit p58) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
O43707 | ACTN4 | S269 | ochoa | Alpha-actinin-4 (Non-muscle alpha-actinin 4) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}. |
O60285 | NUAK1 | S22 | ochoa | NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) | Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}. |
O60346 | PHLPP1 | S139 | ochoa | PH domain leucine-rich repeat-containing protein phosphatase 1 (EC 3.1.3.16) (Pleckstrin homology domain-containing family E member 1) (PH domain-containing family E member 1) (Suprachiasmatic nucleus circadian oscillatory protein) (hSCOP) | Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT2 and AKT3, 'Ser-660' of PRKCB and 'Ser-657' of PRKCA (PubMed:15808505, PubMed:17386267, PubMed:18162466). Isoform 2 seems to have a major role in regulating Akt signaling in hippocampal neurons (By similarity). Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and suppression of tumor growth. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation (PubMed:18162466). Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor (PubMed:19079341). Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). May act as a negative regulator of K-Ras signaling in membrane rafts (By similarity). Involved in the hippocampus-dependent long-term memory formation (By similarity). Involved in circadian control by regulating the consolidation of circadian periodicity after resetting (By similarity). Involved in development and function of regulatory T-cells (By similarity). {ECO:0000250|UniProtKB:Q8CHE4, ECO:0000250|UniProtKB:Q9WTR8, ECO:0000269|PubMed:15808505, ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}. |
O60548 | FOXD2 | S96 | ochoa | Forkhead box protein D2 (Forkhead-related protein FKHL17) (Forkhead-related transcription factor 9) (FREAC-9) | Probable transcription factor involved in embryogenesis and somatogenesis. {ECO:0000250}. |
O75122 | CLASP2 | S370 | ochoa | CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}. |
O75151 | PHF2 | S929 | ochoa | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75179 | ANKRD17 | S207 | ochoa | Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16) | Could play pivotal roles in cell cycle and DNA regulation (PubMed:19150984). Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways (PubMed:22328336). Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too (PubMed:23711367). Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) (PubMed:17276651). Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). {ECO:0000250|UniProtKB:Q99NH0, ECO:0000269|PubMed:17276651, ECO:0000269|PubMed:19150984, ECO:0000269|PubMed:22328336, ECO:0000269|PubMed:23711367}. |
O75179 | ANKRD17 | S209 | ochoa | Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16) | Could play pivotal roles in cell cycle and DNA regulation (PubMed:19150984). Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways (PubMed:22328336). Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too (PubMed:23711367). Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) (PubMed:17276651). Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). {ECO:0000250|UniProtKB:Q99NH0, ECO:0000269|PubMed:17276651, ECO:0000269|PubMed:19150984, ECO:0000269|PubMed:22328336, ECO:0000269|PubMed:23711367}. |
O75376 | NCOR1 | S1699 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75626 | PRDM1 | S514 | ochoa | PR domain zinc finger protein 1 (EC 2.1.1.-) (BLIMP-1) (Beta-interferon gene positive regulatory domain I-binding factor) (PR domain-containing protein 1) (Positive regulatory domain I-binding factor 1) (PRDI-BF1) (PRDI-binding factor 1) | Transcription factor that mediates a transcriptional program in various innate and adaptive immune tissue-resident lymphocyte T cell types such as tissue-resident memory T (Trm), natural killer (trNK) and natural killer T (NKT) cells and negatively regulates gene expression of proteins that promote the egress of tissue-resident T-cell populations from non-lymphoid organs. Plays a role in the development, retention and long-term establishment of adaptive and innate tissue-resident lymphocyte T cell types in non-lymphoid organs, such as the skin and gut, but also in other nonbarrier tissues like liver and kidney, and therefore may provide immediate immunological protection against reactivating infections or viral reinfection (By similarity). Binds specifically to the PRDI element in the promoter of the beta-interferon gene (PubMed:1851123). Drives the maturation of B-lymphocytes into Ig secreting cells (PubMed:12626569). Associates with the transcriptional repressor ZNF683 to chromatin at gene promoter regions (By similarity). Binds to the promoter and acts as a transcriptional repressor of IRF8, thereby promotes transcription of osteoclast differentiation factors such as NFATC1 and EEIG1 (By similarity). {ECO:0000250|UniProtKB:Q60636, ECO:0000269|PubMed:12626569, ECO:0000269|PubMed:1851123}. |
O75665 | OFD1 | S850 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O94811 | TPPP | S35 | ochoa | Tubulin polymerization-promoting protein (TPPP) (EC 3.6.5.-) (25 kDa brain-specific protein) (TPPP/p25) (p24) (p25-alpha) | Regulator of microtubule dynamics that plays a key role in myelination by promoting elongation of the myelin sheath (PubMed:31522887). Acts as a microtubule nucleation factor in oligodendrocytes: specifically localizes to the postsynaptic Golgi apparatus region, also named Golgi outpost, and promotes microtubule nucleation, an important step for elongation of the myelin sheath (PubMed:31522887, PubMed:33831707). Required for both uniform polarized growth of distal microtubules as well as directing the branching of proximal processes (PubMed:31522887). Shows magnesium-dependent GTPase activity; the role of the GTPase activity is unclear (PubMed:21316364, PubMed:21995432). In addition to microtubule nucleation activity, also involved in microtubule bundling and stabilization of existing microtubules, thereby maintaining the integrity of the microtubule network (PubMed:17105200, PubMed:17693641, PubMed:18028908, PubMed:26289831). Regulates microtubule dynamics by promoting tubulin acetylation: acts by inhibiting the tubulin deacetylase activity of HDAC6 (PubMed:20308065, PubMed:23093407). Also regulates cell migration: phosphorylation by ROCK1 inhibits interaction with HDAC6, resulting in decreased acetylation of tubulin and increased cell motility (PubMed:23093407). Plays a role in cell proliferation by regulating the G1/S-phase transition (PubMed:23355470). Involved in astral microtubule organization and mitotic spindle orientation during early stage of mitosis; this process is regulated by phosphorylation by LIMK2 (PubMed:22328514). {ECO:0000269|PubMed:17105200, ECO:0000269|PubMed:17693641, ECO:0000269|PubMed:18028908, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:21316364, ECO:0000269|PubMed:21995432, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:26289831, ECO:0000269|PubMed:31522887}. |
O95071 | UBR5 | S1702 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95071 | UBR5 | S1755 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95071 | UBR5 | T1757 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95196 | CSPG5 | S28 | ochoa | Chondroitin sulfate proteoglycan 5 (Acidic leucine-rich EGF-like domain-containing brain protein) (Neuroglycan C) | May function as a growth and differentiation factor involved in neuritogenesis. May induce ERBB3 activation. {ECO:0000269|PubMed:15358134}. |
O95336 | PGLS | S52 | ochoa | 6-phosphogluconolactonase (6PGL) (EC 3.1.1.31) | Hydrolysis of 6-phosphogluconolactone to 6-phosphogluconate. {ECO:0000269|PubMed:10518023}. |
O95936 | EOMES | S116 | ochoa | Eomesodermin homolog (T-box brain protein 2) (T-brain-2) (TBR-2) | Functions as a transcriptional activator playing a crucial role during development. Functions in trophoblast differentiation and later in gastrulation, regulating both mesoderm delamination and endoderm specification. Plays a role in brain development being required for the specification and the proliferation of the intermediate progenitor cells and their progeny in the cerebral cortex (PubMed:17353897). Required for differentiation and migration of unipolar dendritic brush cells (PubMed:33488348). Also involved in the differentiation of CD8+ T-cells during immune response regulating the expression of lytic effector genes (PubMed:17566017). {ECO:0000269|PubMed:17353897, ECO:0000269|PubMed:17566017, ECO:0000269|PubMed:33488348}. |
P05387 | RPLP2 | S74 | ochoa | Large ribosomal subunit protein P2 (60S acidic ribosomal protein P2) (Renal carcinoma antigen NY-REN-44) | Plays an important role in the elongation step of protein synthesis. |
P09874 | PARP1 | S372 | ochoa|psp | Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] | Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}. |
P10588 | NR2F6 | S145 | ochoa | Nuclear receptor subfamily 2 group F member 6 (V-erbA-related protein 2) (EAR-2) | Transcription factor predominantly involved in transcriptional repression. Binds to promoter/enhancer response elements that contain the imperfect 5'-AGGTCA-3' direct or inverted repeats with various spacings which are also recognized by other nuclear hormone receptors. Involved in modulation of hormonal responses. Represses transcriptional activity of the lutropin-choriogonadotropic hormone receptor/LHCGR gene, the renin/REN gene and the oxytocin-neurophysin/OXT gene. Represses the triiodothyronine-dependent and -independent transcriptional activity of the thyroid hormone receptor gene in a cell type-specific manner. The corepressing function towards thyroid hormone receptor beta/THRB involves at least in part the inhibition of THRB binding to triiodothyronine response elements (TREs) by NR2F6. Inhibits NFATC transcription factor DNA binding and subsequently its transcriptional activity. Acts as transcriptional repressor of IL-17 expression in Th-17 differentiated CD4(+) T cells and may be involved in induction and/or maintenance of peripheral immunological tolerance and autoimmunity. Involved in development of forebrain circadian clock; is required early in the development of the locus coeruleus (LC). {ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:10713182, ECO:0000269|PubMed:11682620, ECO:0000269|PubMed:18701084}. |
P12270 | TPR | S1676 | ochoa | Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}. |
P12270 | TPR | S1679 | ochoa | Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}. |
P12814 | ACTN1 | S250 | ochoa | Alpha-actinin-1 (Alpha-actinin cytoskeletal isoform) (F-actin cross-linking protein) (Non-muscle alpha-actinin-1) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000269|PubMed:22689882}. |
P12931 | SRC | S51 | ochoa|psp | Proto-oncogene tyrosine-protein kinase Src (EC 2.7.10.2) (Proto-oncogene c-Src) (pp60c-src) (p60-Src) | Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors (PubMed:34234773). Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates such as AFAP1. Phosphorylation of AFAP1 allows the SRC SH2 domain to bind AFAP1 and to localize to actin filaments. Cytoskeletal reorganization is also controlled through the phosphorylation of cortactin (CTTN) (Probable). When cells adhere via focal adhesions to the extracellular matrix, signals are transmitted by integrins into the cell resulting in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN) (PubMed:21411625). In addition to phosphorylating focal adhesion proteins, SRC is also active at the sites of cell-cell contact adherens junctions and phosphorylates substrates such as beta-catenin (CTNNB1), delta-catenin (CTNND1), and plakoglobin (JUP). Another type of cell-cell junction, the gap junction, is also a target for SRC, which phosphorylates connexin-43 (GJA1). SRC is implicated in regulation of pre-mRNA-processing and phosphorylates RNA-binding proteins such as KHDRBS1 (Probable). Phosphorylates PKP3 at 'Tyr-195' in response to reactive oxygen species, which may cause the release of PKP3 from desmosome cell junctions into the cytoplasm (PubMed:25501895). Also plays a role in PDGF-mediated tyrosine phosphorylation of both STAT1 and STAT3, leading to increased DNA binding activity of these transcription factors (By similarity). Involved in the RAS pathway through phosphorylation of RASA1 and RASGRF1 (PubMed:11389730). Plays a role in EGF-mediated calcium-activated chloride channel activation (PubMed:18586953). Required for epidermal growth factor receptor (EGFR) internalization through phosphorylation of clathrin heavy chain (CLTC and CLTCL1) at 'Tyr-1477'. Involved in beta-arrestin (ARRB1 and ARRB2) desensitization through phosphorylation and activation of GRK2, leading to beta-arrestin phosphorylation and internalization. Has a critical role in the stimulation of the CDK20/MAPK3 mitogen-activated protein kinase cascade by epidermal growth factor (Probable). Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus (PubMed:7853507). Plays an important role in osteoclastic bone resorption in conjunction with PTK2B/PYK2. Both the formation of a SRC-PTK2B/PYK2 complex and SRC kinase activity are necessary for this function. Recruited to activated integrins by PTK2B/PYK2, thereby phosphorylating CBL, which in turn induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14585963, PubMed:8755529). Promotes energy production in osteoclasts by activating mitochondrial cytochrome C oxidase (PubMed:12615910). Phosphorylates DDR2 on tyrosine residues, thereby promoting its subsequent autophosphorylation (PubMed:16186108). Phosphorylates RUNX3 and COX2 on tyrosine residues, TNK2 on 'Tyr-284' and CBL on 'Tyr-731' (PubMed:20100835, PubMed:21309750). Enhances RIGI-elicited antiviral signaling (PubMed:19419966). Phosphorylates PDPK1 at 'Tyr-9', 'Tyr-373' and 'Tyr-376' (PubMed:14585963). Phosphorylates BCAR1 at 'Tyr-128' (PubMed:22710723). Phosphorylates CBLC at multiple tyrosine residues, phosphorylation at 'Tyr-341' activates CBLC E3 activity (PubMed:20525694). Phosphorylates synaptic vesicle protein synaptophysin (SYP) (By similarity). Involved in anchorage-independent cell growth (PubMed:19307596). Required for podosome formation (By similarity). Mediates IL6 signaling by activating YAP1-NOTCH pathway to induce inflammation-induced epithelial regeneration (PubMed:25731159). Phosphorylates OTUB1, promoting deubiquitination of RPTOR (PubMed:35927303). Phosphorylates caspase CASP8 at 'Tyr-380' which negatively regulates CASP8 processing and activation, down-regulating CASP8 proapoptotic function (PubMed:16619028). {ECO:0000250|UniProtKB:P05480, ECO:0000250|UniProtKB:Q9WUD9, ECO:0000269|PubMed:11389730, ECO:0000269|PubMed:12615910, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:16186108, ECO:0000269|PubMed:16619028, ECO:0000269|PubMed:18586953, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:19419966, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:21309750, ECO:0000269|PubMed:21411625, ECO:0000269|PubMed:22710723, ECO:0000269|PubMed:25501895, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:34234773, ECO:0000269|PubMed:35927303, ECO:0000269|PubMed:7853507, ECO:0000269|PubMed:8755529, ECO:0000269|PubMed:8759729, ECO:0000305|PubMed:11964124, ECO:0000305|PubMed:8672527, ECO:0000305|PubMed:9442882}.; FUNCTION: [Isoform 1]: Non-receptor protein tyrosine kinase which phosphorylates synaptophysin with high affinity. {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 2]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in L1CAM-mediated neurite elongation, possibly by acting downstream of L1CAM to drive cytoskeletal rearrangements involved in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 3]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in neurite elongation (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}. |
P25100 | ADRA1D | S518 | psp | Alpha-1D adrenergic receptor (Alpha-1A adrenergic receptor) (Alpha-1D adrenoreceptor) (Alpha-1D adrenoceptor) (Alpha-adrenergic receptor 1a) | This alpha-adrenergic receptor mediates its effect through the influx of extracellular calcium. |
P29372 | MPG | S33 | ochoa | DNA-3-methyladenine glycosylase (EC 3.2.2.21) (3-alkyladenine DNA glycosylase) (3-methyladenine DNA glycosidase) (ADPG) (N-methylpurine-DNA glycosylase) | Hydrolysis of the deoxyribose N-glycosidic bond to excise 3-methyladenine, and 7-methylguanine from the damaged DNA polymer formed by alkylation lesions. |
P29372 | MPG | S34 | ochoa | DNA-3-methyladenine glycosylase (EC 3.2.2.21) (3-alkyladenine DNA glycosylase) (3-methyladenine DNA glycosidase) (ADPG) (N-methylpurine-DNA glycosylase) | Hydrolysis of the deoxyribose N-glycosidic bond to excise 3-methyladenine, and 7-methylguanine from the damaged DNA polymer formed by alkylation lesions. |
P30622 | CLIP1 | S285 | ochoa | CAP-Gly domain-containing linker protein 1 (Cytoplasmic linker protein 1) (Cytoplasmic linker protein 170 alpha-2) (CLIP-170) (Reed-Sternberg intermediate filament-associated protein) (Restin) | Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes microtubule growth and microtubule bundling. Links cytoplasmic vesicles to microtubules and thereby plays an important role in intracellular vesicle trafficking. Plays a role macropinocytosis and endosome trafficking. {ECO:0000269|PubMed:12433698, ECO:0000269|PubMed:17563362, ECO:0000269|PubMed:17889670}. |
P33402 | GUCY1A2 | S49 | ochoa | Guanylate cyclase soluble subunit alpha-2 (GCS-alpha-2) (EC 4.6.1.2) | Has guanylyl cyclase on binding to the beta-1 subunit.; FUNCTION: Isoform 2 acts as a negative regulator of guanylyl cyclase activity as it forms non-functional heterodimers with the beta subunits. |
P35269 | GTF2F1 | S396 | ochoa | General transcription factor IIF subunit 1 (General transcription factor IIF 74 kDa subunit) (Transcription initiation factor IIF subunit alpha) (TFIIF-alpha) (Transcription initiation factor RAP74) | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. {ECO:0000269|PubMed:10428810}. |
P35408 | PTGER4 | T225 | ochoa | Prostaglandin E2 receptor EP4 subtype (PGE receptor EP4 subtype) (PGE2 receptor EP4 subtype) (Prostanoid EP4 receptor) | Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. Has a relaxing effect on smooth muscle. May play an important role in regulating renal hemodynamics, intestinal epithelial transport, adrenal aldosterone secretion, and uterine function. |
P35568 | IRS1 | S503 | ochoa | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P50458 | LHX2 | S230 | ochoa | LIM/homeobox protein Lhx2 (Homeobox protein LH-2) (LIM homeobox protein 2) | Acts as a transcriptional activator. Stimulates the promoter of the alpha-glycoprotein gene. Transcriptional regulatory protein involved in the control of cell differentiation in developing lymphoid and neural cell types (By similarity). {ECO:0000250}. |
P50991 | CCT4 | S36 | ochoa | T-complex protein 1 subunit delta (TCP-1-delta) (EC 3.6.1.-) (CCT-delta) (Chaperonin containing T-complex polypeptide 1 subunit 4) (Stimulator of TAR RNA-binding) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P51608 | MECP2 | S274 | ochoa | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P54296 | MYOM2 | S469 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P60468 | SEC61B | S19 | ochoa | Protein transport protein Sec61 subunit beta | Component of SEC61 channel-forming translocon complex that mediates transport of signal peptide-containing precursor polypeptides across the endoplasmic reticulum (ER) (PubMed:12475939). Forms a ribosome receptor and a gated pore in the ER membrane, both functions required for cotranslational translocation of nascent polypeptides (PubMed:12475939). The SEC61 channel is also involved in ER membrane insertion of transmembrane proteins: it mediates membrane insertion of the first few transmembrane segments of proteins, while insertion of subsequent transmembrane regions of multi-pass membrane proteins is mediated by the multi-pass translocon (MPT) complex (PubMed:32820719, PubMed:36261522). The SEC61 channel cooperates with the translocating protein TRAM1 to import nascent proteins into the ER (PubMed:19121997). {ECO:0000269|PubMed:12475939, ECO:0000269|PubMed:19121997, ECO:0000269|PubMed:32820719, ECO:0000269|PubMed:36261522}. |
P62263 | RPS14 | S69 | ochoa | Small ribosomal subunit protein uS11 (40S ribosomal protein S14) | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
Q00403 | GTF2B | S249 | ochoa | Transcription initiation factor IIB (EC 2.3.1.48) (General transcription factor TFIIB) (S300-II) | General transcription factor that plays a role in transcription initiation by RNA polymerase II (Pol II). Involved in the pre-initiation complex (PIC) formation and Pol II recruitment at promoter DNA (PubMed:12931194, PubMed:1517211, PubMed:1876184, PubMed:1946368, PubMed:27193682, PubMed:3029109, PubMed:3818643, PubMed:7601352, PubMed:8413225, PubMed:8515820, PubMed:8516311, PubMed:8516312, PubMed:9420329). Together with the TATA box-bound TBP forms the core initiation complex and provides a bridge between TBP and the Pol II-TFIIF complex (PubMed:8413225, PubMed:8504927, PubMed:8515820, PubMed:8516311, PubMed:8516312). Released from the PIC early following the onset of transcription during the initiation and elongation transition and reassociates with TBP during the next transcription cycle (PubMed:7601352). Associates with chromatin to core promoter-specific regions (PubMed:12931194, PubMed:24441171). Binds to two distinct DNA core promoter consensus sequence elements in a TBP-independent manner; these IIB-recognition elements (BREs) are localized immediately upstream (BREu), 5'-[GC][GC][GA]CGCC-3', and downstream (BREd), 5'-[GA]T[TGA][TG][GT][TG][TG]-3', of the TATA box element (PubMed:10619841, PubMed:16230532, PubMed:7675079, PubMed:9420329). Modulates transcription start site selection (PubMed:10318856). Also exhibits autoacetyltransferase activity that contributes to the activated transcription (PubMed:12931194). {ECO:0000269|PubMed:10318856, ECO:0000269|PubMed:10619841, ECO:0000269|PubMed:12931194, ECO:0000269|PubMed:1517211, ECO:0000269|PubMed:16230532, ECO:0000269|PubMed:1876184, ECO:0000269|PubMed:1946368, ECO:0000269|PubMed:24441171, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:3029109, ECO:0000269|PubMed:3818643, ECO:0000269|PubMed:7601352, ECO:0000269|PubMed:7675079, ECO:0000269|PubMed:8413225, ECO:0000269|PubMed:8504927, ECO:0000269|PubMed:8515820, ECO:0000269|PubMed:8516311, ECO:0000269|PubMed:8516312, ECO:0000269|PubMed:9420329}. |
Q02952 | AKAP12 | S887 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03001 | DST | S7422 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q07065 | CKAP4 | S80 | ochoa | Cytoskeleton-associated protein 4 (63-kDa cytoskeleton-linking membrane protein) (Climp-63) (p63) | Mediates the anchoring of the endoplasmic reticulum to microtubules. {ECO:0000269|PubMed:15703217}.; FUNCTION: High-affinity epithelial cell surface receptor for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF antiproliferative signaling within cells. {ECO:0000269|PubMed:17030514, ECO:0000269|PubMed:19144824}. |
Q07065 | CKAP4 | S81 | ochoa | Cytoskeleton-associated protein 4 (63-kDa cytoskeleton-linking membrane protein) (Climp-63) (p63) | Mediates the anchoring of the endoplasmic reticulum to microtubules. {ECO:0000269|PubMed:15703217}.; FUNCTION: High-affinity epithelial cell surface receptor for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF antiproliferative signaling within cells. {ECO:0000269|PubMed:17030514, ECO:0000269|PubMed:19144824}. |
Q07065 | CKAP4 | S82 | ochoa | Cytoskeleton-associated protein 4 (63-kDa cytoskeleton-linking membrane protein) (Climp-63) (p63) | Mediates the anchoring of the endoplasmic reticulum to microtubules. {ECO:0000269|PubMed:15703217}.; FUNCTION: High-affinity epithelial cell surface receptor for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF antiproliferative signaling within cells. {ECO:0000269|PubMed:17030514, ECO:0000269|PubMed:19144824}. |
Q07065 | CKAP4 | S83 | ochoa | Cytoskeleton-associated protein 4 (63-kDa cytoskeleton-linking membrane protein) (Climp-63) (p63) | Mediates the anchoring of the endoplasmic reticulum to microtubules. {ECO:0000269|PubMed:15703217}.; FUNCTION: High-affinity epithelial cell surface receptor for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF antiproliferative signaling within cells. {ECO:0000269|PubMed:17030514, ECO:0000269|PubMed:19144824}. |
Q07065 | CKAP4 | S84 | ochoa | Cytoskeleton-associated protein 4 (63-kDa cytoskeleton-linking membrane protein) (Climp-63) (p63) | Mediates the anchoring of the endoplasmic reticulum to microtubules. {ECO:0000269|PubMed:15703217}.; FUNCTION: High-affinity epithelial cell surface receptor for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF antiproliferative signaling within cells. {ECO:0000269|PubMed:17030514, ECO:0000269|PubMed:19144824}. |
Q07065 | CKAP4 | S86 | ochoa | Cytoskeleton-associated protein 4 (63-kDa cytoskeleton-linking membrane protein) (Climp-63) (p63) | Mediates the anchoring of the endoplasmic reticulum to microtubules. {ECO:0000269|PubMed:15703217}.; FUNCTION: High-affinity epithelial cell surface receptor for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF antiproliferative signaling within cells. {ECO:0000269|PubMed:17030514, ECO:0000269|PubMed:19144824}. |
Q13045 | FLII | S406 | ochoa | Protein flightless-1 homolog | Is a regulator of actin polymerization, required for proper myofibril organization and regulation of the length of sarcomeric thin filaments (By similarity). It also plays a role in the assembly of cardiomyocyte cell adhesion complexes (By similarity). Regulates cytoskeletal rearrangements involved in cytokinesis and cell migration, by inhibiting Rac1-dependent paxillin phosphorylation (By similarity). May play a role as coactivator in transcriptional activation by hormone-activated nuclear receptors (NR) and acts in cooperation with NCOA2 and CARM1 (PubMed:14966289). Involved in estrogen hormone signaling. {ECO:0000250|UniProtKB:Q9JJ28, ECO:0000269|PubMed:14966289}. |
Q13148 | TARDBP | S317 | psp | TAR DNA-binding protein 43 (TDP-43) | RNA-binding protein that is involved in various steps of RNA biogenesis and processing (PubMed:23519609). Preferentially binds, via its two RNA recognition motifs RRM1 and RRM2, to GU-repeats on RNA molecules predominantly localized within long introns and in the 3'UTR of mRNAs (PubMed:23519609, PubMed:24240615, PubMed:24464995). In turn, regulates the splicing of many non-coding and protein-coding RNAs including proteins involved in neuronal survival, as well as mRNAs that encode proteins relevant for neurodegenerative diseases (PubMed:21358640, PubMed:29438978). Plays a role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts (PubMed:28794432). Also regulates mRNA stability by recruiting CNOT7/CAF1 deadenylase on mRNA 3'UTR leading to poly(A) tail deadenylation and thus shortening (PubMed:30520513). In response to oxidative insult, associates with stalled ribosomes localized to stress granules (SGs) and contributes to cell survival (PubMed:19765185, PubMed:23398327). Also participates in the normal skeletal muscle formation and regeneration, forming cytoplasmic myo-granules and binding mRNAs that encode sarcomeric proteins (PubMed:30464263). Plays a role in the maintenance of the circadian clock periodicity via stabilization of the CRY1 and CRY2 proteins in a FBXL3-dependent manner (PubMed:27123980). Negatively regulates the expression of CDK6 (PubMed:19760257). Regulates the expression of HDAC6, ATG7 and VCP in a PPIA/CYPA-dependent manner (PubMed:25678563). {ECO:0000269|PubMed:11285240, ECO:0000269|PubMed:17481916, ECO:0000269|PubMed:19760257, ECO:0000269|PubMed:19765185, ECO:0000269|PubMed:21358640, ECO:0000269|PubMed:23398327, ECO:0000269|PubMed:23519609, ECO:0000269|PubMed:24240615, ECO:0000269|PubMed:24464995, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28794432, ECO:0000269|PubMed:29438978, ECO:0000269|PubMed:30464263, ECO:0000269|PubMed:30520513}. |
Q13263 | TRIM28 | S33 | ochoa | Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) | Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}. |
Q13263 | TRIM28 | T34 | ochoa | Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) | Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}. |
Q13263 | TRIM28 | S37 | ochoa | Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) | Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}. |
Q13367 | AP3B2 | S282 | ochoa | AP-3 complex subunit beta-2 (Adaptor protein complex AP-3 subunit beta-2) (Adaptor-related protein complex 3 subunit beta-2) (Beta-3B-adaptin) (Clathrin assembly protein complex 3 beta-2 large chain) (Neuron-specific vesicle coat protein beta-NAP) | Subunit of non-clathrin- and clathrin-associated adaptor protein complex 3 (AP-3) that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. AP-3 appears to be involved in the sorting of a subset of transmembrane proteins targeted to lysosomes and lysosome-related organelles. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. |
Q13428 | TCOF1 | S178 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13428 | TCOF1 | S482 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13428 | TCOF1 | S967 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13620 | CUL4B | S26 | ochoa | Cullin-4B (CUL-4B) | Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14578910, PubMed:16322693, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948, PubMed:30166453, PubMed:33854232, PubMed:33854239). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition subunit (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948). CUL4B may act within the complex as a scaffold protein, contributing to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460). Plays a role as part of the E3 ubiquitin-protein ligase complex in polyubiquitination of CDT1, histone H2A, histone H3 and histone H4 in response to radiation-induced DNA damage (PubMed:14578910, PubMed:16678110, PubMed:18593899). Targeted to UV damaged chromatin by DDB2 and may be important for DNA repair and DNA replication (PubMed:16678110). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). Required for ubiquitination of cyclin E (CCNE1 or CCNE2), and consequently, normal G1 cell cycle progression (PubMed:16322693, PubMed:19801544). Regulates the mammalian target-of-rapamycin (mTOR) pathway involved in control of cell growth, size and metabolism (PubMed:18235224). Specific CUL4B regulation of the mTORC1-mediated pathway is dependent upon 26S proteasome function and requires interaction between CUL4B and MLST8 (PubMed:18235224). With CUL4A, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:16322693, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18235224, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19801544, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}. |
Q14126 | DSG2 | S754 | ochoa | Desmoglein-2 (Cadherin family member 5) (HDGC) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:38395410). Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion. Required for proliferation and viability of embryonic stem cells in the blastocyst, thereby crucial for progression of post-implantation embryonic development (By similarity). Maintains pluripotency by regulating epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via interacting with and sequestering CTNNB1 to sites of cell-cell contact, thereby reducing translocation of CTNNB1 to the nucleus and subsequent transcription of CTNNB1/TCF-target genes (PubMed:29910125). Promotes pluripotency and the multi-lineage differentiation potential of hematopoietic stem cells (PubMed:27338829). Plays a role in endothelial cell sprouting and elongation via mediating the junctional-association of cortical actin fibers and CDH5 (PubMed:27338829). Plays a role in limiting inflammatory infiltration and the apoptotic response to injury in kidney tubular epithelial cells, potentially via its role in maintaining cell-cell adhesion and the epithelial barrier (PubMed:38395410). {ECO:0000250|UniProtKB:O55111, ECO:0000269|PubMed:27338829, ECO:0000269|PubMed:29910125, ECO:0000269|PubMed:38395410}. |
Q14160 | SCRIB | S764 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14444 | CAPRIN1 | S23 | ochoa | Caprin-1 (Cell cycle-associated protein 1) (Cytoplasmic activation- and proliferation-associated protein 1) (GPI-anchored membrane protein 1) (GPI-anchored protein p137) (GPI-p137) (p137GPI) (Membrane component chromosome 11 surface marker 1) (RNA granule protein 105) | mRNA-binding protein that acts as a regulator of mRNAs transport, translation and/or stability, and which is involved in neurogenesis, synaptic plasticity in neurons and cell proliferation and migration in multiple cell types (PubMed:17210633, PubMed:31439799, PubMed:35979925). Plays an essential role in cytoplasmic stress granule formation (PubMed:35977029). Acts as an mRNA regulator by mediating formation of some phase-separated membraneless compartment: undergoes liquid-liquid phase separation upon binding to target mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (PubMed:31439799, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34074792, PubMed:36040869, PubMed:36279435). Undergoes liquid-liquid phase separation following phosphorylation and interaction with FMR1, promoting formation of cytoplasmic ribonucleoprotein granules that concentrate mRNAs with factors that inhibit translation and mediate deadenylation of target mRNAs (PubMed:31439799). In these cytoplasmic ribonucleoprotein granules, CAPRIN1 mediates recruitment of CNOT7 deadenylase, leading to mRNA deadenylation and degradation (PubMed:31439799). Binds directly and selectively to MYC and CCND2 mRNAs (PubMed:17210633). In neuronal cells, directly binds to several mRNAs associated with RNA granules, including BDNF, CAMK2A, CREB1, MAP2, NTRK2 mRNAs, as well as to GRIN1 and KPNB1 mRNAs, but not to rRNAs (PubMed:17210633). {ECO:0000269|PubMed:17210633, ECO:0000269|PubMed:31439799, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:34074792, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:35979925, ECO:0000269|PubMed:36040869, ECO:0000269|PubMed:36279435}. |
Q14444 | CAPRIN1 | S24 | ochoa | Caprin-1 (Cell cycle-associated protein 1) (Cytoplasmic activation- and proliferation-associated protein 1) (GPI-anchored membrane protein 1) (GPI-anchored protein p137) (GPI-p137) (p137GPI) (Membrane component chromosome 11 surface marker 1) (RNA granule protein 105) | mRNA-binding protein that acts as a regulator of mRNAs transport, translation and/or stability, and which is involved in neurogenesis, synaptic plasticity in neurons and cell proliferation and migration in multiple cell types (PubMed:17210633, PubMed:31439799, PubMed:35979925). Plays an essential role in cytoplasmic stress granule formation (PubMed:35977029). Acts as an mRNA regulator by mediating formation of some phase-separated membraneless compartment: undergoes liquid-liquid phase separation upon binding to target mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (PubMed:31439799, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34074792, PubMed:36040869, PubMed:36279435). Undergoes liquid-liquid phase separation following phosphorylation and interaction with FMR1, promoting formation of cytoplasmic ribonucleoprotein granules that concentrate mRNAs with factors that inhibit translation and mediate deadenylation of target mRNAs (PubMed:31439799). In these cytoplasmic ribonucleoprotein granules, CAPRIN1 mediates recruitment of CNOT7 deadenylase, leading to mRNA deadenylation and degradation (PubMed:31439799). Binds directly and selectively to MYC and CCND2 mRNAs (PubMed:17210633). In neuronal cells, directly binds to several mRNAs associated with RNA granules, including BDNF, CAMK2A, CREB1, MAP2, NTRK2 mRNAs, as well as to GRIN1 and KPNB1 mRNAs, but not to rRNAs (PubMed:17210633). {ECO:0000269|PubMed:17210633, ECO:0000269|PubMed:31439799, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:34074792, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:35979925, ECO:0000269|PubMed:36040869, ECO:0000269|PubMed:36279435}. |
Q14444 | CAPRIN1 | S26 | ochoa | Caprin-1 (Cell cycle-associated protein 1) (Cytoplasmic activation- and proliferation-associated protein 1) (GPI-anchored membrane protein 1) (GPI-anchored protein p137) (GPI-p137) (p137GPI) (Membrane component chromosome 11 surface marker 1) (RNA granule protein 105) | mRNA-binding protein that acts as a regulator of mRNAs transport, translation and/or stability, and which is involved in neurogenesis, synaptic plasticity in neurons and cell proliferation and migration in multiple cell types (PubMed:17210633, PubMed:31439799, PubMed:35979925). Plays an essential role in cytoplasmic stress granule formation (PubMed:35977029). Acts as an mRNA regulator by mediating formation of some phase-separated membraneless compartment: undergoes liquid-liquid phase separation upon binding to target mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (PubMed:31439799, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34074792, PubMed:36040869, PubMed:36279435). Undergoes liquid-liquid phase separation following phosphorylation and interaction with FMR1, promoting formation of cytoplasmic ribonucleoprotein granules that concentrate mRNAs with factors that inhibit translation and mediate deadenylation of target mRNAs (PubMed:31439799). In these cytoplasmic ribonucleoprotein granules, CAPRIN1 mediates recruitment of CNOT7 deadenylase, leading to mRNA deadenylation and degradation (PubMed:31439799). Binds directly and selectively to MYC and CCND2 mRNAs (PubMed:17210633). In neuronal cells, directly binds to several mRNAs associated with RNA granules, including BDNF, CAMK2A, CREB1, MAP2, NTRK2 mRNAs, as well as to GRIN1 and KPNB1 mRNAs, but not to rRNAs (PubMed:17210633). {ECO:0000269|PubMed:17210633, ECO:0000269|PubMed:31439799, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:34074792, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:35979925, ECO:0000269|PubMed:36040869, ECO:0000269|PubMed:36279435}. |
Q14573 | ITPR3 | S940 | ochoa | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR3 (IP3 receptor isoform 3) (IP3R-3) (InsP3R3) (Type 3 inositol 1,4,5-trisphosphate receptor) (Type 3 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that, upon 1D-myo-inositol 1,4,5-trisphosphate binding, transports calcium from the endoplasmic reticulum lumen to cytoplasm, thus releasing the intracellular calcium and therefore participates in cellular calcium ion homeostasis (PubMed:32949214, PubMed:37898605, PubMed:8081734, PubMed:8288584). 1D-myo-inositol 1,4,5-trisphosphate binds to the ligand-free channel without altering its global conformation, yielding the low-energy resting state, then progresses through resting-to preactivated transitions to the higher energy preactivated state, which increases affinity for calcium, promoting binding of the low basal cytosolic calcium at the juxtamembrane domain (JD) site, favoring the transition through the ensemble of high-energy intermediate states along the trajectory to the fully-open activated state (PubMed:30013099, PubMed:35301323, PubMed:37898605). Upon opening, releases calcium in the cytosol where it can bind to the low-affinity cytoplasmic domain (CD) site and stabilizes the inhibited state to terminate calcium release (PubMed:30013099, PubMed:35301323, PubMed:37898605). {ECO:0000269|PubMed:30013099, ECO:0000269|PubMed:32949214, ECO:0000269|PubMed:35301323, ECO:0000269|PubMed:37898605, ECO:0000269|PubMed:8081734, ECO:0000269|PubMed:8288584}. |
Q14677 | CLINT1 | S282 | ochoa | Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) | Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}. |
Q147X3 | NAA30 | S152 | ochoa | N-alpha-acetyltransferase 30 (EC 2.3.1.256) (N-acetyltransferase 12) (N-acetyltransferase MAK3 homolog) (NatC catalytic subunit) | Catalytic subunit of the N-terminal acetyltransferase C (NatC) complex (PubMed:19398576, PubMed:37891180). Catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Leu-Ala and Met-Leu-Gly (PubMed:19398576, PubMed:37891180). N-terminal acetylation protects proteins from ubiquitination and degradation by the N-end rule pathway (PubMed:37891180). Necessary for the lysosomal localization and function of ARL8B sugeesting that ARL8B is a NatC substrate (PubMed:19398576). {ECO:0000269|PubMed:19398576, ECO:0000269|PubMed:37891180}. |
Q14839 | CHD4 | S221 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q14839 | CHD4 | S222 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q14839 | CHD4 | S225 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q14980 | NUMA1 | T2093 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q14980 | NUMA1 | S2096 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q16555 | DPYSL2 | S292 | ochoa | Dihydropyrimidinase-related protein 2 (DRP-2) (Collapsin response mediator protein 2) (CRMP-2) (N2A3) (Unc-33-like phosphoprotein 2) (ULIP-2) | Plays a role in neuronal development and polarity, as well as in axon growth and guidance, neuronal growth cone collapse and cell migration. Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. May play a role in endocytosis. {ECO:0000269|PubMed:11477421, ECO:0000269|PubMed:15466863, ECO:0000269|PubMed:20801876}. |
Q27J81 | INF2 | S382 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q2M2I8 | AAK1 | S650 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q2M2I8 | AAK1 | S652 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q53H80 | AKIRIN2 | S42 | ochoa | Akirin-2 | Molecular adapter that acts as a bridge between a variety of multiprotein complexes, and which is involved in embryonic development, immunity, myogenesis and brain development (PubMed:34711951). Plays a key role in nuclear protein degradation by promoting import of proteasomes into the nucleus: directly binds to fully assembled 20S proteasomes at one end and to nuclear import receptor IPO9 at the other end, bridging them together and mediating the import of pre-assembled proteasome complexes through the nuclear pore (PubMed:34711951). Involved in innate immunity by regulating the production of interleukin-6 (IL6) downstream of Toll-like receptor (TLR): acts by bridging the NF-kappa-B inhibitor NFKBIZ and the SWI/SNF complex, leading to promote induction of IL6 (By similarity). Also involved in adaptive immunity by promoting B-cell activation (By similarity). Involved in brain development: required for the survival and proliferation of cerebral cortical progenitor cells (By similarity). Involved in myogenesis: required for skeletal muscle formation and skeletal development, possibly by regulating expression of muscle differentiation factors (By similarity). Also plays a role in facilitating interdigital tissue regression during limb development (By similarity). {ECO:0000250|UniProtKB:B1AXD8, ECO:0000269|PubMed:34711951}. |
Q5SXM2 | SNAPC4 | S611 | ochoa | snRNA-activating protein complex subunit 4 (SNAPc subunit 4) (Proximal sequence element-binding transcription factor subunit alpha) (PSE-binding factor subunit alpha) (PTF subunit alpha) (snRNA-activating protein complex 190 kDa subunit) (SNAPc 190 kDa subunit) | Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023, ECO:0000269|PubMed:9418884}. |
Q5TCZ1 | SH3PXD2A | S1016 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5TCZ1 | SH3PXD2A | S1017 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5VZ18 | SHE | S107 | ochoa | SH2 domain-containing adapter protein E | None |
Q641Q2 | WASHC2A | S1091 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q641Q2 | WASHC2A | T1092 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q68CZ2 | TNS3 | S1293 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q6ZNB6 | NFXL1 | S50 | ochoa | NF-X1-type zinc finger protein NFXL1 (Ovarian zinc finger protein) (hOZFP) | None |
Q6ZNJ1 | NBEAL2 | S1647 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZRV2 | FAM83H | S691 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q7KZI7 | MARK2 | S514 | ochoa | Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}. |
Q7KZI7 | MARK2 | S517 | ochoa | Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}. |
Q7Z434 | MAVS | S258 | ochoa | Mitochondrial antiviral-signaling protein (MAVS) (CARD adapter inducing interferon beta) (Cardif) (Interferon beta promoter stimulator protein 1) (IPS-1) (Putative NF-kappa-B-activating protein 031N) (Virus-induced-signaling adapter) (VISA) | Adapter required for innate immune defense against viruses (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:21170385, PubMed:23087404, PubMed:27992402, PubMed:33139700, PubMed:37582970). Acts downstream of DHX33, RIGI and IFIH1/MDA5, which detect intracellular dsRNA produced during viral replication, to coordinate pathways leading to the activation of NF-kappa-B, IRF3 and IRF7, and to the subsequent induction of antiviral cytokines such as IFNB and RANTES (CCL5) (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:20628368, PubMed:21170385, PubMed:23087404, PubMed:25636800, PubMed:27736772, PubMed:33110251). Peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state (PubMed:20451243). Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response (PubMed:20451243). May activate the same pathways following detection of extracellular dsRNA by TLR3 (PubMed:16153868). May protect cells from apoptosis (PubMed:16125763). Involved in NLRP3 inflammasome activation by mediating NLRP3 recruitment to mitochondria (PubMed:23582325). {ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:16177806, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20451243, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:27992402, ECO:0000269|PubMed:33110251, ECO:0000269|PubMed:33139700, ECO:0000269|PubMed:37582970}. |
Q7Z460 | CLASP1 | S795 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q7Z5L9 | IRF2BP2 | S71 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q7Z6I6 | ARHGAP30 | S327 | ochoa|psp | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q7Z6I6 | ARHGAP30 | S994 | ochoa | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q7Z7K6 | CENPV | S21 | ochoa | Centromere protein V (CENP-V) (Nuclear protein p30) (Proline-rich protein 6) | Required for distribution of pericentromeric heterochromatin in interphase nuclei and for centromere formation and organization, chromosome alignment and cytokinesis. {ECO:0000269|PubMed:18772885}. |
Q7Z7K6 | CENPV | S24 | ochoa | Centromere protein V (CENP-V) (Nuclear protein p30) (Proline-rich protein 6) | Required for distribution of pericentromeric heterochromatin in interphase nuclei and for centromere formation and organization, chromosome alignment and cytokinesis. {ECO:0000269|PubMed:18772885}. |
Q86U86 | PBRM1 | S355 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86UU1 | PHLDB1 | S638 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86V15 | CASZ1 | S744 | ochoa | Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) | Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}. |
Q86V15 | CASZ1 | S747 | ochoa | Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) | Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}. |
Q86V15 | CASZ1 | S748 | ochoa | Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) | Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}. |
Q86V15 | CASZ1 | S750 | ochoa | Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) | Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}. |
Q86V15 | CASZ1 | S1722 | ochoa | Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) | Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}. |
Q86VQ1 | GLCCI1 | S79 | ochoa | Glucocorticoid-induced transcript 1 protein | None |
Q86VQ1 | GLCCI1 | S107 | ochoa | Glucocorticoid-induced transcript 1 protein | None |
Q86YP4 | GATAD2A | S340 | ochoa | Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q86YP4 | GATAD2A | S343 | ochoa | Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q8IVD9 | NUDCD3 | S146 | ochoa | NudC domain-containing protein 3 | None |
Q8IVT2 | MISP | S449 | ochoa | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8IVT2 | MISP | S451 | ochoa | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8IVW6 | ARID3B | S339 | ochoa | AT-rich interactive domain-containing protein 3B (ARID domain-containing protein 3B) (Bright and dead ringer protein) (Bright-like protein) | Transcription factor which may be involved in neuroblastoma growth and malignant transformation. Favors nuclear targeting of ARID3A. {ECO:0000269|PubMed:16951138, ECO:0000269|PubMed:17400556}. |
Q8IWZ3 | ANKHD1 | S178 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IWZ3 | ANKHD1 | S180 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8N2M8 | CLASRP | S335 | ochoa | CLK4-associating serine/arginine rich protein (Splicing factor, arginine/serine-rich 16) (Suppressor of white-apricot homolog 2) | Probably functions as an alternative splicing regulator. May regulate the mRNA splicing of genes such as CLK1. May act by regulating members of the CLK kinase family (By similarity). {ECO:0000250}. |
Q8N9M1 | C19orf47 | S172 | ochoa | Uncharacterized protein C19orf47 | None |
Q8NAF0 | ZNF579 | S194 | ochoa | Zinc finger protein 579 | May be involved in transcriptional regulation. |
Q8NBR6 | MINDY2 | S90 | ochoa | Ubiquitin carboxyl-terminal hydrolase MINDY-2 (EC 3.4.19.12) (Deubiquitinating enzyme MINDY-2) (Protein FAM63B) | Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins (PubMed:27292798). Binds to polyubiquitin chains of different linkage types, including 'Lys-6', 'Lys-11', 'Lys-29', 'Lys-33', 'Lys-48' and 'Lys-63' (PubMed:28082312). May play a regulatory role at the level of protein turnover (PubMed:27292798). {ECO:0000269|PubMed:27292798, ECO:0000269|PubMed:28082312}. |
Q8TAA9 | VANGL1 | T322 | ochoa | Vang-like protein 1 (Loop-tail protein 2 homolog) (LPP2) (Strabismus 2) (Van Gogh-like protein 1) | None |
Q8TAA9 | VANGL1 | S325 | ochoa | Vang-like protein 1 (Loop-tail protein 2 homolog) (LPP2) (Strabismus 2) (Van Gogh-like protein 1) | None |
Q8TAE6 | PPP1R14C | S43 | ochoa | Protein phosphatase 1 regulatory subunit 14C (Kinase-enhanced PP1 inhibitor) (PKC-potentiated PP1 inhibitory protein) (Serologically defined breast cancer antigen NY-BR-81) | Inhibitor of the PP1 regulatory subunit PPP1CA. |
Q8TAE6 | PPP1R14C | S47 | ochoa | Protein phosphatase 1 regulatory subunit 14C (Kinase-enhanced PP1 inhibitor) (PKC-potentiated PP1 inhibitory protein) (Serologically defined breast cancer antigen NY-BR-81) | Inhibitor of the PP1 regulatory subunit PPP1CA. |
Q8TEA7 | TBCK | S416 | ochoa | TBC domain-containing protein kinase-like protein (FERRY endosomal RAB5 effector complex subunit 1) (Fy-1) | Component of the FERRY complex (Five-subunit Endosomal Rab5 and RNA/ribosome intermediary) (PubMed:37267905). The FERRY complex directly interacts with mRNAs and RAB5A, and functions as a RAB5A effector involved in the localization and the distribution of specific mRNAs most likely by mediating their endosomal transport. The complex recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction (PubMed:37267905). Also involved in the modulation of mTOR signaling and expression of mTOR complex components (PubMed:23977024, PubMed:27040691). Involved in the control of actin-cytoskeleton organization (PubMed:23977024). {ECO:0000269|PubMed:23977024, ECO:0000269|PubMed:24576458, ECO:0000269|PubMed:27040691, ECO:0000269|PubMed:37267905}. |
Q8TF44 | C2CD4C | S74 | ochoa | C2 calcium-dependent domain-containing protein 4C (Nuclear-localized factor 3) (Protein FAM148C) | None |
Q8TF76 | HASPIN | S192 | psp | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8WWH5 | TRUB1 | T24 | ochoa | Pseudouridylate synthase TRUB1 (EC 5.4.99.-) (TruB pseudouridine synthase homolog 1) (tRNA pseudouridine 55 synthase TRUB1) (Psi55 synthase TRUB1) (EC 5.4.99.25) | Pseudouridine synthase that catalyzes pseudouridylation of mRNAs and tRNAs (PubMed:28073919, PubMed:31477916, PubMed:32926445). Mediates pseudouridylation of mRNAs with the consensus sequence 5'-GUUCNANNC-3', harboring a stem-loop structure (PubMed:28073919, PubMed:31477916). Constitutes the major pseudouridine synthase acting on mRNAs (PubMed:28073919). Also catalyzes pseudouridylation of some tRNAs, including synthesis of pseudouridine(55) from uracil-55, in the psi GC loop of a subset of tRNAs (PubMed:32926445, PubMed:33023933). Promotes the processing of pri-let-7 microRNAs (pri-miRNAs) independently of its RNA pseudouridylate synthase activity (PubMed:32926445). Acts by binding to the stem-loop structure on pri-let-7, preventing LIN28-binding (LIN28A and/or LIN28B), thereby enhancing the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation (PubMed:32926445). {ECO:0000269|PubMed:28073919, ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:32926445, ECO:0000269|PubMed:33023933}. |
Q8WXE1 | ATRIP | S68 | psp | ATR-interacting protein (ATM and Rad3-related-interacting protein) | Required for checkpoint signaling after DNA damage. Required for ATR expression, possibly by stabilizing the protein. {ECO:0000269|PubMed:12791985}. |
Q8WY91 | THAP4 | S186 | ochoa | Peroxynitrite isomerase THAP4 (EC 5.99.-.-) (Ferric Homo sapiens nitrobindin) (Hs-Nb(III)) (THAP domain-containing protein 4) | Heme-binding protein able to scavenge peroxynitrite and to protect free L-tyrosine against peroxynitrite-mediated nitration, by acting as a peroxynitrite isomerase that converts peroxynitrite to nitrate. Therefore, this protein likely plays a role in peroxynitrite sensing and in the detoxification of reactive nitrogen and oxygen species (RNS and ROS, respectively). Is able to bind nitric oxide (NO) in vitro, but may act as a sensor of peroxynitrite levels in vivo, possibly modulating the transcriptional activity residing in the N-terminal region. {ECO:0000269|PubMed:30524950, ECO:0000269|PubMed:32295384}. |
Q92733 | PRCC | S241 | ochoa | Proline-rich protein PRCC (Papillary renal cell carcinoma translocation-associated gene protein) | May regulate cell cycle progression through interaction with MAD2L2. {ECO:0000269|PubMed:11717438}. |
Q92766 | RREB1 | S1107 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92766 | RREB1 | S1271 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92766 | RREB1 | S1273 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92783 | STAM | S147 | ochoa | Signal transducing adapter molecule 1 (STAM-1) | Involved in intracellular signal transduction mediated by cytokines and growth factors. Upon IL-2 and GM-CSL stimulation, it plays a role in signaling leading to DNA synthesis and MYC induction. May also play a role in T-cell development. Involved in down-regulation of receptor tyrosine kinase via multivesicular body (MVBs) when complexed with HGS (ESCRT-0 complex). The ESCRT-0 complex binds ubiquitin and acts as a sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes.; FUNCTION: (Microbial infection) Plays an important role in Dengue virus entry. {ECO:0000269|PubMed:29742433}. |
Q969W3 | VCF1 | S21 | ochoa | Protein VCF1 (VCP nuclear cofactor family member 1) | None |
Q96G74 | OTUD5 | S177 | ochoa|psp | OTU domain-containing protein 5 (EC 3.4.19.12) (Deubiquitinating enzyme A) (DUBA) | Deubiquitinating enzyme that functions as a negative regulator of the innate immune system (PubMed:17991829, PubMed:22245969, PubMed:23827681, PubMed:33523931). Has peptidase activity towards 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:22245969). Can also cleave 'Lys-11'-linked ubiquitin chains (in vitro) (PubMed:22245969). Acts via TRAF3 deubiquitination and subsequent suppression of type I interferon (IFN) production (PubMed:17991829). Controls neuroectodermal differentiation through cleaving 'Lys-48'-linked ubiquitin chains to counteract degradation of select chromatin regulators such as ARID1A, HDAC2 and HCF1 (PubMed:33523931). Acts as a positive regulator of mTORC1 and mTORC2 signaling following phosphorylation by MTOR: acts by mediating deubiquitination of BTRC, leading to its stability (PubMed:33110214). {ECO:0000269|PubMed:17991829, ECO:0000269|PubMed:22245969, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:33110214, ECO:0000269|PubMed:33523931}. |
Q96G74 | OTUD5 | S431 | ochoa | OTU domain-containing protein 5 (EC 3.4.19.12) (Deubiquitinating enzyme A) (DUBA) | Deubiquitinating enzyme that functions as a negative regulator of the innate immune system (PubMed:17991829, PubMed:22245969, PubMed:23827681, PubMed:33523931). Has peptidase activity towards 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:22245969). Can also cleave 'Lys-11'-linked ubiquitin chains (in vitro) (PubMed:22245969). Acts via TRAF3 deubiquitination and subsequent suppression of type I interferon (IFN) production (PubMed:17991829). Controls neuroectodermal differentiation through cleaving 'Lys-48'-linked ubiquitin chains to counteract degradation of select chromatin regulators such as ARID1A, HDAC2 and HCF1 (PubMed:33523931). Acts as a positive regulator of mTORC1 and mTORC2 signaling following phosphorylation by MTOR: acts by mediating deubiquitination of BTRC, leading to its stability (PubMed:33110214). {ECO:0000269|PubMed:17991829, ECO:0000269|PubMed:22245969, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:33110214, ECO:0000269|PubMed:33523931}. |
Q96HA1 | POM121 | S712 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96HH4 | TMEM169 | S20 | ochoa | Transmembrane protein 169 | None |
Q96IZ0 | PAWR | S108 | ochoa | PRKC apoptosis WT1 regulator protein (Prostate apoptosis response 4 protein) (Par-4) | Pro-apoptotic protein capable of selectively inducing apoptosis in cancer cells, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. Induces apoptosis in certain cancer cells by activation of the Fas prodeath pathway and coparallel inhibition of NF-kappa-B transcriptional activity. Inhibits the transcriptional activation and augments the transcriptional repression mediated by WT1. Down-regulates the anti-apoptotic protein BCL2 via its interaction with WT1. Also seems to be a transcriptional repressor by itself. May be directly involved in regulating the amyloid precursor protein (APP) cleavage activity of BACE1. {ECO:0000269|PubMed:11585763}. |
Q96PK6 | RBM14 | S527 | ochoa | RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) | Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}. |
Q96RG2 | PASK | S582 | ochoa | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96RG2 | PASK | S584 | ochoa | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96SL1 | SLC49A4 | S26 | ochoa | Solute carrier family 49 member 4 (Disrupted in renal cancer protein 2) (Disrupted in renal carcinoma protein 2) | Mediates H(+)-dependent pyridoxine transport. {ECO:0000269|PubMed:21692750, ECO:0000269|PubMed:36456177}. |
Q99536 | VAT1 | S35 | ochoa | Synaptic vesicle membrane protein VAT-1 homolog (EC 1.-.-.-) | Possesses ATPase activity (By similarity). Plays a part in calcium-regulated keratinocyte activation in epidermal repair mechanisms. Has no effect on cell proliferation. Negatively regulates mitochondrial fusion in cooperation with mitofusin proteins (MFN1-2). {ECO:0000250, ECO:0000269|PubMed:12898150, ECO:0000269|PubMed:17105775, ECO:0000269|PubMed:19508442}. |
Q99569 | PKP4 | S263 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q9BR76 | CORO1B | S441 | ochoa | Coronin-1B (Coronin-2) | Regulates leading edge dynamics and cell motility in fibroblasts. May be involved in cytokinesis and signal transduction (By similarity). {ECO:0000250, ECO:0000269|PubMed:16027158}. |
Q9BSJ6 | PIMREG | S144 | ochoa | Protein PIMREG (CALM-interactor expressed in thymus and spleen) (PICALM-interacting mitotic regulator) (Regulator of chromosome segregation protein 1) | During mitosis, may play a role in the control of metaphase-to-anaphase transition. {ECO:0000269|PubMed:18757745}. |
Q9BTC0 | DIDO1 | S1285 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BTC0 | DIDO1 | T1288 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BUH8 | BEGAIN | S346 | ochoa | Brain-enriched guanylate kinase-associated protein | May sustain the structure of the postsynaptic density (PSD). |
Q9BWF3 | RBM4 | S331 | ochoa | RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) | RNA-binding factor involved in multiple aspects of cellular processes like alternative splicing of pre-mRNA and translation regulation. Modulates alternative 5'-splice site and exon selection. Acts as a muscle cell differentiation-promoting factor. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation. Antagonizes the activity of the splicing factor PTBP1 to modulate muscle cell-specific exon selection of alpha tropomyosin. Binds to intronic pyrimidine-rich sequence of the TPM1 and MAPT pre-mRNAs. Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA. Exerts a suppressive activity on Cap-dependent translation via binding to CU-rich responsive elements within the 3'UTR of mRNAs, a process increased under stress conditions or during myocytes differentiation. Recruits EIF4A1 to stimulate IRES-dependent translation initiation in respons to cellular stress. Associates to internal ribosome entry segment (IRES) in target mRNA species under stress conditions. Plays a role for miRNA-guided RNA cleavage and translation suppression by promoting association of AGO2-containing miRNPs with their cognate target mRNAs. Associates with miRNAs during muscle cell differentiation. Binds preferentially to 5'-CGCGCG[GCA]-3' motif in vitro. {ECO:0000269|PubMed:12628928, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:16777844, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17284590, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:19801630, ECO:0000269|PubMed:21343338, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:37548402}. |
Q9BXK1 | KLF16 | S111 | ochoa | Krueppel-like factor 16 (Basic transcription element-binding protein 4) (BTE-binding protein 4) (Novel Sp1-like zinc finger transcription factor 2) (Transcription factor BTEB4) (Transcription factor NSLP2) | Transcription factor that binds GC and GT boxes and displaces Sp1 and Sp3 from these sequences. Modulates dopaminergic transmission in the brain (By similarity). {ECO:0000250}. |
Q9BXS6 | NUSAP1 | S269 | ochoa | Nucleolar and spindle-associated protein 1 (NuSAP) | Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}. |
Q9BZ23 | PANK2 | S143 | ochoa | Pantothenate kinase 2, mitochondrial (hPanK2) (EC 2.7.1.33) (Pantothenic acid kinase 2) [Cleaved into: Pantothenate kinase 2, mitochondrial intermediate form (iPanK2); Pantothenate kinase 2, mitochondrial mature form (mPanK2)] | [Isoform 1]: Mitochondrial isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis (PubMed:15659606, PubMed:16272150, PubMed:17242360, PubMed:17825826). Required for angiogenic activity of umbilical vein of endothelial cells (HUVEC) (PubMed:30221726). {ECO:0000269|PubMed:15659606, ECO:0000269|PubMed:16272150, ECO:0000269|PubMed:17242360, ECO:0000269|PubMed:17825826, ECO:0000269|PubMed:30221726}.; FUNCTION: [Isoform 4]: Cytoplasmic isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis. {ECO:0000269|PubMed:16272150}. |
Q9BZ68 | FRMD8P1 | S21 | ochoa | Putative FERM domain-containing protein FRMD8P1 (FERM domain-containing 8 pseudogene 1) | None |
Q9H4A3 | WNK1 | S33 | ochoa | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H4A3 | WNK1 | S34 | ochoa | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H7N4 | SCAF1 | S847 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H8Y5 | ANKZF1 | S533 | ochoa | tRNA endonuclease ANKZF1 (EC 3.1.-.-) (Ankyrin repeat and zinc finger domain-containing protein 1) (Zinc finger protein 744) | Endonuclease that cleaves polypeptidyl-tRNAs downstream of the ribosome-associated quality control (RQC) pathway to release incompletely synthesized polypeptides for degradation (PubMed:29632312, PubMed:30244831, PubMed:31011209). The RQC pathway disassembles aberrantly stalled translation complexes to recycle or degrade the constituent parts (PubMed:29632312, PubMed:30244831, PubMed:31011209). ANKZF1 acts downstream disassembly of stalled ribosomes and specifically cleaves off the terminal 3'-CCA nucleotides universal to all tRNAs from polypeptidyl-tRNAs, releasing (1) ubiquitinated polypeptides from 60S ribosomal subunit for degradation and (2) cleaved tRNAs (PubMed:31011209). ANKZF1-cleaved tRNAs are then repaired and recycled by ELAC1 and TRNT1 (PubMed:31011209, PubMed:32075755). Also plays a role in the cellular response to hydrogen peroxide and in the maintenance of mitochondrial integrity under conditions of cellular stress (PubMed:28302725). {ECO:0000269|PubMed:28302725, ECO:0000269|PubMed:29632312, ECO:0000269|PubMed:30244831, ECO:0000269|PubMed:31011209, ECO:0000269|PubMed:32075755}. |
Q9HCJ0 | TNRC6C | S717 | ochoa | Trinucleotide repeat-containing gene 6C protein | Plays a role in RNA-mediated gene silencing by micro-RNAs (miRNAs). Required for miRNA-dependent translational repression of complementary mRNAs by argonaute family proteins. As scaffoldng protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:21984184, ECO:0000269|PubMed:21984185}. |
Q9HDC5 | JPH1 | S174 | ochoa | Junctophilin-1 (JP-1) (Junctophilin type 1) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. |
Q9NQX7 | ITM2C | S22 | ochoa | Integral membrane protein 2C (Cerebral protein 14) (Transmembrane protein BRI3) [Cleaved into: CT-BRI3] | Negative regulator of amyloid-beta peptide production. May inhibit the processing of APP by blocking its access to alpha- and beta-secretase. Binding to the beta-secretase-cleaved APP C-terminal fragment is negligible, suggesting that ITM2C is a poor gamma-secretase cleavage inhibitor. May play a role in TNF-induced cell death and neuronal differentiation (By similarity). {ECO:0000250, ECO:0000269|PubMed:18452648, ECO:0000269|PubMed:19366692}. |
Q9NS37 | CREBZF | S209 | ochoa | CREB/ATF bZIP transcription factor (Host cell factor-binding transcription factor Zhangfei) (HCF-binding transcription factor Zhangfei) | Strongly activates transcription when bound to HCFC1. Suppresses the expression of HSV proteins in cells infected with the virus in a HCFC1-dependent manner. Also suppresses the HCFC1-dependent transcriptional activation by CREB3 and reduces the amount of CREB3 in the cell. Able to down-regulate expression of some cellular genes in CREBZF-expressing cells. {ECO:0000269|PubMed:10871379, ECO:0000269|PubMed:15705566}. |
Q9NV92 | NDFIP2 | Y186 | psp | NEDD4 family-interacting protein 2 (NEDD4 WW domain-binding protein 5A) (Putative MAPK-activating protein PM04/PM05/PM06/PM07) (Putative NF-kappa-B-activating protein 413) | Activates HECT domain-containing E3 ubiquitin-protein ligases, including ITCH, NEDD4, NEDD4L, SMURF2, WWP1 and WWP2, and consequently modulates the stability of their targets. As a result, may control many cellular processes. Recruits ITCH, NEDD4 and SMURF2 to endosomal membranes. Negatively regulates KCNH2 potassium channel activity by decreasing its cell-surface expression and interfering with channel maturation through recruitment of NEDD4L to the Golgi apparatus and multivesicular body where it mediates KCNH2 degradation (PubMed:26363003). May modulate EGFR signaling. Together with NDFIP1, limits the cytokine signaling and expansion of effector Th2 T-cells by promoting degradation of JAK1, probably by ITCH- and NEDD4L-mediated ubiquitination (By similarity). {ECO:0000250|UniProtKB:Q91ZP6, ECO:0000269|PubMed:12761501, ECO:0000269|PubMed:19343052, ECO:0000269|PubMed:20534535, ECO:0000269|PubMed:26363003}. |
Q9NYB0 | TERF2IP | S111 | ochoa | Telomeric repeat-binding factor 2-interacting protein 1 (TERF2-interacting telomeric protein 1) (TRF2-interacting telomeric protein 1) (Dopamine receptor-interacting protein 5) (Repressor/activator protein 1 homolog) (RAP1 homolog) (hRap1) | Acts both as a regulator of telomere function and as a transcription regulator. Involved in the regulation of telomere length and protection as a component of the shelterin complex (telosome). In contrast to other components of the shelterin complex, it is dispensible for telomere capping and does not participate in the protection of telomeres against non-homologous end-joining (NHEJ)-mediated repair. Instead, it is required to negatively regulate telomere recombination and is essential for repressing homology-directed repair (HDR), which can affect telomere length. Does not bind DNA directly: recruited to telomeric double-stranded 5'-TTAGGG-3' repeats via its interaction with TERF2. Independently of its function in telomeres, also acts as a transcription regulator: recruited to extratelomeric 5'-TTAGGG-3' sites via its association with TERF2 or other factors, and regulates gene expression. When cytoplasmic, associates with the I-kappa-B-kinase (IKK) complex and acts as a regulator of the NF-kappa-B signaling by promoting IKK-mediated phosphorylation of RELA/p65, leading to activate expression of NF-kappa-B target genes. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:19763083}. |
Q9NYV4 | CDK12 | S400 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NZQ3 | NCKIPSD | S122 | ochoa | NCK-interacting protein with SH3 domain (54 kDa VacA-interacting protein) (54 kDa vimentin-interacting protein) (VIP54) (90 kDa SH3 protein interacting with Nck) (AF3p21) (Dia-interacting protein 1) (DIP-1) (Diaphanous protein-interacting protein) (SH3 adapter protein SPIN90) (WASP-interacting SH3-domain protein) (WISH) (Wiskott-Aldrich syndrome protein-interacting protein) | Has an important role in stress fiber formation induced by active diaphanous protein homolog 1 (DRF1). Induces microspike formation, in vivo (By similarity). In vitro, stimulates N-WASP-induced ARP2/3 complex activation in the absence of CDC42 (By similarity). May play an important role in the maintenance of sarcomeres and/or in the assembly of myofibrils into sarcomeres. Implicated in regulation of actin polymerization and cell adhesion. Plays a role in angiogenesis. {ECO:0000250, ECO:0000269|PubMed:22419821}. |
Q9P206 | NHSL3 | S215 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9UBP0 | SPAST | S93 | ochoa | Spastin (EC 5.6.1.1) (Spastic paraplegia 4 protein) | ATP-dependent microtubule severing protein that specifically recognizes and cuts microtubules that are polyglutamylated (PubMed:11809724, PubMed:15716377, PubMed:16219033, PubMed:17389232, PubMed:20530212, PubMed:22637577, PubMed:26875866). Preferentially recognizes and acts on microtubules decorated with short polyglutamate tails: severing activity increases as the number of glutamates per tubulin rises from one to eight, but decreases beyond this glutamylation threshold (PubMed:26875866). Severing activity is not dependent on tubulin acetylation or detyrosination (PubMed:26875866). Microtubule severing promotes reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. It is critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. SPAST is involved in abscission step of cytokinesis and nuclear envelope reassembly during anaphase in cooperation with the ESCRT-III complex (PubMed:19000169, PubMed:21310966, PubMed:26040712). Recruited at the midbody, probably by IST1, and participates in membrane fission during abscission together with the ESCRT-III complex (PubMed:21310966). Recruited to the nuclear membrane by IST1 and mediates microtubule severing, promoting nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Required for membrane traffic from the endoplasmic reticulum (ER) to the Golgi and endosome recycling (PubMed:23897888). Recruited by IST1 to endosomes and regulates early endosomal tubulation and recycling by mediating microtubule severing (PubMed:23897888). Probably plays a role in axon growth and the formation of axonal branches (PubMed:15716377). {ECO:0000255|HAMAP-Rule:MF_03021, ECO:0000269|PubMed:11809724, ECO:0000269|PubMed:15716377, ECO:0000269|PubMed:16219033, ECO:0000269|PubMed:17389232, ECO:0000269|PubMed:19000169, ECO:0000269|PubMed:20530212, ECO:0000269|PubMed:21310966, ECO:0000269|PubMed:22637577, ECO:0000269|PubMed:23897888, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:26875866}.; FUNCTION: [Isoform 1]: Involved in lipid metabolism by regulating the size and distribution of lipid droplets. {ECO:0000269|PubMed:25875445}. |
Q9UDT6 | CLIP2 | S27 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UDT6 | CLIP2 | S49 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UDT6 | CLIP2 | S52 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UGU0 | TCF20 | S55 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHR6 | ZNHIT2 | S165 | ochoa | Zinc finger HIT domain-containing protein 2 (Protein FON) | May act as a bridging factor mediating the interaction between the R2TP/Prefoldin-like (R2TP/PFDL) complex and U5 small nuclear ribonucleoprotein (U5 snRNP) (PubMed:28561026). Required for the interaction of R2TP complex subunit RPAP3 and prefoldin-like subunit URI1 with U5 snRNP proteins EFTUD2 and PRPF8 (PubMed:28561026). May play a role in regulating the composition of the U5 snRNP complex (PubMed:28561026). {ECO:0000269|PubMed:28561026}. |
Q9UKA9 | PTBP2 | S308 | ochoa | Polypyrimidine tract-binding protein 2 (Neural polypyrimidine tract-binding protein) (Neurally-enriched homolog of PTB) (PTB-like protein) | RNA-binding protein which binds to intronic polypyrimidine tracts and mediates negative regulation of exons splicing. May antagonize in a tissue-specific manner the ability of NOVA1 to activate exon selection. In addition to its function in pre-mRNA splicing, plays also a role in the regulation of translation. {ECO:0000250|UniProtKB:Q91Z31, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:12667457}.; FUNCTION: [Isoform 5]: Reduced affinity for RNA. {ECO:0000269|PubMed:12213192}. |
Q9UMS6 | SYNPO2 | S890 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UMZ2 | SYNRG | S651 | ochoa | Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) | Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}. |
Q9UPP1 | PHF8 | S904 | ochoa | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPT8 | ZC3H4 | Y1218 | psp | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q9UQ35 | SRRM2 | S2259 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S2327 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQB3 | CTNND2 | S474 | ochoa | Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) | Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}. |
Q9Y2J4 | AMOTL2 | S667 | ochoa | Angiomotin-like protein 2 (Leman coiled-coil protein) (LCCP) | Regulates the translocation of phosphorylated SRC to peripheral cell-matrix adhesion sites. Required for proper architecture of actin filaments. Plays a role in coupling actin fibers to cell junctions in endothelial cells and is therefore required for correct endothelial cell morphology via facilitating transcellular transmission of mechanical force resulting in endothelial cell elongation (By similarity). Required for the anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane which facilitates organization of radial actin fiber structure and cellular response to contractile forces (PubMed:28842668). This contributes to maintenance of cell area, size, shape, epithelial sheet organization and trophectoderm cell properties that facilitate blastocyst zona hatching (PubMed:28842668). Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. Participates in angiogenesis. Activates the Hippo signaling pathway in response to cell contact inhibition via interaction with and ubiquitination by Crumbs complex-bound WWP1 (PubMed:34404733). Ubiquitinated AMOTL2 then interacts with LATS2 which in turn phosphorylates YAP1, excluding it from the nucleus and localizing it to the cytoplasm and tight junctions, therefore ultimately repressing YAP1-driven transcription of target genes (PubMed:17293535, PubMed:21205866, PubMed:26598551). Acts to inhibit WWTR1/TAZ transcriptional coactivator activity via sequestering WWTR1/TAZ in the cytoplasm and at tight junctions (PubMed:23911299). Regulates the size and protein composition of the podosome cortex and core at myofibril neuromuscular junctions (PubMed:23525008). Selectively promotes FGF-induced MAPK activation through SRC (PubMed:17293535). May play a role in the polarity, proliferation and migration of endothelial cells. {ECO:0000250|UniProtKB:Q8K371, ECO:0000269|PubMed:17293535, ECO:0000269|PubMed:21205866, ECO:0000269|PubMed:21937427, ECO:0000269|PubMed:22362771, ECO:0000269|PubMed:23525008, ECO:0000269|PubMed:23911299, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:28842668, ECO:0000269|PubMed:34404733}. |
Q9Y2J4 | AMOTL2 | S670 | ochoa | Angiomotin-like protein 2 (Leman coiled-coil protein) (LCCP) | Regulates the translocation of phosphorylated SRC to peripheral cell-matrix adhesion sites. Required for proper architecture of actin filaments. Plays a role in coupling actin fibers to cell junctions in endothelial cells and is therefore required for correct endothelial cell morphology via facilitating transcellular transmission of mechanical force resulting in endothelial cell elongation (By similarity). Required for the anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane which facilitates organization of radial actin fiber structure and cellular response to contractile forces (PubMed:28842668). This contributes to maintenance of cell area, size, shape, epithelial sheet organization and trophectoderm cell properties that facilitate blastocyst zona hatching (PubMed:28842668). Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. Participates in angiogenesis. Activates the Hippo signaling pathway in response to cell contact inhibition via interaction with and ubiquitination by Crumbs complex-bound WWP1 (PubMed:34404733). Ubiquitinated AMOTL2 then interacts with LATS2 which in turn phosphorylates YAP1, excluding it from the nucleus and localizing it to the cytoplasm and tight junctions, therefore ultimately repressing YAP1-driven transcription of target genes (PubMed:17293535, PubMed:21205866, PubMed:26598551). Acts to inhibit WWTR1/TAZ transcriptional coactivator activity via sequestering WWTR1/TAZ in the cytoplasm and at tight junctions (PubMed:23911299). Regulates the size and protein composition of the podosome cortex and core at myofibril neuromuscular junctions (PubMed:23525008). Selectively promotes FGF-induced MAPK activation through SRC (PubMed:17293535). May play a role in the polarity, proliferation and migration of endothelial cells. {ECO:0000250|UniProtKB:Q8K371, ECO:0000269|PubMed:17293535, ECO:0000269|PubMed:21205866, ECO:0000269|PubMed:21937427, ECO:0000269|PubMed:22362771, ECO:0000269|PubMed:23525008, ECO:0000269|PubMed:23911299, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:28842668, ECO:0000269|PubMed:34404733}. |
Q9Y2U8 | LEMD3 | S331 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2U8 | LEMD3 | S409 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y3Q8 | TSC22D4 | S279 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y490 | TLN1 | S1898 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y490 | TLN1 | S2040 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4H2 | IRS2 | S365 | ochoa|psp | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y608 | LRRFIP2 | S25 | ochoa | Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) | May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}. |
Q9Y6N5 | SQOR | S343 | ochoa | Sulfide:quinone oxidoreductase, mitochondrial (SQOR) (EC 1.8.5.8) (Sulfide dehydrogenase-like) (Sulfide quinone oxidoreductase) | Catalyzes the oxidation of hydrogen sulfide with the help of a quinone, such as ubiquinone-10, giving rise to thiosulfate and ultimately to sulfane (molecular sulfur) atoms. Requires an additional electron acceptor; can use sulfite, sulfide or cyanide (in vitro) (PubMed:22852582). It is believed the in vivo electron acceptor is glutathione (PubMed:25225291, PubMed:29715001). {ECO:0000269|PubMed:22852582, ECO:0000269|PubMed:25225291, ECO:0000269|PubMed:29715001, ECO:0000269|PubMed:32160317}. |
Q8NBJ7 | SUMF2 | S283 | Sugiyama | Inactive C-alpha-formylglycine-generating enzyme 2 (Paralog of formylglycine-generating enzyme) (pFGE) (Sulfatase-modifying factor 2) | Lacks formylglycine generating activity and is unable to convert newly synthesized inactive sulfatases to their active form. Inhibits the activation of sulfatases by SUMF1. {ECO:0000269|PubMed:12757706, ECO:0000269|PubMed:15708861, ECO:0000269|PubMed:15962010}. |
P46940 | IQGAP1 | S373 | Sugiyama | Ras GTPase-activating-like protein IQGAP1 (p195) | Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}. |
Q9BZI1 | IRX2 | S64 | SIGNOR | Iroquois-class homeodomain protein IRX-2 (Homeodomain protein IRXA2) (Iroquois homeobox protein 2) | None |
O60610 | DIAPH1 | S1235 | Sugiyama | Protein diaphanous homolog 1 (Diaphanous-related formin-1) (DRF1) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers (By similarity). Binds to the barbed end of the actin filament and slows down actin polymerization and depolymerization (By similarity). Required for cytokinesis, and transcriptional activation of the serum response factor (By similarity). DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics (By similarity). Functions as a scaffold protein for MAPRE1 and APC to stabilize microtubules and promote cell migration (By similarity). Has neurite outgrowth promoting activity. Acts in a Rho-dependent manner to recruit PFY1 to the membrane (By similarity). In hear cells, it may play a role in the regulation of actin polymerization in hair cells (PubMed:20937854, PubMed:21834987, PubMed:26912466). The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854, PubMed:21834987). It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity (PubMed:20937854, PubMed:21834987). In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization (PubMed:20937854, PubMed:21834987). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape (PubMed:20937854, PubMed:21834987). Plays a role in brain development (PubMed:24781755). Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity (By similarity). {ECO:0000250|UniProtKB:O08808, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24781755, ECO:0000269|PubMed:26912466}. |
O43293 | DAPK3 | S326 | GPS6|EPSD | Death-associated protein kinase 3 (DAP kinase 3) (EC 2.7.11.1) (DAP-like kinase) (Dlk) (MYPT1 kinase) (Zipper-interacting protein kinase) (ZIP-kinase) | Serine/threonine kinase which is involved in the regulation of apoptosis, autophagy, transcription, translation and actin cytoskeleton reorganization. Involved in the regulation of smooth muscle contraction. Regulates both type I (caspase-dependent) apoptotic and type II (caspase-independent) autophagic cell deaths signal, depending on the cellular setting. Involved in regulation of starvation-induced autophagy. Regulates myosin phosphorylation in both smooth muscle and non-muscle cells. In smooth muscle, regulates myosin either directly by phosphorylating MYL12B and MYL9 or through inhibition of smooth muscle myosin phosphatase (SMPP1M) via phosphorylation of PPP1R12A; the inhibition of SMPP1M functions to enhance muscle responsiveness to Ca(2+) and promote a contractile state. Phosphorylates MYL12B in non-muscle cells leading to reorganization of actin cytoskeleton. Isoform 2 can phosphorylate myosin, PPP1R12A and MYL12B. Overexpression leads to condensation of actin stress fibers into thick bundles. Involved in actin filament focal adhesion dynamics. The function in both reorganization of actin cytoskeleton and focal adhesion dissolution is modulated by RhoD. Positively regulates canonical Wnt/beta-catenin signaling through interaction with NLK and TCF7L2. Phosphorylates RPL13A on 'Ser-77' upon interferon-gamma activation which is causing RPL13A release from the ribosome, RPL13A association with the GAIT complex and its subsequent involvement in transcript-selective translation inhibition. Enhances transcription from AR-responsive promoters in a hormone- and kinase-dependent manner. Involved in regulation of cell cycle progression and cell proliferation. May be a tumor suppressor. {ECO:0000269|PubMed:10356987, ECO:0000269|PubMed:11384979, ECO:0000269|PubMed:11781833, ECO:0000269|PubMed:12917339, ECO:0000269|PubMed:15096528, ECO:0000269|PubMed:15367680, ECO:0000269|PubMed:16219639, ECO:0000269|PubMed:17126281, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:18995835, ECO:0000269|PubMed:21169990, ECO:0000269|PubMed:21408167, ECO:0000269|PubMed:21454679, ECO:0000269|PubMed:21487036, ECO:0000269|PubMed:23454120, ECO:0000269|PubMed:38009294}. |
O00418 | EEF2K | S689 | Sugiyama | Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) | Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}. |
P17987 | TCP1 | S19 | Sugiyama | T-complex protein 1 subunit alpha (TCP-1-alpha) (EC 3.6.1.-) (CCT-alpha) (Chaperonin containing T-complex polypeptide 1 subunit 1) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
Q15759 | MAPK11 | S293 | Sugiyama | Mitogen-activated protein kinase 11 (MAP kinase 11) (MAPK 11) (EC 2.7.11.24) (Mitogen-activated protein kinase p38 beta) (MAP kinase p38 beta) (p38b) (Stress-activated protein kinase 2b) (SAPK2b) (p38-2) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway (PubMed:12452429, PubMed:20626350, PubMed:35857590). MAPK11 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors (PubMed:12452429, PubMed:20626350, PubMed:35857590). Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each (PubMed:12452429, PubMed:20626350, PubMed:35857590). MAPK11 functions are mostly redundant with those of MAPK14 (PubMed:12452429, PubMed:20626350, PubMed:35857590). Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets (PubMed:12452429, PubMed:20626350). RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1 (PubMed:9687510). RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2 (PubMed:11154262). In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Additional examples of p38 MAPK substrates are the FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A (PubMed:10330143, PubMed:15356147, PubMed:9430721). The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers (PubMed:10330143, PubMed:15356147, PubMed:9430721). The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates NLRP1 downstream of MAP3K20/ZAK in response to UV-B irradiation and ribosome collisions, promoting activation of the NLRP1 inflammasome and pyroptosis (PubMed:35857590). Phosphorylates methyltransferase DOT1L on 'Ser-834', 'Thr-900', 'Ser-902', 'Thr-984', 'Ser-1001', 'Ser-1009' and 'Ser-1104' (PubMed:38270553). {ECO:0000269|PubMed:10330143, ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:15356147, ECO:0000269|PubMed:35857590, ECO:0000269|PubMed:38270553, ECO:0000269|PubMed:9430721, ECO:0000269|PubMed:9687510, ECO:0000303|PubMed:12452429, ECO:0000303|PubMed:20626350}. |
Q99848 | EBNA1BP2 | S107 | Sugiyama | Probable rRNA-processing protein EBP2 (EBNA1-binding protein 2) (Nucleolar protein p40) | Required for the processing of the 27S pre-rRNA. {ECO:0000250}. |
Q53SF7 | COBLL1 | S876 | PSP | Cordon-bleu protein-like 1 | None |
A6NEL2 | SOWAHB | S166 | ochoa | Ankyrin repeat domain-containing protein SOWAHB (Ankyrin repeat domain-containing protein 56) (Protein sosondowah homolog B) | None |
A6NJT0 | UNCX | S341 | ochoa | Homeobox protein unc-4 homolog (Homeobox protein Uncx4.1) | Transcription factor involved in somitogenesis and neurogenesis. Required for the maintenance and differentiation of particular elements of the axial skeleton. May act upstream of PAX9. Plays a role in controlling the development of connections of hypothalamic neurons to pituitary elements, allowing central neurons to reach the peripheral blood circulation and to deliver hormones for control of peripheral functions (By similarity). {ECO:0000250}. |
A6NNA2 | SRRM3 | S340 | ochoa | Serine/arginine repetitive matrix protein 3 | May play a role in regulating breast cancer cell invasiveness (PubMed:26053433). May be involved in RYBP-mediated breast cancer progression (PubMed:27748911). {ECO:0000269|PubMed:26053433, ECO:0000269|PubMed:27748911}. |
A8CG34 | POM121C | S971 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
O00257 | CBX4 | T497 | psp | E3 SUMO-protein ligase CBX4 (EC 2.3.2.-) (Chromobox protein homolog 4) (Polycomb 2 homolog) (Pc2) (hPc2) | E3 SUMO-protein ligase that catalyzes sumoylation of target proteins by promoting the transfer of SUMO from the E2 enzyme to the substrate (PubMed:12679040, PubMed:22825850). Involved in the sumoylation of HNRNPK, a p53/TP53 transcriptional coactivator, hence indirectly regulates p53/TP53 transcriptional activation resulting in p21/CDKN1A expression. Monosumoylates ZNF131 (PubMed:22825850). {ECO:0000269|PubMed:12679040, ECO:0000269|PubMed:22825850}.; FUNCTION: Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:12167701, PubMed:19636380, PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167701, PubMed:19636380, PubMed:21282530). Binds to histone H3 trimethylated at 'Lys-9' (H3K9me3) (By similarity). Plays a role in the lineage differentiation of the germ layers in embryonic development (By similarity). {ECO:0000250|UniProtKB:O55187, ECO:0000269|PubMed:12167701, ECO:0000269|PubMed:19636380, ECO:0000269|PubMed:21282530}. |
O14492 | SH2B2 | S598 | ochoa | SH2B adapter protein 2 (Adapter protein with pleckstrin homology and Src homology 2 domains) (SH2 and PH domain-containing adapter protein APS) | Adapter protein for several members of the tyrosine kinase receptor family. Involved in multiple signaling pathways. May be involved in coupling from immunoreceptor to Ras signaling. Acts as a negative regulator of cytokine signaling in collaboration with CBL. Binds to EPOR and suppresses EPO-induced STAT5 activation, possibly through a masking effect on STAT5 docking sites in EPOR. Suppresses PDGF-induced mitogenesis. May induce cytoskeletal reorganization via interaction with VAV3. {ECO:0000269|PubMed:10374881, ECO:0000269|PubMed:12400014, ECO:0000269|PubMed:15378031, ECO:0000269|PubMed:9989826}. |
O14497 | ARID1A | T238 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14828 | SCAMP3 | Y83 | ochoa | Secretory carrier-associated membrane protein 3 (Secretory carrier membrane protein 3) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O15018 | PDZD2 | T1480 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15127 | SCAMP2 | S310 | ochoa | Secretory carrier-associated membrane protein 2 (Secretory carrier membrane protein 2) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O15169 | AXIN1 | S575 | ochoa | Axin-1 (Axis inhibition protein 1) (hAxin) | Component of the beta-catenin destruction complex required for regulating CTNNB1 levels through phosphorylation and ubiquitination, and modulating Wnt-signaling (PubMed:12192039, PubMed:27098453, PubMed:28829046). Controls dorsoventral patterning via two opposing effects; down-regulates CTNNB1 to inhibit the Wnt signaling pathway and ventralize embryos, but also dorsalizes embryos by activating a Wnt-independent JNK signaling pathway (PubMed:12192039). In Wnt signaling, probably facilitates the phosphorylation of CTNNB1 and APC by GSK3B (PubMed:12192039). Likely to function as a tumor suppressor. Enhances TGF-beta signaling by recruiting the RNF111 E3 ubiquitin ligase and promoting the degradation of inhibitory SMAD7 (PubMed:16601693). Also a component of the AXIN1-HIPK2-TP53 complex which controls cell growth, apoptosis and development (PubMed:17210684). Facilitates the phosphorylation of TP53 by HIPK2 upon ultraviolet irradiation (PubMed:17210684). {ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:16601693, ECO:0000269|PubMed:17210684, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:28546513}. |
O15417 | TNRC18 | S1863 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15534 | PER1 | S1007 | ochoa | Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui) | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. {ECO:0000269|PubMed:24005054}. |
O60264 | SMARCA5 | S32 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A5) (EC 3.6.4.-) (Sucrose nonfermenting protein 2 homolog) (hSNF2H) | ATPase that possesses intrinsic ATP-dependent nucleosome-remodeling activity (PubMed:12972596, PubMed:28801535). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair; this may require intact histone H4 tails (PubMed:10880450, PubMed:12198550, PubMed:12434153, PubMed:12972596, PubMed:23911928, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A/ACF1-, BAZ1B/WSTF-, BAZ2A/TIP5- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:15543136, PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Binds to core histones together with RSF1, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Involved in DNA replication and together with BAZ1A/ACF1 is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). Probably plays a role in repression of RNA polymerase I dependent transcription of the rDNA locus, through the recruitment of the SIN3/HDAC1 corepressor complex to the rDNA promoter (By similarity). Essential component of the WICH-5 ISWI chromatin-remodeling complex (also called the WICH complex), a chromatin-remodeling complex that mobilizes nucleosomes and reconfigures irregular chromatin to a regular nucleosomal array structure (PubMed:11980720, PubMed:15543136). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the histone H2AX phosphorylation at 'Tyr-142', and is involved in the maintenance of chromatin structures during DNA replication processes (By similarity). Essential component of NoRC-5 ISWI chromatin-remodeling complex, a complex that mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). {ECO:0000250|UniProtKB:Q91ZW3, ECO:0000269|PubMed:10880450, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:12198550, ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:28801535}. |
O75122 | CLASP2 | S368 | ochoa | CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}. |
O75427 | LRCH4 | S457 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) | Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}. |
O75444 | MAF | Y131 | psp | Transcription factor Maf (Proto-oncogene c-Maf) (V-maf musculoaponeurotic fibrosarcoma oncogene homolog) | Acts as a transcriptional activator or repressor. Involved in embryonic lens fiber cell development. Recruits the transcriptional coactivators CREBBP and/or EP300 to crystallin promoters leading to up-regulation of crystallin gene during lens fiber cell differentiation. Activates the expression of IL4 in T helper 2 (Th2) cells. Increases T-cell susceptibility to apoptosis by interacting with MYB and decreasing BCL2 expression. Together with PAX6, transactivates strongly the glucagon gene promoter through the G1 element. Activates transcription of the CD13 proximal promoter in endothelial cells. Represses transcription of the CD13 promoter in early stages of myelopoiesis by affecting the ETS1 and MYB cooperative interaction. Involved in the initial chondrocyte terminal differentiation and the disappearance of hypertrophic chondrocytes during endochondral bone development. Binds to the sequence 5'-[GT]G[GC]N[GT]NCTCAGNN-3' in the L7 promoter. Binds to the T-MARE (Maf response element) sites of lens-specific alpha- and beta-crystallin gene promoters. Binds element G1 on the glucagon promoter. Binds an AT-rich region adjacent to the TGC motif (atypical Maf response element) in the CD13 proximal promoter in endothelial cells (By similarity). When overexpressed, represses anti-oxidant response element (ARE)-mediated transcription. Involved either as an oncogene or as a tumor suppressor, depending on the cell context. Binds to the ARE sites of detoxifying enzyme gene promoters. {ECO:0000250, ECO:0000269|PubMed:12149651, ECO:0000269|PubMed:14998494, ECO:0000269|PubMed:15007382, ECO:0000269|PubMed:16247450, ECO:0000269|PubMed:19143053}. |
O95359 | TACC2 | S245 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95475 | SIX6 | S221 | ochoa | Homeobox protein SIX6 (Homeodomain protein OPTX2) (Optic homeobox 2) (Sine oculis homeobox homolog 6) | May be involved in eye development. |
P10070 | GLI2 | T945 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P10588 | NR2F6 | S143 | ochoa | Nuclear receptor subfamily 2 group F member 6 (V-erbA-related protein 2) (EAR-2) | Transcription factor predominantly involved in transcriptional repression. Binds to promoter/enhancer response elements that contain the imperfect 5'-AGGTCA-3' direct or inverted repeats with various spacings which are also recognized by other nuclear hormone receptors. Involved in modulation of hormonal responses. Represses transcriptional activity of the lutropin-choriogonadotropic hormone receptor/LHCGR gene, the renin/REN gene and the oxytocin-neurophysin/OXT gene. Represses the triiodothyronine-dependent and -independent transcriptional activity of the thyroid hormone receptor gene in a cell type-specific manner. The corepressing function towards thyroid hormone receptor beta/THRB involves at least in part the inhibition of THRB binding to triiodothyronine response elements (TREs) by NR2F6. Inhibits NFATC transcription factor DNA binding and subsequently its transcriptional activity. Acts as transcriptional repressor of IL-17 expression in Th-17 differentiated CD4(+) T cells and may be involved in induction and/or maintenance of peripheral immunological tolerance and autoimmunity. Involved in development of forebrain circadian clock; is required early in the development of the locus coeruleus (LC). {ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:10713182, ECO:0000269|PubMed:11682620, ECO:0000269|PubMed:18701084}. |
P16989 | YBX3 | S38 | ochoa | Y-box-binding protein 3 (Cold shock domain-containing protein A) (DNA-binding protein A) (Single-strand DNA-binding protein NF-GMB) | Binds to the GM-CSF promoter. Seems to act as a repressor. Also binds to full-length mRNA and to short RNA sequences containing the consensus site 5'-UCCAUCA-3'. May have a role in translation repression (By similarity). {ECO:0000250}. |
P29966 | MARCKS | S83 | ochoa | Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) | Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}. |
P35408 | PTGER4 | S222 | ochoa | Prostaglandin E2 receptor EP4 subtype (PGE receptor EP4 subtype) (PGE2 receptor EP4 subtype) (Prostanoid EP4 receptor) | Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. Has a relaxing effect on smooth muscle. May play an important role in regulating renal hemodynamics, intestinal epithelial transport, adrenal aldosterone secretion, and uterine function. |
P49815 | TSC2 | S1155 | ochoa|psp | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P58012 | FOXL2 | Y215 | psp | Forkhead box protein L2 | Transcriptional regulator. Critical factor essential for ovary differentiation and maintenance, and repression of the genetic program for somatic testis determination. Prevents trans-differentiation of ovary to testis through transcriptional repression of the Sertoli cell-promoting gene SOX9 (By similarity). Has apoptotic activity in ovarian cells. Suppresses ESR1-mediated transcription of PTGS2/COX2 stimulated by tamoxifen (By similarity). Is a regulator of CYP19 expression (By similarity). Participates in SMAD3-dependent transcription of FST via the intronic SMAD-binding element (By similarity). Is a transcriptional repressor of STAR. Activates SIRT1 transcription under cellular stress conditions. Activates transcription of OSR2. {ECO:0000250, ECO:0000269|PubMed:16153597, ECO:0000269|PubMed:19010791, ECO:0000269|PubMed:19429596, ECO:0000269|PubMed:19744555}. |
Q02952 | AKAP12 | S885 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03001 | DST | S7420 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q07065 | CKAP4 | S79 | ochoa | Cytoskeleton-associated protein 4 (63-kDa cytoskeleton-linking membrane protein) (Climp-63) (p63) | Mediates the anchoring of the endoplasmic reticulum to microtubules. {ECO:0000269|PubMed:15703217}.; FUNCTION: High-affinity epithelial cell surface receptor for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF antiproliferative signaling within cells. {ECO:0000269|PubMed:17030514, ECO:0000269|PubMed:19144824}. |
Q07352 | ZFP36L1 | S203 | psp | mRNA decay activator protein ZFP36L1 (Butyrate response factor 1) (EGF-response factor 1) (ERF-1) (TPA-induced sequence 11b) (Zinc finger protein 36, C3H1 type-like 1) (ZFP36-like 1) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:12198173, PubMed:15467755, PubMed:15538381, PubMed:17030608, PubMed:19179481, PubMed:20702587, PubMed:24700863, PubMed:25014217, PubMed:25106868, PubMed:26542173). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258). Functions by recruiting the CCR4-NOT deadenylase complex and components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:15687258, PubMed:18326031, PubMed:25106868). Also induces the degradation of ARE-containing mRNAs even in absence of poly(A) tail (By similarity). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:12198173, PubMed:15467755, PubMed:15538381, PubMed:17030608, PubMed:19179481, PubMed:20702587, PubMed:24700863, PubMed:25014217, PubMed:25106868, PubMed:26542173). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Promotes ARE-mediated mRNA decay of mineralocorticoid receptor NR3C2 mRNA in response to hypertonic stress (PubMed:24700863). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Positively regulates monocyte/macrophage cell differentiation by promoting ARE-mediated mRNA decay of the cyclin-dependent kinase CDK6 mRNA (PubMed:26542173). Promotes degradation of ARE-containing pluripotency-associated mRNAs in embryonic stem cells (ESCs), such as NANOG, through a fibroblast growth factor (FGF)-induced MAPK-dependent signaling pathway, and hence attenuates ESC self-renewal and positively regulates mesendoderm differentiation (By similarity). May play a role in mediating pro-apoptotic effects in malignant B-cells by promoting ARE-mediated mRNA decay of BCL2 mRNA (PubMed:25014217). In association with ZFP36L2 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination and functional immune cell formation (By similarity). Together with ZFP36L2 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA (By similarity). Participates in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, plays a role in the regulation of nuclear mRNA 3'-end processing; modulates mRNA 3'-end maturation efficiency of the DLL4 mRNA through binding with an ARE embedded in a weak noncanonical polyadenylation (poly(A)) signal in endothelial cells (PubMed:21832157). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (PubMed:15967811). Plays a role in vasculogenesis and endocardial development (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role in myoblast cell differentiation (By similarity). {ECO:0000250|UniProtKB:P17431, ECO:0000250|UniProtKB:P23950, ECO:0000269|PubMed:12198173, ECO:0000269|PubMed:15467755, ECO:0000269|PubMed:15538381, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15967811, ECO:0000269|PubMed:17030608, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18326031, ECO:0000269|PubMed:19179481, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21832157, ECO:0000269|PubMed:24700863, ECO:0000269|PubMed:25014217, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:26542173, ECO:0000269|PubMed:27182009}. |
Q07617 | SPAG1 | S418 | ochoa | Sperm-associated antigen 1 (HSD-3.8) (Infertility-related sperm protein Spag-1) | May play a role in the cytoplasmic assembly of the ciliary dynein arms (By similarity). May play a role in fertilization. Binds GTP and has GTPase activity. {ECO:0000250, ECO:0000269|PubMed:11517287, ECO:0000269|PubMed:1299558}. |
Q13501 | SQSTM1 | S28 | ochoa|psp | Sequestosome-1 (EBI3-associated protein of 60 kDa) (EBIAP) (p60) (Phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa) (Ubiquitin-binding protein p62) (p62) | Molecular adapter required for selective macroautophagy (aggrephagy) by acting as a bridge between polyubiquitinated proteins and autophagosomes (PubMed:15340068, PubMed:15953362, PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22017874, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:33509017, PubMed:34471133, PubMed:34893540, PubMed:35831301, PubMed:37306101, PubMed:37802024). Promotes the recruitment of ubiquitinated cargo proteins to autophagosomes via multiple domains that bridge proteins and organelles in different steps (PubMed:16286508, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:34893540, PubMed:37802024). SQSTM1 first mediates the assembly and removal of ubiquitinated proteins by undergoing liquid-liquid phase separation upon binding to ubiquitinated proteins via its UBA domain, leading to the formation of insoluble cytoplasmic inclusions, known as p62 bodies (PubMed:15911346, PubMed:20168092, PubMed:22017874, PubMed:24128730, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:37802024). SQSTM1 then interacts with ATG8 family proteins on autophagosomes via its LIR motif, leading to p62 body recruitment to autophagosomes, followed by autophagic clearance of ubiquitinated proteins (PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:37802024). SQSTM1 is itself degraded along with its ubiquitinated cargos (PubMed:16286508, PubMed:17580304, PubMed:37802024). Also required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Also involved in autophagy of peroxisomes (pexophagy) in response to reactive oxygen species (ROS) by acting as a bridge between ubiquitinated PEX5 receptor and autophagosomes (PubMed:26344566). Acts as an activator of the NFE2L2/NRF2 pathway via interaction with KEAP1: interaction inactivates the BCR(KEAP1) complex by sequestering the complex in inclusion bodies, promoting nuclear accumulation of NFE2L2/NRF2 and subsequent expression of cytoprotective genes (PubMed:20452972, PubMed:28380357, PubMed:33393215, PubMed:37306101). Promotes relocalization of 'Lys-63'-linked ubiquitinated STING1 to autophagosomes (PubMed:29496741). Involved in endosome organization by retaining vesicles in the perinuclear cloud: following ubiquitination by RNF26, attracts specific vesicle-associated adapters, forming a molecular bridge that restrains cognate vesicles in the perinuclear region and organizes the endosomal pathway for efficient cargo transport (PubMed:27368102, PubMed:33472082). Sequesters tensin TNS2 into cytoplasmic puncta, promoting TNS2 ubiquitination and proteasomal degradation (PubMed:25101860). May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1 (PubMed:10356400, PubMed:10747026, PubMed:11244088, PubMed:12471037, PubMed:16079148, PubMed:19931284). May play a role in titin/TTN downstream signaling in muscle cells (PubMed:15802564). Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). {ECO:0000250|UniProtKB:Q64337, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10747026, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:12471037, ECO:0000269|PubMed:15340068, ECO:0000269|PubMed:15802564, ECO:0000269|PubMed:15911346, ECO:0000269|PubMed:15953362, ECO:0000269|PubMed:16079148, ECO:0000269|PubMed:16286508, ECO:0000269|PubMed:17580304, ECO:0000269|PubMed:19931284, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:25101860, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:28404643, ECO:0000269|PubMed:29343546, ECO:0000269|PubMed:29496741, ECO:0000269|PubMed:29507397, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:33393215, ECO:0000269|PubMed:33472082, ECO:0000269|PubMed:33509017, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:37306101, ECO:0000269|PubMed:37802024}. |
Q14444 | CAPRIN1 | S21 | ochoa | Caprin-1 (Cell cycle-associated protein 1) (Cytoplasmic activation- and proliferation-associated protein 1) (GPI-anchored membrane protein 1) (GPI-anchored protein p137) (GPI-p137) (p137GPI) (Membrane component chromosome 11 surface marker 1) (RNA granule protein 105) | mRNA-binding protein that acts as a regulator of mRNAs transport, translation and/or stability, and which is involved in neurogenesis, synaptic plasticity in neurons and cell proliferation and migration in multiple cell types (PubMed:17210633, PubMed:31439799, PubMed:35979925). Plays an essential role in cytoplasmic stress granule formation (PubMed:35977029). Acts as an mRNA regulator by mediating formation of some phase-separated membraneless compartment: undergoes liquid-liquid phase separation upon binding to target mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (PubMed:31439799, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34074792, PubMed:36040869, PubMed:36279435). Undergoes liquid-liquid phase separation following phosphorylation and interaction with FMR1, promoting formation of cytoplasmic ribonucleoprotein granules that concentrate mRNAs with factors that inhibit translation and mediate deadenylation of target mRNAs (PubMed:31439799). In these cytoplasmic ribonucleoprotein granules, CAPRIN1 mediates recruitment of CNOT7 deadenylase, leading to mRNA deadenylation and degradation (PubMed:31439799). Binds directly and selectively to MYC and CCND2 mRNAs (PubMed:17210633). In neuronal cells, directly binds to several mRNAs associated with RNA granules, including BDNF, CAMK2A, CREB1, MAP2, NTRK2 mRNAs, as well as to GRIN1 and KPNB1 mRNAs, but not to rRNAs (PubMed:17210633). {ECO:0000269|PubMed:17210633, ECO:0000269|PubMed:31439799, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:34074792, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:35979925, ECO:0000269|PubMed:36040869, ECO:0000269|PubMed:36279435}. |
Q53H80 | AKIRIN2 | S39 | ochoa | Akirin-2 | Molecular adapter that acts as a bridge between a variety of multiprotein complexes, and which is involved in embryonic development, immunity, myogenesis and brain development (PubMed:34711951). Plays a key role in nuclear protein degradation by promoting import of proteasomes into the nucleus: directly binds to fully assembled 20S proteasomes at one end and to nuclear import receptor IPO9 at the other end, bridging them together and mediating the import of pre-assembled proteasome complexes through the nuclear pore (PubMed:34711951). Involved in innate immunity by regulating the production of interleukin-6 (IL6) downstream of Toll-like receptor (TLR): acts by bridging the NF-kappa-B inhibitor NFKBIZ and the SWI/SNF complex, leading to promote induction of IL6 (By similarity). Also involved in adaptive immunity by promoting B-cell activation (By similarity). Involved in brain development: required for the survival and proliferation of cerebral cortical progenitor cells (By similarity). Involved in myogenesis: required for skeletal muscle formation and skeletal development, possibly by regulating expression of muscle differentiation factors (By similarity). Also plays a role in facilitating interdigital tissue regression during limb development (By similarity). {ECO:0000250|UniProtKB:B1AXD8, ECO:0000269|PubMed:34711951}. |
Q5GH72 | XKR7 | S26 | ochoa | XK-related protein 7 | None |
Q5JSZ5 | PRRC2B | S1489 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q641Q2 | WASHC2A | S1087 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q6P1R3 | MSANTD2 | S83 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 2 | None |
Q6ZNJ1 | NBEAL2 | T1642 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZUM4 | ARHGAP27 | Y93 | ochoa | Rho GTPase-activating protein 27 (CIN85-associated multi-domain-containing Rho GTPase-activating protein 1) (Rho-type GTPase-activating protein 27) (SH3 domain-containing protein 20) | Rho GTPase-activating protein which may be involved in clathrin-mediated endocytosis. GTPase activators for the Rho-type GTPases act by converting them to an inactive GDP-bound state. Has activity toward CDC42 and RAC1 (By similarity). {ECO:0000250}. |
Q7Z434 | MAVS | S255 | ochoa | Mitochondrial antiviral-signaling protein (MAVS) (CARD adapter inducing interferon beta) (Cardif) (Interferon beta promoter stimulator protein 1) (IPS-1) (Putative NF-kappa-B-activating protein 031N) (Virus-induced-signaling adapter) (VISA) | Adapter required for innate immune defense against viruses (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:21170385, PubMed:23087404, PubMed:27992402, PubMed:33139700, PubMed:37582970). Acts downstream of DHX33, RIGI and IFIH1/MDA5, which detect intracellular dsRNA produced during viral replication, to coordinate pathways leading to the activation of NF-kappa-B, IRF3 and IRF7, and to the subsequent induction of antiviral cytokines such as IFNB and RANTES (CCL5) (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:20628368, PubMed:21170385, PubMed:23087404, PubMed:25636800, PubMed:27736772, PubMed:33110251). Peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state (PubMed:20451243). Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response (PubMed:20451243). May activate the same pathways following detection of extracellular dsRNA by TLR3 (PubMed:16153868). May protect cells from apoptosis (PubMed:16125763). Involved in NLRP3 inflammasome activation by mediating NLRP3 recruitment to mitochondria (PubMed:23582325). {ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:16177806, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20451243, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:27992402, ECO:0000269|PubMed:33110251, ECO:0000269|PubMed:33139700, ECO:0000269|PubMed:37582970}. |
Q7Z5L9 | IRF2BP2 | S212 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q86U86 | PBRM1 | Y351 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86U86 | PBRM1 | S353 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86VQ1 | GLCCI1 | S108 | ochoa | Glucocorticoid-induced transcript 1 protein | None |
Q86XL3 | ANKLE2 | S45 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86XL3 | ANKLE2 | T47 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q8N2M8 | CLASRP | S331 | ochoa | CLK4-associating serine/arginine rich protein (Splicing factor, arginine/serine-rich 16) (Suppressor of white-apricot homolog 2) | Probably functions as an alternative splicing regulator. May regulate the mRNA splicing of genes such as CLK1. May act by regulating members of the CLK kinase family (By similarity). {ECO:0000250}. |
Q8NDF8 | TENT4B | S56 | ochoa | Terminal nucleotidyltransferase 4B (Non-canonical poly(A) RNA polymerase PAPD5) (EC 2.7.7.19) (PAP-associated domain-containing protein 5) (Terminal guanylyltransferase) (EC 2.7.7.-) (Terminal uridylyltransferase 3) (TUTase 3) (Topoisomerase-related function protein 4-2) (TRF4-2) | Terminal nucleotidyltransferase that catalyzes preferentially the transfer of ATP and GTP on RNA 3' poly(A) tail creating a heterogeneous 3' poly(A) tail leading to mRNAs stabilization by protecting mRNAs from active deadenylation (PubMed:21788334, PubMed:30026317). Also functions as a catalytic subunit of a TRAMP-like complex which has a poly(A) RNA polymerase activity and is involved in a post-transcriptional quality control mechanism. Polyadenylation with short oligo(A) tails is required for the degradative activity of the exosome on several of its nuclear RNA substrates. Doesn't need a cofactor for polyadenylation activity (in vitro) (PubMed:21788334, PubMed:21855801). Required for cytoplasmic polyadenylation of mRNAs involved in carbohydrate metabolism, including the glucose transporter SLC2A1/GLUT1 (PubMed:28383716). Plays a role in replication-dependent histone mRNA degradation, probably through terminal uridylation of mature histone mRNAs. May play a role in sister chromatid cohesion (PubMed:18172165). Mediates 3' adenylation of the microRNA MIR21 followed by its 3'-to-5' trimming by the exoribonuclease PARN leading to degradation (PubMed:25049417). Mediates 3' adenylation of H/ACA box snoRNAs (small nucleolar RNAs) followed by its 3'-to-5' trimming by the exoribonuclease PARN which enhances snoRNA stability and maturation (PubMed:22442037). {ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21788334, ECO:0000269|PubMed:21855801, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:28383716, ECO:0000269|PubMed:30026317}. |
Q8TAE6 | PPP1R14C | S40 | ochoa | Protein phosphatase 1 regulatory subunit 14C (Kinase-enhanced PP1 inhibitor) (PKC-potentiated PP1 inhibitory protein) (Serologically defined breast cancer antigen NY-BR-81) | Inhibitor of the PP1 regulatory subunit PPP1CA. |
Q8TAE6 | PPP1R14C | S42 | ochoa | Protein phosphatase 1 regulatory subunit 14C (Kinase-enhanced PP1 inhibitor) (PKC-potentiated PP1 inhibitory protein) (Serologically defined breast cancer antigen NY-BR-81) | Inhibitor of the PP1 regulatory subunit PPP1CA. |
Q8WWM7 | ATXN2L | S45 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q92766 | RREB1 | S1103 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q969V6 | MRTFA | S416 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q96G74 | OTUD5 | Y175 | ochoa | OTU domain-containing protein 5 (EC 3.4.19.12) (Deubiquitinating enzyme A) (DUBA) | Deubiquitinating enzyme that functions as a negative regulator of the innate immune system (PubMed:17991829, PubMed:22245969, PubMed:23827681, PubMed:33523931). Has peptidase activity towards 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:22245969). Can also cleave 'Lys-11'-linked ubiquitin chains (in vitro) (PubMed:22245969). Acts via TRAF3 deubiquitination and subsequent suppression of type I interferon (IFN) production (PubMed:17991829). Controls neuroectodermal differentiation through cleaving 'Lys-48'-linked ubiquitin chains to counteract degradation of select chromatin regulators such as ARID1A, HDAC2 and HCF1 (PubMed:33523931). Acts as a positive regulator of mTORC1 and mTORC2 signaling following phosphorylation by MTOR: acts by mediating deubiquitination of BTRC, leading to its stability (PubMed:33110214). {ECO:0000269|PubMed:17991829, ECO:0000269|PubMed:22245969, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:33110214, ECO:0000269|PubMed:33523931}. |
Q96MG7 | NSMCE3 | S64 | ochoa | Non-structural maintenance of chromosomes element 3 homolog (Non-SMC element 3 homolog) (Hepatocellular carcinoma-associated protein 4) (MAGE-G1 antigen) (Melanoma-associated antigen G1) (Necdin-like protein 2) | Component of the SMC5-SMC6 complex, a complex involved in repair of DNA double-strand breaks by homologous recombination (PubMed:20864041, PubMed:27427983). The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks. The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs). In vitro enhances ubiquitin ligase activity of NSMCE1. Proposed to act through recruitment and/or stabilization of the Ubl-conjugating enzyme (E2) at the E3:substrate complex (PubMed:20864041). May be a growth suppressor that facilitates the entry of the cell into cell cycle arrest (By similarity). {ECO:0000250|UniProtKB:Q9CPR8, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:27427983}. |
Q99569 | PKP4 | Y261 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q9BXK1 | KLF16 | S109 | ochoa | Krueppel-like factor 16 (Basic transcription element-binding protein 4) (BTE-binding protein 4) (Novel Sp1-like zinc finger transcription factor 2) (Transcription factor BTEB4) (Transcription factor NSLP2) | Transcription factor that binds GC and GT boxes and displaces Sp1 and Sp3 from these sequences. Modulates dopaminergic transmission in the brain (By similarity). {ECO:0000250}. |
Q9H7N4 | SCAF1 | S498 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H9H5 | MAP6D1 | S100 | ochoa | MAP6 domain-containing protein 1 (21 kDa STOP-like protein) (SL21) | May have microtubule-stabilizing activity. {ECO:0000250}. |
Q9HDC5 | JPH1 | S171 | ochoa | Junctophilin-1 (JP-1) (Junctophilin type 1) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. |
Q9NQS7 | INCENP | S119 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NZ56 | FMN2 | S516 | ochoa | Formin-2 | Actin-binding protein that is involved in actin cytoskeleton assembly and reorganization (PubMed:21730168, PubMed:22330775). Acts as an actin nucleation factor and promotes assembly of actin filaments together with SPIRE1 and SPIRE2 (PubMed:21730168, PubMed:22330775). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning, asymmetric oocyte division and polar body extrusion during female germ cell meiosis (By similarity). Plays a role in responses to DNA damage, cellular stress and hypoxia by protecting CDKN1A against degradation, and thereby plays a role in stress-induced cell cycle arrest (PubMed:23375502). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). Protects cells against apoptosis by protecting CDKN1A against degradation (PubMed:23375502). {ECO:0000250|UniProtKB:Q9JL04, ECO:0000269|PubMed:21730168, ECO:0000269|PubMed:22330775, ECO:0000269|PubMed:23375502, ECO:0000269|PubMed:26287480}. |
Q9NZM5 | NOP53 | S233 | psp | Ribosome biogenesis protein NOP53 (Glioma tumor suppressor candidate region gene 2 protein) (Protein interacting with carboxyl terminus 1) (PICT-1) (p60) | Nucleolar protein which is involved in the integration of the 5S RNP into the ribosomal large subunit during ribosome biogenesis (PubMed:24120868). In ribosome biogenesis, may also play a role in rRNA transcription (PubMed:27729611). Also functions as a nucleolar sensor that regulates the activation of p53/TP53 in response to ribosome biogenesis perturbation, DNA damage and other stress conditions (PubMed:21741933, PubMed:24120868, PubMed:27829214). DNA damage or perturbation of ribosome biogenesis disrupt the interaction between NOP53 and RPL11 allowing RPL11 transport to the nucleoplasm where it can inhibit MDM2 and allow p53/TP53 activation (PubMed:24120868, PubMed:27829214). It may also positively regulate the function of p53/TP53 in cell cycle arrest and apoptosis through direct interaction, preventing its MDM2-dependent ubiquitin-mediated proteasomal degradation (PubMed:22522597). Originally identified as a tumor suppressor, it may also play a role in cell proliferation and apoptosis by positively regulating the stability of PTEN, thereby antagonizing the PI3K-AKT/PKB signaling pathway (PubMed:15355975, PubMed:16971513, PubMed:27729611). May also inhibit cell proliferation and increase apoptosis through its interaction with NF2 (PubMed:21167305). May negatively regulate NPM1 by regulating its nucleoplasmic localization, oligomerization and ubiquitin-mediated proteasomal degradation (PubMed:25818168). Thereby, may prevent NPM1 interaction with MYC and negatively regulate transcription mediated by the MYC-NPM1 complex (PubMed:25956029). May also regulate cellular aerobic respiration (PubMed:24556985). In the cellular response to viral infection, may play a role in the attenuation of interferon-beta through the inhibition of RIGI (PubMed:27824081). {ECO:0000269|PubMed:15355975, ECO:0000269|PubMed:16971513, ECO:0000269|PubMed:21167305, ECO:0000269|PubMed:21741933, ECO:0000269|PubMed:22522597, ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:24556985, ECO:0000269|PubMed:25818168, ECO:0000269|PubMed:25956029, ECO:0000269|PubMed:27729611, ECO:0000269|PubMed:27824081, ECO:0000269|PubMed:27829214}. |
Q9NZQ3 | NCKIPSD | S120 | ochoa | NCK-interacting protein with SH3 domain (54 kDa VacA-interacting protein) (54 kDa vimentin-interacting protein) (VIP54) (90 kDa SH3 protein interacting with Nck) (AF3p21) (Dia-interacting protein 1) (DIP-1) (Diaphanous protein-interacting protein) (SH3 adapter protein SPIN90) (WASP-interacting SH3-domain protein) (WISH) (Wiskott-Aldrich syndrome protein-interacting protein) | Has an important role in stress fiber formation induced by active diaphanous protein homolog 1 (DRF1). Induces microspike formation, in vivo (By similarity). In vitro, stimulates N-WASP-induced ARP2/3 complex activation in the absence of CDC42 (By similarity). May play an important role in the maintenance of sarcomeres and/or in the assembly of myofibrils into sarcomeres. Implicated in regulation of actin polymerization and cell adhesion. Plays a role in angiogenesis. {ECO:0000250, ECO:0000269|PubMed:22419821}. |
Q9NZV5 | SELENON | S30 | ochoa | Selenoprotein N (SelN) | [Isoform 2]: Plays an important role in cell protection against oxidative stress and in the regulation of redox-related calcium homeostasis. Regulates the calcium level of the ER by protecting the calcium pump ATP2A2 against the oxidoreductase ERO1A-mediated oxidative damage. Within the ER, ERO1A activity increases the concentration of H(2)O(2), which attacks the luminal thiols in ATP2A2 and thus leads to cysteinyl sulfenic acid formation (-SOH) and SEPN1 reduces the SOH back to free thiol (-SH), thus restoring ATP2A2 activity (PubMed:25452428). Acts as a modulator of ryanodine receptor (RyR) activity: protects RyR from oxidation due to increased oxidative stress, or directly controls the RyR redox state, regulating the RyR-mediated calcium mobilization required for normal muscle development and differentiation (PubMed:18713863, PubMed:19557870). {ECO:0000269|PubMed:18713863, ECO:0000269|PubMed:19557870, ECO:0000269|PubMed:25452428}.; FUNCTION: Essential for muscle regeneration and satellite cell maintenance in skeletal muscle (PubMed:21131290). {ECO:0000269|PubMed:21131290}. |
Q9P227 | ARHGAP23 | S1350 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P227 | ARHGAP23 | S1351 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9UDT6 | CLIP2 | S24 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UDT6 | CLIP2 | T25 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UDT6 | CLIP2 | S48 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UGU0 | TCF20 | S53 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHX1 | PUF60 | T314 | ochoa | Poly(U)-binding-splicing factor PUF60 (60 kDa poly(U)-binding-splicing factor) (FUSE-binding protein-interacting repressor) (FBP-interacting repressor) (Ro-binding protein 1) (RoBP1) (Siah-binding protein 1) (Siah-BP1) | DNA- and RNA-binding protein, involved in several nuclear processes such as pre-mRNA splicing, apoptosis and transcription regulation. In association with FUBP1 regulates MYC transcription at the P2 promoter through the core-TFIIH basal transcription factor. Acts as a transcriptional repressor through the core-TFIIH basal transcription factor. Represses FUBP1-induced transcriptional activation but not basal transcription. Decreases ERCC3 helicase activity. Does not repress TFIIH-mediated transcription in xeroderma pigmentosum complementation group B (XPB) cells. Is also involved in pre-mRNA splicing. Promotes splicing of an intron with weak 3'-splice site and pyrimidine tract in a cooperative manner with U2AF2. Involved in apoptosis induction when overexpressed in HeLa cells. Isoform 6 failed to repress MYC transcription and inhibited FIR-induced apoptosis in colorectal cancer. Isoform 6 may contribute to tumor progression by enabling increased MYC expression and greater resistance to apoptosis in tumors than in normal cells. Modulates alternative splicing of several mRNAs. Binds to relaxed DNA of active promoter regions. Binds to the pyrimidine tract and 3'-splice site regions of pre-mRNA; binding is enhanced in presence of U2AF2. Binds to Y5 RNA in association with RO60. Binds to poly(U) RNA. {ECO:0000269|PubMed:10606266, ECO:0000269|PubMed:10882074, ECO:0000269|PubMed:11239393, ECO:0000269|PubMed:16452196, ECO:0000269|PubMed:16628215, ECO:0000269|PubMed:17579712}. |
Q9ULG1 | INO80 | S1452 | ochoa | Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) | ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}. |
Q9UPU9 | SAMD4A | S447 | ochoa | Protein Smaug homolog 1 (Smaug 1) (hSmaug1) (Sterile alpha motif domain-containing protein 4A) (SAM domain-containing protein 4A) | Acts as a translational repressor of SRE-containing messengers. {ECO:0000269|PubMed:16221671}. |
Q9Y2J2 | EPB41L3 | S873 | ochoa | Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] | Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}. |
Q9Y4H2 | IRS2 | T363 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
P04075 | ALDOA | Y343 | Sugiyama | Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase) | Catalyzes the reversible conversion of beta-D-fructose 1,6-bisphosphate (FBP) into two triose phosphate and plays a key role in glycolysis and gluconeogenesis (PubMed:14766013). In addition, may also function as scaffolding protein (By similarity). {ECO:0000250, ECO:0000269|PubMed:14766013}. |
Q9BZI1 | IRX2 | S46 | SIGNOR | Iroquois-class homeodomain protein IRX-2 (Homeodomain protein IRXA2) (Iroquois homeobox protein 2) | None |
Q16555 | DPYSL2 | Y290 | Sugiyama | Dihydropyrimidinase-related protein 2 (DRP-2) (Collapsin response mediator protein 2) (CRMP-2) (N2A3) (Unc-33-like phosphoprotein 2) (ULIP-2) | Plays a role in neuronal development and polarity, as well as in axon growth and guidance, neuronal growth cone collapse and cell migration. Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. May play a role in endocytosis. {ECO:0000269|PubMed:11477421, ECO:0000269|PubMed:15466863, ECO:0000269|PubMed:20801876}. |
A0A0J9YX86 | GOLGA8Q | S497 | ochoa | Golgin A8 family member Q | None |
A4D2B0 | MBLAC1 | S61 | ochoa | Metallo-beta-lactamase domain-containing protein 1 (EC 3.1.27.-) (Endoribonuclease MBLAC1) | Endoribonuclease that catalyzes the hydrolysis of histone-coding pre-mRNA 3'-end. Involved in histone pre-mRNA processing during the S-phase of the cell cycle, which is required for entering/progressing through S-phase (PubMed:30507380). Cleaves histone pre-mRNA at a major and a minor cleavage site after the 5'-ACCCA-3' and the 5'-ACCCACA-3' sequence, respectively, and located downstream of the stem-loop (PubMed:30507380). May require the presence of the HDE element located at the histone pre-RNA 3'-end to avoid non-specific cleavage (PubMed:30507380). {ECO:0000269|PubMed:30507380}. |
H0YC42 | None | S144 | ochoa | Tumor protein D52 | None |
H0YHG0 | None | S428 | ochoa | DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}. |
H3BSY2 | GOLGA8M | S497 | ochoa | Golgin subfamily A member 8M | None |
I6L899 | GOLGA8R | S496 | ochoa | Golgin subfamily A member 8R | None |
O00571 | DDX3X | S492 | ochoa | ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) | Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}. |
O14523 | C2CD2L | S660 | ochoa | Phospholipid transfer protein C2CD2L (C2 domain-containing protein 2-like) (C2CD2-like) (Transmembrane protein 24) | Lipid-binding protein that transports phosphatidylinositol, the precursor of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), from its site of synthesis in the endoplasmic reticulum to the cell membrane (PubMed:28209843). It thereby maintains the pool of cell membrane phosphoinositides, which are degraded during phospholipase C (PLC) signaling (PubMed:28209843). Plays a key role in the coordination of Ca(2+) and phosphoinositide signaling: localizes to sites of contact between the endoplasmic reticulum and the cell membrane, where it tethers the two bilayers (PubMed:28209843). In response to elevation of cytosolic Ca(2+), it is phosphorylated at its C-terminus and dissociates from the cell membrane, abolishing phosphatidylinositol transport to the cell membrane (PubMed:28209843). Positively regulates insulin secretion in response to glucose: phosphatidylinositol transfer to the cell membrane allows replenishment of PI(4,5)P2 pools and calcium channel opening, priming a new population of insulin granules (PubMed:28209843). {ECO:0000269|PubMed:28209843}. |
O15027 | SEC16A | S1174 | psp | Protein transport protein Sec16A (SEC16 homolog A) (p250) | Acts as a molecular scaffold that plays a key role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). SAR1A-GTP-dependent assembly of SEC16A on the ER membrane forms an organized scaffold defining an ERES. Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17005010, PubMed:17192411, PubMed:17428803, PubMed:21768384, PubMed:22355596). Mediates the recruitment of MIA3/TANGO to ERES (PubMed:28442536). Regulates both conventional (ER/Golgi-dependent) and GORASP2-mediated unconventional (ER/Golgi-independent) trafficking of CFTR to cell membrane (PubMed:28067262). Positively regulates the protein stability of E3 ubiquitin-protein ligases RNF152 and RNF183 and the ER localization of RNF183 (PubMed:29300766). Acts as a RAB10 effector in the regulation of insulin-induced SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the cell membrane in adipocytes (By similarity). {ECO:0000250|UniProtKB:E9QAT4, ECO:0000269|PubMed:17005010, ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:17428803, ECO:0000269|PubMed:21768384, ECO:0000269|PubMed:22355596, ECO:0000269|PubMed:28067262, ECO:0000269|PubMed:28442536, ECO:0000269|PubMed:29300766}. |
O15061 | SYNM | S471 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15061 | SYNM | S1077 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15061 | SYNM | S1114 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15063 | GARRE1 | S665 | ochoa | Granule associated Rac and RHOG effector protein 1 (GARRE1) | Acts as an effector of RAC1 (PubMed:31871319). Associates with CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation (PubMed:29395067). May also play a role in miRNA silencing machinery (PubMed:29395067). {ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:31871319}. |
O15085 | ARHGEF11 | S633 | ochoa | Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}. |
O15119 | TBX3 | S409 | ochoa | T-box transcription factor TBX3 (T-box protein 3) | Transcriptional repressor involved in developmental processes (PubMed:10468588). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:12000749). Probably plays a role in limb pattern formation (PubMed:10468588). Required for mammary placode induction, and maintenance of the mammary buds during development (By similarity). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX2 (By similarity). Required, together with TBX2, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with, TBX2 in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). {ECO:0000250|UniProtKB:P70324, ECO:0000269|PubMed:10468588, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537}. |
O15169 | AXIN1 | S579 | ochoa | Axin-1 (Axis inhibition protein 1) (hAxin) | Component of the beta-catenin destruction complex required for regulating CTNNB1 levels through phosphorylation and ubiquitination, and modulating Wnt-signaling (PubMed:12192039, PubMed:27098453, PubMed:28829046). Controls dorsoventral patterning via two opposing effects; down-regulates CTNNB1 to inhibit the Wnt signaling pathway and ventralize embryos, but also dorsalizes embryos by activating a Wnt-independent JNK signaling pathway (PubMed:12192039). In Wnt signaling, probably facilitates the phosphorylation of CTNNB1 and APC by GSK3B (PubMed:12192039). Likely to function as a tumor suppressor. Enhances TGF-beta signaling by recruiting the RNF111 E3 ubiquitin ligase and promoting the degradation of inhibitory SMAD7 (PubMed:16601693). Also a component of the AXIN1-HIPK2-TP53 complex which controls cell growth, apoptosis and development (PubMed:17210684). Facilitates the phosphorylation of TP53 by HIPK2 upon ultraviolet irradiation (PubMed:17210684). {ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:16601693, ECO:0000269|PubMed:17210684, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:28546513}. |
O15417 | TNRC18 | S1232 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15492 | RGS16 | Y177 | psp | Regulator of G-protein signaling 16 (RGS16) (A28-RGS14P) (Retinal-specific RGS) (RGS-r) (hRGS-r) (Retinally abundant regulator of G-protein signaling) | Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form (PubMed:11602604, PubMed:18434541). Plays an important role in the phototransduction cascade by regulating the lifetime and effective concentration of activated transducin alpha. May regulate extra and intracellular mitogenic signals (By similarity). {ECO:0000250|UniProtKB:P97428, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:18434541}. |
O15523 | DDX3Y | S490 | ochoa | ATP-dependent RNA helicase DDX3Y (EC 3.6.4.13) (DEAD box protein 3, Y-chromosomal) | Probable ATP-dependent RNA helicase. During immune response, may enhance IFNB1 expression via IRF3/IRF7 pathway (By similarity). {ECO:0000250|UniProtKB:Q62095}. |
O43823 | AKAP8 | Y51 | psp | A-kinase anchor protein 8 (AKAP-8) (A-kinase anchor protein 95 kDa) (AKAP 95) | Anchoring protein that mediates the subcellular compartmentation of cAMP-dependent protein kinase (PKA type II) (PubMed:9473338). Acts as an anchor for a PKA-signaling complex onto mitotic chromosomes, which is required for maintenance of chromosomes in a condensed form throughout mitosis. Recruits condensin complex subunit NCAPD2 to chromosomes required for chromatin condensation; the function appears to be independent from PKA-anchoring (PubMed:10601332, PubMed:10791967, PubMed:11964380). May help to deliver cyclin D/E to CDK4 to facilitate cell cycle progression (PubMed:14641107). Required for cell cycle G2/M transition and histone deacetylation during mitosis. In mitotic cells recruits HDAC3 to the vicinity of chromatin leading to deacetylation and subsequent phosphorylation at 'Ser-10' of histone H3; in this function may act redundantly with AKAP8L (PubMed:16980585). Involved in nuclear retention of RPS6KA1 upon ERK activation thus inducing cell proliferation (PubMed:22130794). May be involved in regulation of DNA replication by acting as scaffold for MCM2 (PubMed:12740381). Enhances HMT activity of the KMT2 family MLL4/WBP7 complex and is involved in transcriptional regulation. In a teratocarcinoma cell line is involved in retinoic acid-mediated induction of developmental genes implicating H3 'Lys-4' methylation (PubMed:23995757). May be involved in recruitment of active CASP3 to the nucleus in apoptotic cells (PubMed:16227597). May act as a carrier protein of GJA1 for its transport to the nucleus (PubMed:26880274). May play a repressive role in the regulation of rDNA transcription. Preferentially binds GC-rich DNA in vitro. In cells, associates with ribosomal RNA (rRNA) chromatin, preferentially with rRNA promoter and transcribed regions (PubMed:26683827). Involved in modulation of Toll-like receptor signaling. Required for the cAMP-dependent suppression of TNF-alpha in early stages of LPS-induced macrophage activation; the function probably implicates targeting of PKA to NFKB1 (By similarity). {ECO:0000250|UniProtKB:Q63014, ECO:0000250|UniProtKB:Q9DBR0, ECO:0000269|PubMed:10601332, ECO:0000269|PubMed:10791967, ECO:0000269|PubMed:11964380, ECO:0000269|PubMed:16980585, ECO:0000269|PubMed:22130794, ECO:0000269|PubMed:26683827, ECO:0000269|PubMed:26880274, ECO:0000305|PubMed:14641107, ECO:0000305|PubMed:9473338}. |
O43900 | PRICKLE3 | S383 | ochoa | Prickle planar cell polarity protein 3 (LIM domain only protein 6) (LMO-6) (Prickle-like protein 3) (Pk3) (Triple LIM domain protein 6) | Involved in the planar cell polarity (PCP) pathway that is essential for the polarization of epithelial cells during morphogenetic processes, including gastrulation and neurulation (By similarity). PCP is maintained by two molecular modules, the global and the core modules, PRICKLE3 being part of the core module (By similarity). Distinct complexes of the core module segregate to opposite sides of the cell, where they interact with the opposite complex in the neighboring cell at or near the adherents junctions (By similarity). Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). Required for proper assembly, stability, and function of mitochondrial membrane ATP synthase (mitochondrial complex V) (PubMed:32516135). {ECO:0000250|UniProtKB:A8WH69, ECO:0000269|PubMed:32516135}. |
O60673 | REV3L | S2410 | ochoa | DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) | Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}. |
O60907 | TBL1X | S470 | psp | F-box-like/WD repeat-containing protein TBL1X (SMAP55) (Transducin beta-like protein 1X) (Transducin-beta-like protein 1, X-linked) | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units (PubMed:14980219). Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of corepressor complexes that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of transcription repressor complexes, thereby allowing cofactor exchange (PubMed:21240272). {ECO:0000269|PubMed:14980219, ECO:0000269|PubMed:21240272}. |
O75563 | SKAP2 | S101 | ochoa | Src kinase-associated phosphoprotein 2 (Pyk2/RAFTK-associated protein) (Retinoic acid-induced protein 70) (SKAP55 homolog) (SKAP-55HOM) (SKAP-HOM) (Src family-associated phosphoprotein 2) (Src kinase-associated phosphoprotein 55-related protein) (Src-associated adapter protein with PH and SH3 domains) | May be involved in B-cell and macrophage adhesion processes. In B-cells, may act by coupling the B-cell receptor (BCR) to integrin activation. May play a role in src signaling pathway. {ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:9837776}. |
O94868 | FCHSD2 | S532 | ochoa | F-BAR and double SH3 domains protein 2 (Carom) (Protein nervous wreck 1) (NWK1) (SH3 multiple domains protein 3) | Adapter protein that plays a role in endocytosis via clathrin-coated pits. Contributes to the internalization of cell surface receptors, such as integrin ITGB1 and transferrin receptor (PubMed:29887380). Promotes endocytosis of EGFR in cancer cells, and thereby contributes to the down-regulation of EGFR signaling (PubMed:30249660). Recruited to clathrin-coated pits during a mid-to-late stage of assembly, where it is required for normal progress from U-shaped intermediate stage pits to terminal, omega-shaped pits (PubMed:29887380). Binds to membranes enriched in phosphatidylinositol 3,4-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate (PubMed:29887380). When bound to membranes, promotes actin polymerization via its interaction with WAS and/or WASL which leads to the activation of the Arp2/3 complex. Does not promote actin polymerisation in the absence of membranes (PubMed:29887380). {ECO:0000269|PubMed:29887380, ECO:0000269|PubMed:30249660}. |
O95613 | PCNT | S2894 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
P04198 | MYCN | S145 | ochoa | N-myc proto-oncogene protein (Class E basic helix-loop-helix protein 37) (bHLHe37) | Positively regulates the transcription of MYCNOS in neuroblastoma cells. {ECO:0000269|PubMed:24391509}. |
P07101 | TH | S44 | psp | Tyrosine 3-monooxygenase (EC 1.14.16.2) (Tyrosine 3-hydroxylase) (TH) | Catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-Dopa), the rate-limiting step in the biosynthesis of catecholamines, dopamine, noradrenaline, and adrenaline. Uses tetrahydrobiopterin and molecular oxygen to convert tyrosine to L-Dopa (PubMed:15287903, PubMed:1680128, PubMed:17391063, PubMed:24753243, PubMed:34922205, PubMed:8528210, Ref.18). In addition to tyrosine, is able to catalyze the hydroxylation of phenylalanine and tryptophan with lower specificity (By similarity). Positively regulates the regression of retinal hyaloid vessels during postnatal development (By similarity). {ECO:0000250|UniProtKB:P04177, ECO:0000250|UniProtKB:P24529, ECO:0000269|PubMed:15287903, ECO:0000269|PubMed:1680128, ECO:0000269|PubMed:17391063, ECO:0000269|PubMed:24753243, ECO:0000269|PubMed:34922205, ECO:0000269|PubMed:8528210, ECO:0000269|Ref.18}.; FUNCTION: [Isoform 5]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}.; FUNCTION: [Isoform 6]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}. |
P09936 | UCHL1 | S188 | psp | Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1) (EC 3.4.19.12) (Neuron cytoplasmic protein 9.5) (PGP 9.5) (PGP9.5) (Ubiquitin thioesterase L1) | Deubiquitinase that plays a role in the regulation of several processes such as maintenance of synaptic function, cardiac function, inflammatory response or osteoclastogenesis (PubMed:22212137, PubMed:23359680). Abrogates the ubiquitination of multiple proteins including WWTR1/TAZ, EGFR, HIF1A and beta-site amyloid precursor protein cleaving enzyme 1/BACE1 (PubMed:22212137, PubMed:25615526). In addition, recognizes and hydrolyzes a peptide bond at the C-terminal glycine of ubiquitin to maintain a stable pool of monoubiquitin that is a key requirement for the ubiquitin-proteasome and the autophagy-lysosome pathways (PubMed:12408865, PubMed:8639624, PubMed:9774100). Regulates amyloid precursor protein/APP processing by promoting BACE1 degradation resulting in decreased amyloid beta production (PubMed:22212137). Plays a role in the immune response by regulating the ability of MHC I molecules to reach cross-presentation compartments competent for generating Ag-MHC I complexes (By similarity). Mediates the 'Lys-48'-linked deubiquitination of the transcriptional coactivator WWTR1/TAZ leading to its stabilization and inhibition of osteoclastogenesis (By similarity). Deubiquitinates and stabilizes epidermal growth factor receptor EGFR to prevent its degradation and to activate its downstream mediators (By similarity). Modulates oxidative activity in skeletal muscle by regulating key mitochondrial oxidative proteins (By similarity). Enhances the activity of hypoxia-inducible factor 1-alpha/HIF1A by abrogateing its VHL E3 ligase-mediated ubiquitination and consequently inhibiting its degradation (PubMed:25615526). {ECO:0000250|UniProtKB:Q9R0P9, ECO:0000269|PubMed:12408865, ECO:0000269|PubMed:22212137, ECO:0000269|PubMed:23359680, ECO:0000269|PubMed:25615526, ECO:0000269|PubMed:8639624, ECO:0000269|PubMed:9774100}. |
P14618 | PKM | S205 | ochoa | Pyruvate kinase PKM (EC 2.7.1.40) (Cytosolic thyroid hormone-binding protein) (CTHBP) (Opa-interacting protein 3) (OIP-3) (Pyruvate kinase 2/3) (Pyruvate kinase muscle isozyme) (Threonine-protein kinase PKM2) (EC 2.7.11.1) (Thyroid hormone-binding protein 1) (THBP1) (Tumor M2-PK) (Tyrosine-protein kinase PKM2) (EC 2.7.10.2) (p58) | Catalyzes the final rate-limiting step of glycolysis by mediating the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP (PubMed:15996096, PubMed:1854723, PubMed:20847263). The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production (PubMed:15996096, PubMed:1854723, PubMed:20847263). The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival (PubMed:15996096, PubMed:1854723, PubMed:20847263). {ECO:0000269|PubMed:15996096, ECO:0000269|PubMed:1854723, ECO:0000269|PubMed:20847263}.; FUNCTION: [Isoform M2]: Isoform specifically expressed during embryogenesis that has low pyruvate kinase activity by itself and requires allosteric activation by D-fructose 1,6-bisphosphate (FBP) for pyruvate kinase activity (PubMed:18337823, PubMed:20847263). In addition to its pyruvate kinase activity in the cytoplasm, also acts as a regulator of transcription in the nucleus by acting as a protein kinase (PubMed:18191611, PubMed:21620138, PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661). Translocates into the nucleus in response to various signals, such as EGF receptor activation, and homodimerizes, leading to its conversion into a protein threonine- and tyrosine-protein kinase (PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661, PubMed:26787900). Catalyzes phosphorylation of STAT3 at 'Tyr-705' and histone H3 at 'Thr-11' (H3T11ph), leading to activate transcription (PubMed:22306293, PubMed:22901803, PubMed:24120661). Its ability to activate transcription plays a role in cancer cells by promoting cell proliferation and promote tumorigenesis (PubMed:18337823, PubMed:22901803, PubMed:26787900). Promotes the expression of the immune checkpoint protein CD274 in BMAL1-deficient macrophages (By similarity). May also act as a translation regulator for a subset of mRNAs, independently of its pyruvate kinase activity: associates with subpools of endoplasmic reticulum-associated ribosomes, binds directly to the mRNAs translated at the endoplasmic reticulum and promotes translation of these endoplasmic reticulum-destined mRNAs (By similarity). Plays a role in caspase independent cell death of tumor cells (PubMed:17308100). {ECO:0000250|UniProtKB:P52480, ECO:0000269|PubMed:17308100, ECO:0000269|PubMed:18191611, ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263, ECO:0000269|PubMed:21620138, ECO:0000269|PubMed:22056988, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:22901803, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:26787900}.; FUNCTION: [Isoform M1]: Pyruvate kinase isoform expressed in adult tissues, which replaces isoform M2 after birth (PubMed:18337823). In contrast to isoform M2, has high pyruvate kinase activity by itself and does not require allosteric activation by D-fructose 1,6-bisphosphate (FBP) for activity (PubMed:20847263). {ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263}. |
P16144 | ITGB4 | S1457 | ochoa | Integrin beta-4 (GP150) (CD antigen CD104) | Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}. |
P18887 | XRCC1 | S204 | ochoa | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P19971 | TYMP | S50 | ochoa | Thymidine phosphorylase (TP) (EC 2.4.2.4) (Gliostatin) (Platelet-derived endothelial cell growth factor) (PD-ECGF) (TdRPase) | May have a role in maintaining the integrity of the blood vessels. Has growth promoting activity on endothelial cells, angiogenic activity in vivo and chemotactic activity on endothelial cells in vitro. {ECO:0000269|PubMed:1590793}.; FUNCTION: Catalyzes the reversible phosphorolysis of thymidine. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis. {ECO:0000269|PubMed:1590793}. |
P20810 | CAST | S527 | ochoa | Calpastatin (Calpain inhibitor) (Sperm BS-17 component) | Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue. |
P22234 | PAICS | S35 | ochoa | Bifunctional phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) [Includes: Phosphoribosylaminoimidazole carboxylase (EC 4.1.1.21) (AIR carboxylase) (AIRC); Phosphoribosylaminoimidazole succinocarboxamide synthetase (EC 6.3.2.6) (SAICAR synthetase)] | Bifunctional phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazole succinocarboxamide synthetase catalyzing two reactions of the de novo purine biosynthetic pathway. {ECO:0000269|PubMed:17224163, ECO:0000269|PubMed:2183217, ECO:0000269|PubMed:31600779}. |
P23588 | EIF4B | S348 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P35222 | CTNNB1 | S646 | psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P36578 | RPL4 | S55 | ochoa | Large ribosomal subunit protein uL4 (60S ribosomal protein L1) (60S ribosomal protein L4) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P38935 | IGHMBP2 | S677 | ochoa | DNA-binding protein SMUBP-2 (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent helicase IGHMBP2) (Glial factor 1) (GF-1) (Immunoglobulin mu-binding protein 2) | 5' to 3' helicase that unwinds RNA and DNA duplexes in an ATP-dependent reaction (PubMed:19158098, PubMed:22999958, PubMed:30218034). Specific to 5'-phosphorylated single-stranded guanine-rich sequences (PubMed:22999958, PubMed:8349627). May play a role in RNA metabolism, ribosome biogenesis or initiation of translation (PubMed:19158098, PubMed:19299493). May play a role in regulation of transcription (By similarity). Interacts with tRNA-Tyr (PubMed:19299493). {ECO:0000250|UniProtKB:Q9EQN5, ECO:0000269|PubMed:19158098, ECO:0000269|PubMed:19299493, ECO:0000269|PubMed:22999958, ECO:0000269|PubMed:30218034, ECO:0000269|PubMed:8349627}. |
P41180 | CASR | S875 | psp | Extracellular calcium-sensing receptor (CaR) (CaSR) (hCasR) (Parathyroid cell calcium-sensing receptor 1) (PCaR1) | G-protein-coupled receptor that senses changes in the extracellular concentration of calcium ions and plays a key role in maintaining calcium homeostasis (PubMed:17555508, PubMed:19789209, PubMed:21566075, PubMed:22114145, PubMed:22789683, PubMed:23966241, PubMed:25104082, PubMed:25292184, PubMed:25766501, PubMed:26386835, PubMed:32817431, PubMed:33603117, PubMed:34194040, PubMed:34467854, PubMed:7759551, PubMed:8636323, PubMed:8702647, PubMed:8878438). Senses fluctuations in the circulating calcium concentration: activated by elevated circulating calcium, leading to decreased parathyroid hormone (PTH) secretion in parathyroid glands (By similarity). In kidneys, acts as a key regulator of renal tubular calcium resorption (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G-proteins) and modulates the activity of downstream effectors (PubMed:38632411). CASR is coupled with different G(q)/G(11), G(i)/G(o)- or G(s)-classes of G-proteins depending on the context (PubMed:38632411). In the parathyroid and kidney, CASR signals through G(q)/G(11) and G(i)/G(o) G-proteins: G(q)/G(11) coupling activates phospholipase C-beta, releasing diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) second messengers, while G(i)/G(o) coupling mediates inhibition of adenylate cyclase activity (PubMed:38632411, PubMed:7759551). The G-protein-coupled receptor activity is activated by a co-agonist mechanism: aromatic amino acids, such as Trp or Phe, act concertedly with divalent cations, such as calcium or magnesium, to achieve full receptor activation (PubMed:27386547, PubMed:27434672, PubMed:32817431, PubMed:33603117, PubMed:34194040). Acts as an activator of the NLRP3 inflammasome via G(i)/G(o)-mediated signaling: down-regulation of cyclic AMP (cAMP) relieving NLRP3 inhibition by cAMP (PubMed:32843625). Acts as a regulator of proton-sensing receptor GPR68 in a seesaw manner: CASR-mediated signaling inhibits GPR68 signaling in response to extracellular calcium, while GPR68 inhibits CASR in presence of extracellular protons (By similarity). {ECO:0000250|UniProtKB:P48442, ECO:0000250|UniProtKB:Q9QY96, ECO:0000269|PubMed:17555508, ECO:0000269|PubMed:19789209, ECO:0000269|PubMed:21566075, ECO:0000269|PubMed:22114145, ECO:0000269|PubMed:22789683, ECO:0000269|PubMed:23966241, ECO:0000269|PubMed:25104082, ECO:0000269|PubMed:25292184, ECO:0000269|PubMed:25766501, ECO:0000269|PubMed:26386835, ECO:0000269|PubMed:27386547, ECO:0000269|PubMed:27434672, ECO:0000269|PubMed:32817431, ECO:0000269|PubMed:32843625, ECO:0000269|PubMed:33603117, ECO:0000269|PubMed:34194040, ECO:0000269|PubMed:34467854, ECO:0000269|PubMed:38632411, ECO:0000269|PubMed:7759551, ECO:0000269|PubMed:8636323, ECO:0000269|PubMed:8702647, ECO:0000269|PubMed:8878438}. |
P41440 | SLC19A1 | S474 | ochoa | Reduced folate transporter (FOLT) (Cyclic dinucleotide:anion antiporter SLC19A1) (Folate:anion antiporter SLC19A1) (Intestinal folate carrier 1) (IFC-1) (Placental folate transporter) (Reduced folate carrier protein) (RFC) (hRFC) (Reduced folate transporter 1) (RFT-1) (Solute carrier family 19 member 1) (hSLC19A1) | Antiporter that mediates the import of reduced folates or a subset of cyclic dinucleotides, driven by the export of organic anions (PubMed:10787414, PubMed:15337749, PubMed:16115875, PubMed:22554803, PubMed:31126740, PubMed:31511694, PubMed:32276275, PubMed:36071163, PubMed:36265513, PubMed:36575193, PubMed:7826387, PubMed:9041240). Acts as an importer of immunoreactive cyclic dinucleotides, such as cyclic GMP-AMP (2'-3'-cGAMP), an immune messenger produced in response to DNA virus in the cytosol, and its linkage isomer 3'-3'-cGAMP, thus playing a role in triggering larger immune responses (PubMed:31126740, PubMed:31511694, PubMed:36745868). Mechanistically, acts as a secondary active transporter, which exports intracellular organic anions down their concentration gradients to facilitate the uptake of its substrates (PubMed:22554803, PubMed:31126740, PubMed:31511694). Has high affinity for N5-methyltetrahydrofolate, the predominant circulating form of folate (PubMed:10787414, PubMed:14609557, PubMed:22554803, PubMed:36071163, PubMed:36265513, PubMed:36575193). Also mediates the import of antifolate drug methotrexate (PubMed:22554803, PubMed:36071163, PubMed:7615551, PubMed:7641195, PubMed:9767079). 5-amino-4-imidazolecarboxamide riboside (AICAR), when phosphorylated to AICAR monophosphate, can serve as an organic anion for antiporter activity (PubMed:22554803). {ECO:0000269|PubMed:10787414, ECO:0000269|PubMed:14609557, ECO:0000269|PubMed:15337749, ECO:0000269|PubMed:16115875, ECO:0000269|PubMed:22554803, ECO:0000269|PubMed:31126740, ECO:0000269|PubMed:31511694, ECO:0000269|PubMed:32276275, ECO:0000269|PubMed:36071163, ECO:0000269|PubMed:36265513, ECO:0000269|PubMed:36575193, ECO:0000269|PubMed:36745868, ECO:0000269|PubMed:7615551, ECO:0000269|PubMed:7641195, ECO:0000269|PubMed:7826387, ECO:0000269|PubMed:9041240, ECO:0000269|PubMed:9767079}. |
P43243 | MATR3 | S22 | ochoa | Matrin-3 | May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}. |
P46013 | MKI67 | S2769 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46379 | BAG6 | S96 | ochoa | Large proline-rich protein BAG6 (BAG family molecular chaperone regulator 6) (BCL2-associated athanogene 6) (BAG-6) (HLA-B-associated transcript 3) (Protein G3) (Protein Scythe) | ATP-independent molecular chaperone preventing the aggregation of misfolded and hydrophobic patches-containing proteins (PubMed:21636303). Functions as part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, which maintains these client proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20516149, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20516149, PubMed:20676083, PubMed:25535373, PubMed:28104892). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated by RNF126, an E3 ubiquitin-protein ligase associated with BAG6 and are sorted to the proteasome (PubMed:24981174, PubMed:27193484, PubMed:28104892). SGTA which prevents the recruitment of RNF126 to BAG6 may negatively regulate the ubiquitination and the proteasomal degradation of client proteins (PubMed:23129660, PubMed:25179605, PubMed:27193484). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these retrotranslocated proteins in an unfolded yet soluble state condition in the cytosol to ensure their proper delivery to the proteasome (PubMed:21636303). BAG6 is also required for selective ubiquitin-mediated degradation of defective nascent chain polypeptides by the proteasome. In this context, it may participate in the production of antigenic peptides and play a role in antigen presentation in immune response (By similarity). BAG6 is also involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation. BAG6 may ensure the proper degradation of these proteins and thereby protects the endoplasmic reticulum from protein overload upon stress (PubMed:26565908). By inhibiting the polyubiquitination and subsequent proteasomal degradation of HSPA2 it may also play a role in the assembly of the synaptonemal complex during spermatogenesis (By similarity). Also positively regulates apoptosis by interacting with and stabilizing the proapoptotic factor AIFM1 (By similarity). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:Q9Z1R2, ECO:0000269|PubMed:20516149, ECO:0000269|PubMed:20676083, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:21743475, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:24981174, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: Involved in DNA damage-induced apoptosis: following DNA damage, accumulates in the nucleus and forms a complex with p300/EP300, enhancing p300/EP300-mediated p53/TP53 acetylation leading to increase p53/TP53 transcriptional activity (PubMed:17403783). When nuclear, may also act as a component of some chromatin regulator complex that regulates histone 3 'Lys-4' dimethylation (H3K4me2) (PubMed:18765639). {ECO:0000269|PubMed:17403783, ECO:0000269|PubMed:18765639}.; FUNCTION: Released extracellularly via exosomes, it is a ligand of the natural killer/NK cells receptor NCR3 and stimulates NK cells cytotoxicity. It may thereby trigger NK cells cytotoxicity against neighboring tumor cells and immature myeloid dendritic cells (DC). {ECO:0000269|PubMed:18055229, ECO:0000269|PubMed:18852879}.; FUNCTION: Mediates ricin-induced apoptosis. {ECO:0000269|PubMed:14960581}. |
P46695 | IER3 | T37 | ochoa | Radiation-inducible immediate-early gene IEX-1 (Differentiation-dependent gene 2 protein) (Protein DIF-2) (Immediate early protein GLY96) (Immediate early response 3 protein) (PACAP-responsive gene 1 protein) (Protein PRG1) | May play a role in the ERK signaling pathway by inhibiting the dephosphorylation of ERK by phosphatase PP2A-PPP2R5C holoenzyme. Also acts as an ERK downstream effector mediating survival. As a member of the NUPR1/RELB/IER3 survival pathway, may provide pancreatic ductal adenocarcinoma with remarkable resistance to cell stress, such as starvation or gemcitabine treatment. {ECO:0000269|PubMed:12356731, ECO:0000269|PubMed:16456541, ECO:0000269|PubMed:22565310}. |
P48444 | ARCN1 | S188 | ochoa | Coatomer subunit delta (Archain) (Delta-coat protein) (Delta-COP) | Component of the coatomer, a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}. |
P49790 | NUP153 | Y260 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P51003 | PAPOLA | S629 | ochoa | Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) | Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}. |
P52756 | RBM5 | S433 | ochoa | RNA-binding protein 5 (Protein G15) (Putative tumor suppressor LUCA15) (RNA-binding motif protein 5) (Renal carcinoma antigen NY-REN-9) | Component of the spliceosome A complex. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Regulates alternative splicing of a number of mRNAs. May modulate splice site pairing after recruitment of the U1 and U2 snRNPs to the 5' and 3' splice sites of the intron. May both positively and negatively regulate apoptosis by regulating the alternative splicing of several genes involved in this process, including FAS and CASP2/caspase-2. In the case of FAS, promotes exclusion of exon 6 thereby producing a soluble form of FAS that inhibits apoptosis. In the case of CASP2/caspase-2, promotes exclusion of exon 9 thereby producing a catalytically active form of CASP2/Caspase-2 that induces apoptosis. {ECO:0000269|PubMed:10949932, ECO:0000269|PubMed:12207175, ECO:0000269|PubMed:12581154, ECO:0000269|PubMed:15192330, ECO:0000269|PubMed:16585163, ECO:0000269|PubMed:18840686, ECO:0000269|PubMed:18851835, ECO:0000269|PubMed:21256132}. |
P55087 | AQP4 | S111 | psp | Aquaporin-4 (AQP-4) (Mercurial-insensitive water channel) (MIWC) (WCH4) | Forms a water-specific channel (PubMed:19383790, PubMed:7559426, PubMed:8601457). Plays an important role in brain water homeostasis (PubMed:37143309). It is involved in glymphatic solute transport and is required for a normal rate of water exchange across the blood brain interface. Required for normal levels of cerebrospinal fluid influx into the brain cortex and parenchyma along paravascular spaces that surround penetrating arteries, and for normal drainage of interstitial fluid along paravenous drainage pathways. Thereby, it is required for normal clearance of solutes from the brain interstitial fluid, including soluble beta-amyloid peptides derived from APP. Plays a redundant role in urinary water homeostasis and urinary concentrating ability (By similarity). {ECO:0000250|UniProtKB:P55088, ECO:0000269|PubMed:19383790, ECO:0000269|PubMed:37143309, ECO:0000269|PubMed:7559426, ECO:0000269|PubMed:8601457}. |
P80723 | BASP1 | S194 | ochoa | Brain acid soluble protein 1 (22 kDa neuronal tissue-enriched acidic protein) (Neuronal axonal membrane protein NAP-22) | None |
P82979 | SARNP | S115 | ochoa | SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}. |
Q00403 | GTF2B | S81 | ochoa | Transcription initiation factor IIB (EC 2.3.1.48) (General transcription factor TFIIB) (S300-II) | General transcription factor that plays a role in transcription initiation by RNA polymerase II (Pol II). Involved in the pre-initiation complex (PIC) formation and Pol II recruitment at promoter DNA (PubMed:12931194, PubMed:1517211, PubMed:1876184, PubMed:1946368, PubMed:27193682, PubMed:3029109, PubMed:3818643, PubMed:7601352, PubMed:8413225, PubMed:8515820, PubMed:8516311, PubMed:8516312, PubMed:9420329). Together with the TATA box-bound TBP forms the core initiation complex and provides a bridge between TBP and the Pol II-TFIIF complex (PubMed:8413225, PubMed:8504927, PubMed:8515820, PubMed:8516311, PubMed:8516312). Released from the PIC early following the onset of transcription during the initiation and elongation transition and reassociates with TBP during the next transcription cycle (PubMed:7601352). Associates with chromatin to core promoter-specific regions (PubMed:12931194, PubMed:24441171). Binds to two distinct DNA core promoter consensus sequence elements in a TBP-independent manner; these IIB-recognition elements (BREs) are localized immediately upstream (BREu), 5'-[GC][GC][GA]CGCC-3', and downstream (BREd), 5'-[GA]T[TGA][TG][GT][TG][TG]-3', of the TATA box element (PubMed:10619841, PubMed:16230532, PubMed:7675079, PubMed:9420329). Modulates transcription start site selection (PubMed:10318856). Also exhibits autoacetyltransferase activity that contributes to the activated transcription (PubMed:12931194). {ECO:0000269|PubMed:10318856, ECO:0000269|PubMed:10619841, ECO:0000269|PubMed:12931194, ECO:0000269|PubMed:1517211, ECO:0000269|PubMed:16230532, ECO:0000269|PubMed:1876184, ECO:0000269|PubMed:1946368, ECO:0000269|PubMed:24441171, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:3029109, ECO:0000269|PubMed:3818643, ECO:0000269|PubMed:7601352, ECO:0000269|PubMed:7675079, ECO:0000269|PubMed:8413225, ECO:0000269|PubMed:8504927, ECO:0000269|PubMed:8515820, ECO:0000269|PubMed:8516311, ECO:0000269|PubMed:8516312, ECO:0000269|PubMed:9420329}. |
Q00536 | CDK16 | S42 | ochoa | Cyclin-dependent kinase 16 (EC 2.7.11.22) (Cell division protein kinase 16) (PCTAIRE-motif protein kinase 1) (Serine/threonine-protein kinase PCTAIRE-1) | Protein kinase that plays a role in vesicle-mediated transport processes and exocytosis. Regulates GH1 release by brain neurons. Phosphorylates NSF, and thereby regulates NSF oligomerization. Required for normal spermatogenesis. Regulates neuron differentiation and dendrite development (By similarity). Plays a role in the regulation of insulin secretion in response to changes in blood glucose levels. Can phosphorylate CCNY at 'Ser-336' (in vitro). {ECO:0000250, ECO:0000269|PubMed:22184064, ECO:0000269|PubMed:22796189, ECO:0000269|PubMed:22798068}. |
Q01518 | CAP1 | Y31 | ochoa | Adenylyl cyclase-associated protein 1 (CAP 1) | Directly regulates filament dynamics and has been implicated in a number of complex developmental and morphological processes, including mRNA localization and the establishment of cell polarity. |
Q04721 | NOTCH2 | S2388 | ochoa | Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}. |
Q08379 | GOLGA2 | S774 | ochoa | Golgin subfamily A member 2 (130 kDa cis-Golgi matrix protein) (GM130) (GM130 autoantigen) (Golgin-95) | Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane (Probable) (PubMed:16489344). Required for normal protein transport from the endoplasmic reticulum to the Golgi apparatus and the cell membrane (By similarity). Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter-connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly: phosphorylation at Ser-37 by CDK1 at the onset of mitosis inhibits the interaction with p115/USO1, preventing tethering of COPI vesicles and thereby inhibiting transport through the Golgi apparatus during mitosis (By similarity). Also plays a key role in spindle pole assembly and centrosome organization (PubMed:26165940). Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle: upon phosphorylation at the onset of mitosis, GOLGA2 interacts with importin-alpha via the nuclear localization signal region, leading to recruit importin-alpha to the Golgi membranes and liberate the spindle assembly factor TPX2 from importin-alpha. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle (PubMed:19242490, PubMed:26165940). Regulates the meiotic spindle pole assembly, probably via the same mechanism (By similarity). Also regulates the centrosome organization (PubMed:18045989, PubMed:19109421). Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins (PubMed:16489344, PubMed:17314401). {ECO:0000250|UniProtKB:Q62839, ECO:0000250|UniProtKB:Q921M4, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:17314401, ECO:0000269|PubMed:18045989, ECO:0000269|PubMed:19109421, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:26165940, ECO:0000305|PubMed:26363069}. |
Q12789 | GTF3C1 | S1962 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12888 | TP53BP1 | S1160 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12955 | ANK3 | S539 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12962 | TAF10 | T48 | ochoa | Transcription initiation factor TFIID subunit 10 (STAF28) (Transcription initiation factor TFIID 30 kDa subunit) (TAF(II)30) (TAFII-30) (TAFII30) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). TAF10 is also component of the PCAF histone acetylase complex, the TATA-binding protein-free TAF complex (TFTC) and the STAGA transcription coactivator-HAT complex (PubMed:10373431, PubMed:11564863, PubMed:12601814, PubMed:18206972, PubMed:9885574). May regulate cyclin E expression (By similarity). {ECO:0000250|UniProtKB:Q8K0H5, ECO:0000269|PubMed:10373431, ECO:0000269|PubMed:11564863, ECO:0000269|PubMed:12601814, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:9885574}. |
Q13263 | TRIM28 | Y517 | ochoa|psp | Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) | Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}. |
Q13796 | SHROOM2 | S644 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q14160 | SCRIB | S761 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q15027 | ACAP1 | S379 | ochoa | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 1 (Centaurin-beta-1) (Cnt-b1) | GTPase-activating protein (GAP) for ADP ribosylation factor 6 (ARF6) required for clathrin-dependent export of proteins from recycling endosomes to trans-Golgi network and cell surface. Required for regulated export of ITGB1 from recycling endosomes to the cell surface and ITGB1-dependent cell migration. {ECO:0000269|PubMed:11062263, ECO:0000269|PubMed:16256741, ECO:0000269|PubMed:17398097, ECO:0000269|PubMed:17664335, ECO:0000269|PubMed:22645133}. |
Q15061 | WDR43 | S328 | ochoa | WD repeat-containing protein 43 (U3 small nucleolar RNA-associated protein 5 homolog) | Ribosome biogenesis factor that coordinates hyperactive transcription and ribogenesis (PubMed:17699751). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I (PubMed:17699751, PubMed:34516797). Essential for stem cell pluripotency and embryonic development. In the nucleoplasm, recruited by promoter-associated/nascent transcripts and transcription to active promoters where it facilitates releases of elongation factor P-TEFb and paused RNA polymerase II to allow transcription elongation and maintain high-level expression of its targets genes (By similarity). {ECO:0000250|UniProtKB:Q6ZQL4, ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797}. |
Q15080 | NCF4 | S166 | ochoa | Neutrophil cytosol factor 4 (NCF-4) (Neutrophil NADPH oxidase factor 4) (SH3 and PX domain-containing protein 4) (p40-phox) (p40phox) | Subunit of the phagocyte NADPH oxidase complex that mediates the transfer of electrons from cytosolic NADPH to O2 to produce the superoxide anion (O2(-)) (Probable). In the activated complex, electrons are first transferred from NADPH to flavin adenine dinucleotide (FAD) and subsequently transferred via two heme molecules to molecular oxygen, producing superoxide through an outer-sphere reaction (By similarity). Activation of the NADPH oxidase complex is initiated by the assembly of cytosolic subunits of the NADPH oxidase complex with the core NADPH oxidase complex to form a complex at the plasma membrane or phagosomal membrane (By similarity). This activation process is initiated by phosphorylation dependent binding of the cytosolic NCF1/p47-phox subunit to the C-terminus of CYBA/p22-phox (By similarity). {ECO:0000250|UniProtKB:P04839, ECO:0000250|UniProtKB:P14598, ECO:0000305|PubMed:8280052}. |
Q15147 | PLCB4 | S890 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-4) (Phospholipase C-beta-4) (PLC-beta-4) | Activated phosphatidylinositol-specific phospholipase C enzymes catalyze the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) involved in G-protein coupled receptor signaling pathways. PLCB4 is a direct effector of the endothelin receptor signaling pathway that plays an essential role in lower jaw and middle ear structures development (PubMed:35284927). {ECO:0000250|UniProtKB:Q07722, ECO:0000269|PubMed:35284927}. |
Q15149 | PLEC | S2749 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15554 | TERF2 | S416 | ochoa | Telomeric repeat-binding factor 2 (TTAGGG repeat-binding factor 2) (Telomeric DNA-binding protein) | Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes (PubMed:15608617, PubMed:16166375, PubMed:20655466, PubMed:28216226, PubMed:9326950, PubMed:9326951, PubMed:9476899). In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo (PubMed:16166375, PubMed:20655466). Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection (PubMed:16166375). Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways (PubMed:16166375). Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair (PubMed:20655466). Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo (PubMed:20655466, PubMed:28216226). Preferentially binds to positive supercoiled DNA (PubMed:15608617, PubMed:20655466). Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology (PubMed:20655466). Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length (By similarity). {ECO:0000250|UniProtKB:O35144, ECO:0000269|PubMed:15608617, ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:20655466, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:9326950, ECO:0000269|PubMed:9326951, ECO:0000269|PubMed:9476899}. |
Q15653 | NFKBIB | S19 | psp | NF-kappa-B inhibitor beta (NF-kappa-BIB) (I-kappa-B-beta) (IkB-B) (IkB-beta) (IkappaBbeta) (Thyroid receptor-interacting protein 9) (TR-interacting protein 9) (TRIP-9) | Inhibits NF-kappa-B by complexing with and trapping it in the cytoplasm. However, the unphosphorylated form resynthesized after cell stimulation is able to bind NF-kappa-B allowing its transport to the nucleus and protecting it to further NFKBIA-dependent inactivation. Association with inhibitor kappa B-interacting NKIRAS1 and NKIRAS2 prevent its phosphorylation rendering it more resistant to degradation, explaining its slower degradation. |
Q16555 | DPYSL2 | S288 | ochoa | Dihydropyrimidinase-related protein 2 (DRP-2) (Collapsin response mediator protein 2) (CRMP-2) (N2A3) (Unc-33-like phosphoprotein 2) (ULIP-2) | Plays a role in neuronal development and polarity, as well as in axon growth and guidance, neuronal growth cone collapse and cell migration. Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. May play a role in endocytosis. {ECO:0000269|PubMed:11477421, ECO:0000269|PubMed:15466863, ECO:0000269|PubMed:20801876}. |
Q1ED39 | KNOP1 | S185 | ochoa | Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) | None |
Q2M296 | MTHFSD | S296 | ochoa | Methenyltetrahydrofolate synthase domain-containing protein | None |
Q32MQ0 | ZNF750 | S136 | ochoa | Zinc finger protein 750 | Transcription factor involved in epidermis differentiation. Required for terminal epidermal differentiation: acts downstream of p63/TP63 and activates expression of late epidermal differentiation genes. Specifically binds to the promoter of KLF4 and promotes its expression. {ECO:0000269|PubMed:22364861}. |
Q53ET0 | CRTC2 | S623 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q53ET0 | CRTC2 | S624 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q5JTH9 | RRP12 | S460 | ochoa | RRP12-like protein | None |
Q5T447 | HECTD3 | S192 | psp | E3 ubiquitin-protein ligase HECTD3 (EC 2.3.2.26) (HECT domain-containing protein 3) (HECT-type E3 ubiquitin transferase HECTD3) | E3 ubiquitin ligases accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Mediates ubiquitination of TRIOBP and its subsequent proteasomal degradation, thus facilitating cell cycle progression by regulating the turn-over of TRIOBP. Mediates also ubiquitination of STX8 (By similarity). {ECO:0000250|UniProtKB:Q3U487, ECO:0000269|PubMed:18194665}. |
Q5VST9 | OBSCN | S6162 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q63ZY3 | KANK2 | S147 | ochoa | KN motif and ankyrin repeat domain-containing protein 2 (Ankyrin repeat domain-containing protein 25) (Matrix-remodeling-associated protein 3) (SRC-1-interacting protein) (SIP) (SRC-interacting protein) (SRC1-interacting protein) | Involved in transcription regulation by sequestering in the cytoplasm nuclear receptor coactivators such as NCOA1, NCOA2 and NCOA3 (PubMed:17476305). Involved in regulation of caspase-independent apoptosis by sequestering the proapoptotic factor AIFM1 in mitochondria (PubMed:22371500). Pro-apoptotic stimuli can induce its proteasomal degradation allowing the translocation of AIFM1 to the nucleus to induce apoptosis (PubMed:22371500). Involved in the negative control of vitamin D receptor signaling pathway (PubMed:24671081). Involved in actin stress fibers formation through its interaction with ARHGDIA and the regulation of the Rho signaling pathway (PubMed:17996375, PubMed:25961457). May thereby play a role in cell adhesion and migration, regulating for instance podocytes migration during development of the kidney (PubMed:25961457). Through the Rho signaling pathway may also regulate cell proliferation (By similarity). {ECO:0000250|UniProtKB:Q8BX02, ECO:0000269|PubMed:17476305, ECO:0000269|PubMed:17996375, ECO:0000269|PubMed:22371500, ECO:0000269|PubMed:24671081, ECO:0000269|PubMed:25961457}. |
Q68CZ2 | TNS3 | S1292 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q68DC2 | ANKS6 | S660 | ochoa | Ankyrin repeat and SAM domain-containing protein 6 (Ankyrin repeat domain-containing protein 14) (SamCystin) (Sterile alpha motif domain-containing protein 6) (SAM domain-containing protein 6) | Required for renal function. {ECO:0000269|PubMed:23793029}. |
Q6NV74 | CRACDL | S603 | ochoa | CRACD-like protein | None |
Q6PJ61 | FBXO46 | S21 | psp | F-box only protein 46 (F-box only protein 34-like) | Substrate-recognition component of the SCF(FBXO46) protein ligase complex, which mediates the ubiquitination and degradation of target proteins (PubMed:30171069). In absence of stress, the SCF(FBXO46) complex catalyzes ubiquitination and degradation of MTOR-phosphorylated FBXO31 (PubMed:30171069). {ECO:0000269|PubMed:30171069}. |
Q6PJ61 | FBXO46 | S67 | psp | F-box only protein 46 (F-box only protein 34-like) | Substrate-recognition component of the SCF(FBXO46) protein ligase complex, which mediates the ubiquitination and degradation of target proteins (PubMed:30171069). In absence of stress, the SCF(FBXO46) complex catalyzes ubiquitination and degradation of MTOR-phosphorylated FBXO31 (PubMed:30171069). {ECO:0000269|PubMed:30171069}. |
Q6PJF5 | RHBDF2 | S239 | ochoa | Inactive rhomboid protein 2 (iRhom2) (Rhomboid 5 homolog 2) (Rhomboid family member 2) (Rhomboid veinlet-like protein 5) (Rhomboid veinlet-like protein 6) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000250|UniProtKB:Q80WQ6}. |
Q6RW13 | AGTRAP | S138 | ochoa | Type-1 angiotensin II receptor-associated protein (AT1 receptor-associated protein) | Appears to be a negative regulator of type-1 angiotensin II receptor-mediated signaling by regulating receptor internalization as well as mechanism of receptor desensitization such as phosphorylation. Also induces a decrease in cell proliferation and angiotensin II-stimulated transcriptional activity. {ECO:0000269|PubMed:12960423}. |
Q6SPF0 | SAMD1 | S399 | ochoa | Sterile alpha motif domain-containing protein 1 (SAM domain-containing protein 1) (Atherin) | Unmethylated CpG islands (CGIs)-binding protein which localizes to H3K4me3-decorated CGIs, where it acts as a transcriptional repressor (PubMed:33980486). Tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs (PubMed:33980486). Plays a role in atherogenesis by binding with LDL on cell surface and promoting LDL oxidation which leads to the formation of foam cell (PubMed:16159594, PubMed:34006929). {ECO:0000269|PubMed:16159594, ECO:0000269|PubMed:33980486, ECO:0000269|PubMed:34006929}. |
Q6UXY8 | TMC5 | S84 | ochoa | Transmembrane channel-like protein 5 | Probable component of an ion channel (Probable). Molecular function hasn't been characterized yet (Probable). {ECO:0000305}. |
Q6WKZ4 | RAB11FIP1 | S758 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6ZUM4 | ARHGAP27 | S481 | ochoa | Rho GTPase-activating protein 27 (CIN85-associated multi-domain-containing Rho GTPase-activating protein 1) (Rho-type GTPase-activating protein 27) (SH3 domain-containing protein 20) | Rho GTPase-activating protein which may be involved in clathrin-mediated endocytosis. GTPase activators for the Rho-type GTPases act by converting them to an inactive GDP-bound state. Has activity toward CDC42 and RAC1 (By similarity). {ECO:0000250}. |
Q7Z2K8 | GPRIN1 | S970 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z2W4 | ZC3HAV1 | S257 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z591 | AKNA | T950 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z5J4 | RAI1 | T65 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z6Z7 | HUWE1 | S1089 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86UX7 | FERMT3 | S117 | ochoa | Fermitin family homolog 3 (Kindlin-3) (MIG2-like protein) (Unc-112-related protein 2) | Plays a central role in cell adhesion in hematopoietic cells (PubMed:19234463, PubMed:26359933). Acts by activating the integrin beta-1-3 (ITGB1, ITGB2 and ITGB3) (By similarity). Required for integrin-mediated platelet adhesion and leukocyte adhesion to endothelial cells (PubMed:19234460). Required for activation of integrin beta-2 (ITGB2) in polymorphonuclear granulocytes (PMNs) (By similarity). {ECO:0000250|UniProtKB:Q8K1B8, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463, ECO:0000269|PubMed:26359933}.; FUNCTION: Isoform 2 may act as a repressor of NF-kappa-B and apoptosis. {ECO:0000269|PubMed:19064721, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463}. |
Q86VP3 | PACS2 | S706 | ochoa | Phosphofurin acidic cluster sorting protein 2 (PACS-2) (PACS1-like protein) | Multifunctional sorting protein that controls the endoplasmic reticulum (ER)-mitochondria communication, including the apposition of mitochondria with the ER and ER homeostasis. In addition, in response to apoptotic inducer, translocates BIB to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated BID, the release of cytochrome c, the activation of caspase-3 thereby causing cell death. May also be involved in ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments. {ECO:0000269|PubMed:15692563, ECO:0000269|PubMed:15692567}. |
Q86YP4 | GATAD2A | S337 | ochoa | Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q8IUD2 | ERC1 | S55 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IVL1 | NAV2 | S1538 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8N6H7 | ARFGAP2 | S368 | ochoa | ADP-ribosylation factor GTPase-activating protein 2 (ARF GAP 2) (GTPase-activating protein ZNF289) (Zinc finger protein 289) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:17760859}. |
Q8NET4 | RTL9 | S1039 | ochoa | Retrotransposon Gag-like protein 9 (Retrotransposon gag domain-containing protein 1) (Tumor antigen BJ-HCC-23) | None |
Q8NEZ4 | KMT2C | S3758 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8TEA7 | TBCK | S414 | ochoa | TBC domain-containing protein kinase-like protein (FERRY endosomal RAB5 effector complex subunit 1) (Fy-1) | Component of the FERRY complex (Five-subunit Endosomal Rab5 and RNA/ribosome intermediary) (PubMed:37267905). The FERRY complex directly interacts with mRNAs and RAB5A, and functions as a RAB5A effector involved in the localization and the distribution of specific mRNAs most likely by mediating their endosomal transport. The complex recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction (PubMed:37267905). Also involved in the modulation of mTOR signaling and expression of mTOR complex components (PubMed:23977024, PubMed:27040691). Involved in the control of actin-cytoskeleton organization (PubMed:23977024). {ECO:0000269|PubMed:23977024, ECO:0000269|PubMed:24576458, ECO:0000269|PubMed:27040691, ECO:0000269|PubMed:37267905}. |
Q8TES7 | FBF1 | S494 | ochoa | Fas-binding factor 1 (FBF-1) (Protein albatross) | Keratin-binding protein required for epithelial cell polarization. Involved in apical junction complex (AJC) assembly via its interaction with PARD3. Required for ciliogenesis. {ECO:0000269|PubMed:18838552, ECO:0000269|PubMed:23348840}. |
Q8TF44 | C2CD4C | S178 | ochoa | C2 calcium-dependent domain-containing protein 4C (Nuclear-localized factor 3) (Protein FAM148C) | None |
Q8TF74 | WIPF2 | S70 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8TF76 | HASPIN | S188 | psp | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q92618 | ZNF516 | S928 | ochoa | Zinc finger protein 516 | Transcriptional regulator that binds to the promoter and activates the transcription of genes promoting brown adipose tissue (BAT) differentiation. Among brown adipose tissue-specific genes, binds the proximal region of the promoter of the UCP1 gene to activate its transcription and thereby regulate thermogenesis (By similarity). May also play a role in the cellular response to replication stress (PubMed:23446422). {ECO:0000250|UniProtKB:Q7TSH3, ECO:0000269|PubMed:23446422}. |
Q92619 | ARHGAP45 | S73 | ochoa | Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}. |
Q92858 | ATOH1 | S84 | ochoa | Transcription factor ATOH1 (Atonal bHLH transcription factor 1) (Class A basic helix-loop-helix protein 14) (bHLHa14) (Helix-loop-helix protein hATH-1) (hATH1) (Protein atonal homolog 1) | Transcriptional regulator. Activates E box-dependent transcription in collaboration with TCF3/E47, but the activity is completely antagonized by the negative regulator of neurogenesis HES1. Plays a role in the differentiation of subsets of neural cells by activating E box-dependent transcription (By similarity). {ECO:0000250|UniProtKB:P48985}. |
Q92994 | BRF1 | S410 | ochoa | Transcription factor IIIB 90 kDa subunit (TFIIIB90) (hTFIIIB90) (B-related factor 1) (BRF-1) (hBRF) (TAF3B2) (TATA box-binding protein-associated factor, RNA polymerase III, subunit 2) | General activator of RNA polymerase which utilizes different TFIIIB complexes at structurally distinct promoters. The isoform 1 is involved in the transcription of tRNA, adenovirus VA1, 7SL and 5S RNA. Isoform 2 is required for transcription of the U6 promoter. |
Q92997 | DVL3 | S280 | psp | Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) | Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}. |
Q96D71 | REPS1 | S104 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96KR1 | ZFR | S546 | ochoa | Zinc finger RNA-binding protein (hZFR) (M-phase phosphoprotein homolog) | Involved in postimplantation and gastrulation stages of development. Involved in the nucleocytoplasmic shuttling of STAU2. Binds to DNA and RNA (By similarity). {ECO:0000250}. |
Q96LA6 | FCRL1 | S66 | ochoa | Fc receptor-like protein 1 (FcR-like protein 1) (FcRL1) (Fc receptor homolog 1) (FcRH1) (IFGP family protein 1) (hIFGP1) (Immune receptor translocation-associated protein 5) (CD antigen CD307a) | Type I transmembrane surface glycoprotein preferentially expressed by B-cells that regulates BCR-mediated signaling responses (PubMed:15479727). Recruits ABL1 as the intracellular effector molecule to enhance B-cell activation (By similarity). Also plays a negative role by suppressing ERK activation under homeostatic and BCR-stimulated conditions in a GRB2-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q8R4Y0, ECO:0000269|PubMed:15479727}. |
Q96PE2 | ARHGEF17 | S735 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PK6 | RBM14 | S242 | ochoa | RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) | Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}. |
Q96PK6 | RBM14 | S649 | ochoa | RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) | Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}. |
Q96QE2 | SLC2A13 | S34 | ochoa | Proton myo-inositol cotransporter (H(+)-myo-inositol cotransporter) (Hmit) (H(+)-myo-inositol symporter) (Solute carrier family 2 member 13) | H(+)-myo-inositol cotransporter (PubMed:11500374). Can also transport related stereoisomers (PubMed:11500374). {ECO:0000269|PubMed:11500374}. |
Q96RI0 | F2RL3 | S359 | ochoa | Proteinase-activated receptor 4 (PAR-4) (Coagulation factor II receptor-like 3) (Thrombin receptor-like 3) | Receptor for activated thrombin or trypsin coupled to G proteins that stimulate phosphoinositide hydrolysis (PubMed:10079109). May play a role in platelets activation (PubMed:10079109). {ECO:0000269|PubMed:10079109}. |
Q96T37 | RBM15 | S344 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T51 | RUFY1 | S78 | ochoa | RUN and FYVE domain-containing protein 1 (FYVE-finger protein EIP1) (La-binding protein 1) (Rab4-interacting protein) (Zinc finger FYVE domain-containing protein 12) | Activating adapter involved in cargo sorting from early/recycling endosomes. Regulates retrieval of proteins from endosomes to the trans-Golgi network through interaction with the dynein-dynactin complex (PubMed:36282215). Dual effector of RAB4B and RAB14, mediates a cooperative interaction allowing endosomal tethering and fusion (PubMed:20534812). Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate and participates in early endosomal trafficking (PubMed:14617813). In oocytes, self-assembles to form a protein matrix which hold together endolysosomes, autophagosomes and proteasomes and generate non-membrane-bound compartments called endo-lysosomal vesicular assemblies (ELVAs). In immature oocytes, ELVAs sequester ubiquitinated protein aggregates and degrade them upon oocyte maturation (By similarity). {ECO:0000250|UniProtKB:Q8BIJ7, ECO:0000269|PubMed:14617813, ECO:0000269|PubMed:20534812, ECO:0000269|PubMed:36282215}. |
Q99081 | TCF12 | S164 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99490 | AGAP2 | S581 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 2 (AGAP-2) (Centaurin-gamma-1) (Cnt-g1) (GTP-binding and GTPase-activating protein 2) (GGAP2) (Phosphatidylinositol 3-kinase enhancer) (PIKE) | GTPase-activating protein (GAP) for ARF1 and ARF5, which also shows strong GTPase activity. Isoform 1 participates in the prevention of neuronal apoptosis by enhancing PI3 kinase activity. It aids the coupling of metabotropic glutamate receptor 1 (GRM1) to cytoplasmic PI3 kinase by interacting with Homer scaffolding proteins, and also seems to mediate anti-apoptotic effects of NGF by activating nuclear PI3 kinase. Isoform 2 does not stimulate PI3 kinase but may protect cells from apoptosis by stimulating Akt. It also regulates the adapter protein 1 (AP-1)-dependent trafficking of proteins in the endosomal system. It seems to be oncogenic. It is overexpressed in cancer cells, prevents apoptosis and promotes cancer cell invasion. {ECO:0000269|PubMed:12640130, ECO:0000269|PubMed:14761976, ECO:0000269|PubMed:15118108, ECO:0000269|PubMed:16079295}. |
Q99497 | PARK7 | S47 | ochoa | Parkinson disease protein 7 (Maillard deglycase) (Oncogene DJ1) (Parkinsonism-associated deglycase) (Protein DJ-1) (DJ-1) (Protein/nucleic acid deglycase DJ-1) (EC 3.1.2.-, EC 3.5.1.-, EC 3.5.1.124) | Multifunctional protein with controversial molecular function which plays an important role in cell protection against oxidative stress and cell death acting as oxidative stress sensor and redox-sensitive chaperone and protease (PubMed:12796482, PubMed:17015834, PubMed:18711745, PubMed:19229105, PubMed:20304780, PubMed:25416785, PubMed:26995087, PubMed:28993701). It is involved in neuroprotective mechanisms like the stabilization of NFE2L2 and PINK1 proteins, male fertility as a positive regulator of androgen signaling pathway as well as cell growth and transformation through, for instance, the modulation of NF-kappa-B signaling pathway (PubMed:12612053, PubMed:14749723, PubMed:15502874, PubMed:17015834, PubMed:18711745, PubMed:21097510). Has been described as a protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals (PubMed:25416785, PubMed:28596309). But this function is rebuted by other works (PubMed:27903648, PubMed:31653696). As a protein deglycase, repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Acts on early glycation intermediates (hemithioacetals and aminocarbinols), preventing the formation of advanced glycation endproducts (AGE) that cause irreversible damage (PubMed:25416785, PubMed:26995087, PubMed:28013050). Also functions as a nucleotide deglycase able to repair glycated guanine in the free nucleotide pool (GTP, GDP, GMP, dGTP) and in DNA and RNA. Is thus involved in a major nucleotide repair system named guanine glycation repair (GG repair), dedicated to reversing methylglyoxal and glyoxal damage via nucleotide sanitization and direct nucleic acid repair (PubMed:28596309). Protects histones from adduction by methylglyoxal, controls the levels of methylglyoxal-derived argininine modifications on chromatin (PubMed:30150385). Able to remove the glycations and restore histone 3, histone glycation disrupts both local and global chromatin architecture by altering histone-DNA interactions as well as histone acetylation and ubiquitination levels (PubMed:30150385, PubMed:30894531). Displays a very low glyoxalase activity that may reflect its deglycase activity (PubMed:22523093, PubMed:28993701, PubMed:31653696). Eliminates hydrogen peroxide and protects cells against hydrogen peroxide-induced cell death (PubMed:16390825). Required for correct mitochondrial morphology and function as well as for autophagy of dysfunctional mitochondria (PubMed:16632486, PubMed:19229105). Plays a role in regulating expression or stability of the mitochondrial uncoupling proteins SLC25A14 and SLC25A27 in dopaminergic neurons of the substantia nigra pars compacta and attenuates the oxidative stress induced by calcium entry into the neurons via L-type channels during pacemaking (PubMed:18711745). Regulates astrocyte inflammatory responses, may modulate lipid rafts-dependent endocytosis in astrocytes and neuronal cells (PubMed:23847046). In pancreatic islets, involved in the maintenance of mitochondrial reactive oxygen species (ROS) levels and glucose homeostasis in an age- and diet dependent manner. Protects pancreatic beta cells from cell death induced by inflammatory and cytotoxic setting (By similarity). Binds to a number of mRNAs containing multiple copies of GG or CC motifs and partially inhibits their translation but dissociates following oxidative stress (PubMed:18626009). Metal-binding protein able to bind copper as well as toxic mercury ions, enhances the cell protection mechanism against induced metal toxicity (PubMed:23792957). In macrophages, interacts with the NADPH oxidase subunit NCF1 to direct NADPH oxidase-dependent ROS production, and protects against sepsis (By similarity). {ECO:0000250|UniProtKB:Q99LX0, ECO:0000269|PubMed:11477070, ECO:0000269|PubMed:12612053, ECO:0000269|PubMed:12855764, ECO:0000269|PubMed:12939276, ECO:0000269|PubMed:14749723, ECO:0000269|PubMed:15181200, ECO:0000269|PubMed:15502874, ECO:0000269|PubMed:15976810, ECO:0000269|PubMed:16390825, ECO:0000269|PubMed:17015834, ECO:0000269|PubMed:18626009, ECO:0000269|PubMed:18711745, ECO:0000269|PubMed:19229105, ECO:0000269|PubMed:20186336, ECO:0000269|PubMed:20304780, ECO:0000269|PubMed:21097510, ECO:0000269|PubMed:22523093, ECO:0000269|PubMed:23792957, ECO:0000269|PubMed:23847046, ECO:0000269|PubMed:25416785, ECO:0000269|PubMed:26995087, ECO:0000269|PubMed:28013050, ECO:0000269|PubMed:28596309, ECO:0000269|PubMed:28993701, ECO:0000269|PubMed:30150385, ECO:0000269|PubMed:30894531, ECO:0000269|PubMed:9070310}. |
Q99698 | LYST | S2088 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q9BQ15 | NABP2 | S134 | psp | SOSS complex subunit B1 (Nucleic acid-binding protein 2) (Oligonucleotide/oligosaccharide-binding fold-containing protein 2B) (Sensor of single-strand DNA complex subunit B1) (Sensor of ssDNA subunit B1) (SOSS-B1) (Single-stranded DNA-binding protein 1) (hSSB1) | Component of the SOSS complex, a multiprotein complex that functions downstream of the MRN complex to promote DNA repair and G2/M checkpoint (PubMed:25249620). In the SOSS complex, acts as a sensor of single-stranded DNA that binds to single-stranded DNA, in particular to polypyrimidines. The SOSS complex associates with DNA lesions and influences diverse endpoints in the cellular DNA damage response including cell-cycle checkpoint activation, recombinational repair and maintenance of genomic stability. Required for efficient homologous recombination-dependent repair of double-strand breaks (DSBs) and ATM-dependent signaling pathways. {ECO:0000269|PubMed:18449195, ECO:0000269|PubMed:19605351, ECO:0000269|PubMed:19683501, ECO:0000269|PubMed:25249620}. |
Q9BTC0 | DIDO1 | S1242 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BU23 | LMF2 | S682 | ochoa | Lipase maturation factor 2 (Transmembrane protein 112B) (Transmembrane protein 153) | Involved in the maturation of specific proteins in the endoplasmic reticulum. May be required for maturation and transport of active lipoprotein lipase (LPL) through the secretory pathway (By similarity). {ECO:0000250}. |
Q9C0C2 | TNKS1BP1 | S1452 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9H3Q1 | CDC42EP4 | S118 | ochoa | Cdc42 effector protein 4 (Binder of Rho GTPases 4) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation, when overexpressed in fibroblasts. |
Q9H7N4 | SCAF1 | S500 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7N4 | SCAF1 | S846 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9NQG1 | MANBAL | S59 | ochoa | Protein MANBAL | None |
Q9NQT8 | KIF13B | S1797 | ochoa | Kinesin-like protein KIF13B (Kinesin-like protein GAKIN) | Involved in reorganization of the cortical cytoskeleton. Regulates axon formation by promoting the formation of extra axons. May be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes. {ECO:0000269|PubMed:20194617}. |
Q9NR12 | PDLIM7 | S31 | ochoa | PDZ and LIM domain protein 7 (LIM mineralization protein) (LMP) (Protein enigma) | May function as a scaffold on which the coordinated assembly of proteins can occur. May play a role as an adapter that, via its PDZ domain, localizes LIM-binding proteins to actin filaments of both skeletal muscle and nonmuscle tissues. Involved in both of the two fundamental mechanisms of bone formation, direct bone formation (e.g. embryonic flat bones mandible and cranium), and endochondral bone formation (e.g. embryonic long bone development). Plays a role during fracture repair. Involved in BMP6 signaling pathway (By similarity). {ECO:0000250, ECO:0000269|PubMed:11874232, ECO:0000269|PubMed:7929196}. |
Q9NRA8 | EIF4ENIF1 | S120 | ochoa | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NRX4 | PHPT1 | S94 | ochoa | 14 kDa phosphohistidine phosphatase (EC 3.9.1.3) (Phosphohistidine phosphatase 1) (PHPT1) (Protein histidine phosphatase) (PHP) (Protein janus-A homolog) | Exhibits phosphohistidine phosphatase activity. {ECO:0000269|PubMed:19836471, ECO:0000269|PubMed:25574816}. |
Q9NUQ6 | SPATS2L | S369 | ochoa | SPATS2-like protein (DNA polymerase-transactivated protein 6) (Stress granule and nucleolar protein) (SGNP) | None |
Q9NV58 | RNF19A | S284 | ochoa | E3 ubiquitin-protein ligase RNF19A (EC 2.3.2.31) (Double ring-finger protein) (Dorfin) (RING finger protein 19A) (p38) | E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates, such as SNCAIP or CASR. Specifically ubiquitinates pathogenic SOD1 variants, which leads to their proteasomal degradation and to neuronal protection. {ECO:0000269|PubMed:11237715, ECO:0000269|PubMed:12145308, ECO:0000269|PubMed:12750386, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16513638}. |
Q9NV70 | EXOC1 | S298 | ochoa | Exocyst complex component 1 (Exocyst complex component Sec3) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane.; FUNCTION: (Microbial infection) Has an antiviral effect against flaviviruses by affecting viral RNA transcription and translation through the sequestration of elongation factor 1-alpha (EEF1A1). This results in decreased viral RNA synthesis and decreased viral protein translation. {ECO:0000269|PubMed:19889084}. |
Q9NWV8 | BABAM1 | S47 | ochoa | BRISC and BRCA1-A complex member 1 (Mediator of RAP80 interactions and targeting subunit of 40 kDa) (New component of the BRCA1-A complex) | Component of the BRCA1-A complex, a complex that specifically recognizes 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. In the BRCA1-A complex, it is required for the complex integrity and its localization at DSBs. Component of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked ubiquitin in various substrates (PubMed:24075985, PubMed:26195665). In these 2 complexes, it is probably required to maintain the stability of BABAM2 and help the 'Lys-63'-linked deubiquitinase activity mediated by BRCC3/BRCC36 component. The BRISC complex is required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubiquitinating NUMA1 (PubMed:26195665). Plays a role in interferon signaling via its role in the deubiquitination of the interferon receptor IFNAR1; deubiquitination increases IFNAR1 activity by enhancing its stability and cell surface expression (PubMed:24075985). Down-regulates the response to bacterial lipopolysaccharide (LPS) via its role in IFNAR1 deubiquitination (PubMed:24075985). {ECO:0000269|PubMed:19261746, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19261749}. |
Q9NYP3 | DONSON | S34 | ochoa | Protein downstream neighbor of Son (B17) | Replisome component that maintains genome stability by protecting stalled or damaged replication forks. After the induction of replication stress, required for the stabilization of stalled replication forks, the efficient activation of the intra-S-phase and G/2M cell-cycle checkpoints and the maintenance of genome stability. {ECO:0000269|PubMed:28191891}. |
Q9NZ43 | USE1 | S146 | ochoa | Vesicle transport protein USE1 (Putative MAPK-activating protein PM26) (USE1-like protein) (p31) | SNARE that may be involved in targeting and fusion of Golgi-derived retrograde transport vesicles with the ER. {ECO:0000269|PubMed:15272311}. |
Q9NZQ3 | NCKIPSD | S119 | ochoa | NCK-interacting protein with SH3 domain (54 kDa VacA-interacting protein) (54 kDa vimentin-interacting protein) (VIP54) (90 kDa SH3 protein interacting with Nck) (AF3p21) (Dia-interacting protein 1) (DIP-1) (Diaphanous protein-interacting protein) (SH3 adapter protein SPIN90) (WASP-interacting SH3-domain protein) (WISH) (Wiskott-Aldrich syndrome protein-interacting protein) | Has an important role in stress fiber formation induced by active diaphanous protein homolog 1 (DRF1). Induces microspike formation, in vivo (By similarity). In vitro, stimulates N-WASP-induced ARP2/3 complex activation in the absence of CDC42 (By similarity). May play an important role in the maintenance of sarcomeres and/or in the assembly of myofibrils into sarcomeres. Implicated in regulation of actin polymerization and cell adhesion. Plays a role in angiogenesis. {ECO:0000250, ECO:0000269|PubMed:22419821}. |
Q9P0L2 | MARK1 | S633 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P244 | LRFN1 | S584 | ochoa | Leucine-rich repeat and fibronectin type III domain-containing protein 1 (Synaptic adhesion-like molecule 2) | Promotes neurite outgrowth in hippocampal neurons. Involved in the regulation and maintenance of excitatory synapses. Induces the clustering of excitatory postsynaptic proteins, including DLG4, DLGAP1, GRIA1 and GRIN1 (By similarity). {ECO:0000250}. |
Q9P2G1 | ANKIB1 | S1053 | ochoa | Ankyrin repeat and IBR domain-containing protein 1 (EC 2.3.2.31) | Might act as an E3 ubiquitin-protein ligase, or as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. {ECO:0000250}. |
Q9UDY2 | TJP2 | S1031 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UKG1 | APPL1 | S430 | psp | DCC-interacting protein 13-alpha (Dip13-alpha) (Adapter protein containing PH domain, PTB domain and leucine zipper motif 1) | Multifunctional adapter protein that binds to various membrane receptors, nuclear factors and signaling proteins to regulate many processes, such as cell proliferation, immune response, endosomal trafficking and cell metabolism (PubMed:10490823, PubMed:15016378, PubMed:19661063, PubMed:26073777, PubMed:26583432). Regulates signaling pathway leading to cell proliferation through interaction with RAB5A and subunits of the NuRD/MeCP1 complex (PubMed:15016378). Functions as a positive regulator of innate immune response via activation of AKT1 signaling pathway by forming a complex with APPL1 and PIK3R1 (By similarity). Inhibits Fc-gamma receptor-mediated phagocytosis through PI3K/Akt signaling in macrophages (By similarity). Regulates TLR4 signaling in activated macrophages (By similarity). Involved in trafficking of the TGFBR1 from the endosomes to the nucleus via microtubules in a TRAF6-dependent manner (PubMed:26583432). Plays a role in cell metabolism by regulating adiponecting and insulin signaling pathways (PubMed:19661063, PubMed:24879834, PubMed:26073777). Required for fibroblast migration through HGF cell signaling (By similarity). Positive regulator of beta-catenin/TCF-dependent transcription through direct interaction with RUVBL2/reptin resulting in the relief of RUVBL2-mediated repression of beta-catenin/TCF target genes by modulating the interactions within the beta-catenin-reptin-HDAC complex (PubMed:19433865). {ECO:0000250|UniProtKB:Q8K3H0, ECO:0000269|PubMed:10490823, ECO:0000269|PubMed:15016378, ECO:0000269|PubMed:19433865, ECO:0000269|PubMed:19661063, ECO:0000269|PubMed:24879834, ECO:0000269|PubMed:26073777, ECO:0000269|PubMed:26583432}. |
Q9ULH0 | KIDINS220 | S1746 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULT0 | TTC7A | S672 | ochoa | Tetratricopeptide repeat protein 7A (TPR repeat protein 7A) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:23229899, PubMed:24417819). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (Probable). In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (By similarity). {ECO:0000250|UniProtKB:Q86TV6, ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:24417819}. |
Q9UM73 | ALK | Y1586 | psp | ALK tyrosine kinase receptor (EC 2.7.10.1) (Anaplastic lymphoma kinase) (CD antigen CD246) | Neuronal receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems and plays an important role in the genesis and differentiation of the nervous system (PubMed:11121404, PubMed:11387242, PubMed:16317043, PubMed:17274988, PubMed:30061385, PubMed:34646012, PubMed:34819673). Also acts as a key thinness protein involved in the resistance to weight gain: in hypothalamic neurons, controls energy expenditure acting as a negative regulator of white adipose tissue lipolysis and sympathetic tone to fine-tune energy homeostasis (By similarity). Following activation by ALKAL2 ligand at the cell surface, transduces an extracellular signal into an intracellular response (PubMed:30061385, PubMed:33411331, PubMed:34646012, PubMed:34819673). In contrast, ALKAL1 is not a potent physiological ligand for ALK (PubMed:34646012). Ligand-binding to the extracellular domain induces tyrosine kinase activation, leading to activation of the mitogen-activated protein kinase (MAPK) pathway (PubMed:34819673). Phosphorylates almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif (PubMed:15226403, PubMed:16878150). Induces tyrosine phosphorylation of CBL, FRS2, IRS1 and SHC1, as well as of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1 (PubMed:15226403, PubMed:16878150). ALK activation may also be regulated by pleiotrophin (PTN) and midkine (MDK) (PubMed:11278720, PubMed:11809760, PubMed:12107166, PubMed:12122009). PTN-binding induces MAPK pathway activation, which is important for the anti-apoptotic signaling of PTN and regulation of cell proliferation (PubMed:11278720, PubMed:11809760, PubMed:12107166). MDK-binding induces phosphorylation of the ALK target insulin receptor substrate (IRS1), activates mitogen-activated protein kinases (MAPKs) and PI3-kinase, resulting also in cell proliferation induction (PubMed:12122009). Drives NF-kappa-B activation, probably through IRS1 and the activation of the AKT serine/threonine kinase (PubMed:15226403, PubMed:16878150). Recruitment of IRS1 to activated ALK and the activation of NF-kappa-B are essential for the autocrine growth and survival signaling of MDK (PubMed:15226403, PubMed:16878150). {ECO:0000250|UniProtKB:P97793, ECO:0000269|PubMed:11121404, ECO:0000269|PubMed:11278720, ECO:0000269|PubMed:11387242, ECO:0000269|PubMed:11809760, ECO:0000269|PubMed:12107166, ECO:0000269|PubMed:12122009, ECO:0000269|PubMed:15226403, ECO:0000269|PubMed:16317043, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:17274988, ECO:0000269|PubMed:30061385, ECO:0000269|PubMed:33411331, ECO:0000269|PubMed:34646012, ECO:0000269|PubMed:34819673}. |
Q9UPP1 | PHF8 | S69 | psp | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UQB3 | CTNND2 | S285 | ochoa | Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) | Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}. |
Q9Y2J2 | EPB41L3 | S871 | ochoa | Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] | Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}. |
Q9Y2U8 | LEMD3 | S407 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2W2 | WBP11 | S600 | ochoa | WW domain-binding protein 11 (WBP-11) (Npw38-binding protein) (NpwBP) (SH3 domain-binding protein SNP70) (Splicing factor that interacts with PQBP-1 and PP1) | Activates pre-mRNA splicing. May inhibit PP1 phosphatase activity. {ECO:0000269|PubMed:10593949, ECO:0000269|PubMed:11375989, ECO:0000269|PubMed:14640981}. |
Q9Y2X3 | NOP58 | S304 | ochoa | Nucleolar protein 58 (Nucleolar protein 5) | Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}. |
Q9Y490 | TLN1 | S1503 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4B4 | RAD54L2 | S1177 | ochoa | Helicase ARIP4 (EC 3.6.4.12) (Androgen receptor-interacting protein 4) (RAD54-like protein 2) | DNA helicase that modulates androgen receptor (AR)-dependent transactivation in a promoter-dependent manner. Not able to remodel mononucleosomes in vitro (By similarity). {ECO:0000250}. |
Q9Y4B5 | MTCL1 | S221 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4F5 | CEP170B | S1179 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y5V3 | MAGED1 | S129 | ochoa | Melanoma-associated antigen D1 (MAGE tumor antigen CCF) (MAGE-D1 antigen) (Neurotrophin receptor-interacting MAGE homolog) | Involved in the apoptotic response after nerve growth factor (NGF) binding in neuronal cells. Inhibits cell cycle progression, and facilitates NGFR-mediated apoptosis. May act as a regulator of the function of DLX family members. May enhance ubiquitin ligase activity of RING-type zinc finger-containing E3 ubiquitin-protein ligases. Proposed to act through recruitment and/or stabilization of the Ubl-conjugating enzyme (E2) at the E3:substrate complex. Plays a role in the circadian rhythm regulation. May act as RORA co-regulator, modulating the expression of core clock genes such as BMAL1 and NFIL3, induced, or NR1D1, repressed. {ECO:0000269|PubMed:20864041}. |
Q9Y6R9 | CCDC61 | S383 | ochoa | Centrosomal protein CCDC61 (Coiled-coil domain-containing protein 61) (VFL3 homolog) | Microtubule-binding centrosomal protein required for centriole cohesion, independently of the centrosome-associated protein/CEP250 and rootletin/CROCC linker (PubMed:31789463). In interphase, required for anchoring microtubule at the mother centriole subdistal appendages and for centrosome positioning (PubMed:31789463). During mitosis, may be involved in spindle assembly and chromatin alignment by regulating the organization of spindle microtubules into a symmetrical structure (PubMed:30354798). Has been proposed to play a role in CEP170 recruitment to centrosomes (PubMed:30354798). However, this function could not be confirmed (PubMed:31789463). Plays a non-essential role in ciliogenesis (PubMed:31789463, PubMed:32375023). {ECO:0000269|PubMed:30354798, ECO:0000269|PubMed:31789463, ECO:0000269|PubMed:32375023}. |
P60174 | TPI1 | S106 | Sugiyama | Triosephosphate isomerase (TIM) (EC 5.3.1.1) (Methylglyoxal synthase) (EC 4.2.3.3) (Triose-phosphate isomerase) | Triosephosphate isomerase is an extremely efficient metabolic enzyme that catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde-3-phosphate (G3P) in glycolysis and gluconeogenesis. {ECO:0000269|PubMed:18562316}.; FUNCTION: It is also responsible for the non-negligible production of methylglyoxal a reactive cytotoxic side-product that modifies and can alter proteins, DNA and lipids. {ECO:0000250|UniProtKB:P00939}. |
Q15648 | MED1 | S932 | Sugiyama | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
P11413 | G6PD | S106 | Sugiyama | Glucose-6-phosphate 1-dehydrogenase (G6PD) (EC 1.1.1.49) | Catalyzes the rate-limiting step of the oxidative pentose-phosphate pathway, which represents a route for the dissimilation of carbohydrates besides glycolysis. The main function of this enzyme is to provide reducing power (NADPH) and pentose phosphates for fatty acid and nucleic acid synthesis. {ECO:0000269|PubMed:15858258, ECO:0000269|PubMed:24769394, ECO:0000269|PubMed:26479991, ECO:0000269|PubMed:35122041, ECO:0000269|PubMed:38066190, ECO:0000269|PubMed:743300}. |
Q9Y230 | RUVBL2 | S43 | Sugiyama | RuvB-like 2 (EC 3.6.4.12) (48 kDa TATA box-binding protein-interacting protein) (48 kDa TBP-interacting protein) (51 kDa erythrocyte cytosolic protein) (ECP-51) (INO80 complex subunit J) (Repressing pontin 52) (Reptin 52) (TIP49b) (TIP60-associated protein 54-beta) (TAP54-beta) | Possesses single-stranded DNA-stimulated ATPase and ATP-dependent DNA helicase (5' to 3') activity; hexamerization is thought to be critical for ATP hydrolysis and adjacent subunits in the ring-like structure contribute to the ATPase activity (PubMed:10428817, PubMed:17157868, PubMed:33205750). Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). This modification may both alter nucleosome -DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription (PubMed:14966270). This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair (PubMed:14966270). The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400 (PubMed:14966270). NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage (PubMed:14966270). Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome (PubMed:24463511). Proposed core component of the chromatin remodeling INO80 complex which exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding (PubMed:16230350, PubMed:21303910). Plays an essential role in oncogenic transformation by MYC and also modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex (PubMed:10882073, PubMed:16014379). May also inhibit the transcriptional activity of ATF2 (PubMed:11713276). Involved in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway where it negatively regulates expression of ER stress response genes (PubMed:25652260). May play a role in regulating the composition of the U5 snRNP complex (PubMed:28561026). {ECO:0000269|PubMed:10428817, ECO:0000269|PubMed:10882073, ECO:0000269|PubMed:11713276, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:16014379, ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:17157868, ECO:0000269|PubMed:21303910, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:25652260, ECO:0000269|PubMed:28561026, ECO:0000269|PubMed:33205750}. |
P31939 | ATIC | S300 | Sugiyama | Bifunctional purine biosynthesis protein ATIC (AICAR transformylase/inosine monophosphate cyclohydrolase) (ATIC) [Cleaved into: Bifunctional purine biosynthesis protein ATIC, N-terminally processed] [Includes: Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) (AICAR formyltransferase) (AICAR transformylase); Inosine 5'-monophosphate cyclohydrolase (IMP cyclohydrolase) (EC 3.5.4.10) (IMP synthase) (Inosinicase)] | Bifunctional enzyme that catalyzes the last two steps of purine biosynthesis (PubMed:11948179, PubMed:14756554). Acts as a transformylase that incorporates a formyl group to the AMP analog AICAR (5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide) to produce the intermediate formyl-AICAR (FAICAR) (PubMed:10985775, PubMed:11948179, PubMed:9378707). Can use both 10-formyldihydrofolate and 10-formyltetrahydrofolate as the formyl donor in this reaction (PubMed:10985775). Also catalyzes the cyclization of FAICAR to inosine monophosphate (IMP) (PubMed:11948179, PubMed:14756554). Is able to convert thio-AICAR to 6-mercaptopurine ribonucleotide, an inhibitor of purine biosynthesis used in the treatment of human leukemias (PubMed:10985775). Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571). {ECO:0000269|PubMed:10985775, ECO:0000269|PubMed:11948179, ECO:0000269|PubMed:14756554, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:9378707}. |
O94804 | STK10 | S824 | Sugiyama | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
P35916 | FLT4 | S1235 | Sugiyama | Vascular endothelial growth factor receptor 3 (VEGFR-3) (EC 2.7.10.1) (Fms-like tyrosine kinase 4) (FLT-4) (Tyrosine-protein kinase receptor FLT4) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFC and VEGFD, and plays an essential role in adult lymphangiogenesis and in the development of the vascular network and the cardiovascular system during embryonic development. Promotes proliferation, survival and migration of endothelial cells, and regulates angiogenic sprouting. Signaling by activated FLT4 leads to enhanced production of VEGFC, and to a lesser degree VEGFA, thereby creating a positive feedback loop that enhances FLT4 signaling. Modulates KDR signaling by forming heterodimers. The secreted isoform 3 may function as a decoy receptor for VEGFC and/or VEGFD and play an important role as a negative regulator of VEGFC-mediated lymphangiogenesis and angiogenesis. Binding of vascular growth factors to isoform 1 or isoform 2 leads to the activation of several signaling cascades; isoform 2 seems to be less efficient in signal transduction, because it has a truncated C-terminus and therefore lacks several phosphorylation sites. Mediates activation of the MAPK1/ERK2, MAPK3/ERK1 signaling pathway, of MAPK8 and the JUN signaling pathway, and of the AKT1 signaling pathway. Phosphorylates SHC1. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Promotes phosphorylation of MAPK8 at 'Thr-183' and 'Tyr-185', and of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:11532940, ECO:0000269|PubMed:15102829, ECO:0000269|PubMed:15474514, ECO:0000269|PubMed:16076871, ECO:0000269|PubMed:16452200, ECO:0000269|PubMed:17210781, ECO:0000269|PubMed:19610651, ECO:0000269|PubMed:19779139, ECO:0000269|PubMed:20224550, ECO:0000269|PubMed:20431062, ECO:0000269|PubMed:20445537, ECO:0000269|PubMed:21273538, ECO:0000269|PubMed:7675451, ECO:0000269|PubMed:8700872, ECO:0000269|PubMed:9435229}. |
P31327 | CPS1 | S1093 | Sugiyama | Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) | Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. |
O00151 | PDLIM1 | S31 | Sugiyama | PDZ and LIM domain protein 1 (C-terminal LIM domain protein 1) (Elfin) (LIM domain protein CLP-36) | Cytoskeletal protein that may act as an adapter that brings other proteins (like kinases) to the cytoskeleton (PubMed:10861853). Involved in assembly, disassembly and directioning of stress fibers in fibroblasts. Required for the localization of ACTN1 and PALLD to stress fibers. Required for cell migration and in maintaining cell polarity of fibroblasts (By similarity). {ECO:0000250|UniProtKB:P52944, ECO:0000269|PubMed:10861853}. |
P33316 | DUT | T124 | Sugiyama | Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial (dUTPase) (EC 3.6.1.23) (dUTP pyrophosphatase) | Catalyzes the cleavage of 2'-deoxyuridine 5'-triphosphate (dUTP) into 2'-deoxyuridine 5'-monophosphate (dUMP) and inorganic pyrophosphate and through its action efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis (PubMed:17880943, PubMed:8631816, PubMed:8805593). Inhibits peroxisome proliferator-activated receptor (PPAR) activity by binding of its N-terminal to PPAR, preventing the latter's dimerization with retinoid X receptor (By similarity). Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:P70583, ECO:0000250|UniProtKB:Q9CQ43, ECO:0000269|PubMed:17880943, ECO:0000269|PubMed:8631816, ECO:0000269|PubMed:8805593}. |
Q16584 | MAP3K11 | S160 | Sugiyama | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
P08758 | ANXA5 | S46 | Sugiyama | Annexin A5 (Anchorin CII) (Annexin V) (Annexin-5) (Calphobindin I) (CPB-I) (Endonexin II) (Lipocortin V) (Placental anticoagulant protein 4) (PP4) (Placental anticoagulant protein I) (PAP-I) (Thromboplastin inhibitor) (Vascular anticoagulant-alpha) (VAC-alpha) | This protein is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-201556 | Signaling by ALK | 0.000027 | 4.565 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.000057 | 4.241 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.000071 | 4.148 |
R-HSA-9005895 | Pervasive developmental disorders | 0.000784 | 3.106 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.000784 | 3.106 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.000784 | 3.106 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.001134 | 2.945 |
R-HSA-9022534 | Loss of MECP2 binding ability to 5hmC-DNA | 0.001221 | 2.913 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.002110 | 2.676 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.002185 | 2.661 |
R-HSA-68875 | Mitotic Prophase | 0.002423 | 2.616 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.002670 | 2.574 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.002855 | 2.544 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.002855 | 2.544 |
R-HSA-418889 | Caspase activation via Dependence Receptors in the absence of ligand | 0.003639 | 2.439 |
R-HSA-6804754 | Regulation of TP53 Expression | 0.004723 | 2.326 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.005128 | 2.290 |
R-HSA-9909396 | Circadian clock | 0.004829 | 2.316 |
R-HSA-1500931 | Cell-Cell communication | 0.005729 | 2.242 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.006585 | 2.181 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.007259 | 2.139 |
R-HSA-68886 | M Phase | 0.007439 | 2.128 |
R-HSA-70171 | Glycolysis | 0.007765 | 2.110 |
R-HSA-9839394 | TGFBR3 expression | 0.008245 | 2.084 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.009181 | 2.037 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.009181 | 2.037 |
R-HSA-9022927 | MECP2 regulates transcription of genes involved in GABA signaling | 0.010282 | 1.988 |
R-HSA-114608 | Platelet degranulation | 0.010775 | 1.968 |
R-HSA-1640170 | Cell Cycle | 0.011077 | 1.956 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.011065 | 1.956 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.011436 | 1.942 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.011436 | 1.942 |
R-HSA-74713 | IRS activation | 0.013767 | 1.861 |
R-HSA-9022535 | Loss of phosphorylation of MECP2 at T308 | 0.013767 | 1.861 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.013611 | 1.866 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 0.013767 | 1.861 |
R-HSA-162582 | Signal Transduction | 0.013502 | 1.870 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.014897 | 1.827 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.014897 | 1.827 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.014307 | 1.844 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.016258 | 1.789 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.017694 | 1.752 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.017694 | 1.752 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.019206 | 1.717 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.019206 | 1.717 |
R-HSA-9827857 | Specification of primordial germ cells | 0.018667 | 1.729 |
R-HSA-70326 | Glucose metabolism | 0.019146 | 1.718 |
R-HSA-9700649 | Drug resistance of ALK mutants | 0.024838 | 1.605 |
R-HSA-9717326 | crizotinib-resistant ALK mutants | 0.024838 | 1.605 |
R-HSA-9717264 | ASP-3026-resistant ALK mutants | 0.024838 | 1.605 |
R-HSA-9717319 | brigatinib-resistant ALK mutants | 0.024838 | 1.605 |
R-HSA-5467345 | Deletions in the AXIN1 gene destabilize the destruction complex | 0.024838 | 1.605 |
R-HSA-9717323 | ceritinib-resistant ALK mutants | 0.024838 | 1.605 |
R-HSA-9717301 | NVP-TAE684-resistant ALK mutants | 0.024838 | 1.605 |
R-HSA-9717329 | lorlatinib-resistant ALK mutants | 0.024838 | 1.605 |
R-HSA-9717316 | alectinib-resistant ALK mutants | 0.024838 | 1.605 |
R-HSA-9022707 | MECP2 regulates transcription factors | 0.026747 | 1.573 |
R-HSA-112412 | SOS-mediated signalling | 0.026747 | 1.573 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.023370 | 1.631 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.022465 | 1.649 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.026747 | 1.573 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 0.022023 | 1.657 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.026041 | 1.584 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 0.026747 | 1.573 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.025373 | 1.596 |
R-HSA-180746 | Nuclear import of Rev protein | 0.020796 | 1.682 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.026747 | 1.573 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.024213 | 1.616 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.027949 | 1.554 |
R-HSA-373753 | Nephrin family interactions | 0.025940 | 1.586 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.028655 | 1.543 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.029939 | 1.524 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.032011 | 1.495 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.031689 | 1.499 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.031595 | 1.500 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.032011 | 1.495 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.032011 | 1.495 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.029939 | 1.524 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.032944 | 1.482 |
R-HSA-9707616 | Heme signaling | 0.033287 | 1.478 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.034165 | 1.466 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.034165 | 1.466 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.034518 | 1.462 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.038695 | 1.412 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.037475 | 1.426 |
R-HSA-73884 | Base Excision Repair | 0.040839 | 1.389 |
R-HSA-109581 | Apoptosis | 0.040606 | 1.391 |
R-HSA-429947 | Deadenylation of mRNA | 0.040952 | 1.388 |
R-HSA-446728 | Cell junction organization | 0.040954 | 1.388 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.043048 | 1.366 |
R-HSA-390450 | Folding of actin by CCT/TriC | 0.043048 | 1.366 |
R-HSA-198203 | PI3K/AKT activation | 0.043048 | 1.366 |
R-HSA-74749 | Signal attenuation | 0.043048 | 1.366 |
R-HSA-2586552 | Signaling by Leptin | 0.043048 | 1.366 |
R-HSA-525793 | Myogenesis | 0.047946 | 1.319 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.048821 | 1.311 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.048821 | 1.311 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.048821 | 1.311 |
R-HSA-6802949 | Signaling by RAS mutants | 0.048821 | 1.311 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.046172 | 1.336 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 0.047946 | 1.319 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.048821 | 1.311 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.048821 | 1.311 |
R-HSA-75153 | Apoptotic execution phase | 0.048821 | 1.311 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.049122 | 1.309 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.051648 | 1.287 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.055485 | 1.256 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.055485 | 1.256 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.055608 | 1.255 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.055484 | 1.256 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.058279 | 1.234 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.055608 | 1.255 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.056383 | 1.249 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.056383 | 1.249 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.055485 | 1.256 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.059290 | 1.227 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.118185 | 0.927 |
R-HSA-8941237 | Invadopodia formation | 0.118185 | 0.927 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.140094 | 0.854 |
R-HSA-5083630 | Defective LFNG causes SCDO3 | 0.140094 | 0.854 |
R-HSA-111463 | SMAC (DIABLO) binds to IAPs | 0.161460 | 0.792 |
R-HSA-111464 | SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes | 0.161460 | 0.792 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.062119 | 1.207 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.062119 | 1.207 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.062119 | 1.207 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.062119 | 1.207 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.062119 | 1.207 |
R-HSA-111469 | SMAC, XIAP-regulated apoptotic response | 0.182296 | 0.739 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 0.182296 | 0.739 |
R-HSA-111459 | Activation of caspases through apoptosome-mediated cleavage | 0.182296 | 0.739 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.076130 | 1.118 |
R-HSA-9842640 | Signaling by LTK in cancer | 0.202616 | 0.693 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.202616 | 0.693 |
R-HSA-3595174 | Defective CHST14 causes EDS, musculocontractural type | 0.202616 | 0.693 |
R-HSA-3595172 | Defective CHST3 causes SEDCJD | 0.202616 | 0.693 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.083475 | 1.078 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.091025 | 1.041 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.222432 | 0.653 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.222432 | 0.653 |
R-HSA-1912399 | Pre-NOTCH Processing in the Endoplasmic Reticulum | 0.222432 | 0.653 |
R-HSA-3595177 | Defective CHSY1 causes TPBS | 0.222432 | 0.653 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 0.106683 | 0.972 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.106683 | 0.972 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.241757 | 0.617 |
R-HSA-170984 | ARMS-mediated activation | 0.260603 | 0.584 |
R-HSA-201688 | WNT mediated activation of DVL | 0.260603 | 0.584 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.260603 | 0.584 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.278981 | 0.554 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.148469 | 0.828 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.296904 | 0.527 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.296904 | 0.527 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.296904 | 0.527 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.296904 | 0.527 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.296904 | 0.527 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 0.174879 | 0.757 |
R-HSA-2022923 | DS-GAG biosynthesis | 0.314382 | 0.503 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.314382 | 0.503 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.116393 | 0.934 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.331427 | 0.480 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.331427 | 0.480 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.331427 | 0.480 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.127350 | 0.895 |
R-HSA-167161 | HIV Transcription Initiation | 0.127350 | 0.895 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.127350 | 0.895 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.201955 | 0.695 |
R-HSA-171306 | Packaging Of Telomere Ends | 0.201955 | 0.695 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.138658 | 0.858 |
R-HSA-9615710 | Late endosomal microautophagy | 0.220259 | 0.657 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.150291 | 0.823 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.078994 | 1.102 |
R-HSA-1663150 | The activation of arylsulfatases | 0.364259 | 0.439 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.380067 | 0.420 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.380067 | 0.420 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.380067 | 0.420 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.266460 | 0.574 |
R-HSA-5656121 | Translesion synthesis by POLI | 0.395482 | 0.403 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.275722 | 0.560 |
R-HSA-72649 | Translation initiation complex formation | 0.205971 | 0.686 |
R-HSA-5655862 | Translesion synthesis by POLK | 0.410516 | 0.387 |
R-HSA-3560783 | Defective B4GALT7 causes EDS, progeroid type | 0.410516 | 0.387 |
R-HSA-4420332 | Defective B3GALT6 causes EDSP2 and SEMDJL1 | 0.410516 | 0.387 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.218933 | 0.660 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.303449 | 0.518 |
R-HSA-4641257 | Degradation of AXIN | 0.303449 | 0.518 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.245320 | 0.610 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.213433 | 0.671 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.213433 | 0.671 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.265423 | 0.576 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.265423 | 0.576 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.187160 | 0.728 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.229237 | 0.640 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.349170 | 0.457 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.285715 | 0.544 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.078494 | 1.105 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.278175 | 0.556 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.333416 | 0.477 |
R-HSA-380287 | Centrosome maturation | 0.347053 | 0.460 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.367453 | 0.435 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.351175 | 0.454 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.340613 | 0.468 |
R-HSA-6798695 | Neutrophil degranulation | 0.319209 | 0.496 |
R-HSA-167172 | Transcription of the HIV genome | 0.299313 | 0.524 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.063549 | 1.197 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.218667 | 0.660 |
R-HSA-9948299 | Ribosome-associated quality control | 0.351213 | 0.454 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.239932 | 0.620 |
R-HSA-9646399 | Aggrephagy | 0.330982 | 0.480 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 0.131364 | 0.882 |
R-HSA-180786 | Extension of Telomeres | 0.238673 | 0.622 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.312945 | 0.505 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.278175 | 0.556 |
R-HSA-354192 | Integrin signaling | 0.076594 | 1.116 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.348049 | 0.458 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 0.238692 | 0.622 |
R-HSA-9609690 | HCMV Early Events | 0.096531 | 1.015 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.349170 | 0.457 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.339867 | 0.469 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.161460 | 0.792 |
R-HSA-9762292 | Regulation of CDH11 function | 0.278981 | 0.554 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.081184 | 1.091 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.157182 | 0.804 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.203073 | 0.692 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.330982 | 0.480 |
R-HSA-191650 | Regulation of gap junction activity | 0.140094 | 0.854 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.182296 | 0.739 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 0.083475 | 1.078 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.098766 | 1.005 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.174879 | 0.757 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 0.331427 | 0.480 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 0.229463 | 0.639 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.330982 | 0.480 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.150291 | 0.823 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 0.275722 | 0.560 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.283722 | 0.547 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.095638 | 1.019 |
R-HSA-9851151 | MDK and PTN in ALK signaling | 0.140094 | 0.854 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.148469 | 0.828 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.127350 | 0.895 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.140072 | 0.854 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.095638 | 1.019 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.192871 | 0.715 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 0.161460 | 0.792 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 0.161460 | 0.792 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.100674 | 0.997 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.183843 | 0.736 |
R-HSA-5689901 | Metalloprotease DUBs | 0.192871 | 0.715 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.127350 | 0.895 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.132961 | 0.876 |
R-HSA-418885 | DCC mediated attractive signaling | 0.380067 | 0.420 |
R-HSA-9664420 | Killing mechanisms | 0.395482 | 0.403 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.395482 | 0.403 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.187160 | 0.728 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.340237 | 0.468 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.367453 | 0.435 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.069006 | 1.161 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.231345 | 0.636 |
R-HSA-9823730 | Formation of definitive endoderm | 0.131364 | 0.882 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.112158 | 0.950 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.231345 | 0.636 |
R-HSA-171007 | p38MAPK events | 0.083475 | 1.078 |
R-HSA-3214815 | HDACs deacetylate histones | 0.076312 | 1.117 |
R-HSA-399956 | CRMPs in Sema3A signaling | 0.364259 | 0.439 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.364259 | 0.439 |
R-HSA-110312 | Translesion synthesis by REV1 | 0.380067 | 0.420 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.380067 | 0.420 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.410516 | 0.387 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.353862 | 0.451 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.135125 | 0.869 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.251996 | 0.599 |
R-HSA-193648 | NRAGE signals death through JNK | 0.079762 | 1.098 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.121826 | 0.914 |
R-HSA-4641258 | Degradation of DVL | 0.303449 | 0.518 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.263885 | 0.579 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.306059 | 0.514 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.135594 | 0.868 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.072123 | 1.142 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.225477 | 0.647 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.063549 | 1.197 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 0.260603 | 0.584 |
R-HSA-110331 | Cleavage of the damaged purine | 0.100674 | 0.997 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.349170 | 0.457 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.316837 | 0.499 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.410516 | 0.387 |
R-HSA-9843745 | Adipogenesis | 0.311958 | 0.506 |
R-HSA-6807070 | PTEN Regulation | 0.202223 | 0.694 |
R-HSA-195721 | Signaling by WNT | 0.407150 | 0.390 |
R-HSA-73927 | Depurination | 0.105814 | 0.975 |
R-HSA-9609646 | HCMV Infection | 0.242755 | 0.615 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.385079 | 0.414 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.118185 | 0.927 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.072123 | 1.142 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.278981 | 0.554 |
R-HSA-4839744 | Signaling by APC mutants | 0.296904 | 0.527 |
R-HSA-192814 | vRNA Synthesis | 0.296904 | 0.527 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 0.165989 | 0.780 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 0.314382 | 0.503 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.314382 | 0.503 |
R-HSA-75896 | Plasmalogen biosynthesis | 0.314382 | 0.503 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.314382 | 0.503 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.380067 | 0.420 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.182833 | 0.738 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.232057 | 0.634 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.330982 | 0.480 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.161528 | 0.792 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.367188 | 0.435 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.114764 | 0.940 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.317298 | 0.499 |
R-HSA-68882 | Mitotic Anaphase | 0.144634 | 0.840 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.238692 | 0.622 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.380067 | 0.420 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.147185 | 0.832 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.183843 | 0.736 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.183843 | 0.736 |
R-HSA-209543 | p75NTR recruits signalling complexes | 0.331427 | 0.480 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.330982 | 0.480 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.362997 | 0.440 |
R-HSA-9620244 | Long-term potentiation | 0.183843 | 0.736 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.220259 | 0.657 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.266460 | 0.574 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.385009 | 0.415 |
R-HSA-2428924 | IGF1R signaling cascade | 0.272170 | 0.565 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.387741 | 0.411 |
R-HSA-162587 | HIV Life Cycle | 0.155438 | 0.808 |
R-HSA-5610787 | Hedgehog 'off' state | 0.306059 | 0.514 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.182296 | 0.739 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.076594 | 1.116 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.238673 | 0.622 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.257196 | 0.590 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.226793 | 0.644 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.245323 | 0.610 |
R-HSA-1433559 | Regulation of KIT signaling | 0.076130 | 1.118 |
R-HSA-9663891 | Selective autophagy | 0.229237 | 0.640 |
R-HSA-4086400 | PCP/CE pathway | 0.367453 | 0.435 |
R-HSA-6794361 | Neurexins and neuroligins | 0.193193 | 0.714 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.278935 | 0.554 |
R-HSA-5689603 | UCH proteinases | 0.353862 | 0.451 |
R-HSA-8953854 | Metabolism of RNA | 0.187292 | 0.727 |
R-HSA-194138 | Signaling by VEGF | 0.144322 | 0.841 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.330982 | 0.480 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.330982 | 0.480 |
R-HSA-429593 | Inositol transporters | 0.161460 | 0.792 |
R-HSA-195399 | VEGF binds to VEGFR leading to receptor dimerization | 0.182296 | 0.739 |
R-HSA-1236973 | Cross-presentation of particulate exogenous antigens (phagosomes) | 0.278981 | 0.554 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.314382 | 0.503 |
R-HSA-191859 | snRNP Assembly | 0.090566 | 1.043 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.090566 | 1.043 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.364259 | 0.439 |
R-HSA-9930044 | Nuclear RNA decay | 0.257196 | 0.590 |
R-HSA-1221632 | Meiotic synapsis | 0.199557 | 0.700 |
R-HSA-8875878 | MET promotes cell motility | 0.312655 | 0.505 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.208234 | 0.681 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.393838 | 0.405 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.340237 | 0.468 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.237995 | 0.623 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.407870 | 0.389 |
R-HSA-162906 | HIV Infection | 0.284843 | 0.545 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.076907 | 1.114 |
R-HSA-73893 | DNA Damage Bypass | 0.419968 | 0.377 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.096531 | 1.015 |
R-HSA-68877 | Mitotic Prometaphase | 0.287094 | 0.542 |
R-HSA-169893 | Prolonged ERK activation events | 0.395482 | 0.403 |
R-HSA-9824272 | Somitogenesis | 0.385009 | 0.415 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.190766 | 0.719 |
R-HSA-73894 | DNA Repair | 0.165927 | 0.780 |
R-HSA-5693538 | Homology Directed Repair | 0.240526 | 0.619 |
R-HSA-9664873 | Pexophagy | 0.278981 | 0.554 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.340095 | 0.468 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.326592 | 0.486 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.411320 | 0.386 |
R-HSA-157118 | Signaling by NOTCH | 0.211667 | 0.674 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.076130 | 1.118 |
R-HSA-167044 | Signalling to RAS | 0.139859 | 0.854 |
R-HSA-9842663 | Signaling by LTK | 0.331427 | 0.480 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.156221 | 0.806 |
R-HSA-9766229 | Degradation of CDH1 | 0.174429 | 0.758 |
R-HSA-373752 | Netrin-1 signaling | 0.376125 | 0.425 |
R-HSA-418990 | Adherens junctions interactions | 0.149758 | 0.825 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 0.364259 | 0.439 |
R-HSA-187687 | Signalling to ERKs | 0.090709 | 1.042 |
R-HSA-421270 | Cell-cell junction organization | 0.245949 | 0.609 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.285715 | 0.544 |
R-HSA-182971 | EGFR downregulation | 0.238692 | 0.622 |
R-HSA-74160 | Gene expression (Transcription) | 0.131192 | 0.882 |
R-HSA-73887 | Death Receptor Signaling | 0.267044 | 0.573 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.262838 | 0.580 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.172976 | 0.762 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.401963 | 0.396 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.385009 | 0.415 |
R-HSA-4086398 | Ca2+ pathway | 0.333416 | 0.477 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.095771 | 1.019 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.238673 | 0.622 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.161460 | 0.792 |
R-HSA-194313 | VEGF ligand-receptor interactions | 0.182296 | 0.739 |
R-HSA-418886 | Netrin mediated repulsion signals | 0.222432 | 0.653 |
R-HSA-8948747 | Regulation of PTEN localization | 0.222432 | 0.653 |
R-HSA-390696 | Adrenoceptors | 0.241757 | 0.617 |
R-HSA-166208 | mTORC1-mediated signalling | 0.157182 | 0.804 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 0.314382 | 0.503 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.072940 | 1.137 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.183843 | 0.736 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 0.331427 | 0.480 |
R-HSA-9796292 | Formation of axial mesoderm | 0.348049 | 0.458 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.220259 | 0.657 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.380067 | 0.420 |
R-HSA-432047 | Passive transport by Aquaporins | 0.410516 | 0.387 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.232057 | 0.634 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.265423 | 0.576 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.152631 | 0.816 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.146504 | 0.834 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 0.340095 | 0.468 |
R-HSA-2028269 | Signaling by Hippo | 0.106683 | 0.972 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.218667 | 0.660 |
R-HSA-1632852 | Macroautophagy | 0.366016 | 0.436 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.260603 | 0.584 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 0.296904 | 0.527 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.268697 | 0.571 |
R-HSA-5617833 | Cilium Assembly | 0.275451 | 0.560 |
R-HSA-4839726 | Chromatin organization | 0.080976 | 1.092 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.341361 | 0.467 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.148469 | 0.828 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.211088 | 0.676 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.292509 | 0.534 |
R-HSA-165159 | MTOR signalling | 0.132961 | 0.876 |
R-HSA-422475 | Axon guidance | 0.261923 | 0.582 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.330982 | 0.480 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.182296 | 0.739 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.182296 | 0.739 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 0.241757 | 0.617 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 0.260603 | 0.584 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 0.260603 | 0.584 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.131364 | 0.882 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.144609 | 0.840 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 0.395482 | 0.403 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.153853 | 0.813 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.245320 | 0.610 |
R-HSA-376176 | Signaling by ROBO receptors | 0.111378 | 0.953 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.360663 | 0.443 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.362486 | 0.441 |
R-HSA-212436 | Generic Transcription Pathway | 0.202171 | 0.694 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.072104 | 1.142 |
R-HSA-9675108 | Nervous system development | 0.350312 | 0.456 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.247938 | 0.606 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.083475 | 1.078 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.385009 | 0.415 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.385009 | 0.415 |
R-HSA-3214842 | HDMs demethylate histones | 0.183843 | 0.736 |
R-HSA-5205647 | Mitophagy | 0.275722 | 0.560 |
R-HSA-5688426 | Deubiquitination | 0.159348 | 0.798 |
R-HSA-9627069 | Regulation of the apoptosome activity | 0.278981 | 0.554 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.364259 | 0.439 |
R-HSA-5673000 | RAF activation | 0.275722 | 0.560 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.358202 | 0.446 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.107899 | 0.967 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.153467 | 0.814 |
R-HSA-9031628 | NGF-stimulated transcription | 0.411320 | 0.386 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.380994 | 0.419 |
R-HSA-177929 | Signaling by EGFR | 0.079762 | 1.098 |
R-HSA-1474165 | Reproduction | 0.165071 | 0.782 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.168293 | 0.774 |
R-HSA-168255 | Influenza Infection | 0.065580 | 1.183 |
R-HSA-166520 | Signaling by NTRKs | 0.061256 | 1.213 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.132961 | 0.876 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.375892 | 0.425 |
R-HSA-9733709 | Cardiogenesis | 0.257196 | 0.590 |
R-HSA-73928 | Depyrimidination | 0.132961 | 0.876 |
R-HSA-373755 | Semaphorin interactions | 0.265423 | 0.576 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.326592 | 0.486 |
R-HSA-9033500 | TYSND1 cleaves peroxisomal proteins | 0.182296 | 0.739 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 0.222432 | 0.653 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 0.241757 | 0.617 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.278981 | 0.554 |
R-HSA-8934903 | Receptor Mediated Mitophagy | 0.278981 | 0.554 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.085890 | 1.066 |
R-HSA-210990 | PECAM1 interactions | 0.296904 | 0.527 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.102030 | 0.991 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.410516 | 0.387 |
R-HSA-196783 | Coenzyme A biosynthesis | 0.410516 | 0.387 |
R-HSA-437239 | Recycling pathway of L1 | 0.402610 | 0.395 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.204461 | 0.689 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.174879 | 0.757 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.174879 | 0.757 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.197951 | 0.703 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.376125 | 0.425 |
R-HSA-3000170 | Syndecan interactions | 0.165989 | 0.780 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.328571 | 0.483 |
R-HSA-162909 | Host Interactions of HIV factors | 0.268620 | 0.571 |
R-HSA-5357801 | Programmed Cell Death | 0.118111 | 0.928 |
R-HSA-9711123 | Cellular response to chemical stress | 0.193292 | 0.714 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 0.083475 | 1.078 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.201955 | 0.695 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.395482 | 0.403 |
R-HSA-1500620 | Meiosis | 0.414536 | 0.382 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.415317 | 0.382 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.245153 | 0.611 |
R-HSA-9831926 | Nephron development | 0.114764 | 0.940 |
R-HSA-70263 | Gluconeogenesis | 0.411320 | 0.386 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.321834 | 0.492 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.083548 | 1.078 |
R-HSA-391908 | Prostanoid ligand receptors | 0.296904 | 0.527 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.331427 | 0.480 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.312945 | 0.505 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.319768 | 0.495 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.260603 | 0.584 |
R-HSA-111458 | Formation of apoptosome | 0.278981 | 0.554 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.380067 | 0.420 |
R-HSA-71336 | Pentose phosphate pathway | 0.321834 | 0.492 |
R-HSA-6806834 | Signaling by MET | 0.182833 | 0.738 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.168919 | 0.772 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.380067 | 0.420 |
R-HSA-6807004 | Negative regulation of MET activity | 0.131364 | 0.882 |
R-HSA-8853659 | RET signaling | 0.095638 | 1.019 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.235923 | 0.627 |
R-HSA-9830369 | Kidney development | 0.292509 | 0.534 |
R-HSA-211000 | Gene Silencing by RNA | 0.182921 | 0.738 |
R-HSA-9006936 | Signaling by TGFB family members | 0.292614 | 0.534 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.157182 | 0.804 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.257196 | 0.590 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.303449 | 0.518 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.317298 | 0.499 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.193193 | 0.714 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.158556 | 0.800 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.187829 | 0.726 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.254476 | 0.594 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.275722 | 0.560 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 0.410516 | 0.387 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.419968 | 0.377 |
R-HSA-1266695 | Interleukin-7 signaling | 0.183843 | 0.736 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.238673 | 0.622 |
R-HSA-982772 | Growth hormone receptor signaling | 0.165989 | 0.780 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.275722 | 0.560 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.420224 | 0.377 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.420397 | 0.376 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.424339 | 0.372 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.425124 | 0.371 |
R-HSA-3560801 | Defective B3GAT3 causes JDSSDHD | 0.425176 | 0.371 |
R-HSA-1614517 | Sulfide oxidation to sulfate | 0.425176 | 0.371 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 0.425176 | 0.371 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.425176 | 0.371 |
R-HSA-209905 | Catecholamine biosynthesis | 0.425176 | 0.371 |
R-HSA-109704 | PI3K Cascade | 0.428550 | 0.368 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.434900 | 0.362 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.437065 | 0.359 |
R-HSA-3928664 | Ephrin signaling | 0.439473 | 0.357 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.439473 | 0.357 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.439473 | 0.357 |
R-HSA-111471 | Apoptotic factor-mediated response | 0.439473 | 0.357 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.439473 | 0.357 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.439473 | 0.357 |
R-HSA-180292 | GAB1 signalosome | 0.439473 | 0.357 |
R-HSA-156902 | Peptide chain elongation | 0.440949 | 0.356 |
R-HSA-73886 | Chromosome Maintenance | 0.440985 | 0.356 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.440985 | 0.356 |
R-HSA-3371556 | Cellular response to heat stress | 0.440985 | 0.356 |
R-HSA-9612973 | Autophagy | 0.444641 | 0.352 |
R-HSA-72187 | mRNA 3'-end processing | 0.445511 | 0.351 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.446849 | 0.350 |
R-HSA-9610379 | HCMV Late Events | 0.449495 | 0.347 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 0.453414 | 0.344 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.453414 | 0.344 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 0.453414 | 0.344 |
R-HSA-9834899 | Specification of the neural plate border | 0.453414 | 0.344 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.453886 | 0.343 |
R-HSA-445355 | Smooth Muscle Contraction | 0.453886 | 0.343 |
R-HSA-8956320 | Nucleotide biosynthesis | 0.453886 | 0.343 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.453886 | 0.343 |
R-HSA-2262752 | Cellular responses to stress | 0.458667 | 0.339 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.460454 | 0.337 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.466891 | 0.331 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.467010 | 0.331 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.467010 | 0.331 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.467010 | 0.331 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 0.467010 | 0.331 |
R-HSA-8848584 | Wax and plasmalogen biosynthesis | 0.467010 | 0.331 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.467010 | 0.331 |
R-HSA-391903 | Eicosanoid ligand-binding receptors | 0.467010 | 0.331 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.468399 | 0.329 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.468399 | 0.329 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.468399 | 0.329 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.473044 | 0.325 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.473294 | 0.325 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.478567 | 0.320 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.478567 | 0.320 |
R-HSA-69481 | G2/M Checkpoints | 0.479230 | 0.319 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 0.480269 | 0.319 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.480269 | 0.319 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.480269 | 0.319 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.480269 | 0.319 |
R-HSA-198753 | ERK/MAPK targets | 0.480269 | 0.319 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.481701 | 0.317 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.483140 | 0.316 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.485994 | 0.313 |
R-HSA-1474290 | Collagen formation | 0.485994 | 0.313 |
R-HSA-112399 | IRS-mediated signalling | 0.486642 | 0.313 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.486642 | 0.313 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.492288 | 0.308 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.492288 | 0.308 |
R-HSA-2022870 | CS-GAG biosynthesis | 0.493199 | 0.307 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.493199 | 0.307 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.493199 | 0.307 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.493199 | 0.307 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.493199 | 0.307 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.493199 | 0.307 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.493199 | 0.307 |
R-HSA-72172 | mRNA Splicing | 0.494604 | 0.306 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.498545 | 0.302 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.504762 | 0.297 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.504762 | 0.297 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.505807 | 0.296 |
R-HSA-6803529 | FGFR2 alternative splicing | 0.505807 | 0.296 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.505807 | 0.296 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.505807 | 0.296 |
R-HSA-9669938 | Signaling by KIT in disease | 0.505807 | 0.296 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.510393 | 0.292 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.510393 | 0.292 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.510393 | 0.292 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.510393 | 0.292 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.510393 | 0.292 |
R-HSA-1227986 | Signaling by ERBB2 | 0.510393 | 0.292 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.510393 | 0.292 |
R-HSA-157579 | Telomere Maintenance | 0.510939 | 0.292 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.510939 | 0.292 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.515791 | 0.288 |
R-HSA-422356 | Regulation of insulin secretion | 0.517076 | 0.286 |
R-HSA-199991 | Membrane Trafficking | 0.517108 | 0.286 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.518103 | 0.286 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 0.518103 | 0.286 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 0.518103 | 0.286 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.518103 | 0.286 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.518148 | 0.286 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.518148 | 0.286 |
R-HSA-112043 | PLC beta mediated events | 0.518148 | 0.286 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.525299 | 0.280 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.525822 | 0.279 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.530093 | 0.276 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.530093 | 0.276 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.530093 | 0.276 |
R-HSA-8963889 | Assembly of active LPL and LIPC lipase complexes | 0.530093 | 0.276 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 0.530093 | 0.276 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.532623 | 0.274 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.533412 | 0.273 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.533412 | 0.273 |
R-HSA-2408557 | Selenocysteine synthesis | 0.535233 | 0.271 |
R-HSA-9020702 | Interleukin-1 signaling | 0.535233 | 0.271 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.540919 | 0.267 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.541020 | 0.267 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.541200 | 0.267 |
R-HSA-400685 | Sema4D in semaphorin signaling | 0.541786 | 0.266 |
R-HSA-9830364 | Formation of the nephric duct | 0.541786 | 0.266 |
R-HSA-3000157 | Laminin interactions | 0.541786 | 0.266 |
R-HSA-192823 | Viral mRNA Translation | 0.547122 | 0.262 |
R-HSA-5358351 | Signaling by Hedgehog | 0.547291 | 0.262 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.548343 | 0.261 |
R-HSA-8953897 | Cellular responses to stimuli | 0.552265 | 0.258 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.552999 | 0.257 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.552999 | 0.257 |
R-HSA-8874081 | MET activates PTK2 signaling | 0.553189 | 0.257 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.553189 | 0.257 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.553189 | 0.257 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.553189 | 0.257 |
R-HSA-70635 | Urea cycle | 0.553189 | 0.257 |
R-HSA-2559583 | Cellular Senescence | 0.561474 | 0.251 |
R-HSA-112040 | G-protein mediated events | 0.562935 | 0.250 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.564309 | 0.248 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.564309 | 0.248 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.564309 | 0.248 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.564309 | 0.248 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.564309 | 0.248 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.564309 | 0.248 |
R-HSA-264876 | Insulin processing | 0.564309 | 0.248 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.564309 | 0.248 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.570104 | 0.244 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.570104 | 0.244 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.574680 | 0.241 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.575152 | 0.240 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.575152 | 0.240 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.575152 | 0.240 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.575152 | 0.240 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.575152 | 0.240 |
R-HSA-73614 | Pyrimidine salvage | 0.575152 | 0.240 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.575152 | 0.240 |
R-HSA-5683057 | MAPK family signaling cascades | 0.576096 | 0.240 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.577109 | 0.239 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.581694 | 0.235 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.584185 | 0.233 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.584185 | 0.233 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.584185 | 0.233 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.585726 | 0.232 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.585726 | 0.232 |
R-HSA-72086 | mRNA Capping | 0.585726 | 0.232 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 0.585726 | 0.232 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.585726 | 0.232 |
R-HSA-418360 | Platelet calcium homeostasis | 0.585726 | 0.232 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.585726 | 0.232 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.591097 | 0.228 |
R-HSA-5632684 | Hedgehog 'on' state | 0.591097 | 0.228 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.591097 | 0.228 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.593131 | 0.227 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.596038 | 0.225 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.603795 | 0.219 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.603795 | 0.219 |
R-HSA-9758941 | Gastrulation | 0.605783 | 0.218 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.606094 | 0.217 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.606094 | 0.217 |
R-HSA-186763 | Downstream signal transduction | 0.606094 | 0.217 |
R-HSA-72312 | rRNA processing | 0.608560 | 0.216 |
R-HSA-1236394 | Signaling by ERBB4 | 0.611318 | 0.214 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.614553 | 0.211 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.614553 | 0.211 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.615900 | 0.210 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.617887 | 0.209 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.617887 | 0.209 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.624371 | 0.205 |
R-HSA-9020591 | Interleukin-12 signaling | 0.624371 | 0.205 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.625462 | 0.204 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.625462 | 0.204 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.625462 | 0.204 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.625462 | 0.204 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.625462 | 0.204 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.625462 | 0.204 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.625462 | 0.204 |
R-HSA-8939211 | ESR-mediated signaling | 0.627388 | 0.202 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.628755 | 0.202 |
R-HSA-2024101 | CS/DS degradation | 0.634787 | 0.197 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.634787 | 0.197 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.634787 | 0.197 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 0.634787 | 0.197 |
R-HSA-373760 | L1CAM interactions | 0.635473 | 0.197 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.637081 | 0.196 |
R-HSA-9659379 | Sensory processing of sound | 0.643310 | 0.192 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.643310 | 0.192 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.643881 | 0.191 |
R-HSA-1971475 | Glycosaminoglycan-protein linkage region biosynthesis | 0.643881 | 0.191 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.643881 | 0.191 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 0.643881 | 0.191 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.643881 | 0.191 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.643881 | 0.191 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.643881 | 0.191 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.643881 | 0.191 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.643881 | 0.191 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.643881 | 0.191 |
R-HSA-392518 | Signal amplification | 0.643881 | 0.191 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.645330 | 0.190 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.649453 | 0.187 |
R-HSA-5654738 | Signaling by FGFR2 | 0.649453 | 0.187 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.652748 | 0.185 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.652748 | 0.185 |
R-HSA-169911 | Regulation of Apoptosis | 0.652748 | 0.185 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.652748 | 0.185 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.652748 | 0.185 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.652748 | 0.185 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.652918 | 0.185 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.661395 | 0.180 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.661395 | 0.180 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 0.661395 | 0.180 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.669828 | 0.174 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.669828 | 0.174 |
R-HSA-549127 | SLC-mediated transport of organic cations | 0.669828 | 0.174 |
R-HSA-196757 | Metabolism of folate and pterines | 0.669828 | 0.174 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.670148 | 0.174 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.673189 | 0.172 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.678051 | 0.169 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.678051 | 0.169 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 0.678051 | 0.169 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.678916 | 0.168 |
R-HSA-5619102 | SLC transporter disorders | 0.684363 | 0.165 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.686069 | 0.164 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.686069 | 0.164 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.686069 | 0.164 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.686069 | 0.164 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.686069 | 0.164 |
R-HSA-69541 | Stabilization of p53 | 0.686069 | 0.164 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.690124 | 0.161 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.693889 | 0.159 |
R-HSA-167169 | HIV Transcription Elongation | 0.693889 | 0.159 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.693889 | 0.159 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.693889 | 0.159 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.693946 | 0.159 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.695606 | 0.158 |
R-HSA-438064 | Post NMDA receptor activation events | 0.695606 | 0.158 |
R-HSA-70268 | Pyruvate metabolism | 0.695606 | 0.158 |
R-HSA-447115 | Interleukin-12 family signaling | 0.695606 | 0.158 |
R-HSA-72306 | tRNA processing | 0.700247 | 0.155 |
R-HSA-9645723 | Diseases of programmed cell death | 0.701008 | 0.154 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.701514 | 0.154 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.701514 | 0.154 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.701514 | 0.154 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.701514 | 0.154 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.701514 | 0.154 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.701514 | 0.154 |
R-HSA-1236974 | ER-Phagosome pathway | 0.706330 | 0.151 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.708949 | 0.149 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.708949 | 0.149 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.708949 | 0.149 |
R-HSA-5689880 | Ub-specific processing proteases | 0.711778 | 0.148 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.715549 | 0.145 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.716200 | 0.145 |
R-HSA-416476 | G alpha (q) signalling events | 0.719488 | 0.143 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.721825 | 0.142 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.723271 | 0.141 |
R-HSA-8854214 | TBC/RABGAPs | 0.723271 | 0.141 |
R-HSA-73621 | Pyrimidine catabolism | 0.723271 | 0.141 |
R-HSA-5654743 | Signaling by FGFR4 | 0.723271 | 0.141 |
R-HSA-391251 | Protein folding | 0.726835 | 0.139 |
R-HSA-74752 | Signaling by Insulin receptor | 0.726835 | 0.139 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.730166 | 0.137 |
R-HSA-9907900 | Proteasome assembly | 0.730166 | 0.137 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.730166 | 0.137 |
R-HSA-5683826 | Surfactant metabolism | 0.730166 | 0.137 |
R-HSA-375280 | Amine ligand-binding receptors | 0.730166 | 0.137 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.730166 | 0.137 |
R-HSA-69236 | G1 Phase | 0.730166 | 0.137 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 0.736889 | 0.133 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.736889 | 0.133 |
R-HSA-774815 | Nucleosome assembly | 0.736889 | 0.133 |
R-HSA-1614558 | Degradation of cysteine and homocysteine | 0.736889 | 0.133 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.736889 | 0.133 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.736889 | 0.133 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.736889 | 0.133 |
R-HSA-1489509 | DAG and IP3 signaling | 0.736889 | 0.133 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.736889 | 0.133 |
R-HSA-5654741 | Signaling by FGFR3 | 0.736889 | 0.133 |
R-HSA-163685 | Integration of energy metabolism | 0.740166 | 0.131 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.743446 | 0.129 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.743446 | 0.129 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.743446 | 0.129 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.743446 | 0.129 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.743446 | 0.129 |
R-HSA-9675135 | Diseases of DNA repair | 0.743446 | 0.129 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.748028 | 0.126 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.749839 | 0.125 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.749839 | 0.125 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.749839 | 0.125 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.749839 | 0.125 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.755312 | 0.122 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.755708 | 0.122 |
R-HSA-9664407 | Parasite infection | 0.755708 | 0.122 |
R-HSA-9664417 | Leishmania phagocytosis | 0.755708 | 0.122 |
R-HSA-9634597 | GPER1 signaling | 0.756073 | 0.121 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 0.756073 | 0.121 |
R-HSA-389356 | Co-stimulation by CD28 | 0.756073 | 0.121 |
R-HSA-69275 | G2/M Transition | 0.757994 | 0.120 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.759802 | 0.119 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.759802 | 0.119 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.759802 | 0.119 |
R-HSA-190236 | Signaling by FGFR | 0.759802 | 0.119 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.762153 | 0.118 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.762153 | 0.118 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.762153 | 0.118 |
R-HSA-3214847 | HATs acetylate histones | 0.764220 | 0.117 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.764570 | 0.117 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.768081 | 0.115 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.768081 | 0.115 |
R-HSA-9658195 | Leishmania infection | 0.768754 | 0.114 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.768754 | 0.114 |
R-HSA-9864848 | Complex IV assembly | 0.773862 | 0.111 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.773862 | 0.111 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.773862 | 0.111 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.777054 | 0.110 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.779499 | 0.108 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.779499 | 0.108 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.779499 | 0.108 |
R-HSA-68949 | Orc1 removal from chromatin | 0.779499 | 0.108 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.779499 | 0.108 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.779499 | 0.108 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.784996 | 0.105 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.784996 | 0.105 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.784996 | 0.105 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.784996 | 0.105 |
R-HSA-111885 | Opioid Signalling | 0.785267 | 0.105 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.789273 | 0.103 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.789273 | 0.103 |
R-HSA-9833110 | RSV-host interactions | 0.789273 | 0.103 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.790356 | 0.102 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.790356 | 0.102 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.793214 | 0.101 |
R-HSA-1793185 | Chondroitin sulfate/dermatan sulfate metabolism | 0.795583 | 0.099 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.795583 | 0.099 |
R-HSA-418597 | G alpha (z) signalling events | 0.795583 | 0.099 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.795583 | 0.099 |
R-HSA-418346 | Platelet homeostasis | 0.797089 | 0.098 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.797089 | 0.098 |
R-HSA-75893 | TNF signaling | 0.800680 | 0.097 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.800680 | 0.097 |
R-HSA-5578775 | Ion homeostasis | 0.800680 | 0.097 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.800680 | 0.097 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.800680 | 0.097 |
R-HSA-209776 | Metabolism of amine-derived hormones | 0.800680 | 0.097 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 0.800680 | 0.097 |
R-HSA-5654736 | Signaling by FGFR1 | 0.800680 | 0.097 |
R-HSA-446652 | Interleukin-1 family signaling | 0.801097 | 0.096 |
R-HSA-109582 | Hemostasis | 0.801107 | 0.096 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.801736 | 0.096 |
R-HSA-9609507 | Protein localization | 0.804277 | 0.095 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.804647 | 0.094 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.808332 | 0.092 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.810497 | 0.091 |
R-HSA-6782135 | Dual incision in TC-NER | 0.810497 | 0.091 |
R-HSA-1989781 | PPARA activates gene expression | 0.810510 | 0.091 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.811954 | 0.090 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.811954 | 0.090 |
R-HSA-9033241 | Peroxisomal protein import | 0.815223 | 0.089 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.816574 | 0.088 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.819544 | 0.086 |
R-HSA-9711097 | Cellular response to starvation | 0.819544 | 0.086 |
R-HSA-983189 | Kinesins | 0.819831 | 0.086 |
R-HSA-351202 | Metabolism of polyamines | 0.819831 | 0.086 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.819831 | 0.086 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.822459 | 0.085 |
R-HSA-450294 | MAP kinase activation | 0.824325 | 0.084 |
R-HSA-445717 | Aquaporin-mediated transport | 0.824325 | 0.084 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.824325 | 0.084 |
R-HSA-8956321 | Nucleotide salvage | 0.824325 | 0.084 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.828707 | 0.082 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.828707 | 0.082 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.828707 | 0.082 |
R-HSA-186797 | Signaling by PDGF | 0.828707 | 0.082 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.828707 | 0.082 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.832434 | 0.080 |
R-HSA-5653656 | Vesicle-mediated transport | 0.836010 | 0.078 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.836518 | 0.078 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.837146 | 0.077 |
R-HSA-1234174 | Cellular response to hypoxia | 0.841209 | 0.075 |
R-HSA-2980736 | Peptide hormone metabolism | 0.841902 | 0.075 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.847942 | 0.072 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.847942 | 0.072 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.849034 | 0.071 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.852801 | 0.069 |
R-HSA-5218859 | Regulated Necrosis | 0.852801 | 0.069 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.856610 | 0.067 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.856610 | 0.067 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.856999 | 0.067 |
R-HSA-448424 | Interleukin-17 signaling | 0.860056 | 0.065 |
R-HSA-9840310 | Glycosphingolipid catabolism | 0.860056 | 0.065 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.860056 | 0.065 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.861756 | 0.065 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.861756 | 0.065 |
R-HSA-6809371 | Formation of the cornified envelope | 0.862136 | 0.064 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.863549 | 0.064 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.863549 | 0.064 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.863549 | 0.064 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.866374 | 0.062 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.866954 | 0.062 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.866954 | 0.062 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 0.866954 | 0.062 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.870060 | 0.060 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.870275 | 0.060 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.870275 | 0.060 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 0.873513 | 0.059 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.873513 | 0.059 |
R-HSA-1474244 | Extracellular matrix organization | 0.876198 | 0.057 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.877109 | 0.057 |
R-HSA-72766 | Translation | 0.879658 | 0.056 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.882783 | 0.054 |
R-HSA-5619084 | ABC transporter disorders | 0.885679 | 0.053 |
R-HSA-15869 | Metabolism of nucleotides | 0.885802 | 0.053 |
R-HSA-1266738 | Developmental Biology | 0.889438 | 0.051 |
R-HSA-9833482 | PKR-mediated signaling | 0.891317 | 0.050 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.899258 | 0.046 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.899785 | 0.046 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.902950 | 0.044 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.903753 | 0.044 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.906620 | 0.043 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.907574 | 0.042 |
R-HSA-1614635 | Sulfur amino acid metabolism | 0.908953 | 0.041 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.908953 | 0.041 |
R-HSA-420499 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 0.913446 | 0.039 |
R-HSA-112310 | Neurotransmitter release cycle | 0.917717 | 0.037 |
R-HSA-202424 | Downstream TCR signaling | 0.917717 | 0.037 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.918204 | 0.037 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.921485 | 0.036 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.923733 | 0.034 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.923733 | 0.034 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.924641 | 0.034 |
R-HSA-2029481 | FCGR activation | 0.925640 | 0.034 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.925640 | 0.034 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.925640 | 0.034 |
R-HSA-597592 | Post-translational protein modification | 0.926204 | 0.033 |
R-HSA-397014 | Muscle contraction | 0.931624 | 0.031 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.936119 | 0.029 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.939274 | 0.027 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.940793 | 0.027 |
R-HSA-8951664 | Neddylation | 0.942012 | 0.026 |
R-HSA-1483255 | PI Metabolism | 0.942273 | 0.026 |
R-HSA-69239 | Synthesis of DNA | 0.950413 | 0.022 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.951654 | 0.022 |
R-HSA-2672351 | Stimuli-sensing channels | 0.951654 | 0.022 |
R-HSA-418555 | G alpha (s) signalling events | 0.952310 | 0.021 |
R-HSA-9824446 | Viral Infection Pathways | 0.952558 | 0.021 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.952864 | 0.021 |
R-HSA-202403 | TCR signaling | 0.954043 | 0.020 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.956166 | 0.019 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.959514 | 0.018 |
R-HSA-168249 | Innate Immune System | 0.959935 | 0.018 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.961515 | 0.017 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.961515 | 0.017 |
R-HSA-112316 | Neuronal System | 0.963330 | 0.016 |
R-HSA-9007101 | Rab regulation of trafficking | 0.963418 | 0.016 |
R-HSA-3781865 | Diseases of glycosylation | 0.963782 | 0.016 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.967281 | 0.014 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 0.968582 | 0.014 |
R-HSA-1660662 | Glycosphingolipid metabolism | 0.968582 | 0.014 |
R-HSA-2132295 | MHC class II antigen presentation | 0.968582 | 0.014 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.968811 | 0.014 |
R-HSA-69206 | G1/S Transition | 0.970884 | 0.013 |
R-HSA-8956319 | Nucleotide catabolism | 0.973694 | 0.012 |
R-HSA-428157 | Sphingolipid metabolism | 0.974846 | 0.011 |
R-HSA-913531 | Interferon Signaling | 0.974966 | 0.011 |
R-HSA-5576891 | Cardiac conduction | 0.975623 | 0.011 |
R-HSA-9717189 | Sensory perception of taste | 0.975623 | 0.011 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.975909 | 0.011 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.976234 | 0.010 |
R-HSA-9679506 | SARS-CoV Infections | 0.977684 | 0.010 |
R-HSA-6805567 | Keratinization | 0.977908 | 0.010 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.980609 | 0.009 |
R-HSA-5663205 | Infectious disease | 0.982202 | 0.008 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.983345 | 0.007 |
R-HSA-418594 | G alpha (i) signalling events | 0.983359 | 0.007 |
R-HSA-69242 | S Phase | 0.984954 | 0.007 |
R-HSA-69306 | DNA Replication | 0.986750 | 0.006 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.986928 | 0.006 |
R-HSA-388396 | GPCR downstream signalling | 0.990556 | 0.004 |
R-HSA-392499 | Metabolism of proteins | 0.991519 | 0.004 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.992069 | 0.003 |
R-HSA-449147 | Signaling by Interleukins | 0.992326 | 0.003 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.992483 | 0.003 |
R-HSA-611105 | Respiratory electron transport | 0.993162 | 0.003 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.994422 | 0.002 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.994519 | 0.002 |
R-HSA-983712 | Ion channel transport | 0.994833 | 0.002 |
R-HSA-1643685 | Disease | 0.995266 | 0.002 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 0.995333 | 0.002 |
R-HSA-1280218 | Adaptive Immune System | 0.996024 | 0.002 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.996660 | 0.001 |
R-HSA-372790 | Signaling by GPCR | 0.997227 | 0.001 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.998237 | 0.001 |
R-HSA-8957322 | Metabolism of steroids | 0.998434 | 0.001 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.998520 | 0.001 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.998756 | 0.001 |
R-HSA-9734767 | Developmental Cell Lineages | 0.999239 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999381 | 0.000 |
R-HSA-1483257 | Phospholipid metabolism | 0.999665 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999721 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999863 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 0.999869 | 0.000 |
R-HSA-168256 | Immune System | 0.999970 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999999 | 0.000 |
R-HSA-9752946 | Expression and translocation of olfactory receptors | 1.000000 | 0.000 |
R-HSA-381753 | Olfactory Signaling Pathway | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | 0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CLK3 |
0.883 | 0.338 | 1 | 0.888 |
HIPK4 |
0.877 | 0.343 | 1 | 0.867 |
COT |
0.877 | 0.172 | 2 | 0.817 |
KIS |
0.873 | 0.308 | 1 | 0.814 |
MOS |
0.871 | 0.192 | 1 | 0.857 |
CDC7 |
0.870 | 0.118 | 1 | 0.823 |
SRPK1 |
0.869 | 0.239 | -3 | 0.780 |
MTOR |
0.868 | 0.158 | 1 | 0.803 |
PIM3 |
0.868 | 0.162 | -3 | 0.850 |
DYRK2 |
0.868 | 0.313 | 1 | 0.832 |
SKMLCK |
0.866 | 0.207 | -2 | 0.892 |
ERK5 |
0.865 | 0.215 | 1 | 0.907 |
HIPK2 |
0.864 | 0.330 | 1 | 0.760 |
CDKL5 |
0.864 | 0.208 | -3 | 0.810 |
CDKL1 |
0.863 | 0.166 | -3 | 0.818 |
NDR2 |
0.863 | 0.134 | -3 | 0.847 |
NLK |
0.863 | 0.181 | 1 | 0.888 |
CLK2 |
0.863 | 0.314 | -3 | 0.770 |
PRPK |
0.862 | -0.006 | -1 | 0.851 |
ATR |
0.861 | 0.080 | 1 | 0.825 |
GRK1 |
0.860 | 0.174 | -2 | 0.801 |
PRKD1 |
0.860 | 0.190 | -3 | 0.824 |
RSK2 |
0.860 | 0.160 | -3 | 0.785 |
HIPK1 |
0.859 | 0.310 | 1 | 0.841 |
ICK |
0.859 | 0.209 | -3 | 0.844 |
CAMK1B |
0.859 | 0.070 | -3 | 0.849 |
CDK18 |
0.858 | 0.287 | 1 | 0.747 |
JNK2 |
0.857 | 0.290 | 1 | 0.752 |
IKKB |
0.857 | -0.033 | -2 | 0.729 |
PIM1 |
0.856 | 0.151 | -3 | 0.806 |
CDK8 |
0.855 | 0.218 | 1 | 0.786 |
PDHK4 |
0.854 | -0.150 | 1 | 0.829 |
DYRK4 |
0.854 | 0.296 | 1 | 0.770 |
CDK19 |
0.854 | 0.236 | 1 | 0.758 |
AURC |
0.854 | 0.159 | -2 | 0.683 |
RAF1 |
0.854 | -0.083 | 1 | 0.802 |
P38B |
0.854 | 0.280 | 1 | 0.785 |
JNK3 |
0.854 | 0.262 | 1 | 0.781 |
CDK7 |
0.854 | 0.222 | 1 | 0.799 |
CDK1 |
0.853 | 0.240 | 1 | 0.767 |
CLK4 |
0.853 | 0.220 | -3 | 0.782 |
BMPR2 |
0.853 | -0.117 | -2 | 0.855 |
WNK1 |
0.853 | 0.055 | -2 | 0.902 |
CAMLCK |
0.853 | 0.084 | -2 | 0.852 |
NUAK2 |
0.853 | 0.077 | -3 | 0.844 |
P38A |
0.853 | 0.264 | 1 | 0.838 |
CHAK2 |
0.852 | 0.065 | -1 | 0.818 |
BMPR1B |
0.852 | 0.150 | 1 | 0.784 |
DSTYK |
0.852 | -0.030 | 2 | 0.843 |
P90RSK |
0.852 | 0.119 | -3 | 0.787 |
PRKD2 |
0.852 | 0.138 | -3 | 0.775 |
GRK5 |
0.852 | -0.025 | -3 | 0.854 |
MST4 |
0.852 | 0.066 | 2 | 0.808 |
DAPK2 |
0.852 | 0.090 | -3 | 0.857 |
NDR1 |
0.851 | 0.059 | -3 | 0.834 |
RSK3 |
0.851 | 0.121 | -3 | 0.779 |
SRPK2 |
0.851 | 0.173 | -3 | 0.708 |
P38G |
0.851 | 0.261 | 1 | 0.694 |
SRPK3 |
0.851 | 0.153 | -3 | 0.757 |
CAMK2G |
0.851 | -0.079 | 2 | 0.760 |
MARK4 |
0.850 | 0.069 | 4 | 0.789 |
NIK |
0.850 | -0.001 | -3 | 0.859 |
CDK5 |
0.850 | 0.243 | 1 | 0.815 |
ERK1 |
0.849 | 0.241 | 1 | 0.774 |
CAMK2D |
0.848 | 0.047 | -3 | 0.829 |
CLK1 |
0.848 | 0.219 | -3 | 0.751 |
PKACG |
0.848 | 0.092 | -2 | 0.755 |
PKN3 |
0.848 | 0.021 | -3 | 0.827 |
TBK1 |
0.848 | -0.106 | 1 | 0.693 |
PKN2 |
0.848 | 0.043 | -3 | 0.837 |
RIPK3 |
0.847 | -0.044 | 3 | 0.746 |
GRK7 |
0.847 | 0.132 | 1 | 0.755 |
AMPKA1 |
0.847 | 0.051 | -3 | 0.850 |
CDK13 |
0.847 | 0.203 | 1 | 0.777 |
PKACB |
0.847 | 0.160 | -2 | 0.696 |
GCN2 |
0.847 | -0.165 | 2 | 0.742 |
NEK6 |
0.846 | -0.027 | -2 | 0.839 |
HIPK3 |
0.846 | 0.262 | 1 | 0.827 |
IKKA |
0.846 | -0.004 | -2 | 0.722 |
HUNK |
0.845 | -0.053 | 2 | 0.773 |
P38D |
0.845 | 0.272 | 1 | 0.716 |
CDK17 |
0.845 | 0.236 | 1 | 0.698 |
MAK |
0.845 | 0.318 | -2 | 0.772 |
IKKE |
0.845 | -0.111 | 1 | 0.686 |
DYRK1A |
0.845 | 0.232 | 1 | 0.836 |
MLK1 |
0.845 | -0.091 | 2 | 0.749 |
P70S6KB |
0.845 | 0.068 | -3 | 0.799 |
PDHK1 |
0.845 | -0.194 | 1 | 0.807 |
FAM20C |
0.844 | 0.089 | 2 | 0.618 |
RSK4 |
0.844 | 0.137 | -3 | 0.764 |
MAPKAPK2 |
0.844 | 0.091 | -3 | 0.746 |
GRK6 |
0.844 | -0.023 | 1 | 0.803 |
MAPKAPK3 |
0.844 | 0.051 | -3 | 0.783 |
MASTL |
0.843 | -0.116 | -2 | 0.798 |
CDK12 |
0.843 | 0.212 | 1 | 0.753 |
PKCD |
0.843 | 0.048 | 2 | 0.709 |
CAMK2B |
0.843 | 0.054 | 2 | 0.751 |
PAK1 |
0.843 | 0.065 | -2 | 0.801 |
CDK3 |
0.842 | 0.226 | 1 | 0.718 |
DYRK3 |
0.842 | 0.242 | 1 | 0.839 |
ULK2 |
0.842 | -0.172 | 2 | 0.707 |
DYRK1B |
0.842 | 0.242 | 1 | 0.789 |
TGFBR2 |
0.842 | -0.073 | -2 | 0.760 |
LATS2 |
0.842 | 0.011 | -5 | 0.739 |
CK1E |
0.842 | 0.151 | -3 | 0.644 |
CAMK2A |
0.842 | 0.067 | 2 | 0.766 |
AMPKA2 |
0.841 | 0.057 | -3 | 0.822 |
TSSK1 |
0.841 | 0.068 | -3 | 0.863 |
LATS1 |
0.841 | 0.088 | -3 | 0.849 |
MLK2 |
0.841 | -0.026 | 2 | 0.760 |
NEK7 |
0.841 | -0.151 | -3 | 0.828 |
MSK1 |
0.841 | 0.112 | -3 | 0.775 |
PRP4 |
0.840 | 0.190 | -3 | 0.779 |
PKCB |
0.840 | 0.071 | 2 | 0.669 |
AKT2 |
0.840 | 0.139 | -3 | 0.717 |
CDK14 |
0.840 | 0.234 | 1 | 0.778 |
BCKDK |
0.839 | -0.120 | -1 | 0.787 |
TGFBR1 |
0.839 | 0.029 | -2 | 0.779 |
SGK3 |
0.839 | 0.134 | -3 | 0.789 |
NIM1 |
0.839 | 0.038 | 3 | 0.772 |
CDK9 |
0.839 | 0.186 | 1 | 0.783 |
TSSK2 |
0.839 | 0.010 | -5 | 0.859 |
PRKX |
0.839 | 0.152 | -3 | 0.715 |
GRK4 |
0.839 | -0.067 | -2 | 0.825 |
MPSK1 |
0.839 | 0.231 | 1 | 0.810 |
ALK4 |
0.839 | -0.014 | -2 | 0.805 |
DLK |
0.838 | -0.149 | 1 | 0.795 |
MNK2 |
0.838 | 0.068 | -2 | 0.804 |
MSK2 |
0.838 | 0.060 | -3 | 0.775 |
ATM |
0.838 | -0.011 | 1 | 0.763 |
DNAPK |
0.838 | 0.073 | 1 | 0.699 |
QSK |
0.838 | 0.074 | 4 | 0.761 |
PKCA |
0.838 | 0.066 | 2 | 0.655 |
PKR |
0.837 | 0.012 | 1 | 0.821 |
CDK10 |
0.837 | 0.228 | 1 | 0.769 |
RIPK1 |
0.837 | -0.125 | 1 | 0.786 |
NEK9 |
0.837 | -0.114 | 2 | 0.772 |
PAK3 |
0.836 | 0.019 | -2 | 0.790 |
PKCG |
0.836 | 0.035 | 2 | 0.667 |
VRK2 |
0.836 | -0.010 | 1 | 0.865 |
MLK3 |
0.836 | -0.046 | 2 | 0.679 |
TTBK2 |
0.836 | -0.109 | 2 | 0.661 |
IRE1 |
0.835 | -0.057 | 1 | 0.783 |
SMG1 |
0.835 | -0.004 | 1 | 0.780 |
CDK16 |
0.835 | 0.225 | 1 | 0.714 |
CK1D |
0.835 | 0.149 | -3 | 0.597 |
GSK3A |
0.835 | 0.139 | 4 | 0.478 |
PRKD3 |
0.835 | 0.068 | -3 | 0.754 |
AURB |
0.835 | 0.073 | -2 | 0.677 |
ANKRD3 |
0.834 | -0.171 | 1 | 0.823 |
PAK6 |
0.834 | 0.123 | -2 | 0.710 |
PKG2 |
0.834 | 0.083 | -2 | 0.693 |
ERK2 |
0.834 | 0.157 | 1 | 0.799 |
PKCZ |
0.834 | 0.031 | 2 | 0.707 |
TLK2 |
0.834 | -0.006 | 1 | 0.767 |
MYLK4 |
0.834 | 0.049 | -2 | 0.790 |
MEK1 |
0.833 | -0.109 | 2 | 0.787 |
MST3 |
0.833 | 0.095 | 2 | 0.794 |
PASK |
0.833 | 0.107 | -3 | 0.872 |
JNK1 |
0.832 | 0.212 | 1 | 0.739 |
PIM2 |
0.832 | 0.100 | -3 | 0.760 |
ACVR2B |
0.832 | -0.002 | -2 | 0.759 |
ALK2 |
0.832 | -0.001 | -2 | 0.785 |
AURA |
0.831 | 0.065 | -2 | 0.654 |
CK1A2 |
0.831 | 0.134 | -3 | 0.601 |
WNK3 |
0.831 | -0.260 | 1 | 0.778 |
MNK1 |
0.831 | 0.034 | -2 | 0.806 |
MOK |
0.830 | 0.262 | 1 | 0.866 |
QIK |
0.830 | -0.044 | -3 | 0.827 |
DCAMKL1 |
0.830 | 0.060 | -3 | 0.791 |
ACVR2A |
0.830 | -0.033 | -2 | 0.743 |
MARK3 |
0.829 | 0.030 | 4 | 0.714 |
YSK4 |
0.829 | -0.116 | 1 | 0.734 |
CDK2 |
0.829 | 0.090 | 1 | 0.818 |
SIK |
0.828 | 0.037 | -3 | 0.765 |
GSK3B |
0.828 | 0.068 | 4 | 0.471 |
CAMK4 |
0.828 | -0.096 | -3 | 0.813 |
GRK2 |
0.828 | -0.023 | -2 | 0.721 |
NEK2 |
0.828 | -0.069 | 2 | 0.748 |
GAK |
0.828 | 0.148 | 1 | 0.855 |
PAK2 |
0.828 | -0.023 | -2 | 0.779 |
PKACA |
0.827 | 0.115 | -2 | 0.647 |
ULK1 |
0.827 | -0.244 | -3 | 0.770 |
PKCH |
0.827 | -0.018 | 2 | 0.642 |
PHKG1 |
0.827 | -0.038 | -3 | 0.825 |
MELK |
0.827 | -0.031 | -3 | 0.799 |
MLK4 |
0.827 | -0.099 | 2 | 0.658 |
CK1G1 |
0.827 | 0.099 | -3 | 0.624 |
BMPR1A |
0.827 | 0.046 | 1 | 0.755 |
NUAK1 |
0.825 | -0.027 | -3 | 0.785 |
PLK1 |
0.825 | -0.156 | -2 | 0.756 |
MARK2 |
0.824 | -0.010 | 4 | 0.688 |
NEK5 |
0.824 | -0.026 | 1 | 0.807 |
BRSK1 |
0.824 | -0.022 | -3 | 0.796 |
DRAK1 |
0.824 | -0.057 | 1 | 0.735 |
TAO3 |
0.823 | 0.010 | 1 | 0.767 |
MEKK2 |
0.823 | -0.045 | 2 | 0.734 |
ERK7 |
0.823 | 0.079 | 2 | 0.504 |
MEKK3 |
0.823 | -0.107 | 1 | 0.773 |
WNK4 |
0.823 | -0.039 | -2 | 0.890 |
MEK5 |
0.822 | -0.177 | 2 | 0.759 |
AKT1 |
0.822 | 0.096 | -3 | 0.733 |
LKB1 |
0.821 | 0.045 | -3 | 0.822 |
CHAK1 |
0.821 | -0.156 | 2 | 0.714 |
CHK1 |
0.821 | -0.048 | -3 | 0.807 |
SMMLCK |
0.820 | 0.007 | -3 | 0.816 |
CAMK1G |
0.820 | -0.014 | -3 | 0.764 |
DAPK3 |
0.819 | 0.079 | -3 | 0.807 |
BRSK2 |
0.819 | -0.072 | -3 | 0.806 |
IRE2 |
0.819 | -0.139 | 2 | 0.647 |
MAPKAPK5 |
0.819 | -0.056 | -3 | 0.742 |
MEKK1 |
0.819 | -0.136 | 1 | 0.774 |
GRK3 |
0.818 | 0.003 | -2 | 0.687 |
PLK4 |
0.818 | -0.095 | 2 | 0.554 |
SGK1 |
0.818 | 0.132 | -3 | 0.653 |
PERK |
0.818 | -0.159 | -2 | 0.793 |
ZAK |
0.818 | -0.144 | 1 | 0.736 |
PDK1 |
0.818 | 0.004 | 1 | 0.766 |
GCK |
0.818 | 0.039 | 1 | 0.769 |
PKCT |
0.817 | 0.007 | 2 | 0.648 |
PLK3 |
0.817 | -0.156 | 2 | 0.726 |
PINK1 |
0.817 | -0.132 | 1 | 0.858 |
MARK1 |
0.817 | -0.050 | 4 | 0.728 |
TLK1 |
0.816 | -0.129 | -2 | 0.815 |
BRAF |
0.816 | -0.158 | -4 | 0.836 |
NEK11 |
0.816 | -0.090 | 1 | 0.756 |
PKCE |
0.816 | 0.048 | 2 | 0.654 |
DAPK1 |
0.815 | 0.075 | -3 | 0.800 |
CDK6 |
0.815 | 0.161 | 1 | 0.761 |
HPK1 |
0.815 | 0.046 | 1 | 0.754 |
TNIK |
0.815 | 0.060 | 3 | 0.849 |
AKT3 |
0.815 | 0.118 | -3 | 0.669 |
MEKK6 |
0.814 | 0.008 | 1 | 0.773 |
DCAMKL2 |
0.814 | -0.042 | -3 | 0.796 |
IRAK4 |
0.814 | -0.114 | 1 | 0.778 |
SSTK |
0.813 | -0.033 | 4 | 0.749 |
ROCK2 |
0.813 | 0.111 | -3 | 0.800 |
CDK4 |
0.813 | 0.166 | 1 | 0.743 |
PKCI |
0.813 | -0.011 | 2 | 0.671 |
CK2A2 |
0.813 | 0.037 | 1 | 0.690 |
PAK5 |
0.812 | 0.046 | -2 | 0.647 |
P70S6K |
0.812 | 0.011 | -3 | 0.725 |
PBK |
0.812 | 0.112 | 1 | 0.795 |
MAP3K15 |
0.811 | -0.012 | 1 | 0.727 |
PAK4 |
0.811 | 0.069 | -2 | 0.657 |
CAMK1D |
0.810 | 0.015 | -3 | 0.704 |
MINK |
0.810 | -0.013 | 1 | 0.755 |
SNRK |
0.810 | -0.210 | 2 | 0.593 |
HRI |
0.810 | -0.267 | -2 | 0.810 |
BUB1 |
0.810 | 0.116 | -5 | 0.805 |
CAMKK2 |
0.810 | -0.118 | -2 | 0.718 |
KHS1 |
0.809 | 0.057 | 1 | 0.748 |
TAO2 |
0.809 | -0.114 | 2 | 0.775 |
HGK |
0.809 | -0.023 | 3 | 0.844 |
KHS2 |
0.809 | 0.064 | 1 | 0.760 |
MRCKB |
0.808 | 0.074 | -3 | 0.748 |
LRRK2 |
0.808 | -0.081 | 2 | 0.777 |
CAMKK1 |
0.808 | -0.184 | -2 | 0.720 |
NEK4 |
0.807 | -0.104 | 1 | 0.759 |
EEF2K |
0.807 | -0.056 | 3 | 0.803 |
TAK1 |
0.807 | -0.092 | 1 | 0.779 |
MST2 |
0.807 | -0.111 | 1 | 0.774 |
NEK8 |
0.807 | -0.205 | 2 | 0.740 |
NEK1 |
0.806 | -0.045 | 1 | 0.771 |
VRK1 |
0.805 | -0.073 | 2 | 0.757 |
DMPK1 |
0.805 | 0.110 | -3 | 0.766 |
SBK |
0.805 | 0.103 | -3 | 0.602 |
CK2A1 |
0.804 | 0.031 | 1 | 0.665 |
CHK2 |
0.803 | 0.033 | -3 | 0.661 |
TTBK1 |
0.802 | -0.202 | 2 | 0.575 |
PHKG2 |
0.802 | -0.100 | -3 | 0.783 |
PKN1 |
0.802 | 0.006 | -3 | 0.738 |
MRCKA |
0.802 | 0.035 | -3 | 0.760 |
PDHK3_TYR |
0.802 | 0.251 | 4 | 0.852 |
LOK |
0.801 | -0.080 | -2 | 0.741 |
CK1A |
0.799 | 0.111 | -3 | 0.516 |
IRAK1 |
0.799 | -0.291 | -1 | 0.742 |
PLK2 |
0.799 | -0.076 | -3 | 0.749 |
YSK1 |
0.798 | -0.054 | 2 | 0.746 |
CRIK |
0.797 | 0.092 | -3 | 0.733 |
HASPIN |
0.796 | 0.026 | -1 | 0.714 |
CAMK1A |
0.795 | 0.013 | -3 | 0.672 |
SLK |
0.795 | -0.124 | -2 | 0.687 |
YANK3 |
0.795 | -0.023 | 2 | 0.389 |
MAP2K4_TYR |
0.795 | 0.156 | -1 | 0.867 |
ROCK1 |
0.795 | 0.062 | -3 | 0.762 |
STK33 |
0.795 | -0.159 | 2 | 0.565 |
MST1 |
0.794 | -0.181 | 1 | 0.754 |
OSR1 |
0.793 | -0.056 | 2 | 0.741 |
MAP2K6_TYR |
0.793 | 0.115 | -1 | 0.866 |
PKMYT1_TYR |
0.793 | 0.144 | 3 | 0.855 |
PDHK4_TYR |
0.793 | 0.090 | 2 | 0.825 |
MYO3B |
0.791 | -0.004 | 2 | 0.759 |
MEK2 |
0.791 | -0.248 | 2 | 0.746 |
BMPR2_TYR |
0.790 | 0.069 | -1 | 0.865 |
TESK1_TYR |
0.790 | -0.008 | 3 | 0.878 |
PKG1 |
0.789 | 0.020 | -2 | 0.608 |
LIMK2_TYR |
0.789 | 0.118 | -3 | 0.857 |
BIKE |
0.789 | 0.048 | 1 | 0.761 |
TTK |
0.789 | -0.084 | -2 | 0.788 |
PDHK1_TYR |
0.787 | 0.011 | -1 | 0.861 |
MAP2K7_TYR |
0.787 | -0.090 | 2 | 0.796 |
NEK3 |
0.787 | -0.123 | 1 | 0.730 |
ASK1 |
0.785 | -0.121 | 1 | 0.713 |
EPHA6 |
0.781 | 0.032 | -1 | 0.819 |
MYO3A |
0.781 | -0.098 | 1 | 0.752 |
PINK1_TYR |
0.780 | -0.191 | 1 | 0.822 |
EPHB4 |
0.779 | 0.006 | -1 | 0.787 |
ALPHAK3 |
0.778 | -0.115 | -1 | 0.750 |
AAK1 |
0.778 | 0.110 | 1 | 0.678 |
RIPK2 |
0.778 | -0.350 | 1 | 0.694 |
ABL2 |
0.778 | 0.051 | -1 | 0.760 |
FGR |
0.776 | 0.002 | 1 | 0.842 |
RET |
0.776 | -0.123 | 1 | 0.775 |
TXK |
0.776 | 0.060 | 1 | 0.809 |
TAO1 |
0.776 | -0.137 | 1 | 0.689 |
LIMK1_TYR |
0.775 | -0.131 | 2 | 0.777 |
ABL1 |
0.775 | 0.039 | -1 | 0.754 |
TNK2 |
0.773 | 0.018 | 3 | 0.758 |
LCK |
0.772 | 0.048 | -1 | 0.803 |
MST1R |
0.772 | -0.139 | 3 | 0.808 |
BLK |
0.772 | 0.077 | -1 | 0.800 |
JAK2 |
0.771 | -0.125 | 1 | 0.767 |
YES1 |
0.771 | -0.055 | -1 | 0.807 |
DDR1 |
0.771 | -0.148 | 4 | 0.767 |
ROS1 |
0.770 | -0.123 | 3 | 0.760 |
CSF1R |
0.770 | -0.103 | 3 | 0.786 |
TYRO3 |
0.770 | -0.153 | 3 | 0.786 |
TYK2 |
0.770 | -0.198 | 1 | 0.770 |
CK1G3 |
0.769 | 0.052 | -3 | 0.473 |
HCK |
0.769 | -0.044 | -1 | 0.798 |
FER |
0.769 | -0.123 | 1 | 0.844 |
EPHA4 |
0.768 | -0.058 | 2 | 0.739 |
SRMS |
0.768 | -0.070 | 1 | 0.820 |
ITK |
0.768 | -0.041 | -1 | 0.770 |
FYN |
0.766 | 0.042 | -1 | 0.789 |
JAK3 |
0.766 | -0.135 | 1 | 0.754 |
TNNI3K_TYR |
0.765 | -0.004 | 1 | 0.801 |
STLK3 |
0.765 | -0.243 | 1 | 0.703 |
EPHB1 |
0.764 | -0.102 | 1 | 0.816 |
EPHB3 |
0.764 | -0.073 | -1 | 0.768 |
EPHB2 |
0.763 | -0.072 | -1 | 0.761 |
KDR |
0.763 | -0.113 | 3 | 0.751 |
INSRR |
0.763 | -0.157 | 3 | 0.738 |
TNK1 |
0.762 | -0.069 | 3 | 0.777 |
MET |
0.762 | -0.076 | 3 | 0.784 |
KIT |
0.762 | -0.138 | 3 | 0.786 |
BMX |
0.762 | -0.045 | -1 | 0.685 |
MERTK |
0.762 | -0.080 | 3 | 0.779 |
YANK2 |
0.761 | -0.055 | 2 | 0.401 |
JAK1 |
0.761 | -0.069 | 1 | 0.709 |
FGFR2 |
0.761 | -0.184 | 3 | 0.795 |
NEK10_TYR |
0.757 | -0.148 | 1 | 0.646 |
PTK2 |
0.757 | 0.041 | -1 | 0.773 |
WEE1_TYR |
0.757 | -0.120 | -1 | 0.733 |
AXL |
0.756 | -0.165 | 3 | 0.772 |
EPHA7 |
0.756 | -0.093 | 2 | 0.726 |
FLT1 |
0.755 | -0.128 | -1 | 0.793 |
CK1G2 |
0.755 | 0.042 | -3 | 0.554 |
DDR2 |
0.754 | -0.040 | 3 | 0.728 |
PDGFRB |
0.754 | -0.268 | 3 | 0.789 |
TEK |
0.753 | -0.215 | 3 | 0.725 |
TEC |
0.753 | -0.145 | -1 | 0.692 |
FLT3 |
0.753 | -0.245 | 3 | 0.782 |
EPHA3 |
0.753 | -0.153 | 2 | 0.701 |
PTK2B |
0.753 | -0.068 | -1 | 0.730 |
LYN |
0.753 | -0.093 | 3 | 0.712 |
FGFR1 |
0.753 | -0.226 | 3 | 0.759 |
SRC |
0.752 | -0.054 | -1 | 0.775 |
BTK |
0.752 | -0.235 | -1 | 0.731 |
SYK |
0.751 | 0.027 | -1 | 0.748 |
EPHA1 |
0.751 | -0.138 | 3 | 0.763 |
FGFR3 |
0.750 | -0.186 | 3 | 0.764 |
ERBB2 |
0.750 | -0.195 | 1 | 0.725 |
PTK6 |
0.750 | -0.238 | -1 | 0.700 |
LTK |
0.750 | -0.183 | 3 | 0.738 |
FRK |
0.749 | -0.143 | -1 | 0.791 |
ALK |
0.749 | -0.216 | 3 | 0.705 |
EPHA5 |
0.748 | -0.112 | 2 | 0.715 |
MATK |
0.747 | -0.135 | -1 | 0.684 |
EPHA8 |
0.747 | -0.106 | -1 | 0.758 |
NTRK1 |
0.747 | -0.274 | -1 | 0.772 |
INSR |
0.745 | -0.205 | 3 | 0.720 |
PDGFRA |
0.745 | -0.336 | 3 | 0.787 |
NTRK3 |
0.745 | -0.175 | -1 | 0.724 |
CSK |
0.744 | -0.163 | 2 | 0.730 |
EGFR |
0.743 | -0.125 | 1 | 0.635 |
FLT4 |
0.741 | -0.273 | 3 | 0.752 |
FGFR4 |
0.740 | -0.143 | -1 | 0.722 |
NTRK2 |
0.738 | -0.321 | 3 | 0.738 |
EPHA2 |
0.737 | -0.111 | -1 | 0.725 |
ZAP70 |
0.737 | 0.017 | -1 | 0.683 |
ERBB4 |
0.736 | -0.073 | 1 | 0.663 |
IGF1R |
0.730 | -0.204 | 3 | 0.660 |
MUSK |
0.723 | -0.235 | 1 | 0.635 |
FES |
0.721 | -0.182 | -1 | 0.664 |